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N An Optimal Control Method for Real-Time Irrigation Scheduling

ANGELOS L. PROTOPAPAS! AND ARIS P. GEORGAKAKOS

Georgia Institute of Technology, Atlanta

In this paper a systematic methodology for making real-time irrigation decisions is presented. A
physically based representation of the dynamics of the soil-crop-atmosphere system is used. The
variables characterizing the crop and soil status are concurrently simulated with an integrated state
space model. Soil moisture and salinity conditions, which synergistically control the plant water
uptake, are obtained by using lumped parameter mass balance models for the root zane, Crop yield is
predicted by explicitly modeling the plant growth processes, such as assimilation, respiration, and
transpiration, which are driven by the climatic inputs. The control model is an analytical optimization
methed for multistage multidimensional sequential decision-making preoblems. It is suitable for
systems with nonlinear dynamics and objective functions. The method is based on local iterative
approximations of the nonlinear problem with a linear quadratic problem. This approach is evaluated
in a series of case studies, where optimal irrigation schedules are obtained on an hourly basis over the

growing season.,

1. INTRODUCTION

Agricultural activities are important for the economies of
most countries. The demand for agricultural products in-
creases continuously as a result of growing populations,
higher incomes, and new uses of traditional products. It is
estimated that production will increase by expansion of
arable land and, mainly, by intensified use and better man-
agement of the production factors. There is therefore an

, immediate need for efficient use of resources, in particular of
water, in the production process.

Modern agriculture is a specialized and highly mechanized
industry, in which solar energy is transformed to useful
organic preducts. During the growing season the farmer
makes important operational decisions which affect the final
yield, Competitive and efficient agriculture requires such
decisions to be made optimally. In the short run, maximiza-
tion of a performance index is sought by exhaustive alloca-
tion of the limiting production factors, that is, water, land,
and nutrients among different crops. The index is usually net
benefits, although in some cases, when water is scarce, the
objective may shift to maximizing produced crop weight per
unit of water used. In the long run, objectives are related to
societal issues such as welfare, malnutrition, deforestration
and climatic change, environmental pollution, income redis-
tribution and employment, soil conservation, and energy
consumption. Even if optimal use of resources can lead to
short-term gain in crop vield, the loeng-term effects can be
immeasurable. Yet, in current practice the farmers act with
the short-term objective of maximizing the benefits of the
production process by prudent use of the available re-
sources. This is also the philosephy of our study, which aims
in introducing modern decision-making methodologies for
water use in agriculture.
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2. THE IRRIGATION SCHEDULING PROBLEM:
LITERATURE REVIEW

Trrigation in a broad sense is the human effort to control
the soil-crop-atmosphere continuum, In particular, the irri-
gation scheduling problem is to determine the optimal tim-
ing, quantity, and quality of artificially supplied water to the
soil in order to control the crop yield. Given that for six
major U.S. grain crops the average annual yield is 20-35% of
the record yield, there is much to be done to increase the
solar energy conversion efficiency, which is directly related
to the water transpired by the crop.

In current irrigation practice many farmers irrigate by the
calendar, that is, in a predecided schedule based on experi-
ence, while others receive water at scheduled times and use
it whether the crop needs it or not. As Hillel [1987] reports,
when rule of thumb methods are not in use, irrigation
scheduling techniques are classified as soil, plant, or climate
based. In the first case, measurements of soil moisture and
salinity are taken at a site. When these parameters reach
certain critical values, irrigation is applied. In the second
case, variables characterizing the status of the plant, such as
leaf temperature, water content, and color, are measured or
visually inspected. In some cases, functions of these param-
eters, called stress indices, have been used to indicate the
necessity of irrigation. In the third case, measurements of
climatic variables, such as total absorbed radiation, air
temperature, relative humidity, and wind speed, are used to
estimate evapotranspiration during a given time period.
Irrigation is then applied whenever the estimated water loss
exceeds a threshold value. The central idea in our research is
to concurrently predict all variables characterizing the plant
and soil sfatus, using a model of the soil-crop-climate sys-
tem, and then make more informed real-time irrigation
decisions on the basis of modern optimal control technigues.

Two distinct approaches can be used to tackle the irriga-
tion scheduling problem. The physically based (causal or
physiological) approach emphasizes the need for modeling
the processes resulting in crop growth and their relation to
climate and soil. The statistical (regression or correlative)
approach relies on extensive field experimentafion and uses
statistical analysis of ficld measurements. Several studies in
the literature mix the two approaches in different propor-
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tions. For example, the work of Cordova and Bras [1981],
Rhenals and Bras [1981], Ramirez and Bras [1985], Gini
[1984], and Bras and Seo [1987] uses a lumped parameter soil
column model, assuming uniform moisture and salinity in the
root zone. The water status and the salt movement is
modeled by mass balance equations for the unsaturated and
saturated zones. The crop and soil system is forced by
random climatic variables. The probability distribution of
the evapotranspiration flux is derived. Then an empirical
yield-transpiration model [Stewart et al., 1977] is used to
predict crop yield. According to this model, when actual
transpiration fails to reach the climatically defined potential
valie, the potential crop yield is reduced. Since stress is
more important at critical growth stages, weighting coeffi-
cients are used for each stage.

Introducing the net benefits as a performance index, that
is, the value of the crop vield minus the cost of irrigation,
Bras and Cordova [1981] solve the multistage decision
problem using stochastic dynamic programming. They ob-
tain tables which show different actions to be taken every
week, depending on the soil water content and the water
available for irrigation. Bras and Seo [1987] use similar
system dynamics but employ extended linear quadratic
Gaussian control ideas [Georgakakos, 1984] to find the
optimal irrigation policy on a daily basis.

The work of Protopapas and Bras [1987, 1988] and Pro-
topapas [1988] suggests an integrated model of the soil-
crop-climate interactions, which is based on the underlying
physiological and hydrological processes. Soil moisture and
salinity profiles are predicted solving the distributed param-
cter governing equations for flow and transport in the
unsaturated zone. Crop vield is predicted by explicitly
modeling the plant growth processes, such as assimilation,
respiration, and transpiration. The model is developed in an
analytical state space form, that is, as a set of nonlinear
equations for the propagation of the plant and soil state
variables. As will be seen in the following sections, this
formulation is convenient for implementation of real-time
optimal control methods. The thrust of this paper is that it
solves the irrigation scheduling problem using such a phys-
ical system representation. As in the aforementioned stud-
ies, flow and transport dynamics are represented by simpli-
fied lumped parameter models. The results of the current
formulation demonstrate the feasibility and validity of the
approach.

This paper includes four additional sections, Section 3
presents the system model and formulates the control prob-
lem. Section 4 discusses the control algorithm and provides
a step-by-step description of its implementation. The control
scheme is tested in several case studies in section 5, and
section 6 summarizes our conclusions and future research
directions.

3. THE So1L-Crop-CLIMATE MODEL

Assuming availability of nutrients, the processes resulting
in crop growth are summarized as follows. The climatic
inputs act on the canopy of the crop, resulting in photosyn-
thesis and transpiration. The products of photosynthesis are
the reserves of the plant and are utilized for maintenance and
growth of the shoot and root biomass, The transpiration
demand is met by water uptake through the root system at a
rate which largely depends on the moisture and salinity

conditions in the soil. By adjusting its water content {or
equivalently its water potential} the plant equates demand
and uptake and at the same time regulates the partitioning of
biomass in shoot and root, Pretopapas and Bras [1987, 1988]
and Protopapas [1988)] have quantified and mathematically
expressed the above concepts, following ideas and data
reported by de Wit et ql. [1978]. In the sequel we propose a
simplified version of the state space soil-crop-climate model,
which does not consider vertical distribution of the root
system, the soil moisture, and the salinity over depth,
Let us introduce a vector of state variables

xe = [, RES WsWeec]®

where v, is the six-dimensional state vector at time «, i, is
the plant water potential (in bars) characterizing the water
status of the plant, RES is the weight of reserves (in
kilograms per hectare), Wy and Wy are the weight of shoot
and root {(both in kilograms per hectare), vris the soil matric
potential (in centimeters) characterizing the water content of
the soil, and ¢ is the soil salinity (in milligrams per liter). An
important variable used in the model is the effective soil
potential ¢, which combines the matric potential 4 related
to water content and the osmotic potential related to soil
salinity. Less negative ¢, values indicate wet soil with low
salinity, while more negative ¢, values correspond to the
opposite conditions.
Eet us further define a vector of climatic inputs

§K = [R f;RvTﬂTdTSIH'] T

where £, is the seven-dimensional input vector at time «; R,
and R, are the net absorbed solar radiation and the photo-
synthetically active radiation, respectively (in Joules per
square meter per second); T,, T, and T, are the air
temperature, the dew point temperature, and the soil tem-
perature, respectively (in degrees Celsius); # is the wind
speed (in meters per second); and # is the precipitation rate
(in centimeters per day).

Let us also define a control vector (scalar in our problem)

u,=1i

where i, is the control variable at time k, defined as the
irrigation rate / {in centimeters per day). In this study we
assume that it is possible to irrigate at any rate less than the
saturated hydraulic conductivity of the scil and that all
supplied water infiltrates locally, that is, no ponding and
runoff occurs.

The state space formulation of the soil-crop-climate model
is given in thorough detail by Protopapas and Bras [1988].
The simplified version with lumped description of the flow
and transport dynamics used in this paper is presented in the
appendix. Overall, the formulation explicitly relates the state
vector at time (x + 1) to the state, input, and control vectors
at time « through a nonlinear, time-varying function:

xl\'+1=fw(xm 5:(! HK) (1)

In the deterministic case the input vectors £, are simply
known a priori and do not enter the analysis any further. In
Figures 1 and 2 we demonstrate two example cases, where
the model simulates the response of the plant under favor-
able (“‘wet’’) conditions and unfavorable (**dry’’) condi-
tions, corresponding to constant soil potential of —500 and



PROTOPAPAS AND GEORGAKAKOS: REAL-TIME SCHEDULING

649

E.g

Pe

gg.

]

‘EO

i

55

ég Soil Water Potential

1700 1750 1800 1850 1000 1850 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600
Time {days)

=8 s

E.-

¥

2 ]

§|

&

:

$9

- Plant Water Potential

]

1700 1766 1800 4850 1800 1950 2000 2050 2100 2450 200 2250 2300° 2350 2400 2450 2500 2550 2600
Time {days)

g

2 Crop Weights

§_ Total Crop

g%

éq

it

5 Total Shoot

38

[ -

3

a

@

3 Reserves /Root

2 —m MW A vi*aadn O RIS IR AT TR T AL

1700 1750 180.0 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2508 2550 2600
Time {days)

Fig. 1. Plant growth under wet soil conditions (¢, = —500 cm).

—2500 cm, respectively (top part). In the first case the plant
water potential is close to zero over most of the simulated
period, showing a diurnal pattern with a minimum value
around noon (middle part}). Since the plant does not suffer
water stress, most of the produced biomass is allocated to
shoot growth. After an initial period of slow growth the
shoot weight increases almost linearly with time (lower
part). In the second case the plant water potential drops to
more negative values and the crop is under continuous water
stress, The limited photosynthetic products are now distrib-
uted in favor of root growth. These simulations are for a
maize crop, for which the parameters of the model are
available. For more simulations and discussion see Protopa-
pas and Bras T1988].

Clearly, maintaining wet soil conditions guarantees higher
crop vields, but it also requires higher irrigation costs. A
rational irrigation scheduling plan should optimally balance
this trade-oft, especially when water is in short supply. This
can be formulated as a real-time optimal control preblem,
which seeks a sequence of controls w,, « = 0, 1,

)

~“N — 1, which minimizes the following performance index;

N-1

J= gl\f(—’l—‘N} + 2 gx(""x: ux)
k=0

2)

where .J is the objective function or total net benefits from
applying the policy {ug, #¢, **, 4y_1}, N is the number of
time steps, and g, (x,, &) is a cost function associated with
the state and control vectors at each time step . As will be
seen in the application section, various g, { ) and gy({ )
functions can be adopted for the irrigation scheduling prob-
lem,

In addition to the state equation (1), this optimization is
subject to a number of constraints on the state and control
variables. For example, the plant and soil water potential
cannot be positive, a minimum crop vield may need to be
guaranteed, a maximum soil salinity at the end of the
growing season may not be exceeded, and irrigation rates
cannot be negative or exceed certain availability levels. Such
constrainis can be modeled as lower and upper bounds on
the respective state and control variables:

At =y, =0 (3a)
=g pl™ k=01, ,N (3h)

where the inequality (3a) holds componentwise.

The optimization problem summarized by (13, (2), (Ga),
and (35} can be solved by general nonlinear programming
methods [Luenberger, 1973]. However, given the dynamical
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Fig. 2. Plant growth under dry soil conditions (¢, = —2500 cm).

process (1) and the time separability of the performance
index (2), the solution process can greatly benefit from using
optimal control methods {Bertsekas, 19871,

The above-stated problem is valid when the input vector
Ko,k =01, -« N —1,is a known deterministic sequence.
I &, is presumed random, then the state sequence generated
by equation (1) and the performance index (2) will also be
random. (In fact, this will be the case even if the control
sequence i, « = 0, 1,+-+, N — 1, has a priori been
decided.) The stochastic version of the irrigation scheduling
problem will seek to minimize the expected value of the
performance index (2) subject to the state dynamics (1) and
constraints (3a) and (3). Given the random nature of the
state variables, constraints (34) would have to be restated as
follows:

Prob [xM" > y ] < yMin
{3¢c)

Prob [x, > x 7™ = y ¥ k=1, N

where y™® and ™ are probabilistic tolerance levels to be
specified by the decision maker,

In this paper our focus is on the deferministic irrigation
scheduling problem. The stochastic formulation is also ame-

nable to optimal control methods but will be studied sepa-
rately.

4. TaE LINEAR QUADRATIC CONTROL METHOD

The control model is a generalized gradient method [Liren-
berger, 1973] which iterates using the Newton optimization
direction. Generally, when minimizing a scalar real-valued
function f(x) with respect to the n-dimensional vector x, a
generalized gradient method *‘moves’ from point x; to point
x4 according to the following iteration:

X1 =Xt ad; 4

where d; is the descent direction (vector), and o; represents
the stepsize (scalar), Concerning the direction, the best, yet
not always practical, choice is to use the Newton's direction:

_{Ef?‘f(-\'f}] “Laf(x;)

(5

ax? ax !
which is obtained as the product of the inverse hessian and
the gradient. At each iteration the Newton's direction is
specified using first- and second-order derivative information
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concerning the shape of f(x), this being its strength and
weakness. The additional information can realize a faster
convergence rate, yet it also requires heavier computational
effort, In refation to the irrigation scheduling problem, the
vector x includes all control variables at all times {«,., & = 0,
I, -+, N — 1}, and straightforward hessian computation is
not recommended. However, the Newton’s direction can be
efficiently determined in an indirect manner, approximating
the nonlinear problem, with a linear quadratic problem.
Consider a first-order Taylor’s series expansion of the
system dynamics (1) around nominal control and (corre-

sponding) state trajectories:
Sx,41=A8x,.+ B, Su, Sxp=0.0 (6)

and (2} a second-order Taylor’s series expansion of the cost
terms g {x,., 20, ), k =0, 1,---, N~ | and gy(xy) in the
ohjective function (2) also around the nominal values of the
state and control vectors:

2:(8x,, Bu) = Ry 1) + 5 821085, + L RSuS
| Ta . T
+ 6w, M, 8x, +a.8x, + b, 8u, (7
gn(Bxy) = ga(in) +3 8x30nBxy + afBxy  8)

where we define

Sx, =X, — ¥y i, =1, — i,

with #, a nominal control trajectory and £, the correspond-
ing state trajectory using the nonlinear system dynamics.
The matrices in equations (6), (7}, and (8) are defined from

AK = [VIKfK('i"-N’ &K)]T BK = i:VIIKfK(’i.KJ ﬁK)]T

[6 x 6 matrix] {8 x 1 vector)

Q= glto 1] On =191 gn(tw)]

{6 % 6 matrix] [6 % & matrix]
2 ~ ~ 2 Py S
R =V, .8l il M =[VD, gu(3e ]

[scalar] [1x 6 vector]

g = V.rxgx(i’xs &r\)

[6 % | vector]

ay =V, gn(in)

[6 % 1 vector]

bx = V!fﬁgh‘('%.\" ﬁx)

[scalar]

where the symbols V and V? represent the gradient vector
and the hessian matrix, respectively.
Furthermore, consider the following control problem:

N—1
Mil’li[ﬂize J= QI\I(SXN') + E ér{(a-‘.}c’ 8"5‘) (9)
k=0

subject to the linear dynamics (6). It can be shown [Berfse-
kas, 1982] that the Newton direction for the noalinear
control problem with performance index (2) and state dy-

_.-]namics (1) can be obtained by solving the above stated
problem. The advantage is that the second problem has

linear dynamics and a quadratic performance index, and its
solution can be derived analytically. The derivation is pre-
sented next in a step-by-step format:

1. Let{f,, «=20,1,--+, N — 1} be a nominal control
sequence. Compute the associated nominal state sequence
{&,, « = 1,+--, N} through equation (1). Derive the

matrices of the system dynamics A, and B, and the matrices
or vectors of the cost terms Q,., Qn, R, M, a,, ay, and
b, as defined by the Taylor's series expansion of the
nonlinear problem.

2. Determine the positive, semidefinite, [6 X 6]-

dimensional matrices {K,, k = 0, 1,+--, N} and the [6 X
i]-dimensional vectors {A ., k = 0, 1, * -+, N} by performing
the following recursive operafions:

Ky=0pn (10

Ke=Q0c+ AK, 1A~ BiKcs1A+ M)T

c Re +BIK 1B TUBIK 1A+ M) (1
k=N—1,N—2,---,1
An=ay (12)

Ae=ac+ AN o~ BIK A+ MY
(R +BIK, 1B b+ BIA, 1) (13)

k=N—-1,N—-2,---,1

3, Compute the Newton minimization direction {d,., x =
0,1,---, N — I} as follows;

de=-DJLB8x.+A k=01, N-1

(14)
where

D, =1BIK, 1B t R (15)
Lo=BIK. 1A+ M, (16)
Ax=Bhgsi+by (17)

Sxy 1 =ASy,+Bd, xk=0,1,---,N—1
8xp=10 (18)

Essentially, computation of the direction d, requires two
forward time recursions (steps 1 and 3) and one backward
time recursion (step 2},

4, The second factor influencing the success of a mini-
mization method is the stepsize selection rule. Among the
available options are the minimization rule, the limited
minimization rule, the Goldstein rule, the Armijo rule, and
many others. The irrigation scheduling control model uses
the Armijo stepsize selection rule because it is easily imple-
mented and because it conveniently generalizes {o problems
with constraints. This procedure is as follows [Bertsekas,
19821:

Let B and o be scalars satisfying0 < g < land 0 < ¢ <
0.5. 184, =0,1, -, N — 1} denotes the nominal control
sequence and {d,, x = 0, 1, -+, N — [} represents the
minimization direction, the stepsize o is obtained from « =
37, where m is the smallest nonnegative integer for which

Jold — JUew = _0'.6 n'll:a_]olcl‘,ralu,d1"dK (19)

In the above inequality, J% is the value of the performance
index under the nominal control and state sequences while
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J"¥ is its value when the controls are set equal tow,, = i,
+ g%,k =0,1,--+, N — 1. The computation of the
gradient vectors &/%Yau,, x = 0, 1,-+-, N — 1, can be
obtained by the following backward time recursion;

py=ay (20)

Pr= et AP, (1)
afold/altxxRK+B£pk+l k=N-1,N-=2,---,0

(22)

Starting with m = 0, the procedure is repeated for larger
values of i until criterion (19) is passed.

5. After the specification of the stepsize o which satisfies
criterion (19) the new control sequence is obtained from

uy=fi,+ad, wk=0,1,--- N—-1 23)

This iterative process continues until the control sequence
practically converges. Convergence can be tested by com-
puting

Ne 12

1
w=| > (24)
k=0

and verifying that it is negligibly small.

Because of the nature of the Newton optimization direc-
tion and the Armijo stepsize selection rule, the previous
algorithm is characterized by the following convergence
properties;

1. Every limit control sequence {u*, x = 0,1, ++ , N —
1} is stationary; namely, it satisfics the conditions of local
optimality.

2. If the problem is convex, the convergence rate is
faster than superlinear with order two; namely, the norm
fle. — 2*||, where u is the iteration and u* is the optimal
control sequence, converges to zero faster than all se-
quences of the form r; = gB?, where g > 0, g € (0, 1), and
peE(d,2),.

3. In the vicinity of a local minimum, the Armijo test is
satisfied with m = 0, and the stepsize « equals one, avoiding
muttiple performance index evaluations.

As wiil be seen in the case studies section, these theoret-
ical properties translate practically into an efficient optimi-
zation procedure.

The above control model does not explicitly handle con-
straints (3az) and (3b). Herein, these constraints will be
handled implicitly by adding appropriate performance index
terms which penalize the deviations of the state and control
variables from certain desirable trajectories. The procedure
is demonstrated in the following section.

5. APPLICATION

The previous control model is used to obtain real time
optimal irrigation rates over the growing season, We use the
parameters for the maize crop as reported by de Wit et al.
[1978] and Protopapas and Bras [1988]. Extensive field
experiments have been reported in the past for the calibra-
tion and wverification of the soil-crop-climate simulation
madel for several crops at different sites.

5.1, System Dynamics

To derive (6) we need to expand the propagation equation
(1) for cach plant and soil state variable in Taylor’s series

around the nominal values. Keeping only the first order
ferms, we get

afl,K afl,K aflv“‘
Xy, 9Xak X6
X+l fl,x(-ig, ﬁg) afZ,K 6f2,,< afg,x
x Koy Uy e
2,lf+1 — fZ,K( ®7 f\) + ax[,,\. axZ,K axﬁ,x
xG,rc +1 fﬁ,x(ﬁm i .tc) .
afﬁ,n\' afﬁ,f\: afﬁ,i(
6x],1< axZ,K ax6,h’
afl,x
oy,
Fe=tid | o
X7 . —-x
TR I P (e — 1)
6,5 j:\'i,x .
afﬁ,f{
ey .
or

dx . y1=A,8x, +B,.6u,

The evaluation of matrix 4, and vector B, requires the
differentiation of the state functions with respect to the state
and control variables. Some state propagation equations are
complicated functions, making this necessary step laborious
and algebraically demanding. The derivation is given by
Protopapas [1988, Appendix I3]. Two problems associated
with linearization are (1) the derivatives of some functions
used in the plant model are stepwise discontinuous fune-
tions, and (2) the propagation equation for the plant water
potential changes under different conditions, depending on
whether the photosynthesis or the transpiration process
limits plant growth. We have checked the linearization by
comparing the nonlinear simulations to the predictions of the
linear dynamics, and the results are satisfactory. Given the
small simulation time step and the smooth state trajectories
in our system, the above two possible problems do not have
significant impact.

5.2.  Performance Index

The objective function of the irrigation scheduling prob-
lem should reflect the trade-off between a desirable optimum
crop yield and the use of minimum cost for irrigation. Three
alternative quadratic performance indices which meet these
requirement are presented next:

5.2.1. Final state target and minimum irrigation cost at
each stage.

N-—1
J= % (x1 Ti-iN)TQN{xi\' ﬁj:N) + Z %RK(HK - ﬁx)z (25)

k=0

where X is the target state corresponding, for example, to
the record yield year, and i, is the sequence of no-cost
irrigation policy. The quadratic Taylor’s series expansion is
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JF=16x00n8xn + (i — X} QNS XN
)

N-1
+ 2 FRGuE+ (B~ AR Bu,

k=0

so that
Ov=0n an=0nin—Fn) Q=0
a,=0 M,=0
Re=R. b.=Rd0,—a,

5.2.2. Tracking a target state and minimum irrigation

cost at each stage.
— . = 1TA . =
J=3%(xn I O0MxN— TN

N-—1
+ E %RK(”R - ax)z + % (xx “—?x}TQ-K(xx - X‘K) £26)

k=0
with quadratic approximation

N—1
F__ 1 T . & = 3T . 1 2
T=18x{0n8xn + (fy —FN)TONSxy + 2§ RiBug
k=1

+ (fh — B )RS, + 1 8370 8x + (2, - %)70.8x,

3o that
On=0n an=0nEy—3Ix
QKSQK aK=QK(i’K—i—K) MK=0
RK=RK bif:RK(aK—EKJ
5.2.3. Final state target and minimum production cost at
each stage.
N-1
i = ATA. {+ = 1 T, . 2
J= % (-‘N - —"N)TQN'("N - "N) + 2 2 (qx"ht - "KHPC)
k=0

with quadratic approximation

F—1 T - s = 3T .
J= 2 8-‘NQN'S"N + (-‘N - ,\N) QNa.\N

N-1
+ > i rirSui + 61(,((—1',((]5)6.*(,( +1 6,\'£(q£q,<)6x,<
k=0
so that
Onv=0n axv=0MIx—3n)
Qu=d:dx  a,=0
Ro=ri b,=0 M.=-rql

! Depending on the relative magnitudes of 0. R,..q,,and

Feo kK =0, 1,+ 1, N} the previous performance indices can
place priority to the final vield, the irrigation cost, or the net
gain. The associated trade-offs may also be derived through
sensitivity analysis. In addition, the state and control cost

terms can help generate sequences satisfying constraints (3a)
and (3b).

5.3, Results

In the following we solve characteristic cases of the
irrigation scheduling problem using the linear quadratic
control approach, The parameters for the maize crop are as
in the paper by Protopapas and Bras [1988]. The soil is a
Panoche clay with hydraulic parameters given in the appen-
dix. The initial water potential in the sofl is —1000 cm,
corresponding to an initial soif moisture of 0.12, The depth of
the root zone is set equal to 56 cm in all cases. The horizon
over which hourly irrigation rates are to be decided is 50
days or 1200 time steps. The problem involves six state
variables and one control variable, The objective is to track
the crop shoot weight, which is a result of constant irrigation
at a rate of 0.5 cm/day and zero soil salinity. These condi-
tions yield the biologically maximum achievable yield. The
target state tracking objective is limited by the goal of
keeping the irrigation rate as close to zero as possible. This
trade-off is implemented by using the second objective
function of the previous section. The coefficients 0, and R,
reflect the relative weight atiributed to the deviations of the
state and the control from their target values. We use Q,(3,
3) = 1 (dollar per kilogram per hectare)?, the other entries of
matrix @, being zero, and R, = r2(A#/86,400)? (dollars per
centimeter of irrigation water)?, with r? taking values from
10? (“low cost™ irrigation water) to {08 (“*high cost™ irriga-
tion water). The cost coefficients reflect the relative impor-
tance that the user attributes to the deviations of the state
and control sequences from the desirable trajectories.

Case 1: Initial Salinity = 0.0; Irrigation Water Salinity =
0.0. This pilot run serves as a verification of the approach.
For low cost controd (#> = 10%) the controller finds the
sequence of irrigation rates that result in the target yield
trajectory, that is, (.5 cm/d (Figure 3a). The total water used
is 48 ¢m, of which 30 c¢cm are drained below the root zone, 8
cm are transpired, and 4 cm are evaporated from the soil
strface, increasing the water stored in the root zone by 6 cm
(Figure 3b).

For expensive control (+* = 10%) the controller suggests
initial irrigation at a rate of 0.5 cm/d, which normally results
in the desirable vield. Subsequently, it gradually forces the
rate to vaiues close to zero (Figure 4a). The use of water in
this case is restricted because of high irrigation costs. The
application rates reflect the necessity of keeping the state on
track initially so that its inevitable deviations from the target
values at later stages are minimized. The water use is 16 cm,
percolation is 2 ¢m, evapotranspiration is 12 cm, and the
change in storage is 2 cm (Figure 45).

As expected at the limit for #* — 0, the control sequence
is constant at 0.5 cm/d, while for % — = the optimal decision
is “‘no irrigation.”” For this run the effects of the initial
nominal control sequence and of the stepsize selection rule
for the resulting optimal rates were also studied. In both
cases the method is found accurate and robust, although the
number of iterations required to reach the solution varies. In
this study a mainframe CDC-Cyber computer was used, and
the execufion time for the case at hand varied from 2 to 4
nin.

Case 2; Initial Salinity = 0.0, Irrigation Water Salinity =
1000.0 mgi/L. For r* = 104, as shown in Figure 5q, the
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Fig. 3a. State and controf sequences (initial salinity = 0.0; irrigation water salinity = 0.0; low cost irrigation).
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controller initially suggests a high irrigation rate, which
changes the matric potential in the soil from —1000 to —200
cm and quickly increases the water storage by 4 cm. Since
the irrigation water is saline, this action also results in rapid
increase of the soil salinity. Yet, the effective soil potential,
which includes the osmotic effects of salinity, is —~350 cm
(much less negative than its initial value}. In the following
days the optimal sequence simply covers the percolation and
evapotranspiration water losses by applying frequent low
rate irrigations, which keep the water stored in the root zone
almost constant. After every irrigation the soil salinity
increases, and by day 230 it equals the salinity of the
irrigation water. In the following period until the end of the
season the optimal rates reflect the goals of stabilizing the
salinity level at 1000 mg/L, the soil potential at —650 cm, and
the water storage at 20 cm. This ‘“‘optimal steady state”
condition corresponds to minimum objective function, bal-
ancing the deviations of the state and the control. The total
irrigation water exceeds 120 cm, most of which is lost befow
the root zone (Figure 54), The solution required 61 iterations
and 35 min CPU time.

For r? = 10% and 10° the pattern is similar, although the
irrigation rates vary accordingly. For r? = 0% the contribu-
tion of the control outweighs the state cost, and after
irrigating for 2 days at about 2 cm/d initially, the required
rate is about 0.5 cm/d for the remaining period. This is
sufficient to maintain the water potential at a small negative
vahue (wet soil conditions), while salts are inevitably left to
gradually accumulate after each irrigation.

It is well documented that the absorbing capability of the
roots decreases in very dry and also in very wet conditions.
The physical model accounts for overirrigation by assuming
that the water uptake by the roots decreases if the effective
soil potential falls outside an optimum range between —300
and —50 cm (factor fl;;, in (Al)). The model predicts high
irrigation rates for case 2 and for the following cases 4 and 5
(Figures 5, 7, and 8) where controlting the soil salinity is the
critical objective. In these cases the effective soil potential
stabilizes at a more negative value than —300 cm because the
sensitivity of crop vield fo high salinity levels is more
important than the decrease in water uptake. The high
irrigation rates are necessary to keep soil salinity at the
lowest possible level, which is equal to the salinity of
irrigation water (1000 mg/L).

Case 3: Initial Salinity = 3000.0 mg/L; Irrigation Water
Salinity = 0.0. For r* = 10*, as shown in Figure 6a, the
controller senses the possibility of using the salt-free water
to rapidly leach the salts below the root zone. This is done in
the first 20 days by a series of irrigation rates, that decrease
in magnitude. Water storage increases by 9 cm af day 225,
The effect of this action is to essentially keep the crop vield
at its desirable value after the leaching of salts, and conse-
quently, after day 225 the problem is similar to case 1.
Indeed, for the rest of the season the optimal rate is set to
about 0.5 cm/d. The total water used is 117 cm, the perco-
lation loss is 100 ¢m, the evapotranspiration is 12 cm, and the
change in storage is 5 cm (Figure 64). The solution con-
verged in eight iterations and 3 min CPU time. For »? = 107
the leaching is completed in 15 days, using higher irrigation
rates, while for r* = 10° a total of 30 days is required.

In current irrigation practice, leaching of salts is typically

done prior to the growing season and then a constant

irrigation rate is applied duaring the season. The simulations

in cases 3 and 5 (Figures 6 and 8) illustrate the ability of the
method to quantitatively reproduce such practical irrigation
rules.

Case 4: Initial Salinity = 1000.0 mg/L; Irrigation Water
Salinity = 1000.0 mg/L. Inthis case, soil salinity cannot be
reduced below its initial value of 1000 mg/L, since root zone
water is lost, and the available irrigation water has the same
high salinity. The best action is to irrigate so that the initial
salinity does not increase. As shown in Figure 7o for r? =
10°, a sequence of high irrigation rates succeed in stabilizing
the soil salinity at 1000 mg/L throughout the season. More
than 120 cm of irrigation water are applied, and the storage
water is maintained at about 21 cm, with daily fluctuations
following the periodic evapotranspiration loss (Figure 75).
The solution was found in 12 iterations and 4 min CPU time.
For less expensive water the optimal sequences also reflect
the goal to keep the soil salinity close to its initial value by
continuous irrigation rates even higher than those shown in
Figure 7a.

Case 5: Initial Salinity = 3000.0 mgiL; Irrigation Warer
Salinity = [000.0 mg/L. This case demonstrates features
similar to those of cases 3 and 4. The optimal irrigation
sequence (> = 10%) is such that within the first few days,
high irrigation rates reduce the salinity to the value of the
irrigation water, that is, 1000 mg/L.. During the rest of the
growing season a continuous periodic rate is applied to
maintain the desirable steady state (Figures 8a and 85).

6. CoNCLUSI0ONS AND FUTURE DIRECTIONS

This paper is motivated by the need for efficient use of
water in agriculture and presents a modern optimal confrol
approach for the problem of real time irrigation scheduling,
We use a physically based representation of the dynamics of
the soil-crop-atmosphere system. The variables characteriz-
ing the crop and soil status are concurrently simulated with
an integrated state space model. Soil moisture and salinity
conditions, which synergistically control the plant water
uptake, are obtained by using lumped parameter mass bal-
ance models for the root zone. Crop yield is predicted by
explicitly modeling the plant growth processes, such as
assimilation, respiration, and transpiration, which are driven
by the climatic inputs. The control model is an analytical
optimization method for multistage multidimensional se-
quential decision-making problems. It is suitable for systems
with nonlinear dynamics and objective functions. The
method is based on local iterative approximations of the
nonlinear problem with a linear quadratic problem.

In this paper the formulation is restricted to the determin-
istic case, that is, uncertainty of the climatic inputs is not
considered. A series of examples are presented, where
optimal irrigation schedules are obtained on an hourly basis
over the growing season. The examples are chosen to test
the correct behavior of the controller under a variety of
operating conditions. The results follow a priori expected
patterns, which can probably be guessed by experience and
knowledge of the system. In fact, irrigation managers may
have to account empirically for more types of constraints
and considerations than presented in this paper. However,
this study demonstrates that the optimal policies can gener-
ally be derived quantitatively and systematically for any set
of initial conditions and system parameters, This is a major
contribution of this work, which can be the basis for modern
automated irrigation systems.
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Fig. 7b. Hydrologic fluxes and water storage (initial salinity = 1000 mg/L; irrigation water salinity = 1000 mg/L)}.
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Fig. 8. Hydrologic fluxes and water storage (initial salinity = 3000 mg/L; frrigation water salinity = 1000 mg/L).



PROTOPAPAS AND GEORGAKAKOS: REAL-TIME SCHEDULING . 667

An advantage of the methodology used is that each
iteration generates a new control sequence, which is used for
simulation with the nonlinear model and is accepted only if it
improves the objective function. It is a feature of the Armijo
stepsize selection rule that the objective function is always
less or equal to its previous value after each iteration.
Therefore no further simulations are necessary for checking
the final sequence for optimality. The resulted control laws
i1 the case studies are more detailed than any other laws that
can be proposed by semiempirical or other methods. In some
cases the results were favorably compared to different
sensible irrigation policies.

However, it should be mentioned that the optimization
model cannot account for inaccurate representation of the
system dynamics. Although the proposed model is based on
well-documented and validated physical principles, it is a
conceptualization of the real system and is subjected to
revision as more information becomes available. A powerful
idea for remediating the system errors is the use of state
estimation methods, which, however, require systematic
observations of the state,

Finally, a variety of important future extensions are pos-
sible. Within the deterministic framework the available
irrigation water may be fixed (resource allocation problemy),
the state variables may be bounded within extreme values
(for example, maximum desirable salinity at the end of the
season), the irrigation rate may be constrained by the
existing on-farm: technology, and different objective func-
tions may be introduced. Such constraints can be incorpo-
Tated in the control scheme. Similar considerations may also
‘be examined within a stochastic framework, where the
climatic inputs are random. Such problems can be success-
fully investigated using recently developed stochastic opti-
mal control methods [Georgakakos and Marks, 1987; Geor-
gakakos, 1989], and simple irrigation rules can be derived for
implementation in irrigation practice.

APPENDIX: STATE SPACE FORMULATION OF THE
So1-Crop-CLIMATE MODEL WITH SIMPLIFIED
Frow AND TRANSPORT DYNAMICS

In this appendix the propagation equations for the state
variables of the soil-crop-climate model are summarized.
The definition of the variables is summarized in the notation
section following the appendix. For methodological pur-
poses the plant and soil components of the model are
presented separately,

Al

The reader can find all the functions and parameter values
that are not explicitly defined in the following in the paper by
Protopapas and Bras [1988]. The above reference also
provides the detailed conceptual basis for understanding the
simplified description of this section. For some variables the
notation of the associated computer code is used. During
daytime, two cases are considered, depending on how the
leaf resistance is computed,

- A.Ll. Eguations during day period, case l: photosyn-
| thesis controls transpiration.

Plant State Variables

Plant water potential:

WUPS — E(x)

bk + 1) =
o+ 1) ACRS

(A1)

where

W

R
Kn FrTIf g ()

WUPS = ¢ (k)

Wa
ACRS = —— fT)fy (4)
Kgp :

oy = R + [T — eToNpClrIL AL
“ A+ L1+ (rfry)]
68.4 (c. —¢p)  1.32 Fed
Bile c) 132 -«
1.66 NCRIL. 1.66 (1)

NCRIL = (F,, ~ F,)| 1 RN
= (Fy ~ Fp|1—exp| — +
(Fon = Fd P\ Lar s, ¢

ri(x) =

3600.
LAI (x}

= Fy(x)

Fm('{) - F;:;fr(RL)

RES
RL(K)=—————
RES + W5+ Wy

Reserve weight:
RES (x + 1) = RES ({1 — recgbtgd Telx)] g ldp(x + D]

— reeahtg (T NL — g,k + D}

FH(K}

629 At — A W(r)m[ T (x}]}

+ Walk)m[T,(x)] (A2)

where E(x), rix), NCRIL(x), F,{x), and RL(x) are as
before, and

NCRIL
3600.

Folx) = LAI

T (k) = T} + [R,(x) — LE (x)] rp{x)/LALpC,
Shoot weight:
Wk + 1) = Wsl) + RES (x)regd Tl gp[drplee + DIAL
(A3)

where T.(x), E(x), ri(x), NCRIL{x), F,,(x), and RL(x) are
as before.
Root weight:

A
Wik + 1) = {1 - ‘—rfI{Ts(K)]}WR(K)
Tg

+ RES(xk)r Atgd (<) {1 — glplx + DI} (A4)
A.1.2. Equations during day period, case 2: transpira-
tion controls photosynthesis.

Plant water potential:

—EEE2 + EEE4

(A3)
2 EEEl

e + 1} =
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where
EEE2 = eoleqa; + &5) +{—e48 + £3)a;
EEE4 = (EEE2?—4 EEE! EEE3)!”?
EEEI = ¢y84a;
EEE3 = ¢309 — g(g4ay + £5)
g1 = WUPS = ¢ («(Wr/KR) f(Ts)fy (1)

&£ = ACRS = (Wr/Kg) f(Ts)fy ()

LAI R, Pl
£3= T Alk) L—Al + [T} — ed T} f—b—
e4=A(x) + vy
E5— '}"Irb

Reserve weight: The reserve weight is given, as in case I,
by (A1), but now the leaf resistance introduces dependence
of the canopy temperature on i, (x + 1). Variables T.(x) and
E(x) are as before but

rik) = (e dple + 1)+ az) ™!

08.4 (¢, — ¢p) 3600,
T s . 1 1o Fﬂ(K)
1.66 r;+ 1.32 13, LAI{x)

Shoot weight: The shoot weight is given, as in case I,
(A3), but again the [eaf resistance introduces dependence of
the canopy temperature on Pl + 1),

Root weight: The root weight is given again by (A4),

Equations during night period.

Plant water potential:

d’p(K +1)= ‘pp(K) {AB)

Reserve weight: 'The reserve weight is given as previ-
ously by (A2), but now the canopy temperature does not
depend on the transpiration rate and therefore on the leaf
resistance. The assimilation does not depend on the state or
on the climatic inputs, That is

NCRIL (k) =

Ry () rplxc)
TC(K) = Ta(K} + -
LAI pC,
Fif) = ——% 1AL
w{K) = _3600. {x)

Shoot weight: The shoot weight is again given by (A3)
with the same remarks about canopy temperature that were
made for the reserve weight.

Root weight:  As in previous cases.

A2, Soil Stare Variables

The lumped flow and transport models used in this paper
are simplified versions of the distributed models in the
previously mentioned reference, The lumped models are
discussed in more detail in the following.

The conservation of mass of water and salts in a soil
column of unit area and depth equal to the depth of the root
zone is written as

2. d0ldt=—E—-e—p+i (A7)
2, d(c8)/dt = cyf — pc (AS).

where z,. is the depth of the root zone (in centimeters); E is
the transpiration rate, e is the evaporation rate, p is the
percolation rate, and 7 is the irrigation rate, all in centimeters
per day (E and ¢ from the plant model need to be converted
properly); 0 is the soil water content; ¢ is the soil salinity,
and ¢ is the salinity of the irrigation water (in milligrams per
liter).

The unsaturated flow in the soil is described by the
relationships of soil water content and conductivity to the
soil matric potential. The parameterization of Dagan and
Bresler [1983] is used in the form

B(‘!’) =8, + (6: - Gr)(Iﬂu/lp)B
K(y) = Kb /) ?

where 6, is the residual water content, 4, is the porosity, u,,
is the bubbling air pressure (in centimeters), K, is the
saturated hydraulic conductivity (in centimeters per day),
and B and % are soil dependent parameters. For Panoche
clay soil used in our study the parameters are 6, = 0.05; 0,
=043; ¢, = —15cm; K; = 24 cmfday; 8 = 0.36; and 5 =
2.59,

Introducing further the differential soil moisture capacity
C(y) as

de B g\ B
Clp)=—=—— (8, - 0,)] —
() » "b( )(w)

and assuming that the column is drained freely, so that p =
Ky, the discretization of (A7) gives the following propaga-
tion equation for the matric potential;

Pk + 1) = ¢(K}+m

*{—E(k) —e() — K[g{)] + i)} (A9)

where At is the time step of the simulation (in days).
Simple algebraic manipulation and use of (A7) in (AS8)
vields

Zufideidt = coi + (E+e — e (A10)

The discretization of (A10) gives the following propagation
equation for the salt concentration:

cle + 1) =clx) [E(k) + efr) — i{x)]clx)

At
+ —_—
ZB{th (1))
At

—— A
+Z\r9[¢’("<)] colli) (AT

NoTATION

, plant water potential, bars.
RES weight of reserves, kg/Ha.
Ws weight of shoot, kg/Ha.
Wy weight of root, ke/Ha.
¥ soil matric potential, cm.
¢ soil salinity, mg/L.
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r, effective soil potential, cm.
R, net absorbed solar radiation, J/mZs,
photosynthetically active radiation, J/m®s,
; air temperature, °C.
T, dew point temperature, °C.
T, soil temperature, °C.
u  wind speed, m/s.
i irrigation rate, cm/d.
Ky conductive ability of roof system per unit weight,
kg/Ha bar,
fr effect of soil temperature on root conductance.
fy, effect of effective soil potential on root
conductance.
E transpiration rate, grim”s or cm/d.
A slope of curve of saturated vapor pressure versus
temperature, mbars/°C.
LAT leaf area index.
e, saturated vapor pressure, mbars.
volumetric heat capacity of air, J/m*°C.
r, boundary layer resistance, s/m.
r; leaf resistance, s/m,
L latent heat of vaporization, J/g.
¥ psychometric constant, mbars/°C.
¢, external CO, concentration, cm® CO,/m>.
¢; internal CO; concentration, cm® CO,/m?.
F,, maximum assimilation rate, kg CO,/Ha hr.
F, assimilation rate, kg CO,/Ha s.
F; dark respiration, kg CO,/Ha hr.
¢ photosynthetic efficiency at light compensation, kg
' CO,/J.
‘' F%, vpotential CO, assimilation rate, kg CO,/Ha hr.
I effect of reserve level on maximum assimilation

rate.
RL reserve level or weight of reserves over total
weight.
r.cg conversion rate of reserves to biomass, day "',

gr effect of temperature on growth.
gp cflect of plant water potential on growth.
¢y starch requirement for maintenance, kg reserves/kg
biomass d.
m effect of temperature on maintenance.
T, canopy temperature, °C.
7, suberization rate of roots, s.
At time step of simulation, s or day.
z,» depth of the root zone, cm,
e evaporation rate, cm/d.
p percolation rate, cm/d,
0 soil water content,
¢y salinity of the irrigation water, mg/L.
#, residual water content.
f, porosity.
s, bubbling air pressure, cm.
K, saturated hydraulic conductivity, cm/d.
K hydraulic conductivity, cm/d.
Cp)

differential soil moisture capacity, cm ™',
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