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1. Introduction

In [26] the authors studied the boundedness, the asymptotic behavior, the periodicity and the stability of the positive
solutions of the difference equation
o+ peIn
VHYna
where o, 8, 7 are positive constants and the initial values x_1, Xy are positive numbers.

Motivated by the above paper, we will investigate the boundedness, the persistence and the asymptotic behavior of the
positive solutions of the following systems of difference equations of exponential form:
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where a, 8, 7, 6, €, { are positive constants and the initial values x_1, xo, y_1, Yo are positive constants. Also for applications in
Mathematical Biology or Population Dynamics, we consider g to be the growth or reproduction rate of species x,, and € to be
the growth or reproduction rate of species y,.

Difference equations and systems of difference equations of exponential form can be found in the following papers:
[23,25,26,29-31,33,39,43]. Moreover, as difference equations have many applications in applied sciences there are many pa-
pers and books concerning theory and applications of difference equations, (for partial review of the theory of difference
equations, systems of difference equations and their applications see [1-43] and the references sited therein).

2. Global behavior of solutions of three general systems

In this section we consider the following three general systems of two difference equations

Xni1 :f(ymyn—])s Yni1 :g(XTHanl)» (2])

Xni1 :f(xﬂflayn% Yo :g(xl‘hyn—l)v (22)
and

Xnt1 :f(xnvyn—l)v Yo :g(xn—layn)a (23)

where f, g are continuous functions and the initial values x_1, Xo, ¥_1, Yo are positive numbers.
Working in a similar fashion as in relative theorems included in [10,11,17,24] we can state the following theorem which is
useful for the study of our systems Eqs. (1.1)-(1.3).

Theorem 2.1. Let f, g, f: R* xR - R*, g: R* x R* - R be continuous functions, R = (0,cc). Then the following statements are
true
(i) Let ay, by, ay, by be positive numbers such that a; < by, ax < b, and
flaz,ba] x [az,ba] — [a1,b1], g :[a,b1] x [ar,b1] — [az, ba].

Suppose that the function f(u,v) is a decreasing function with respect to u (resp. v) for all v (resp. u) and g(z,w) is a decreasing
function with respect to z (resp. w) for every w (resp. z). Finally suppose that if m, M, r, R are real numbers such that if

M=f(r,r), m=f(R,R), R=g(mm), r=gM,M)

then m = M and r = R. Then the system of difference Eq. (2.1) has a unique positive equilibrium (X, ¥) and every positive solution of
the system Eq. (2.1) which satisfies

Xny € [a1,b1],  Xngi1 € [ar,D1), Yo, € [02,02], Ynoiq € [02,b2], Mo €N (24)

tends to the unique positive equilibrium of Eq. (2.1).
(ii) Let
filar,bi] x [az,bo] — [a1,b1], g [ar, bi] x [az, by] — [az, by].

Suppose that the functions f(x,y) and g(x,y) are decreasing functions with respect to x (resp. y) for all y (resp. x). Finally suppose
that if m, M, r, R are real numbers such that if

M:f(mvr)v m:f(M,R), R:g(mvr)v T:g(M,R) (25)

then m =M and r = R. Then the systems of difference Egs. (2.2) and (2.3) have a unique positive equilibrium (X, y) and every po-
sitive solution of the system Egs. (2.2) (resp. (2.3)) satisfying Eq. (2.4) tends to the unique positive equilibrium of Egs. (2.2) (resp.
(2.3)).

Proof. (i) System Eq. (2.1) is equivalent to the system of separated equations
Xno1 = f(&(Xn1,Xn2), 8(Xn-2,Xn3)) = F(Xn_1,Xn2,Xn3),
Yni1 =8F Wn1:Yn2): fWn-2:¥n3)) = CWn1,Yn2:Vn3)s N =2
We consider the equation
Xni1 = F(Xn_1,Xn_2,Xn_3). (2.6)

From the conditions of f, g we have that F is a function from [ay,b{] x [a1,bq] x [a1,bq] into [a4,b1] and F(x,y,z) is increasing in
x for all y, z, increasing in y for all x, z and increasing in z for all x, y. Let now that M, m be positive numbers such that

M= F(MvaM) :f(g(MvM)vg(IVLM))
m =F(m,m,m) = f(g(m,m),g(m,m)).
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By setting r = g(M, M), R = g(m,m) we have that relations Eq. (2.5) are satisfied. Then from hypothesis of Theorem 2.1 we have
that m = M. Therefore from Theorem 1.15 of [17] we have that Eq. (2.6) has a unique positive equilibrium x and every positive
solution of Eq. (2.6) tends to the unique positive equilibrium x. Similarly we can prove that equation

Yar1 = 8F W1, Yn2) f Wn2:Yn3)) = CWVn1,¥n_2:Yn_3) (2.7)

has a unique positive equilibrium ¥ and every positive solution of Eq. (2.7) tends to the unique positive equilibrium y. This
completes the proof of the statement (i).
The proof of the statement (ii) is a modification of similar results included in [10,11,17,24]. O

3. Global behavior of solutions of system Eq. (1.1)
In the first lemma we study the boundedness and persistence of the positive solutions of Eq. (1.1).

Lemma 3.1. Every positive solution of Eq. (1.1) is bounded and persists.

Proof. Let (x,,y,) be an arbitrary solution of Eq. (1.1). From Eq. (1.1) we can see that

<Py O 1 (3.1)
1 ¢
In addition, from Egs. (1.1) and (3.1) we get
_sie _atp
n>a+[3e ~7 n>5+ee Y _34,. . 32)

7+ (+2d

Therefore, from Egs. (3.1) and (3.2) the proof of the lemma is complete. O
In the next proposition we will study the asymptotic behavior of the positive solutions of Eq. (1.1).
Proposition 3.1. Consider system Eq. (1.1). Suppose that the following relation holds true:

e<y, B<ti. (3.3)

Then system Eq. (1.1) has a unique positive equilibrium (X, ¥) and every positive solution of Eq. (1.1) tends to the unique positive
equilibrium of Eq. (1.1) as n — oc.

Proof. We consider the functions

o+ pe o+e€e’
u,v)=——— Z,W) = 34
S o) == g w) = (3.4)
where
S+e o+p
a+pe T a+p d+ee 7 d+e€
Z,Wel]: W, '}) 5 u,l/612: @, Z . (35)

From Egs. (3.4) and (3.5), we get the following relations for u, ve l,, z, we I;
fwv)eh, glzw) el

and so fil; x I, » Iy, g : I; x I; — I,. Let (x,,y,) be an arbitrary solution of Eq. (1.1). Therefore from Lemma 3.1 for n > 3 we
have:

Xp € I], Yn 612.
Now let m, M, r, R be positive numbers such that

o+ pe " o+ pe Rk 5+ ee ™ o+ ee ™
M= +F m= +F R=2F r=27

= 3.6
P+ P+R 7 (+m (+M (3.6)
Then we consider the functions
o+ pe~h o+ee®
F(X) =—————x, h(x) = xel. 3.7

Note that F maps the interval I; into itself. We claim that equation F(x) = 0 has a unique solution in I;. From Eq. (3.7) we get
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Flx) = —h (o - ebgute 10 g, s

W(x) = -, xelh. '
Let X, X € I; be a solution of equation F(x) = 0. Then from Eq. (3.7) we have

X(y+hE) =0+ pe "™ hX)(+X) =05+ ee ™ (3.9)
Now observe that relations Egs. (3.8) and (3.9) imply that

_ee*+hx)  pe"™(y+h(X)+o+pe®  peh™ 4 x

'(X) = . 1
) {+x 7 (y + h(x))? Y+ h(x) (3.10)
Then from Egs. (3.3), (3.8) and (3.10), we get
)= CCThE) pet x4y (3.11)

— X —
7+ hx) [+x
Therefore, from Eq. (3.11) we see that equation F(x) = 0 has a unique solution in I;. In addition, relations Eq. (3.6) imply that
m, M are roots of F(x) = 0. Hence we get m = M. Therefore from Eq. (3.6) it follows that r = R. Thus from statement (i) of The-
orem 2.1, system Eq. (1.1) has a unique positive equilibrium (X, ¥) and every positive solution of system Eq. (1.1) tends to the
unique positive equilibrium as n — oo. This completes the proof of the proposition. O

In the next proposition of this section we will study the global asymptotic stability of the positive equilibrium of Eq. (1.1).
Proposition 3.2. Consider system Eq. (1.1) where the condition Eq. (3.3) holds true. Also suppose that

-1
Be + (B + €)e +(a+ﬁ)(f+e)<1. (3.12)
7 &S
Then the unique positive equilibrium (X, y) of Eq. (1.1) is globally asymptotically stable.

Proof. First we will prove that (X, y) is locally asymptotically stable. The linearized system of Eq. (1.1) about (x, y) is

pe ¥ _ o4pe?

Yn

Xny1 = =S5 Vn )
Tty )
' (7+Y) (313)
_ __e€e” _ otee® X
.VnH - (+x O ('§+x)2 n-1-

Observe that system Eq. (3.13) is equivalent to the following system
0 a 0D Xn

Woor = AW,, A= i
0

-y -y —X X
a:7/jeﬂ b:7oc+ﬁiezv 5276677 d:7é+ee
Y +¥) C+x
The characteristic equation of A is
X —ac’* — (ad + bc)/ — bd = 0. (3.14)

Since (X,¥) is the positive equilibrium of Eq. (1.1), then we have

o+ pe¥ _ s+ee™

P+y Y=
Hence from Egs. (3.12) and (3.15) and since xe *< e~
Bee Y pe V(S +ee¥) N ee*(o+ pe?) (5 +ee*)(a+ pe”)
GHNEHD) - p+y+0* DO+’ D+’
_ Pee™V N Bye Y ({ +X) N exe *(y+y)  (d+ee™)(o+ pe”Y)

GHNEHD) - p+p+0* DO+’ R+

-1
ferProge  @iPore g, (3.16)
e yas

Therefore, from Eq. (3.16) and from Remark 1.3.1 of [23], all the roots of Eq. (3.14) are of modulus less than 1 which implies
that (%, y) is locally asymptotically stable. Using Proposition 3.1, we see that (x,¥) is globally asymptotically stable. This
completes the proof of the proposition. O

X = (3.15)

1 x>0 we get

lac| + |ad| + |bc| + |bd] =

5+
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4. Global Character of solutions of system Eq. (1.2)
In the following lemma we study the boundedness and persistence of system Eq. (1.2).

Lemma 4.1. Every positive solution of Eq. (1.2) is bounded and persists.

Proof. Let (x,,y,) be an arbitrary solution of Eq. (1.2). Similarly as in lemma 3.1, for n = 3,4,... by induction we get

O+E

o+ et o+ p

y+EE Ty

otp
o+€e" 7 o+¢€
Xn€l3 = » Yn€la= T ) 4.1)

and so the proof of the lemma is complete. [

In the next proposition we study the asymptotic behavior of the positive solutions of Eq. (1.2).
Proposition 4.1. Consider system Eq. (1.2). Suppose that the following relation holds true:
pe <yt (4.2)

Then system Eq. (1.2) has a unique positive equilibrium (X, ¥) and every positive solution of Eq. (1.2) tends to the unique positive
equilibrium of Eq. (1.2) as n — oc.

Proof. We consider the functions

o+ pe¥ 0+ ee*
Xy =——", X,y) = , 4.3
Sy == " gy =" (43)
where
xels, yely, (4.4)
and Is, I4 are defined in Eq. (4.1). From (4.3) and (4.4), we see that forx e I3, y € 4
fxy)el, gxy) el
andSOf:I3><I4—>I3,g:I3><I4—>I4.
Let m, M, r, R be positive numbers such that
—r -R —m -M
M:oc-i—ﬁe 7 m:ot—i-ﬁe 7 R:6+ee 7 r:5+ee . (4.5)
y+m Y+ M {41 {+R
From Eq. (4.5) we get
er = Mutmos R _ MM
— R({+1)-6 — (+R)-d
e ZREDS oM RIS
which imply that
M—-m= g(e—r _ e—R) _ ge—r—R(eR _ er)7
R-r=¢ ye"" e M) = EIe""‘”’ eM —em (4.6)
—r=fe —eM) = e MM —em),
Moreover, we get
ek —e'=e‘(R—r), min{R r} < ¢ < max{R r}, 47)
eM —em =e'(M—m), min{M,m} < 0 < max{M,m}. ’
Then relations Eqs. (4.6) and (4.7) imply that
M—m= ge*r*R*‘f(R —1), R—r="Sem Mo _m)
¢
and so
p €
IM—mK?IR—rI, IR—r|<Z|M—m\~ (4.8)

In addition, observe that relations Eqgs. (4.2) and (4.8) imply that

(1-5)m-m<o. (1-L)R-r <0
P48 Ve



G. Papaschinopoulos et al./Applied Mathematics and Computation 218 (2012) 5310-5318 5315

from which we see that M =m and R =r. Therefore from Eq. (4.1) and statement (ii) of Theorem 2.1 system Eq. (1.2) has a
unique positive equilibrium (x, y) and every positive solution of system Eq. (1.2) tends to the unique positive equilibrium
as n — oo. This completes the proof of the proposition. O

In the next proposition of this section we will study the global asymptotic stability of the positive equilibrium of Eq. (1.2).

Proposition 4.2. Consider system Egs. (1.2) where (4.2) holds true. Also suppose that
atp otre, fe @rhOre 4 4.9)
Y ¢ s part
Then the unique positive equilibrium (X, y) of Eq. (1.2) is globally asymptotically stable.

Proof. First we will prove that (X, y) is locally asymptotically stable. The linearized system of Eq. (1.2) about (x, y) is

_ otpey

X = — 222 P
T (4.10)
Y1 = 7% n — izf;)zxyn—l'
Notice that system Eq. (4.10) is equivalent to the following system
0 ab O Xn
c 0 0 d Y
Wp1 =Bw,, B= , Wp= )
e 1000 "
0100 Va1
pe o+ pey ee® 5+ ee™
= - VR bz*i,z: szy = d:— —\2
VX (7 +%) cty C+¥y)
Then the characteristic equation of B is
P —(b+d+ac)?? +bd=0. (4.11)
From Eq. (4.9) we get
o+ ey 54 e€e* ey S5+ eeX)(a+ pe”?
b + |d| + |ac| + |bd) = 2 FPe T joreen,  pee | (otee )t fe)
O+x* (C+ry)’ OFRNEHY) (49 +X)
a+p o+e pe (x+pO+E o 412)

G 4 P20

Therefore, from Eq. (4.12) and from Remark 1.3.1 of [23] all the roots of Eq. (4.11) are of modulus less than 1 which implies
that (%, y) is locally asymptotically stable. Using Proposition 4.1, we see that (X, ¥) is globally asymptotically stable. This
completes the proof of the proposition. O

5. Global character of solutions of system Eq. (1.3)
In the following lemma we study the boundedness and persistence of system Eq. (1.3).

Lemma 5.1. Every positive solution of Eq. (1.3) is bounded and persists.

Proof. Let (x,,y,) be an arbitrary solution of Eq. (1.3). Similarly as in lemma 3.1, for n=3,4,... we get

o+€

St

0+ €e ¢

Y]
a+pe 7 a+pf
T
(5

)

pHEE Y

Xn€l5 = . Yn€ls=

)

and so the proof of the lemma is complete. O

In the next proposition we study the asymptotic behavior of the positive solutions of Eq. (1.3).
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Proposition 5.1. Consider system Eq. (1.3). Suppose that the following relation holds true:

p<vy, €<l (5.2)
Then system Eq. (1.3) has a unique positive equilibrium (X, ¥) and every positive solution of Eq. (1.3) tends to the unique positive

equilibrium of Eq. (1.3) as n — oc.

Proof. We consider the functions

o+ pe
fxy) = Ty

_otee?
T (+x

. 8X.Y) ; (5.3)

where

xels, yels, (5.4)
where Is, I are defined in Eq. (5.1). From Eq. (5.3) and Eq. (5.4), we have forxe s,y €I

fxy)els, gxy)els

andso f:Is xIg—1Is, g : Is x Ig — Ig.
Let m, M, r, R be positive numbers such that

o+ pe™ o+ pe™ _ Stee” r75+ee*R

y+r - 94+R T T (+m” (+M (53)

)

Moreover arguing as in the proof of Theorem 1.16 of [17], it suffices to assume that
m<M, r<R (5.6)
Observe that relations Eq. (5.5) imply:

oM — M(y+r)—o e,M _ m(y+R)—o
B ’ B ’
R({+m)—o E’R _ reM)=s
- €

- _
e’ = < s

from which we see that

e —e ™ =¢R-r)+Rm-rM, Bl —e™M) =pM-m)+Mr—mR. (5.7)
Then by adding the two relations Eq. (5.7) we get

e —e ™y pe™—e™ =¢R-1)+pM—m).
Thus from Eq. (4.7) we get

ee T RER 1) + pe™ MM —m) =R - 1)+ p(M —m) (5.8)
where 0, ¢ are defined in Eq. (4.7). Therefore from Eq. (5.8) we have

{R=T) (1 - ge*"’“‘f) + (M —m) (1 - f*j‘-’fm*Mw) =0. (59)

Then using Eqgs. (5.2), (5.6) and (5.9), gives us m = M and r = R. Hence from Eq. (5.1), statement (ii) of Theorem 2.1 system Eq.
(1.3) has a unique positive equilibrium (X, ¥) and every positive solution of system Eq. (1.3) tends to the unique positive
equilibrium as n — oo. This completes the proof of the proposition. [

In the next proposition of this paper, we study the global asymptotic stability of the positive equilibrium of Eq. (1.3).

Proposition 5.2. Consider system Eqs. (1.3) where (5.2) hold true. Also suppose that

B be rpora
y L 72

Then the unique positive equilibrium (X, ¥) of Eq. (1.3) is globally asymptotically stable.

<1 (5.10)

Proof. First we will prove that (%, y) is locally asymptotically stable. The linearized system of Eq. (1.3) about (x, y) is

__ pe* atpe

Xni1 = — 55 %n 192 Yn-1s

_ _ceVy _ sreeV
Yn+1 - [&53 Yn (C+X)2 Xn_1.

(5.11)

Clearly we see that system Eq. (5.11) is equivalent to the system
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a 0 0 b Xn
0 cdo y
=Cw,, C= , =7 |,
Wai =W, 1o00o0| " |x.
0100 Yot
_ per bi_oc+ﬁe** _ee? di_6+ee*Y
Py (y+3)7* (X (C+%)7*
Then the characteristic equation of C is
24— (a+¢)2’ +aci* —bd=0. (5.12)
From Eq. (5.10) we get
X -y -xX-y -y -X
jal +|c| + lac| + bd] = P&~ e Pee”> | (@rced)avfen) [ fe @EPOYE 4 (513
Yy X 0 ENEHX) T (R +Y) y P2¢

Therefore, from Eq. (5.13) and from Remark 1.3.1 of [23] we see that all the roots of Eq. (5.12) are of modulus less than 1,
which implies that (%, ¥) is locally asymptotically stable. Using Proposition 5.1, (X, ¥) is globally asymptotically stable. This
completes the proof of the proposition. O
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