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Abstract

Several experimental studies have indicated that the traditional
Darcy law is not valid at low filtration velocities. ‘These results do not
represent rare exceptions, but rather the ordinary behavior of certain
fluid-porous media geosystems, such as water and gas flowing through
soils containing wet clays. In addition, viscoplastic fluids, such as oils con-
taining paratfin, asphaltene and wax, flowing under low temperature in
porous media exhibit similar deviations from the Darcian behavior. The
commeoen conclusion of these studies, which are summarized in the first
part of this paper, is that non-Darcian fluid flow, in many cases, may be
described by a filtration law with threshold gradient: there is no flow for
forced pressure gradient values below the threshold gradient and there is
a linear relationship between flow velocity and pressure gradient abave
the threshold gradient value.

The second part of this paper deals with the theoretical aspects of
fiuid flow with threshold gradient. Solutions to several two-dimensional
steady-state horizontal flow problems are discussed. The solutions show
that the typical characteristic of the flowre gime is stagnation zones which
appear in the vicinity of the critical points of the flow. When water is
injected into the reservoir to displace the non-Newtonian fluid, the stag-
nation zoncs change and achieve a final limiting configuration. The size
of the stagnation zones at that time determines the loss of the displaced
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fluid, which may be minimized by increasing the flow rate of the displac-
ing liquid (water).

The last section of this paper deals with nonsteady flow situations and
introduces methods to estimate field scale reservoir parameters, partic-
ularly the field scale threshold gradient. A number of publications avail-
able only in Russian are criticatly presented and compared to the western
literature.

Introduction

The theory of flow in porous media has been developed to address techni-
cal problems in the fields of civil, environmental, and petroleum engincering.
For example, the theory is applied in hydrogeologic investigations of natural
groundwater flow and drainage in a variety of geologic formations. Another
application is the replenishment of underground reservoirs by various artifi-
cial recharge methods, such as surface spreading techniques or deep injection
through wells. Of special interest are the cases of sewage or liquid radioactive
waste disposal into deep formations. In the field of soil mechanics, consoli-
dation studies, especially for clay soils, require flow modeling.

The theory has also been used to predict contaminant migration in the
subsurface environment. Accidental releases of hazardous fluids due to oil
and chemical spills and leaks from underground petroleum storage tanks are
a great national concern because of the associated risks of aquifer contamina-
tion. Use of the theory is essential to predict contaminant transport through
soils and to select appropriate remedial actions. Flow in low permeability ge-
ologic media affects the geochemical evolution of groundwater systems over
geologic times and leads to the formation of mineral deposits.

Simultaneous flow of oil and water is encountered in practicaily all oil
reservoirs during the oil production process. Of special interest are methods
of water or chemical (aqueous surfactants, polymers) flooding in which the
displacing liquid recovers oil by invading the oil reservoir during secondary
recovery operations.

Numerous observations from engineering practice and laboratory studics
suggest that, in certain cases, it is necessary to reconsider the established fun-
damentals of the theory of flow in porous media and to develop alternative
hydrodynamic models. Such reexamination of those fundamentals may well
result in the discovery of how different physical behaviors of the fluid-geologic
medium system affect the mentioned technical applications.
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The theory of non-Newtonian flow in geologic media provides an exam-
ple. Studies of non-Newtonian flow in porous media were initiated when ex-
perimental results indicated that the traditional Darcy’s law was not valid at
Jow filtration velocities. Flow with a threshold gradient is a special case: no
flow occurs unless the gradient exceeds a Jimiting value. In due course it be-
came evident that such results were not exceptions, but rather the ordinary
behavior of certain fluid-porous media systems, such as water and gas flowing
through argillaceous soils. In addition, viscopiastic fluids, such as oils contain-
ing paraffin, asphaitene and wax, flowing under low temperature in porous
media exhibit similar deviations from the Darcian behavior. The overwhelm-
ing experimental evidence left no doubt that certain flows in porous media
could not be reliably described by Darcy’s theory. Therefore, a solution to
such problems was not possible by introducing some correction factors into
the existing results, but rather necessitated the development of a hydrody-
namic theory of flow with a threshold gradient in geologic media.

Due to its importance to the oil production industry in the former So-
viet Union, non-Darcian flow theory in geologic media has been studied ex-
tensively by Soviet scientists since the 1950°s. Significant progress has been
achieved in most of the practical problems, such as unsteady one-phase flow,
multidimensional one-phase flow, two-phase flow, well data analysis and
other applications of the theoretical results. Numerous publications on these
problems exist in Russian, which have not been accessible to interested west-
ern scientists due to language barriers. The present review aims at serving
this need and at comparing international scientific progress on this subject.

Among the various non-Darcian flow with threshold gradient problems,
one-dimensional two-phase flow has been studied well, in part due to the rel-
atively simple theory needed for such studies [3,4,6-9,18,4249].

In contrast to Darcy’s flow, multidimensional flow with a threshold gra-
dient is characterized by zones where the forced pressure gradient is so low
that the fluid in these zones becomes immobile (stagnation zones). Although
knowledge of the location and geometry of these zones is of paramount in-
terest, practical calculation is faced with tremendous mathematical obstacles.
Development of a general theory and calculation methods for the stagnation
zones have been pioneered by V.M. Entov and published in two monographs
in Russian [7, 21]. A third problem, namely unsteady non-Darcian fiow and
estimation of field-scale parameters, has also been developed and published
in Russian [7, 20].
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The main goal of this paper is to review the empirical results available
today, which comprise the basis of the theory, and present some available
analytical solutions to flow problems, providing the features of multidimen-
sional and unsteady non-Darcian fluid flow in geological size formations, such
as water and oil reservoirs. The next section, Experimental Studies of Non-
Darcian Behavior, summarizes the experimental evidence for a threshold gra-
dient and introduces an appropriate dynamic law to model such fluid-porous
medium systems. The third section presents and discusses solutions to two-
dimensional steady-state horizontal flow problems. The fourth section ad-
dresses the problem of residual stagnation zones after the displacement of a
non-Newtonian fluid by a Newtonian one. The fifth section deals with non-
steady flow situations and introduces methods to estimate field scale reservoir
parameters. The conclusions and recommendations of this review are sum-
marized in the last section.

Experimental Studies of Non-Darcian Behavior

The purpose of this section is to present the experimental evidence of thresh-
old gradient flow in low permeability porous media and to summarize expla-
nations of such behavior as proposed in the literature. However, no attempt
is made to comprehensively review the literature on microstructure modi-
fications and clectrochemical phenomena at microscale, which may explain
convincingly the macrobehavior of the fluid-porous medium system.

Water and Gas Flow in Argillaceous Porous Media

Non-Darcian flow phenomena were repeatedly observed for water moving
through porous media containing clay [24, 51, 52). A typical dependence
of water filtration velocity on forced pressure gradient inside an argillaceous
porous medium is shown in Figure 1 [11]. The experimental curve is matched
with a filtration law with a threshold gradient, which must be exceeded before
flow starts.

Similar data have been obtained for gas flow in porous media contain-
ing clay and residual water. Typical experimental data obtained in artificial
porous media made of a mixture of sand with clay are shown in Figure 2 [1].
These results demonstrate no gas movement if the forced pressure difference
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Figure 3 Effect of electrolyle amount on water flow in argillaceous porous‘media

(from Von Engelhardt and Tunn, 1954)

is less than some limiting value, which depends on the fraction of clay in the
mixture. If the pressure difference exceeds the limiting value the gas flow rate
is proportional to the square of the pressure difference.

In fact, the nonlinear effects in all the above cases are related to the inter-
action between water and clay particles. Polar water molecules interact with
clay grains. Due to the small size of the clay grains, near 10 p, the contact
surface between clay and water is very large and may, in some cases, reach
several hundred square meters (for example 700 m?/gr for montmorillonite).
Therefore, the clay fines are able to absorb a large amount of water and to
swell significantly. Furthermore, the clay fines may also tear off the solid ma-
trix creating a gel-forming colloid. Thus, two phenomena occur in the porous
media containing clay: (1) water adsorption by the clay fines, and (2) pore
clogging with the colloid. Both phenomena cause a decrease in permeability
and a nonlinear pseudoplastic fluid behavior at low pressure gradient val-
ues. The nonlinear effect depends on the specific conditions and the thresh-
old gradient may or may not be observed [28, 29, 31, 33, 34, 38, 40, 41, 58].
For example, Figure 3 [58] demonstrates the dependence of flow velocity of
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an electrolyte solution (NaCl/water) through natural sandstone cores of high
permeability (0.2-1.3 Darcies) and low clay content. It can be observed that
the nonlinear effect constantly decreases with an increasing concentration of
NaCl. In his review of groundwater flow in low-permeability environments,
Neuzil [39] points out that there is no consistency in the types and magni-
tudes of deviations from Darcy’s law and that the most carefully conducted
experiments are of Darcy-type. He cautions, however, that there is a lack of
experimental data for flow in tight media under realistically small hydraulic
gradients, and, due to this observational gap, Darcy’s equation is just a highly
speculative assumption.

In summary, the type of chemicals dissolved in water and the type and per-
centage of clay fines affect the water flow through argillaceous porous media.
Clays are a natural ion exchange media, releasing from their surface metal
ions into the solution and, consequently, obtaining a certain surface charge
upon interaction with ions in the solution and with polar water molecules.
Hence, the electrokinetic effects may alter significantly the resistance of water
flow in natural porous media containing clay. Detailed analyses of changes in
watcr properties near solid boundaries and interfaces are given by Low [32],
Mitchell [37], Forslind and Jacobson [26], Clifford [12] and most recently by
Vaidya [56] and Zhao et al. [63].

Crude Oil Flow Through Porous Media

Many crude oils contain heavy components (tar, paraffin, asphaltene, wax),
which under certain conditions, such as low temperature, may create a solid-
like structure within the liquid phase. As a result, the rheological behav-
ior of these gel-forming oils is described by a non-Newtonian law, mostly
of a pseudoplastic or viscoplastic type. Nonlinear flow of gel-forming oils
through capillarics and porous media has been studied and published ex-
tensively [2, 14, 15, 22, 23, 30, 53, 55). As an example, a nonlinear relation
between filtration velocity and forced pressure gradient in artificial porous
media made of loose sand is shown in Figure 4 [2]. It can be observed that 2
threshold pressure gradient exists if oil fiows at low temperatures. As temper-
ature increases the threshold gradient decreases until it becomes zero. Fig-
ure 5 [25] shows that the porous media permeability also affects the threshold
gradient value. Low permeability may drastically increase the threshold gra-
dient.
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Summary

Numerous experimental results demonstrate that the fundamental Darcy’s
law, which was established in 1856 and suggested a linear relation between the
pressure gradient, Vp, and the vector of filtration velocity in porous media, q,
i not valid in many cases. There are two main reasons for this phenomenon:
(1) the nonlinear interaction between the fluid and the solid matrix of the
porous media followed by a change of the fluid propertics inside the thin layer
near the solid surface and by the appearance of additional resistance to the
flow, especially at low flow velocities, and (2) the non-Newtonian properties
of the fluid, which does not obey a modcl of linearly-viscous flow. In view of
these results, alternative dynamic equations were proposed based on the best
fit to the experimental data [17, 27, 54]. .

As many experiments demonstrate, non-Darcian fluid flow may be de-
scribed well by a dynamic law with a threshold gradient of magnitude G: there
is no flow for forced pressure gradient values below the threshold gradient
and a lincar relationship between flow velocity and pressure gradient exists
above the threshold gradient.

k v
= -f (vp— Gﬁ;‘j—[) for [Vp|>G )
0 for |Vp|<C

where & is the porous medium permeability and x is the fluid viscosity.
It has been established {35, 36] that the threshold gradient G is inversely
proportional to the square root of permeability &

G~1/Vk (2}

‘The same relation was later obtained using similarity theory [7]. Experimen-
tal verification of the relation was provided by Fomenko [25] (see Figure 3).
Recently Vradis and Protopapas [60], using two different microscale models
(capillary tube and spherical grain representation of the medium), showed
that eq 1 is a valid first approximation, and they also derived eq 2. The dy-
namic Jaw with a threshold gradient has been used successfully to represent
the flow of many fluids in porous media (heavy crudes, water, gas).

There have been only a few publications on large-scale non-Darcian flow
in geologic formations using the threshold gradient law (eq 1) in the western
literature [10,16,42-49,61]. Volker [57] deals with nonlinear Darcy seepage.
Vongvuthipornchai and Raghavan [59] present methods to analyze oil well
data for power-law fluids. Yoder and Dube [62] report on generic non-Darcy
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phenomena during an irrigation experiment. The large number of articles
dealing with flow and heat transfer of viscoplastic fluids in pipes, channels,
reactors, vessels, etc. are not reviewed in this study, which focuses on flow in
geologic media.

Two-Dimensional Steady Flow

The main characteristic of two-dimensional horizontal flow with a threshold
gradient is stagnation zones which can occur in the neighborhood of the crit-
ical points of the fiow. The shape and size of the stagnation zones as well as
their location on the flow domain are of great interest in many applications,
such as heavy oil recovery and wastewater disposal.

Desaulniers et al. [13] provide indirect evidence of the existence of the
stagnant zones in natural geologic formations. The authors measured °Cl
and ¥7Cl concentrations in groundwater flow and compared these results to
predictions using Darcy’s law. Deviations of the field results from the predic-
tions were explained by the occurrence of stagnation zones due to threshold
gradient. However, no direct field or laboratory evidence provides proof that
these stagnation zones exist.

A method to derive analytical solutions for two-dimensional steady-state
fluid flow with a threshold gradient in homogeneous porous media has been
developed by V. M. Entov and has been thoroughly studied in Bernadiner
and Entov {7]. Introducing a characteristic velocity, A = kG/p, and taking
into account the collinearity of pressure gradient, Vp, and filtration velocity
vector, ¢, the basic equations 1 are transformed into the system

fvp{*“[1+ﬁf]q lg] >0 B3
H Z A lgl >0

The continuity equation is div ¢ = 0.

An exact solution to the horizontal fiow problem governed by equation
system 3, in many cases of symmetrical flow, can be achieved by introducing
the stream function, ¥, in terms of the hodograph variables (w = |¢| and &,
where 4 is the angle of the flow velocity vector with the z axis). The stream
function, v, is related to the pressure, p, through the following equations:

@+NP0y _kOp  w4r0y _kdp

w  Hw  pdl w? 90 pow
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Then it can be shown that the stream function, +, satisfies the hypergeometric
equation

wlw + Moy + (w— Ay + thgg = 0 (4)

The solution to this equation was found by using hypergeometric transfor-
mation with respect to variabie w. To convert the solution from the radial
hodograph piane (w, @) to physical plane (z, y), the following integrals must
be used:

cosf k& sind
T = _fw+A ;a’p + —w d‘l,[)

sing k cos 8
y-—fw“;dp————w d )

The stagnation zone boundaries can be obtained from eq 5 atw = 0 (specific
discharge ¢ equal to zero).

For an infinite number of wells equally spaced at distance L on a straight
line, each pumping at equal rate, @, from an unbounded geologic reservoir,
the boundary of the stagnation zone is shown in Figure 6 as it changes with the
well productivity factor, b = Q/(4AL). It can be seen that decreasing the well
productivity factor (Jowering the pumping rate or spacing wider) significantly
increases the stagnation zones and, consequently, the amount of immovable
fluid.

In fact, this is a common conclusion for all of the studied cases of two-
dimensional horizontal flow with a threshold gradient. For example, Figure 7
shows the stagnation zone boundaries if the pumping wells in the chain have
vertical parallel fractures, each with length 2L (twice the distance between
the wells). It can be observed that if the characteristic well productivity pa-
rameter, &, is very low, say, 0.1, the stagnation zone covers almost the entire
fracture length.

If non-Darcian flow occurs in a reservoir with a step-like impermeable
boundary, the boundary corner, which is a critical point of the flow, is covered
by a zone of immovable fluid as shown in Figure 8. The size and shape of the
stagnation zone again depends on the characteristic parameter, b; the zone
area decreases as b increases. In this case, the characteristic distance, L, is
the step size.

Figure 9 exhibits flow with a threshold gradient through a pumping well
chain placed near an impermeable reservoir boundary. It can be seen that
even when b is quite high, equal to 1, the boundary is completely covered by
immovable fluid.
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Boundaries of the stagnation zones for a chain of pumping wells near an
impermeable boundary {from Bernadiner and Entov, 1975)
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in the reservoir. The final configuration of the stagnation zones, which de-
termines the amount of non-Newtonian fluid that cannot be recovered, gen-
erally depends on the history of the displacement. However, it is possible
to find the maximum size of the permanent stagnation zones at the end of
the displacement process under constant hydrodynamic conditions. Experi-
mental results of the limiting stagnation zones formed after displacement of
viscoplastic crude oil by water in Hele-Shaw cells are reported in Bernadiner
and Entov [7]. In the region of thc Newtonian fluid (water) Darcy’s law is
obeyed and the pressure satisfics the Laplace equation

k
7=- 2 p Vip=0 (6)

The unknown boundary of the final stagnation zones is a streamline for wa-
ter, and the value of the pressure gradient on this streamline is equal to the
threshold gradient of the displaced fluid.

[Vp| = G on the unknown stagnation zone boundary N

In fact, eq 7 is an additional condition for the boundary determination. Some
exact solutions for the system of equations eqs 6 and 7 for symmetrical well
patterns in homogeneous porous media are available [5, 7, 21]. The method
of solution is based on sequential application of the hodograph transforma-
tion and complex variable function theory. Figure 10 (a) illustrates a five-spot
well pattern with 2L distance between injecting and pumping wells. Figure 10
(b) [5] demonstrates variation of the sweep efficiency £ (defined as the ra-
tio of the swept arca over the total area) with the dimensionless parameter
b = Q/(AL). Increase of the injection flow rate, @, or decrease of the well
spacing, L, results in an increase in sweep efficiency, 4.

A similar analytical method has been employed by Boast and Baveye [10]
to obtain the configuration of stagnation zone at the corner problem. The
authors approximated Mitchell and Younger's [38] data of flow rate versus
pressure gradicnt with a step-like flow equation, with no flow under pressure
gradient below a threshold value and Darcian flow under pressure gradient
above it. They illustrated a comparison of classical and threshold gradient so-
lutions and showed that the deviation ié"signiﬁcant around the corner. Entov
etal. [21] developed a numerical method to calculate stagnation zone config-
uration in different cases.
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If the porous medium consists of several (say m) hydrodynamically un-
connected layers of different thickness d; and permeability k;, the system of
equations 6-7 is expanded by the pressure equality condition on the radius ry,
of each well, and by a condition stating that the sum of the water flow rates
from each layer, @;, equals the well flow rate ¢

=P = ... 5 P, at r = ry

D Qud: = QB ®
i=1

For porous media with a continuous distribution of permcability across
the layer thickness or for hydrodynamically connected layers in the porous
medium, average parameters across the medium thickness, such as filtration

velocity, permeability, water saturation, and threshold gradient, were intro-
duced. The pressure was assumed to be equal in the vertical at any distance

r from the well, thus neglecting vertical fiow components (crossflow).

The methods were employed to get analytical solutions for many appli-
cation problems related to different well patterns. Interested readers can
find numerous solutions in the aforementioned publications and in references
therein.

Unsteady Flow

Equations for Flow in a Confined Reservoir

The first results on unsteady threshold gradient flow under pressure ina con-
fined reservoir were reported by Entov [18]. The filtration law given by eq 3
can be written as

g _ [ —%tvp for |Vpl>C
AN= = 9
ol i { 0 for [VpI<G @
Equation 9 is substituted in the mass balance equation

Q%ZL) + div(pg) =0 (10)

where n is the porosity and p is the fluid density.
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Introducing the liquid state equation

&

d 11
p pp (11)

b1|>—a

and the equation for the matrix deformation

dn

n

dp (12)

tljl,-.

n

the mass balance equation (10) takes the form (p is constant in space)

op E .

—_ e =

S+ = divg=0 (13)
where E = (1/E, + 1/E,)~! is a modulus of bulk compressibility and ¢ is
defined from eq 9.

Omne-Dimensional Flow

Under constant initial pressure gradient across a one-dimensional porous
medium and constant boundary flow velocity, corresponding to injection or
inflow of a liquid with threshold gradient G, equations 9 and 13 have a self-
similar solution yielding
z kE

p=Gf(€); 5—5—\/5('—? X= (14)
The normalized pressure distribution versus the distance variable § is shown
in Figure 11. This solution shows that if the initial pressure gradient is lower
than the threshold gradient (as is the case in Figure 10), the pressure dis-
turbances propagate over a finite distance in the porous medium [18, 50]. If
the initial pressure gradient is greater than the threshold value, the pressure
changes affect a zone of infinite length in the porous medium.

Radial Flow

Radijal non-Newtonian inflow from a reservoir to a single well of radius r
pumping at constant rate  was studied by Entov and Malakhova {19]. They
found that the pressure at the well p, at time ¢ << ¥, where

._ 1 | pQ :
t ‘E{[zwka] (13)
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Normalized pressure distribution in one—dimensicnal nonsteady flow
(from Bernadiner and Entov, 1975}

is the same function of time as in the Newtonian flow

Q. 12x1
R — e | 16
Pu 4k n rZ (16)

Equation 16 is the well-known Theiss solution for radial flow to a well in a
confined reservoir, approximated for large time ¢ > 7, /(0.4xn) or in terms
of a dimensionless time variable 7 = tx/rZ, > 10, where a typical porosity
value n = 0.25 is used. On the contrary, att{ >> 1",

1/3 3
3xi,uQ] + HQ in aGkry, N 3uQ an
ThG 6rk  3uxt@ 4tk

sz—'G[

and the pressure changes in time {from a logarithmic law to a power law. Es-
timating the time t* from graphical display and curve fitting of real data gives
the opportunity to estimate the threshold gradient value in reservoir condi-
tions (Figure 12).
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Reservoir Analysis

A practical method to determine the reservoir parameters, namely the un-
stressed reservoir pressure and the threshold gradient, was developed by En-
tov et al. [20]. The method consists of analysis of the transient pressure in the
well in two phases, pumping and injecting. After pumping stops, the pres-
sure at the well increases until the pressure gradient in the vicinity of the well
achieves the threshold value, G. At that time the well pressure, Pw 1, 18 found
from

Pu1 =pr —GR (18)

where p, is the (unknown) unstressed reservoir pressure, and R is the radius
of zone of influence of the well. During the injection phase the pressure at
the well increases further above the unstressed pressure p,. After injection
_ stops the pressure in the reservoir is

Pu2 = pr + GR (19)
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provided that the affected zone around the well is the same for both pumping
and injection. The radius, R, depends on the injected volume, V, because of
the reservoir compressibility. To achieve pressure change within the entire
zone of influence, the injected volume must be equaled to

_ 27 R*nBG

v
3E

(20)
From eqs 18 and 19 one may obtain relations for rescrvoir unstressed pressurc
and threshold gradient as

pr"‘*“pwl Puw,2 ™ Puw,l
. = . A — \ \ 21
Pr= Ty G —%F (21)

Concluding Remarks

Itis well established that the Darcy’s equation for flow in geologic media, stip-
ulating a linear relation between filtration velocity and hydraulic gradient, is
not a universal law, but rather an empirical relation with many exemptions.
One type of deviation from Darcy’s law occurs when a threshold gradient
must be exceeded before flow starts, with the linear relation holding there-
after. This survey has atternpted to review the experimental evidence of this
behavior of fluid-porous media systems. A non-Darcian dynamic equation is
proposed to theoretically model such systems. A variety of resuits exist to-
day for flow in porous media with threshold gradient, from two-dimensional
steady-state situations to one-dimensional and unsteady radial flows, from
one-phase to two-phase systems. These results reveal fundamentally differ-
ent behavior than the well-known description of systems where Darcy’s equa-
tion is valid. This review aims at promulgating these results to the broader
scientific community. It is further recognized that theoretical work has ad-
vanced much more rapidly than experimental studies of flows with threshold
gradient, particularly at field scale.

After more than thirty years of study of flows with threshold gradient there
is still a lack of direct experimental evidence substantiating the existence of
stagnation and limiting stagnation zones. This may be why the theory and
analytical solutions of the basic equations are often viewed skeptically. An
example of this doubt is the section on the threshold gradient literature in
the review by Neuzil [39].
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In this context, two main directions for future research on the reviewed
subject may be proposed. First, it is critical to develop experimental tech-
niques for direct investigation of the moving fluid in a non-Darcian flow
regime as well as of the fluid and stagnation zone parameters, especiafly under
ficld conditions. Second, further development of numerical methods to cal-
culate multidimensional flow with a threshold gradient in homogeneous and
heterogeneous geologic media is needed. The primary goal of such studies
should be the practical application of numerical models in different engineer-
ing problems.

Notation

flow velocity vector

permeability

dynamic viscosity

porosity

matrix compressibility

fluid compressibility

bulk compressibility

pressure

threshold gradient

magnitude of the flow velocity vector
pumping or injecting well flow rate

angle between vector velocity q and x axis
stream function

characteristic distance

reservoir thickness

radius of zone of influence of the well
well radius

fluid specific density

sweep efficiency

thickness of the reservoir layer

number of layers

specific gravity

characteristic flow velocity

well productivity factor

characteristic parameter of the porous medium
required injection volume for reservoir parameter estimation
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Pw1 pressure at well after pumping stops
pw2 pressure at well after injection stops
Pr unstressed reservoir pressure

v gradient of a function

V2  Laplacian operator

I3 self-similar variable

z,y,r coordinates

t time

T dimensionless time
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