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ABSTRACT: New parameters are presented for the analytical solution of the dispersion problem in two-well
injection withdrawal systems. The new expressions are derived to parallel the a and & parameters presented by
Hoopes and Harleman. These two parameters are the dimensionless time required for a tracer to move from the
recharge well to any point along a streamline and the spread of the tracer distribution with respect to the mean
travel time, respectively. The previously published parameters are found to be correct only in a special case
{(points on the line connecting the two wells). Validation of the new parameters is compared with a numerical

integration scheme using Simpson’s rule.

INTRODUCTION

In the last 3 decades, many analytical solutions that could
be used to guantify the predict contaminant transport in un-
derground strata were developed for flow fields with variable
velocity. Such information is needed for effective applications
of remedial technologies to restore polluted aquifers and make
them usable again, A system of withdrawal and injection wells
is often used as a possible remedial technique to remove con-
taminated ground water from aquifers and prevent further
spreading of contaminants to unpolluted regions. Two-well
systems are also employed in tracer tests, where a tracer is
injected and its migration in the aquifer is monitored at dif-
ferent observation wells,

In this context, studies in the field of longitudinal and lateral
dispersion in two-weli flow-through porous media were initi-
ated by Hoopes and Harleman (1967b), who obtained analyt-
ical expressions for the temporal and spatial distributions of a
dissolved, conservative substance added to the flow between
a recharging and a pumping well in a homogeneous, isotropic,
and confined aquifer of infinite horizontal extent. A different
method was proposed by Grove and Beetem (1971) based on
travel time calculations. Analytical solutions to the convective-
dispersive transport equation for a single well radial flow were
developed by Tang and Babu (1979), Hsieh (1986), and Chen
{1987) based on theoretical considerations contributed by
Ogata (1958), Lau et al. (1957), Raimondi et al. (1959), and
Hoopes and Harleman (1967a).

This study presents new expressions for the parameters ob-
tained in the solution developed by Hoopes and Harleman
(1967b) for the dispersion problem in the two-wel flow-
through porous media. New analytical expressions are devel-
oped for the parameters introduced by Hoopes and Harleman
(1967b) for additional cases not studied previously. The pa-
rameters reported in Hoopes and Harieman (1967b) are of lim-
ited use because they only apply correctly to a limited region
in thé flow domain (points along the x-axis). The new param-
eters proposed in this paper apply to any point in the flow
domain and are compared favorably against a numerical so-
lutiorf using Simpson’s rule in all cases.
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MATHEMATICAL STATEMENT OF PROBLEM

The general equation describing the distribution of a dis-
solved substance introduced into a 2D or plane ground-water
flow through a homogeneous, isotropic, and porous medium
can be written in terms of the potential ¢ and the stream func-
tion s {(Hoopes and Harleman 1967b)

de de a de
—+gd—=¢d— | +D,)—
a9 ag (( ! )aq))

, @ dc

+qa¢‘((D2+Dm)a¢)+S )
in which ¢ = average concentration of the solute (mass of
solute per mass of solution); S = rate of gain of substance
within the volume due to leaching from the porous medium
or chemical reaction; and D,, D,, and D,, = coefficients of
longitudinal, lateral dispersion, and molecular diffusion, re-
spectively.

The coefficients of longitudinal dispersion D, and lateral
dispersion D, are defined as D, = a,q and I}, = a,g, respec-
tively, where g is the average seepage velocity along the flow
line and «, and «, are constants, called the intrinsic dispersiv-
ity coefficients, and are assumed to be functions of the media
structure only.

In the problem under consideration, the aquifer is assumed
to be infinite, homogenous, and isotropic and confined be-
tween two horizontal planes separated by a vertical distance
H. For steady, laminar flow between two wells (one recharging
and the other pumping at the same rate), the stream and po-
tential function can be used to map out both the flow and the
potential lines, respectively, between the pumping and the re-
charging well. The stream function ¢ and potential function s
for such a flow field can be written

L D S

A 7 tand Lg F yz)] @
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in which A = Of2wHG, where 0 is the aquifer porosity.

Fig. 1 shows on a Cartesian coordinate system the resulting
value of the stream and potential functions in the case of the
flow field under consideration. Egs. (2) and (3) allow one to
produce {between two wells: one pumping and one recharging)
contour lines that are actually a map of the hydraulic head in
the aquifer.

The seepage velocity can be expressed (Hoopes and Har-
leman 1967bH)

q :f“o [cosh (%) + cos %} (C)]
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FIG. 1. Values of Potential and Stream Functions for Cases of
Recharging and Pumping Wells—Only Cases that Were Studied
by Hoopes and Harleman (1967b) Arem <0 orm > 0; £ = 0, for
which aand b Are Correct {y = 0), and n < 0; £ <0, for which Only
als Correct

In Hoopes and Harleman (1967b) the following four cases
were addressed and perspective solutions were derived:

* No dispersion or diffusion along or transverse to the
streamlines

» Dispersion and diffusion along the streamlines but no dis-
persion or diffusion across the streamlines

* Dispersion and diffusion transverse to the streamlines but
no dispersion or diffusion along the streamlines

» Combined influences of dispersion, diffusion, and con-
vection

The solution to each case is given in terms of two param-
eters defined as a and &, which are the dimensionless time
required for a tracer to move from the recharge well to any
point along a streamline and the. spread of the tracer distri-
bution with respect to the mean travel time, respectively. In
this paper, separate generalized solutions for each of these two
parameters is proposed. The new parameters could therefore
be used in the solutions to the four cases addressed by Hoopes
and Harleman (1967b).

The solution to the term a (i.e., dimensionless time required
for a tracer to move from the recharge well to any point along
a streamline) was defined

T

a = dn
. (g')

)

where
g =x.g/A =coshn + cos &, £= /A, n=d¢/A (6)

~ Inserting (6) into (5) yields

M
a= dn

~ }.. (coshq + cos &) @

Similarly, the term b (ie,, the spread of the 'tracer distri-
bution with respect to the mean travel time) was defined

"8 Y
b= I LA
L [(q'f * (q')*] an @)

where § = o,/x,; and v = D, /A,
Inserting (6) into (8} yields, for the parameter b
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{cosh 1 + cos &)

_[ B
b= J‘_, l:(cosh 7 + cos £ * ] dn

The nine cases for which parameters ¢ and b are evaluated
in this paper are

< 0;£E<0
s <O E=0o0r 2w
s E>0
sn=0;E<0
en=0;£=00r2m
s=0;£>0
*q>0€£<0
*q>0,€£€=00r 2w
>0 E>0

The next section presents the approach used to study the
integrals of (7) and (9).

EVALUATION OF INTEGRAL

BEvaluation of the integrals in (7) and (9) requires one to
consider the nine different cases listed above, depending on
the sign of the variables £ and m (or the sign of the stream
function  and potential function &).

Hoopes and Harleman ({967b) solved the integrals correctly
for the parameters ¢ and & (for y = 0) for the case ) < 0 or
7 >0, and £ = 0, 21 (points on the x-axis). For the case 1 <
0 and £ > 0, they provided an incorrect formula for parameter
b. They evaluated and plotted the concentration distribution at
the withdrawal well and at the midpoint between the two wells
with and without dispersion along the streamlines. Break-
through curves at other points in the flow field were not re-
ported. The solutions provided cannot be computed numeri-
cally to redevelop corresponding breakthrough curves at other
poinis within the flow field, No reference to the literature re-
garding this issue was found, and this suggested that a com-
pletely new evaluation of the integrals was necessary. In this
paper, the solutions to all nine £ and r cases shown above are
provided (i.c., the nine stream function ¢ and potential func-
tion ¢ conditions). The new parameters will prove useful as a
tool to predict and plot breakthrough curves in practical en-
gineering investigations.

The solutions to each of the nine cases are presented in
Table 1. The details of the derivation (Maloof 1998) are avail-
able on microfiche for each case of interest.

COMPUTATION OF NEW EXPRESSIONS

For the case of dispersion and diffusion along the stream-
lines, but no dispersion or diffusion across the streamlines, the
concentration at an observation well at any point {x,y) can be
predicted using (Hoopes and Harleman 1967b)

c 1 a—T
C—ozi‘el‘fr[\@jl (10)

To further investigate the validity of the new parameters
obtained in this study, numerical values were calculated for a
field situation, using (10). In this scenario (Fig. 2), an aquifer
was considered to be confined with two wells, one recharging
and one pumping, at 0.02 m’s, The distance between the two
wells was set as 152 m (xo = 76 m), and the aquifer had the
following properties: thickness H =33 m, D, =0, oy = 1.17
m, and a porosity of 0.35. In Figs. 3 and 4, and breakthrough
curves that show the arrival of the tracer at each of the selected
coordinate points are plotted. The dimensionless time 7 = 1
corresponds to the actual time of 244 days in Figs. 3 and 4.
As can be seen, the new developed parameters predict and




TABLE 1. Solutions to Nine Cases for which Parameters a and b Are Evaluated
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Note: sign(®) =1 fore > G and —1 for § < 0.

describe in a meaningful way the expected tracer concentration
at the designated coordinates.

COMPARISONS BETWEEN SOLUTIONS

To verify the analytical solution, the new parameters (a and
b) were also computed by numerical integration using Simpson’s

rule, In this scenario, numericat values were calculated for a sand-
box laboratory experiment using (10), with two wells, one re-
charging and one pumping, at 100 cm’/s. The distance between
the two wells was set as 200 cm {x, = 100 cm), and the aquifer
had the following properties; thickness # = 500 cm and a po-
rosity of 0.20. As shown in Table 2, the terms used in the so-
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lutions are found to be equivalent. This finding confirms the ap- The new developed parameters can be readity calcuiated in

propriateness of the developed parameters as a new tool to be spreadsheet format (available from the writers) and used to
used in the approximate analytical solution developed by Hoopes obtain breakthrough curves at any point within a given flow
and Harleman (1967b) [(7) and (9)] to predict tracer movement field for a variety of problems.

between a pumping and a recharging well.

TABLE 2. Results Comparison between Numerical Method

" LK) Using Simpson’s Rule and Analytical Solution
y o 10,20
E10.50; Numerical | Analytical
(10,100 Case| X Y E n solution solution
o _[ ([ @ | @ {4) {5) &) {7}
Mg | —10| 109 020132 | —0.19865 | 0.294581 | 0.288443
% ¢ —10 | —10| —0.20132 | —0.19865 | 0.294581 | 0.288443
o ¥V ’ ) 10| —10 | —0.20132 { 0.19865 | 0.395502 | 0.389136
¢ ' “E - "; x 10| 10| 020132 ] 0.19865 | 0.395502 | 0.389136
« —» g™ | —10| 10| 020132 | —0.19865 | 0.114585 | 0.111512
~10 1 —10| —0.20132 | —0.19865 | 0.114585 | 0.111512
o 10 | —10 | —020132 | 0.19865 | 0.165386 | 0.162205
200~ 10 10] 020132 ] 0.19865 | 0.165386 | 0.162205
{-50,0) g | —10| 10| 020132 | —0.19865 | 0.04802 | 0.046482
v —10] —10] —0.20132 | —0.19865 | 0.04802 | 0.046482
10| —10{ —0.20132 | 0.19865 | 0.073592 | 0.072003
10| 10 002132 0.19865 | 0.073592 | 0.072003
FIG. 2. Schematic of Field Situation Considered

1.2

* (10,1) £ (10,20) < (10,50)
4 (10,100)  ©(10,150) & (76,0) Pump

FIG. 3. Plotof Concentration Distributionalong £ > 0 andn > 0

1.2

CiC,

0 02 04 0.6 0.8 1
T=Atlx

4+ (-1,0) > (-5,0) £ (-20,0) 2 (-50,0) 4 (76.0) Pump |

FIG. 4. Plot of Concentration Distrlbution along £ = O andn <0
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SUMMARY AND CONCLUSIONS

In this paper new parameters are presented for the analytical
solution of the dispersion problem in two-well injection with-
drawal systems. The new expressions are derived to parallel
the a and b parameters presented by Hoopes and Harleman
(1967b). The new parameters are comparable to the parameters
developed by Hoopes and Harleman (1967b} only for points
on the x-axis (£ = 0 or 2m). The parameters are comparcd
against a numerical solution using Simpson’s rule and are
found to be equivalent.
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APPENDIXIl. NOTATION

The following symbols are used in this paper:

A
a

i

b
c

Cg
Dm
D, D, =

o

erf(A)
erfc(A)
H

h

"

o

W Tlaa 10
o onauu

N
hn

Ty, Oy

L}

E£6 a4 o
Il

O2wHS (LYTY;

travel time from recharge well to any point along
streamline {T);

measure of variance of tracer distribution (T%);
concentration of tracer, mass of tracer to mass of so-
lution;

tracer conceniration at recharge well;

molecular diffusion coefficient (LT,

coefficients of longitudinal and lateral dispersions, re-
spectively, in uniform flow (LYT);

error function of A = (2A/m) J3 e™ d\;
complementary error function of A = 1 — erf(A);
thickness of confined aquifer (L);

piezometric head (L});

coordinate along equipotential line (L);

well flow rate (LYT);

seepage velocity along streamline (L/T);

XoqlA;

coordinate along streamline (L};

time (T;

one-half well spacing (L);

longitudinal and lateral dispersivity coefficients, re-
spectively, in nonuniform flow (£);

porosity;

dimensionless time coordinate = At/xg;

equipotential function (L T); and

stream function (L%T).
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