On the system of two difference equations of exponential form:

\[\begin{align*}
x_{n+1} &= a + bx_{n-1}e^{-y_n}, \\
y_{n+1} &= c + dy_{n-1}e^{-x_n}
\end{align*} \]

G. Papaschinopoulosa,\ast, M.A. Radinb, C.J. Schinasa

a School of Engineering, Democritus University of Thrace, Xanthi, 67100, Greece
b Rochester Institute of Technology, School of Mathematical Sciences, College of Science, Rochester, NY 14623, USA

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 23 February 2011
Received in revised form 12 July 2011
Accepted 12 July 2011

\textbf{Keywords:}
Difference equations
Boundedness
Persistence
Asymptotic behavior

\textbf{A B S T R A C T}

It is the goal of this paper to study the boundedness, the persistence and the asymptotic behavior of the positive solutions of the system of two difference equations of exponential form

\[\begin{align*}
x_{n+1} &= a + bx_{n-1}e^{-y_n}, \\
y_{n+1} &= c + dy_{n-1}e^{-x_n}
\end{align*} \]

where \(a, b, c, d \) are positive constants, and the initial values \(x_{-1}, x_0, y_{-1}, y_0 \) are positive real values.

\(\ast \) Corresponding author. Tel.: +30 2541079758.
E-mail addresses: gpapas@env.duth.gr (G. Papaschinopoulos), michael.radin@rit.edu (M.A. Radin), cschinas@ee.duth.gr (C.J. Schinas).

0895-7177/S – see front matter \(\copyright \) 2011 Elsevier Ltd. All rights reserved.
population; that is, if the population is left alone then it remains there. Therefore, convergence to the equilibrium point \((\bar{x}, \bar{y})\) will apply that the population of both species tends to the natural ideal population.

Difference equations and systems of difference equations of exponential form can be found in the following papers: [2,13–8]. Moreover, as difference equations have many applications in applied sciences, there are many papers and books that can be found concerning the theory and applications of difference equations; (for partial review of the theory of difference equations, systems of difference equations and their applications see [9–27,28,129,4,30–35,7,36,8,37–39] and the references cited therein).

2. Asymptotic behavior of the solutions of system (1.1)

First it is very crucial to establish the boundedness and persistence of solutions; in the first proposition we will study the boundedness and persistence of the positive solutions of system (1.1) by comparing them with solutions of a solvable system of difference equations. Our method is a modification of the method in Theorem 2 in [40]. For related and similar results see, [9,15,16,24,25,2,30–35,7,36].

Proposition 2.1. Consider system (1.1) such that:

\[be^{-c} < 1, \quad de^{-a} < 1. \quad (2.1) \]

Then every positive solution of (1.1) is bounded and persists.

Proof. Let \((x_n, y_n)\) be an arbitrary solution of (1.1). Thus from (1.1) we see that

\[x_n \geq a, \quad y_n \geq c, \quad n = 1, 2, \ldots. \quad (2.2) \]

In addition, it follows from (1.1) and (2.2) that

\[x_{n+1} = a + bx_{n-1}e^{-c}, \quad y_{n+1} = c + dy_{n-1}e^{-a}, \quad n = 0, 1, \ldots. \quad (2.3) \]

We will now consider the non-homogeneous difference equations

\[z_{n+1} = a + bz_{n-1}e^{-c}, \quad v_{n+1} = c + dv_{n-1}e^{-a}, \quad n = 0, 1, \ldots. \quad (2.4) \]

Therefore, from (2.4) an arbitrary solution \((z_n, v_n)\) of (2.4) is given by

\[z_n = r_1(be^{-c})^{n/2} + r_2(-1)^n(be^{-c})^{n/2} + \frac{a}{1-be^{-c}}, \quad n = 1, 2, \ldots. \quad (2.5) \]

\[v_n = s_1(de^{-a})^{n/2} + s_2(-1)^n(de^{-a})^{n/2} + \frac{c}{1-de^{-a}}, \quad n = 1, 2, \ldots. \]

where \(r_1, r_2, s_1, s_2\) depend on the initial values \(z_{-1}, z_0, v_{-1}, v_0\). Thus we see that relations (2.1) and (2.5) imply that \(z_n\) and \(w_n\) are bounded sequences. Now we will consider the solution \((z_n, v_n)\) of (2.4) such that

\[z_{-1} = x_{-1}, \quad z_0 = x_0, \quad v_{-1} = y_{-1}, \quad v_0 = y_0. \quad (2.6) \]

Thus from (2.3) and (2.6) we get

\[x_n \leq z_n, \quad y_n \leq v_n, \quad n = 1, 2, \ldots. \quad (2.7) \]

Therefore it follows that \(x_n, y_n\) are bounded sequences. Hence from (2.2) the proof of the proposition is now complete.

In the next proposition we will study the existence of invariant intervals of system (1.1).

Proposition 2.2. Consider system (1.1) where relations (2.1) hold. Then the following statements are true:

(i) The set

\[\left[a, \frac{a}{1-be^{-c}} \right] \times \left[c, \frac{c}{1-de^{-a}} \right] \]

is an invariant set for (1.1).

(ii) Let \(\epsilon\) be an arbitrary positive number and \((x_n, y_n)\) be an arbitrary solution of (1.1). We then consider the sets

\[I_1 = \left[a, \frac{a+\epsilon}{1-be^{-c}} \right], \quad I_2 = \left[c, \frac{c+\epsilon}{1-de^{-a}} \right]. \quad (2.8) \]

Then there exists an \(n_0\) such that for all \(n \geq n_0\)

\[x_n \in I_1, \quad y_n \in I_2. \quad (2.9) \]
Proof. (i) Let \((x_n, y_n)\) be a solution of (1.1) with initial values \(x_{-1}, x_0, y_{-1}, y_0\) such that

\[
x_{-1}, x_0 \in \left[a, \frac{a}{1 - be^-c} \right], \quad y_{-1}, y_0 \in \left[c, \frac{c}{1 - de^-a} \right].
\]

(2.10)

Then from (1.1) and (2.10) we get

\[
a \leq x_1 = a + bx_{-1}e^{-c} \leq a + \frac{ab}{1 - be^{-c}}e^{-c} = \frac{a}{1 - be^{-c}}
\]

\[
c \leq y_1 = c + dy_{-1}e^{-c} \leq c + \frac{cd}{1 - de^{-a}}e^{-a} = \frac{c}{1 - de^{-a}}.
\]

Then it follows by induction that

\[
a \leq x_n \leq \frac{a}{1 - be^{-c}}, \quad c \leq y_n \leq \frac{c}{1 - de^{-a}}, \quad n = 1, 2, \ldots.
\]

This completes the proof of statement (i).

(ii) Let \((x_n, y_n)\) be a solution of (1.1). Therefore, from Proposition 2.1 we get

\[
0 < l_1 = \lim \inf_{n \to \infty} x_n, \quad 0 < l_2 = \lim \inf_{n \to \infty} y_n,
\]

\[
L_1 = \lim \sup_{n \to \infty} x_n < \infty, \quad L_2 = \lim \sup_{n \to \infty} y_n < \infty.
\]

(2.11)

It follows from (1.1) and (2.11) that

\[
L_1 \leq a + bl_1e^{-l_2}, \quad l_1 \geq a + bl_1e^{-l_2}, \quad L_2 \leq c + dl_2e^{-l_1}, \quad l_2 \geq c + dl_2e^{-l_1},
\]

which imply that

\[
a \leq L_1 \leq \frac{a}{1 - be^{-c}}, \quad c \leq L_2 \leq \frac{c}{1 - de^{-a}}.
\]

(2.12)

Thus from (1.1), we see that there exists an \(n_0\) such that (2.9) holds true. This completes the proof of the proposition. \(\Box\)

In the next two propositions we will study the asymptotic behavior of the positive solutions of (1.1). The next lemma is a slight modification of Theorem 1.16 of [24] and for readers convenience we state it without its proof.

Lemma 2.1. Let \(f, g, f : R^+ \times R^+ \to R^+, g : R^+ \times R^+ \to R^+\) be continuous functions, \(R^+ = (0, \infty)\) and \(a_1, b_1, a_2, b_2\) be positive numbers such that \(a_1 < b_1, a_2 < b_2\). Suppose that

\[
f : [a_1, b_1] \times [a_2, b_2] \to [a_1, b_1], \quad g : [a_1, b_1] \times [a_2, b_2] \to [a_2, b_2].
\]

(2.13)

In addition, assume that \(f(x, y)\) (resp. \(g(x, y)\)) is decreasing with respect to \(y\) (resp. \(x\)) for every \(x\) (resp. \(y\)) and increasing with respect to \(x\) (resp. \(y\)) for every \(y\) (resp. \(x\)). Finally suppose that if \(m, M, r, R\) are real numbers such that

\[
M = f(M, r), \quad m = f(m, R), \quad R = g(m, R), \quad r = g(M, r),
\]

(2.14)

then \(m = M\) and \(r = R\). Then the following system of difference equations

\[
x_{n+1} = f(x_n, y_n), \quad y_{n+1} = g(x_n, y_{n-1})
\]

(2.15)

has a unique positive equilibrium \((\bar{x}, \bar{y})\) and every positive solution \((x_n, y_n)\) of the system (2.15) which satisfies

\[
x_{n_0} \in [a_1, b_1], \quad x_{n_0+1} \in [a_1, b_1], \quad y_{n_0} \in [a_2, b_2], \quad y_{n_0+1} \in [a_2, b_2], \quad n_0 \in \mathbb{N}
\]

(2.16)

tends to the unique positive equilibrium of (2.15).

Proposition 2.3. Consider system (1.1) such that the following relations hold true:

If \(c \geq a\)

\[
b < e^c - a + \sqrt{a^2 + 4}/2, \quad d < e^a \min \left\{ \frac{-c + \sqrt{c^2 + 4}}{2}, \frac{a - \sqrt{a^2 - c^2}}{c} \right\}
\]

(2.17)

and if \(a \geq c\), then

\[
d < e^a - c + \sqrt{c^2 + 4}/2, \quad b < e^c \min \left\{ \frac{-a + \sqrt{a^2 + 4}}{2}, \frac{a - \sqrt{a^2 - c^2}}{c} \right\}
\]

(2.18)
Then system (1.1) has a unique positive equilibrium \((\bar{x}, \bar{y})\) and every positive solution of (1.1) tends to the unique positive equilibrium \((\bar{x}, \bar{y})\) as \(n \to \infty\).

Proof. We consider the functions

\[
 f(x, y) = a + bxe^{-y}, \quad g(x, y) = c + dye^{-x}
\]

where

\[
 x \in I_1, \quad y \in I_2,
\]

\(I_1, I_2\) are defined in (2.8). Then from (2.17), (2.18)–(2.20), we see that for \(x \in I_1, y \in I_2\)

\[
 a \leq f(x, y) \leq a + e \frac{a + e}{1 - be^{-c}}e^{-c} = \frac{a + e be^{-c}}{1 - be^{-c}} < \frac{a + e}{1 - be^{-c}},
\]

\[
 c \leq g(x, y) \leq c + d \frac{c + e}{1 - de^{-a}}e^{-a} = \frac{c + e de^{-a}}{1 - de^{-a}} < \frac{c + e}{1 - de^{-a}}
\]

and so \(f : I_1 \times I_2 \to I_1, g : I_1 \times I_2 \to I_2\). Let \((x_n, y_n)\) be an arbitrary solution of (1.1). Therefore, as relations (2.17), (2.18) imply conditions (2.1), from Proposition 2.2 there exists an \(n_0\) such that relations (2.9) hold true.

Let \(m, M, r, R\) be positive real numbers such that

\[
 M = a + bMe^{-r}, \quad m = a + bme^{-R}, \quad R = c + dre^{-m}, \quad r = c + dre^{-M}.
\]

From (2.21) it follows that

\[
 r = \ln \left(\frac{bM}{M - a} \right), \quad R = \ln \left(\frac{bm}{m - a} \right), \quad m = \ln \left(\frac{dr}{R - c} \right), \quad M = \ln \left(\frac{dr}{r - c} \right).
\]

Thus we see that relations (2.21) and (2.22) imply

\[
 (1 - be^{-1}) \ln \left(\frac{dr}{r - c} \right) = a, \quad (1 - be^{-R}) \ln \left(\frac{dR}{R - c} \right) = a,
\]

\[
 (1 - de^{-m}) \ln \left(\frac{bm}{m - a} \right) = c, \quad (1 - de^{-M}) \ln \left(\frac{bM}{M - a} \right) = c.
\]

We then consider the function

\[
 F(x) = (1 - de^{-x}) \ln \left(\frac{bx}{x - a} \right) - c.
\]

Let \(z\) be a solution of \(F(x) = 0\). We claim that

\[
 F'(z) < 0.
\]

From (2.24) we see that

\[
 F'(z) = -\frac{a(1 - de^{-z})}{z(z - a)} + de^{-z} \ln \left(\frac{bz}{z - a} \right).
\]

Since \(z\) satisfies equation \(F(x) = 0\), then it follows that

\[
 \ln \left(\frac{bz}{z - a} \right) = \frac{c}{1 - de^{-z}}.
\]

Therefore, relations (2.26) and (2.27) imply that

\[
 F'(z) = -\frac{a(1 - de^{-z})}{z(z - a)} + \frac{cde^{-z}}{1 - de^{-z}}.
\]

Using (2.28), to prove our claim (2.25), it suffices to prove that

\[
 H(z) - G(z) < 0, \quad H(z) = dcz(z - a), \quad G(z) = ae^z(1 - de^{-z})^2.
\]
From (2.29) we get
\[H'(z) = dc(2z - a), \quad G'(z) = -ad^2e^{-z} + ae^z, \quad H''(z) = 2dc, \]
\[G''(z) = ad^2e^{-z} + ae^z, \quad H'''(z) = 0, \quad G'''(z) = -ad^2e^{-z} + ae^z. \] (2.30)

Now from (2.17), (2.18) and (2.30), we see that as \(z > a \) we have
\[H'''(z) - G'''(z) < 0. \] (2.31)

Since \(z > a \), we take
\[H'(z) - G'(z) < H''(a) - G''(a). \] (2.32)

Using (2.30) we get
\[H''(a) - G''(a) = 2dc - ad^2e^{-a} - ae^a = -e^{-a}(ad^2 - 2dce^a + ae^a). \] (2.33)

Moreover if \(c \geq a \), then from (2.17) it follows that \(0 < d < e^{a - \sqrt{c^2 - a^2}} \) and we get
\[ad^2 - 2dce^a + ae^a > 0. \] (2.34)

If \(c < a \) we can easily prove that (2.34) holds true. Then from (2.33) and (2.34) we get \(H''(a) - G''(a) < 0 \) and so from (2.32) it follows that
\[H'''(z) - G'''(z) < 0. \] (2.35)

Therefore from (2.35) and since \(z > a \) it follows
\[H'(z) - G'(z) < H'(a) - G'(a). \] (2.36)

Hence using (2.30) we get
\[H'(a) - G'(a) = acd + ad^2e^{-a} - ae^a = ae^{-a}(d^2 + dce^a - e^{2a}). \] (2.37)

Now observe that from (2.17), (2.18) we have \(0 < d < e^{a - \sqrt{c^2 - a^2}} \) and so
\[d^2 + dce^a - e^{2a} < 0. \] (2.38)

Therefore relations (2.37) and (2.38) imply that \(H'(a) - G'(a) < 0 \) and so from (2.36) it follows that
\[H'(z) - G'(z) < 0. \] (2.39)

Hence from (2.39) and as \(z > a \), we get
\[H(z) - G(z) < H(a) - G(a). \] (2.40)

Now note that from (2.29) it is obvious that \(H(a) - G(a) < 0 \). Thus from (2.40), we get \(H(z) - G(z) < 0 \) which implies that (2.25) is true. Since (2.25) holds, it is known that there exists an \(\epsilon \) such that for \(x \in (z - \epsilon, z + \epsilon) \)
\[F'(x) < 0. \] (2.41)

Therefore from (2.41) the function \(F \) is decreasing in the interval \((z - \epsilon, z + \epsilon)\). Suppose that \(F \) has roots greater than the root \(z \). Let \(z_2 \) be the smallest root of \(F \) such that \(z_2 > z \). From the argument above, we can show that there exists an \(\epsilon_1 \) such that \(F \) is decreasing in the interval \((z_2 - \epsilon_1, z_2 + \epsilon_1) \). Since \(F(z + \epsilon) < 0 \), \(F(z_2 - \epsilon_1) > 0 \) and \(F \) is continuous, we see that \(F \) must have a root in the interval \((z + \epsilon, z_2 - \epsilon_1) \). This is clearly a contradiction since \(z_1 \) is the smallest root of \(F \) such that \(z_1 > z \). Similarly we can prove that \(F \) has no solutions in \((0, z) \). Therefore equation \(F(x) = 0 \) must have a unique solution. Hence from (2.23) and (2.24) \(m, M \) are the solutions of the equation \(F(x) = 0 \). Thus we see that \(m = M \). Similarly if we set
\[G(x) = (1 - be^{-x}) \ln \left(\frac{dx}{x - c} \right) - a \]
and using (2.17), (2.18) we can show that equation \(G(x) = 0 \) has a unique solution. Also as \(r, R \) are the solutions of equation \(G(x) = 0 \), it follows that \(r = R \). Therefore from Lemma 2.1 the proof of the proposition is complete. \(\square \)

Proposition 2.4. Consider system (1.1) and suppose that the constants \(a, b, c, d \) satisfy the following relations:
\[b < \frac{e^c}{c + 1}, \quad d < e^a \min \left\{ \frac{1 - be^{-c}}{1 - be^{-c} + a}, \frac{1 - b(c + 1)e^{-c}}{1 - be^{-c}} \right\}. \] (2.42)
Then system (1.1) has unique positive equilibrium \((\bar{x}, \bar{y})\) such that

\[
\bar{x} \in \left(a, \frac{a}{1 - be^{-c}} \right), \quad \bar{y} \in \left(c, \frac{c}{1 - de^{-a}} \right).
\] (2.43)

Moreover every positive solution of (1.1) tends to the unique positive equilibrium \((\bar{x}, \bar{y})\) as \(n \to \infty\).

Proof. First we prove that (1.1) has a unique positive equilibrium such that relations (2.43) hold. First we consider the following system of algebraic equations

\[
x = a + bxe^{-y}, \quad y = c + dye^{-x}.
\] (2.44)

Observe that system (2.44) is equivalent to the following system:

\[
x = \frac{a}{1 - be^{-y}}, \quad y = \frac{c}{1 - de^{-x}}.
\] (2.45)

So we set

\[
F(x) = \frac{a}{1 - be^{-f(x)}} - x, \quad f(x) = \frac{c}{1 - de^{-x}}, \quad x \in \left(a, \frac{a}{1 - be^{-c}} \right).
\] (2.46)

Then from (2.42) and (2.46) we get

\[
F(a) = \frac{abe^{-f(a)}}{1 - be^{-f(a)}} > 0,
\]

\[
F\left(\frac{a}{1 - be^{-c}} \right) = \frac{a}{1 - be^{-f\left(\frac{a}{1 - be^{-c}} \right)}} - \frac{a}{1 - be^{-c}}
\]

\[
= \frac{ab}{1 - be^{-f\left(\frac{a}{1 - be^{-c}} \right)}} \left(e^{-f\left(\frac{a}{1 - be^{-c}} \right)} - e^{-c} \right) < 0.
\] (2.47)

Therefore from (2.47) equation \(F(x) = 0\) has a solution \(\bar{x} \in \left(a, \frac{a}{1 - be^{-c}} \right)\).

Now we will prove that \(\bar{x}\) is the unique solution of \(F(x) = 0\). From (2.42) and (2.46) it follows that

\[
F'(x) = \frac{abcdde^{-f(x)-x}}{(1 - be^{-f(x)})^2(1 - de^{-x})^2} - 1 < \frac{abcdde^{-c-a}}{(1 - de^{-a})^2(1 - de^{-a})^2} - 1.
\] (2.48)

Moreover from (2.42) we get,

\[
be^{-c} + \frac{cb}{1 - de^{-a}} e^{-c} < 1, \quad de^{-a} + \frac{ad}{1 - be^{-c}} e^{-a} < 1.
\] (2.49)

Therefore from (2.49) it follows that

\[
\frac{cb}{(1 - de^{-a})(1 - be^{-c})} e^{-c} < 1, \quad \frac{ad}{(1 - de^{-a})(1 - be^{-c})} e^{-a} < 1.
\] (2.50)

Hence relations (2.48) and (2.50) imply that \(F'(x) < 0\) which implies that equation \(F(x) = 0\) has a unique solution \(\bar{x} \in \left(a, \frac{a}{1 - be^{-c}} \right)\). Then from (2.45) and (2.46) system (2.44) has a unique solution \((\bar{x}, \bar{y})\) such that (2.43) holds.

Let \((x_n, y_n)\) be an arbitrary solution of (1.1). Using relations (2.42) and Proposition 2.1, we see that (2.11) hold which also imply that

\[
L_1 \leq \frac{a}{1 - be^{-l_2}}, \quad l_1 \geq \frac{a}{1 - be^{-l_2}}, \quad L_2 \leq \frac{c}{1 - de^{-l_1}}, \quad l_2 \geq \frac{c}{1 - de^{-l_1}}.
\] (2.51)

From (2.51) we get

\[
L_1 l_2 \leq \frac{a l_2}{1 - be^{-l_2}}, \quad l_1 l_2 \geq \frac{a l_2}{1 - be^{-l_2}}, \quad L_2 l_1 \leq \frac{c l_1}{1 - de^{-l_1}}, \quad l_2 l_1 \geq \frac{c l_1}{1 - de^{-l_1}}.
\]
and so we see that
\[
\frac{cl_1}{1 - de^{-l_1}} \leq \frac{al_2}{1 - be^{-l_2}}, \quad \frac{al_2}{1 - be^{-l_2}} \leq \frac{cl_1}{1 - de^{-l_1}}.
\]

Now we consider the functions
\[
f(x) = \frac{cx}{1 - de^{-x}}, \quad g(y) = \frac{ay}{1 - be^{-y}}, \quad x \in \left(\frac{a}{1 - be^{-c}}, \frac{a}{1 - be^{-c}}\right), \quad y \in \left(\frac{c}{1 - de^{-a}}, \frac{c}{1 - de^{-a}}\right).
\]

Then from (2.53) it follows that
\[
f'(x) = \frac{c(1 - de^{-x}(1 + x))}{(1 - de^{-x})^2}, \quad g'(x) = \frac{(1 - be^{-y}(1 + y))}{(1 - be^{-y})^2}.
\]

From (2.49), consider \(x \in \left(\frac{a}{1 - be^{-c}}, \frac{a}{1 - be^{-c}}\right), y \in \left(\frac{c}{1 - de^{-a}}, \frac{c}{1 - de^{-a}}\right)\)
\[
1 - de^{-x}(1 + x) > 1 - de^{-a} \left(1 + \frac{a}{1 - be^{-c}}\right) > 0,
\]
\[
1 - be^{-y}(1 + y) > 1 - be^{-c} \left(1 + \frac{c}{1 - de^{-a}}\right) > 0.
\]

Therefore from (2.54) and (2.55) we see that
\[
f'(x) > 0, \quad g'(x) > 0, \quad x \in \left(\frac{a}{1 - be^{-c}}, \frac{a}{1 - be^{-c}}\right), \quad y \in \left(\frac{c}{1 - de^{-a}}, \frac{c}{1 - de^{-a}}\right).
\]

Hence, \(f, g\) are increasing functions and this, together with (2.52) implies that \(l_1 = l_1\). Then, from (2.52) again, we see that \(l_2 = l_2\). Therefore, this completes the proof of the proposition. \(\Box\)

In the last proposition of this section, we will study the global asymptotic stability of the positive equilibrium of (1.1).

Proposition 2.5. Consider system (1.1) such that either (2.17) and (2.18) hold or (2.42) holds. Also suppose that the following relation holds true:
\[
0 < be^{-c} + de^{-a} + bde^{-a-c} + \frac{abcdde^{-a-c}}{(1 - de^{-a})(1 - be^{-c})} < 1.
\]

Then the unique positive equilibrium \((\bar{x}, \bar{y})\) of (1.1) is globally asymptotically stable.

Proof. First we will prove that \((\bar{x}, \bar{y})\) is locally asymptotically stable. The linearized system of (1.1) about \((\bar{x}, \bar{y})\) is
\[
x_{n+1} = be^{-\bar{y}}x_{n-1} - b\bar{x}e^{-\bar{y}}y_n,\nn+1 = de^{-\bar{x}}y_{n-1} - d\bar{y}e^{-\bar{x}}x_n.
\]

We clearly see that system (2.57) is equivalent to the system
\[
w_{n+1} = Aw_n, \quad A = \begin{pmatrix} 0 & \alpha & \beta & 0 \\ \gamma & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad w_n = \begin{pmatrix} x_n \\ y_n \\ x_{n-1} \\ y_{n-1} \end{pmatrix},
\]
\[
\alpha = -b\bar{x}e^{-\bar{y}}, \quad \beta = be^{-\bar{y}} \quad \gamma = -d\bar{y}e^{-\bar{x}}, \quad \delta = de^{-\bar{x}}.
\]

Then the characteristic equation of \(A\) is
\[
\lambda^4 - (\beta + \delta + \alpha\gamma)\lambda^2 + \beta\delta = 0.
\]

Since \(\bar{x}, \bar{y}\) satisfy (2.44) it is obvious that \(\bar{x} > a, \bar{y} > c\). Hence, from (2.56) and as \(\bar{x}, \bar{y}\) satisfy (2.45) we get
\[
|\beta| + |\delta| + |\beta\delta| + |\alpha\gamma| = be^{-\bar{y}} + de^{-\bar{x}} + be^{-\bar{y}}de^{-\bar{x}} + \frac{abcdde^{-a-c}}{(1 - de^{-a})(1 - be^{-c})} < 1.
\]
Therefore, from (2.59) and Remark 1.3.1 of [2] all the roots of Eq. (2.58) are of modulus less than 1 which implies that \((\bar{x}, \bar{y}) \) is locally asymptotically stable. Using Proposition 2.3 \((\bar{x}, \bar{y}) \) is globally asymptotically stable. This completes the proof of the proposition. \(\square \)

3. Existence of unbounded solutions of system (1.1)

It is our goal of this section to study the existence of unbounded solutions for (1.1).

Proposition 3.1. Consider Eq. (1.1). Then the following statements are true:

(i) Suppose that

\[b > e^a. \]

Then there exist solutions \((x_n, y_n)\) of (1.1) such that

\[\lim_{n \to \infty} x_n = \infty, \quad \lim_{n \to \infty} y_n = c. \]

(ii) Suppose that

\[d > e^a. \]

Then there exists a solution \((x_n, y_n)\) of (1.1) such that

\[\lim_{n \to \infty} x_n = a, \quad \lim_{n \to \infty} y_n = \infty. \]

(iii) Suppose that

\[b > e^a, \quad d > e^a. \]

Then there exists a solution \((x_n, y_n)\) of (1.1) such that either (3.2) or (3.4) holds true.

Proof. (i) Using (3.1), consider a solution \((x_n, y_n)\) of (1.1) with initial values \(x_{-1}, x_0, y_{-1}, y_0\) such that

\[x_{-1} > M, \quad x_0 > M, \quad y_0 < m, \quad y_{-1} < m, \quad M = \ln\left(\frac{dm}{m-c}\right), \quad m = \ln b. \]

Then from (1.1) and (3.6) we see that

\[y_1 = c + dy_{-1}e^{-x_0} < c + dme^{-M} = m, \quad x_1 = a + bx_{-1}e^{-y_0} > a + bMe^{-m} > M. \]

Therefore, it follows by induction that

\[y_n < m, \quad x_n > M, \quad n = 1, 2, \ldots. \]

Notice that from (1.1), (3.6) and (3.7) we get

\[x_{n+1} > a + bx_{n-1}e^{-m} = a + x_{n-1}, \quad n = 0, 1, \ldots. \]

Therefore from (3.8) it follows that

\[\lim_{n \to \infty} x_n = \infty. \]

In addition, from (1.1) and (3.7) we see that

\[c \leq y_{n+1} = c + dy_{n-1}e^{-x_0} < c + dme^{-x_0}, \quad n = 0, 1, \ldots. \]

Hence from (3.9) and (3.10) it follows that

\[\lim_{n \to \infty} y_n = c. \]

Thus from (3.9) and (3.10) the proof of statement (i) is completed.

(ii) Using (3.3) consider a solution \((x_n, y_n)\) of (1.1) with initial values such that

\[x_{-1} < p, \quad x_0 < p, \quad y_0 > P, \quad y_{-1} > P, \quad P = \ln\left(\frac{bp}{p-a}\right), \quad p = \ln d. \]

Then applying (3.12) and using the ideas as above we can prove (3.4).

(iii) Using (3.5), it suffices to find a solution \((x_n, y_n)\) with initial values satisfying either (3.6) or (3.12). Then \((x_n, y_n)\) satisfies either (3.2) or (3.4). This completes the proof of the proposition. \(\square \)
The authors would like to thank the referees for their helpful suggestions.

References

[38] C.M. Kent, W. Kosmala, S. Stević, On the difference equation $x_{n+1} = x_{n-1} x_{n-2} - 1$, Abstr. Appl. Anal. 2011 (2011) Article ID 815285, 15 pages.
