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ABSTRACT

The variability of crop and soil states due to uncertain climatic inputs and soil properties is quantified using
a mathemalical representation of the physiological, biochemical, hydrological, and physical processes refated
to plant growth. The components of the state-space model of the soil-crop-climate interactions are a plant
growth, a moisture transport, and a solute transport model. A linear model for the perturbations of the state
and the inputs around the nominal (first-order mean) values is derived. The linear mode] is used for second-
moment uncertainty propagation due to fluctuations of the climatic forcing in time and due to the spatial
variability of the soil properties, The most important climatic variables affecting crop production are identified
in a case study. Correlation of climatic inputs between days is found to increase the crop vield variance. Significant
variance reduction is found in transforming random soil properiies to soil-state variables and then to plant-

state variables.

1. Introduction

The complex interactions that take place in a
cropped land surface fransforming solar energy into
organi¢c matter are affected by uncertainties of varied
degree and origin. The objective of this study is to
quantify the variability of crop and soil variables due
to uncertain climatic inputs and soil parameters, not
from an empirical, statistical point of view, but based
on a mathematical representation of the physiological,
biochemical, hydrological, and physical processes that
result in plant growth. Such information is useful for
assessing the impact of climatic change on vegetation
and also for improving agricul{ural practices, for ex-
ample, irrigation scheduling and crop planning,

Theoretical modeling of the climate, soil, and veg-
etation interactions in a stochastic, analytical frame-
work has been advanced by Eagleson (1978a—¢). In
his study, the mean and the variance of the annual
hydrologic fluxes are computed as functions of soil and
climatic variables. Several physically based models for
dynamic simulation of the seasonai growth of crops as
related to moisture and salinity conditions in the soil
have been proposed (Childs et al, 1977; Zur and Jones
1981; Huck and Hillel 1983; Ritchie and Otter 1985;
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Brester and Dagan 1988). All these models are pre-
sented in the form of simulation computer programs,
and are therefore not suitable for analytical work.,
Studies that review temporal variability of crop yield
take the form of statistical analyses of records of annual
yield for a specific crop and site. Spatial variability
studies of crop yield are historically related to early
results on random ficlds, Whittle (1956), analyzing
crop yield data as a realization of a stationary stochastic
process, discovered that the correlation function falls
off relatively slowly at large distances. Recently, atten-
tion has been paid to the relation between soil property
and crop variability at field scale. The statistical analysis
of Bresler et al. (1981) finds the auto- and cross cor-
relations of soil properties and crop yield components.
Similar statistical analysis on field data is reported by
Russo (1984b), including salinity measurements.
Warrick and Gardner { 1983) use a relation between
yield and water to predict mean yield, based on a de-
rived distribution approach. They do not consider soil
salinity, irrigation water salinity, spatial variation of
the soil properties, or any dependence on climate.
Russo (1983) favors a geostatistical modeling ap-
proach. The semivariograms of the saturated hydraulic
conductivity and of the capillarity index are found from
point measurements on a crop field. Kriging is em-
ployed to estimate the values of these parameters over
the entire field, Then, the soil water potential /. is
mapped and is found to be highly correlated to the
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capillarity index. A quadratic dependence of crop yield
on A, is assumed. Yield is found to be less variable than
4. and with an integral scale close to the arithmetic
mean of the integral scales of the soil properties. Field
experiments {Russo 1984a) verify the predictions of
this model.

Following up on this approach Russo (19860) at-
tempts a more detailed representation of soil-crop-
climate interactions by using simplified water and sol-
ute dynamics and a yield-transpiration model. Using
generated realizations of the soil properties and the crop
response model, conditional simulations are per-
formed. Bresler and Dagan (1988a,b) and Dagan and
Bresler {1988) present a methodology to predict the
variability of crop yield due to uncertain soil and crop
parameters. They use a yield-transpiration model
combined with soil-column models for flow and trans-
port distributed vertically. Second-moment analysis is
used to obtain the yield variance.

The work of Protopapas and Bras (1986}, Proto-
papas { 1988), and Protopapas and Bras ( 1988) suggests
an integrated model of the soil-crop-climate interac-
tions, which is based on the underlying physical pro-
cesses. Soil moisture and salinity profiles are predicted
solving the distributed parameter governing equations
for flow and transport in the unsaturated zone. Crop
yield is predicted by explicitty modeling the plant
growth processes, such as assimilation, respiration, and
transpiration. The model is developed in an analytical
state~space form, that is, as a set of nonlinear equations
for the propagation of the plant- and soil-state variables.
As will be seen in the following sections, this formu-
lation is convenient for implementation of uncertainty
propagation methods.

This paper includes six additional sections. Section
2 presents the system model and summarizes the lin-
earization method, Sections 3 and 4 deal with the effects
of weather variability and sections 5 and 6 discuss the
effects of soil parameter variability. Section 7 sum-
marizes our conclusions and future research directions.

2. Linearization of the soil-crop-climate model

The conceptual basis for modeling the growth of a
crop is summarized as follows. The climatic inputs act
on the canopy of the crop, resulting in photosynthesis
and transpiration. The products of photosynthesis are
the reserves of the plant and are utilized for mainte-
nance and growth of the shoot and root biomass, The
transpiration demand is met by water uptake through
the root system at a rate that largely depends on the
moisture and salinity conditions in the soil. By ad-
justing its water content (or equivalently its water po-
tential ) the plant balances demand and uptake, and at
the same time regulates the partitioning of biomass in
shoot and root. The water and salt transport in the soil
establishes the conditions for water uptake by the root
system, In Protopapas and Bras (1988 ) these concepts
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have been quantified and expressed mathematically,
following ideas and data reported in de Wit et al.
($978). The vertical distribution of the root system,
the soil moisture, and the salinity over depth is ¢xplic-
itly considered. As state of the system at time x we
define a vector

X, = [¥,RESWs RTy1+ - - RT,n: Ry
o RTon e rdwicre -

with dimensions 3 + 4N by 1, where N is the number
of the discretization nodes over depth; ¥, is the plant
water potential (in bars), characterizing the water status
of the plant; RES is the weight of reserves (in kg ha™');
Wy is the weight of shoot (in kg ha™'); RT,;and RT,;
are the young and old root weight at node j (in
kg ha™'}; ; is the soil matric potential (in cm) char-
acterizing the water content of the soil; and ¢; is the
soil salinity (in mg 171),
We further introduce a vector of climatic inputs

Ex = [Rn RuTa Tde URS] T 3

° CN]T3

where £, is the seven-dimensional input vector at time
&, R,, R,, and R, are the net absorbed solar radiation,
the photosynthetically active radiation, and the net ra-
diation at the soil surface, respectively (in J m 2 s~1);
T., T4, and T are the air temperature, the dewpoint
temperature, and the soil temperature, respectively (in
°C); and 1 is the wind speed (in m s™1).

Finally, we define an nN-dimensional vector of soil
parameters { to describe the hydraulic properties of the
soil at each node j, where # is the number of required
soil parameters.

The state is partitioned into plant- and soil-state
variables

x(K) = [xp() (k) : ()17,

where x,(«) has the first 3 + 2N plant-related variables,
and ¥(x) and c(x) coltectively denote the matric po-
tential and concentration values at all nodes.

The propagation equations for each plant-state vari-
able are derived in Protopapas and Bras ( 1988), giving
a nonlinear, time-varying state—space model:

Xp( + 1) = flxp(6), &), k), ()] (1)

The discretization of the flow equation leads to a system

Aw(x), STk + 1) = e[§(x), §, xp(k), £, (2)

and the discretization of the solute transport equation
leads to a system

Af¥(x), Flele + 1) = Biy(x), {Te(x),  (3)

where the matrices Aj;, A,, and B, and the vectore have
proper dimensions. Matrices Arand A, are tridiagonal
and can be inverted analytically and explicitly (Pro-
topapas 1988) in order to isolate () and ¢(«) in the
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left-hand side of Egs. (2) and (3). Then the model can
take the form

x(x + 1) = f[x(x), &x), {]. (4)

Variability of the climatic inputs in time and of the
soil parameters in space may corrupt the predictions
of the state—space nonlinear time-varying model given
by the systemn of Eq. (4). It is unrealistic to obtain a
complete statistical characterization of the output of
such dynamic systems. There are, however, available
techniques for predicting second-moment properties
of the outputs given second-moment information
about the inputs. Broad families of such technigues are
Monte Carlo methods, derived distribution methods,
and linearization methods,

In this study a linearization method is used to prop-
agate uncertainty in the soil-crop—climate model. Al-
though the method is approximate, typically it is more
efficient computationally than Monte Carlo methods
due to its analytical nature. Given a state—space model
of the system [Eq. (4)], a linearized model for the

- fluctuations of the inputs and outputs around nominatl
values is derived by expanding in Taylor’s series up to
first order. Then moment propagation methods can be

" used with the linearized system,

The plant system [Eq. {1}] can be linearized along
a nominal trajectory (denoted by "), which is taken to
be the simulated values of the state and the nominal
inputs, leading to a model for the fluctuations x), = x,

— X' =y — ¢, £ =¢—§ etc and
xp(k + 1) = Ap(k)xp(x) + A (k) E'(x)
+ Agp (k)Y (%) +‘ As(x)c'(x). (5)

Matrices A)(x), As(x), Az{k), and A;,(x) require the
evaluation of the first-order derivatives of the propa-
gation functions with respect to the state components
and the climatic inputs at time &,

Similarly, we obtain for the flow model [Eq. (2)]

AL, §19'(x + 1) = BLdlk + 1), §(x), §, &(x)1
X W'(x) + Hd(x + 1), $x), £1¢7
+ IGTE()TE () + Ty[¥(x), £p(x)1e'(x)
+ Z[(k), Z(0)]xp(x), (6)
and for the transport model [Eq. (3)]
AL, €1c'(x + 1) = BL§(x), £Ic'(x)
+ €Lk, £, éx + 1), &)1 (x)
+HIUK), §, é(x + 1), ()18, (T)

where By, Hy, I, Ty, Z;, B,, C,, and H, are matrices
with proper dimensions. Matrices Ay and A, remain
unchanged and can be explicitly inverted.

From Eqgs. (5), (6), and (7), the following linear

; perturbation system is obtained
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Xk + 1) A, Ay Ay, (x0T
Vix+ 1) [=[{A7'Z, AF'B; AF'T/| (k)
clk+ 1) 0 A'C, A 'BJL c'(x)

A, 0
+ | AL E (k) + ] AP HAFE, (8)
0 7'H,

or

X'k + 1) = A(g)x'(k) + A)E() + D), (9)

where x', £, and {" are vectors with dimensions 3
+ 4N by I, 7 by 1, and n& by 1, respectively, and A,
A, and T are matrices with dimensions 3 + 4N by 3
+ 4N, 3 + 4N by 8, and 3 + 4N by nN, respectively,
with ¥ the number of discretization nodes and » the
number of the required soil parameters.

The first term in Eq. (9) describes the unforced dy-
namics of the system, the second term the effect of the
variation of the climatic inputs, and the third term the
effect of the soil properties. The linearization requires
the definition of nominal values (), {, and £(x), at
which the first-order derivatives are evaluated to define
matrices A{x), A(x), and I'(x). The details on the
linearization step are given in Protopapas (1988). As-
suming known initial state, the nominal trajectory £(x)
can be simulated with the nonlinear model, given the
inputs § and £(x).

Equation (9) is used to address the problem of how
the variability of the climatic variables in time and of
the soil properties in space affect the state of the system.
The solution of Eq. (9) is :

x—1 ’
x'(k) = ®(x, 0)x'(0) + 2 ¥k, 7 + IA(7)E(7)

=0

x~1

+ > Bk, 7+ DIT(r), (10)

=0
where the transition matrix ®(«, 5) is defined from
®(x, 5) = A{s — DAk — 2)- - - A(s)
and ®(x, ) =1, (listhe identity matrix).

3, Uncertainty of climatic inputs in time

Assuming that the soil parameters are known, Eq.
(9) becomes ‘

Xk + 1) = A(R)x'(x) + AR)E(x), x'(0) =
(11)

with solution
x—1
xX'(x) = 2 ®(x, 7+ DA(T)E (7). (12)
=0

Thus, the state perturbations are given by a linear time-
varying system with the time series of the perturbations
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of the climatic variables as forcing term. Using the fol-
lowing general second-moment characterization of the
inpuis

E(x) =00, E[#)xT(0}=0
and E[£'(x)}¢'(n)"] = H(x, ),

it follows that the mean X' and the covariance P, of
the state perturbations can be found from

'z + 1y= A(x)X'(x),
Poi + 1) = A()Per(k)AT (k) + A(x)H(x, k)

X AT(k) + AR E[X'(x)ET(x)]AT(x)
+ AE[E (x)xT(x)]AT(x). (13)

Using Eq. (12) and taking expected values, the cor-
relation between the state and the climate input is
found as

x—1
E[x'(x)ET(0)] = 2 &, 7 + DA E[E(7)E7 ()]
=0

=1

= > Bk, 7+ 1)A(T)H(7, x). (14)

r=0

To evaluate the summation in Eq. (14) and then the
cross terms in Eq. (13), an assumption about the cor-
relation structure of the disturbances is required.

In Protopapas ( 1988) the transformation from ran-
dom daily climatic inputs to input sequences at a
smaller time step (required for the simulation model )
is discussed. Using both analytical considerations based
on weather generators and Monte Carlo simulations it
is found that within a daily cycle the output.values of
climatic variables are correlated at the the smaller time-
step level, It is observed, however, that the fluctuations
of the climatic variables from their mean values are
isomorphic—during the day the fluctuations maintain
a deterministic pattern, scaled by a random daily am-
plitude. Such sequences are shown to possess a sepa-
rable covariance structure with possible correlation be-
tween different cycles (days) of length D, Three cases
are considered in this study:

Case 1, Uncorrelated disturbances at each time step

The typical, yet not applicable to the problem at
hand, choice of H(r, ) = Q(x)8,, (where §,, is the
Kronecker delia which is I for + = x and 0 otherwise)
vanishes the summation in Eq. (14} resulting in

¥k + 1) = A(K)E"(x),
Poo(k + 1) = A(&)Pxxr(x)AT(x)

' + AK)YQ()AT(x), (15)
with initial conditions X'(0) = 0 and P,{(0} = 0.
Since x(x) = x'(x) + X(«) it follows that

(k) = &(x} and ' Pe(x) = Pore(x).
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These results hold, however, under the restrictive as-
sumption that the deviations £'(«) are uncorrelated at
different time steps. In the case of climatic variables,
it was found that this is not the case at time levels
smaller than daily.

Case 2. Uncorrelated disturbances among different
cycles

This is the case where the daily amplitude of a cli-
matic variable is independent from its past values, and
therefore the time step sequences among different cycles
are uncorrelated or

H(7, x) = E[£(T)E'(x)7]
Q(r)Q(x)7,
r 7, kin [pD, (g + 1)D = []

0, otherwise,

= for

(16}

where g is the number of completed cycles (dayé) of
length D from time 0 to time x (which is equal to the
integer part of /D).

In this case the summation in Eq. (14) starts at the
beginning of each cycle, that is,

x—F

E[x'(x0)T(k)] = 2 Ak, 7+ DA(D)QMQT (k)
. T=uD
= N(x)Q"(x),
where
N(x) = A{x — DN(x — 1} + A(x — DQ(x — 1);
N(uD)=0, x=uD+1, -, (u+ 1)D. (I17)
Then Eq. (13) yields
'k + 1)y = A()x'(x),
Pl + 1) = A(x)Pyre(x)AT ()
+ AMR)Q(OAT (%) + AKNK)QT()AT(x)
+ AR)Q{ONT(x)AT(x). (18)

Therefore by storing only the system and disturbance
matrices, A{x — 1)and A{x — 1), as well as the “square
root” of the disturbance covariance matrix Q(x — 1)
at the previous time step, it is possible to compute N(«x)
from Eq. (17)and use it in Eq. ( 18) for all steps within
a cycle. At the end of each cycle D, matrix N(x) is set
equal to zero and the computation continues.

Case 3. Correlated disturbances among different cy-
cles ' ' o

This is the case where the daily amplitude of a cli-
matic variable is related to its past, and hence, there is
memory in the daily process: The step sequences are
correlated not onty within a cycle, but also among dif-
ferent cycles, or : o
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H(7, &) = E[E#(1)E'(x)7] = Q(+)M,Q(x)",

Tin [ph, (g -+ 13D — 1]

for (19)
«in [(p+ 1)D, (¢ + 2)D — 1],

where M, is the lag-one correlation matrix of the ran-
dom amplitudes between cycles p and x4 + 1. In this
case it can be shown that the moment propagation
equations are the same as Eq. (18), but matrix N{x)
is given from

N(x) = A(x — 1)N(x — 1} + A(« — DQ(x — 1),
N(0) =0,
N[(x + 1)D] = N[(g + 1)D]M,. = (20)

That is, at the end of each cycle the matrix N(x) is post
multiplied by the one-lag correlation matrix between
cycles and the calculation remains the same,

The implications of these three cases regarding the
output variance and the developed recursive algorithin
are iflustrated with a scalar example in appendix A.
Equations (15), (18), and (20) provide an algorithm
for the propagation of the state covariance, which re-
quires efficient implementation due to the high di-
mensionality of the involved mairices. In this study a
sparse matrix multiplication algorithm reported by
Gustavson (1978) is employed. The analysis and doc-
umentation of the algorithm can be found in Proto-

, papas { 1988).

4. Effects of weather variability

The proposed method for second-moment analysis
of the crop- and soil-state variables as a result of tem-
poral variability of the climatic inputs is applied in this
section using parameters and field data for a2 maize
crop planted in Flevoland (Netherlands, latitude 52°N)
{de Wit et al. 1978). The available single realization
of weather conditions at this site is assumed to represent
the mean values of the climatic variables. Therefore,
the results may be interpreted as a sensitivity study
around this particular realization.

A single climatic variable is simulated in the model
as

E(x) = aqg(k)g(x) + Balx),

where §,(«x) is a deterministic constant during a day,
aq(x) is a random daily amplitude, and g(x) is a de-
terministic shaping function. Using this model the
variance is '

ai (k) = ol (x)g%(x) = azd(x)[wflr
‘ ' ay(x)

2 2
= [——{ﬂd(f{)] [‘E“(K) o ﬁd(f{)}z

aq(x)

! = CV 7 LEx) — Balx)]*. (21)
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Consequently, to compute the standard deviation of
each climatic variable at time &, the “reduced mean”
£(x} — Bq(x)is multiplied by the coeflicient of variation
of the daily amplitude CV,,. The CV,,is taken constant
at 0.66 for wind speed, 0.25 for the radiation fluxes,
and 0.20 for air, dewpoint, and soil temperature.

In vector notation the transformation from the fluc-
tuations of the daily random amplitude process to the
smaller time-step process Is

£'(x) = G(x)7'(x),

where G(«) is a diagonal shaping matrix and #'(x) has
zero mean and covariance matrix R. It can then be
shown that the covariance of the climatic inputs ¢ has
a separable form ' :

cov[£'(x), E'(s)] = G(x)RG™(5)
= G(x)ZLLTZTG(s)
= Q(x)Q7(s),

where Q(x) = G(x)ZL = G(x) diag[ oy, (x)]L, with R
= ZLLTZT. Matrix 2 is a diagonal matrix with entries
the standard deviations of each climatic input and L
is a lower triangular matrix, which is the Cholesky de-
composition matrix (square root) of the correlation
coefficient matrix of the daily amplitudes (Bras and
Rodriguez-Tturbe 1985). This structure allows the use
of the procedure for covariance propagation developed
in the previous section. At each time-step matrix, Q(«)
is computed by multiplying a diagonal matrix with en-
tries the standard deviations of the climatic inputs
[ found from Eq. (21}] and matrix L,

The standard deviation of the shoot weight and the
reserve weight due to uncertain individual inputs is
shown in Fig, 1, where no correlation among different
days is used. The effect on the soil-state variables is
minimal. In this application, salinity in the soil is zero
and no irrigation is used. The input variables contrib-
uting most to output variance are absorbed visible ra-
diation and air temperature, while soil temperature and
dewpoint temperature have a moderate effect. Wind
speed, net absorbed radiation, and radiation reaching
the soil surface have minimal impact on the crop
weights. In the same Fig. 1 the effect of all the inputs
is shown, assuming that they are uncorrelated with each
other. It is demonstrated that the effect of each climatic
variable is not additive.

Introducing correlation of the amplitude of the ab-
sorbed visible radiation {which is found to affect vield

. variance most) among consequent days, the output

variance increases as shown in Fig, 2. This suggests
that crop production is more uncertain in areas where
the realizations of the weather process during every
growing season exhibit highly correlated fluctuations
from day to day. If instead of such prolonged abnor-
malities the fluctuations are more random, the result
is less-variable crop yields. In this particular simulation,
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Initial Salinity <¢_= 0.0
No Irrigation

a. SHOOT

2]

visible radiation

) soil temperature
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dew point temperature
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i
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all inputs visible radiatilon

TIME (DAY)
FiG. 1. Relative effect of uncertainty of particular inputs to the standard deviation
of shoot (upper part) and reserves (lower part) (¢o = 0,r = 0).
g- Mo Irrigation \
] Correlated (p=0.9) wetSD
g g_' Daily Process
o 5
< m = mean Uncorrelated /m—SD
5 2] SD = standard deviation Daily Process mean
¥ 2 .
g? RESERVES
P, S e e e MMNANAMAAANBEF T i el o ittt el At
170 175 180 185 120 195 200 205 zlo 218 220 225 250 235 240 245 250 285

TIME (DAY)

FiG. 2. Mean = one standard deviation of state variables for the cases when the sequences of
absorbed visible radiation are correlated or uncorrelated between days (¢ = 0, r = 0}.
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introducing correlation increases the coeflicient of
variation of the shoot weight from 0.03 to 0.25.

5. Uncertainty of soil parameters in space

The solution of the unsaturated flow equation re-
quires knowledge of the soil hydraulic properties,
namely, the relation of unsaturated hydraulic conduc-
tivity K() and of soil moisture () to the soil matric
potential . Different parameterizations of these rcla-
tions have been proposed in the literature (see review
by Russo 1988). A common model is

K(¢¥) = K, exp(ey),
6(¢) = 6, exp(BY¥),

where K is the saturated hydraulic conductivity (in
cm day™!) and « and 8 are empirical capillarity pa-
rameters (cm™}).

Such expressions require only a small number of
parameters, which usually exhibit spatial variability.
In the last decade it has been recognized that these
parameters can be represented by random fields with
known statistical structure up to second moment. The
linearization in section 2 was introduced in such a way
that it can be used with any parameterization of the
soil hydraulic properties, using the proper derivatives
of the involved functions. The vector of soil parameters
¢, which is used in the soil-crop-climate model, con-
tains the values of the parameters at each node over
depth,

Assuming that the climatic inputs are known, Eq,
(9) becomes

xX'(x + 1) = Al)x'(x) + T(x){,

with solution

(22)

x(@)=0 (23)

-1
x'(k)y= 2 &, v+ DI
=0

(24)

Noticing that the {'(r) vector is time invariant and
introducing a 3 + 4N by n N matrix K(«), defined from

=1

K(x)= 2 ®(x, v+ 1)T(7), (25)
=0
Eq. (24) becomes
x'(x) = K(x){', (26)

which means that the state perturbations are a linear
time-varying transformation of the random fields of
the soil parameter perturbations. 1t is straightforward
to show that

K(x) = A(x — DK(x — 1) + T(x — 1),
with K(0)=0. (27)

Matrix K(x) is a deterministic quantity, which depends
on the unforced system dynamics [ matrices A(x}] and
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on the specific way that the soil properties affect the
solution of the model [matrices I'(x)]. Matrix K(«x),
also named ““total sensitivity,” is independent of the
statistical description of the soil variability, This matrix
can be precomputed and stored at any time of interest
and then used with any second-moment structure of
the soil parameter fluctuations,

Assuming that the soil parameters are second-order
stationary with mean { and covariance function matrix

Pidr, r + X) = Py(X}, we get

=0, Ppp(X)=Pu(X),
and from Eq. (25)

X'(xy=90
Pyrxr(X, k) = K(x)Pr(X)KT (k). (28)
Since x{x) = x'(x) + £(x), it follows that
X(x) = R(x),
P, &) = Pa(X, €) = K(x)Pr:(OK (k). (29)

6. Effects of soil parameter uncertainty

The proposed method for second-moment analysis
for spatially varying soil parameters is applied in this
section for the maize crop in Flevoland (Netherlands).
The root system is assumed to develop uniformly to a
depth of 75 cm. The soil is assumed to be a Panoche
clay loam with soil properties as reported in Warrick
et al. (1971}, which fit the exponentlai forms with pa-
rameters K, = 225 cm day ™!, o = 0.04 em™', 8, = 0.43,
and § = 0.003 cm™'. Fora Jocal uniform soil-column
modet, K is assumed to be lognormaily dlstnbuted
with mean K, = 225 cm day ™! and variance o%,. The
uniformity assumption implies that K is perfectly Cor-
related with depth,

The initial condition for soil moisture is a uniform
value of 0.30 down to 50-cm depth, and then a linear
increase to a value of 0.37 at 125 ¢m. The simulation
starts on day 175 and ends on day 253. In a first ex-
ample the initial salt concentration profile is uniform
ata value of 3000 mg 1! and no irrigation is applied.
Using o3 %, = (300 cm dayﬁl)2 the prediction of the
linearized model every 25 days is shown in Fig. 3, where
one-standard-deviation bounds are plotted above and
below the mean profiles of matric potential ¥ (upper
part) and solute concentration ¢ (lower part}. The use
of the predicted variance to define such confidence in-
tervals is only indicative for nonlinear systems.

The first y profile (day 175) corresponds to 12 h
after the beginning of the simulation and shows a sta-
tionary behavior of the variance in space. At day 200,
the soil dries up by free drainage at the bottom and
evaporation at the surface (roots do not uptake much
water during the first 25 days), and the variance of ¢
increases and remains stationary. As roots start to
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FIG. 3. Mean + one-standard-deviation profiles of matric potential (upper part) and solute concentration {lower part)},
using the linearization method (K, perfectly correlated over depth) (¢ = 3000 mg 17!, r = 0).

-function and water is extracted preferentially from the
upper 75 cm of soil (root zone), the soil becomes drier
and the variance increases further.

The concentration profiles corresponding to days
175 and 200 show very small variance. During this
period solute transport is mainly dué to the dynamics
of flow: the solutes are advected and dispersed. At day
225 the salts have built up due to decrease in moisture
in the root zone and concentration variance increases
with time in the root zone,

To check these results, a Monte Carlo method to
predict uncertainty is used—one hundred values of
saturated hydraulic conductivity K; are sampled from
its distribution and the nonlinear simulation is per-
formed. Then the simulation results are averaged to
calculate the statistics of the state variables. The com-
puted means and variances of ¥ and ¢ compare well
to the linearization results, aithough for day 225 and
250 the Monte Carlo method predicts less variance,

The variance of the plant water potential and weight
of shoot and reserves for this first is found to be small.
The crop weight has a coefficient of variation CV
== 0.02 compared to a coefficient of variation of matric
potential CV == 0.15 and of concentration CV == 0,10,

resulting from a CV == 1.3 of the saturated hydraulic
conductivity, :

In a second example, a uniform concentration profile
at 3000 mg I~ is used. Irrigation is applied at a rate
of 6 cm day ! for 7 h every 7 days (1.75 cm water
applied 10 times during the growing season). The re-
sults, using the linearization method are shown in Fig.
4. The y profiles again show less variance at wet soil
conditions, Fhe profiles on days 200, 225, and 250 are
three days after, during, and four days after irrigation,
respectively. The concentration profiles show gradual
leaching of the salts and small concentration variances.

In the previous examples K; was modeled as a uni-
form over depth but random variable and perfect cor-
relation was imposed among different nodes. A differ-
ent correlation function was also used, describing a
randomly Iayered soil in the form Pg(X) = o%,
Xexp{—|x|/X.}, where X is the distance. between
nodes and X, is the correlation scale. The result is sim-
ilar to the perfect correlation case {Fig. 3) but smaller
variances are predicted.,

For the results in Fig. 3 the coefficient of variation
of K, is around 1.3, Similar output uncertainty results
for much smaller coefficients of variation for the cap-
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illarity indices of conductivity o (CV = .25) and
of moisture 8 ( CV = 0.30), suggesting the importance
of the variability of these parameters. The effect of the
soil parameters is found to be almost additive to output
variance: using these CV's for the parameters, assumed
uncorrelated with each other, doubles the CV's of the
output variables,

7. Summary and conclusions

In this paper a methodology is proposed for com-
puting the variance of soil- and plant-state variables
due to deviations of climatic variables and of soil pa-
rameters from their mean values. A linear model for
the perturbations of the state and the inputs around
the nominal {first-order mean) values is derived. The
linear model is then used for uncertainty propagation.
Based on statistical studies of daily weather data and
weather simulation models we find that the random
sequences of climatic variables can be represented dur-
ing each day as products of a random amplitude and
a deterministic shaping function. Such sequences are
correlated at different time steps during a day with sep-
arable covariance function, The linearized model of

the system is then used to propagate uncertainty. In a
case study the relative importance of each climatic
variable is quantified, It is found that correlation of
climatic inputs from day to day increases the crop yield
variance. The uncertainty of the climatic inputs does
not affect significantly the soil-state vartables. The re-
sults indicate that it is possible to predict risk in agri-
cultural activities for different nominal climates. The
maodel can be used to obtain the crop response and the
associated risk for different initial conditions and r-
rigation practices.

The lincarized model accepts different parameter-
izations of soil hydraulic' parameters. The state per-
turbations are given as the product of a total sensitivity
matrix and of the soil parameter perturbations. The
correlation scale of the output variables is also com-
puted. It is found that uncertainty reduces significantly
as the soil parameters are used to obtain the soil-state
variables and then the plant-state variables. These re-
sults are compared against results obtained using a
Monte Carlo method and a qualitative agreement is
found,

The results of this study indicate that only correlated
sequences of climatic variables create significant effects
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on biomass production and that'the uncertainty of soit
parameters is attenuated through the system dynamics.
Both findings may suggest that natural vegetation sys-
tems have the capacify to resist moderate climatic
changes and maintain their stability,
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APPENDIX A

Effect of Correlation Structure on Output
Variance—A Scalar Example

Consider the scalar system x(x + 1) = x(x) + £(x)
with E[x(0)] = 0, var[x(0)}] = 0, and £(«) a random
process. Equivalently x(x + 1) can be written as the
sum of x + 1 random variables £(0), &(1), ..., &«),
or

x(x+ 1) =2 &i).
=0

Case 1, White noise input process

Let £«) = e(x) with ¢(x) zero mean, white noise
with variance r? = 1.0. Since £(¢} are uncorrelated,
identically distributed random variables, it follows that

x—1 =—1
var[x(k)} = X var[§(D)] =X rP=w?=

i=0 =0
Thus the output variance increases lingarly with time.

Let the input process be generated from £(x)
= f(k)n(k), where f(k)} = |sin(x/D)] is a deterministic
shaping function within each cycle of length D = 10.0,
and n(x)is a random amplitude sampled every D steps
from the noise (k) so that n(x) = n(pD) = e(p,D) (no
correlation among cycles), or generated from noise e(x)
according to n(x) = n(uD) = én[(p — 1)D] + (1
— )12 uD) (lag-one correlation coefficient among
cycles is ¢).
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Case 2, No correlation among cycles

Here,
cov[£(x), &(s)]
| A f(s) for k sin{pD, (u+ D — 11
- [0 otherwisc,

The recursive procedure becomes

var[x(x + 1)] = var[x{«}] + 2(x) + 2N(x) f(x),
N(x)} = N(x — 1) + var'?[&(x — 1)]
=Nk—-1D+flx—1),
N(pD) =0 and «in [pD,(z + 1}D — 1}

Alternatively, the output variance can be computed
directly, using the expression for a sum of correlated
random variables { Benjamin and Cornell 1970) as

var[x(x + D)} = Ef%0+22 EJDUU)

J=uD [=pD

Case 3. Correlation among cycles

The recursive procedure is as in case 2, but N(0)
=0, and N{(uD) = ¢N(uD). The direct procedure for
the variance of the sum of correlated random variables
gives

vmh&%]ﬂ=éf%0
=0

s 1

+2 Z E quI'/DII IwDﬂf(l)f(j)

=0 i=0

where [ - || denotes integer part.

Sample paths of the processes defined in cases 1, 2,
and 3 are shown in Fig. A.1. The output variance as a
function of time is also shown. It is verified that the
results of the recursive (solid line)} and the direct
method (square symbols) are identical, For the simple
integrator system used in this example the output
variance increases as the input has more and more
memory.
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