
 
 

  

Abstract— In Adaptive Educational Hypermedia Systems, 
among other parameters, the user’s Learning Style plays a 
crucial role in effective on-line asynchronous learning. 
Cognitive psychology provides tools, such as questionnaires, 
that can monitor user’s learning style. In this paper we 
introduce an adjustable tool for Learning Style recognition. It 
is built upon a well known and generally accepted Learning 
Style Inventory and applies a three Layer Fuzzy Cognitive Map 
Schema, which allows experts of cognitive psychology or 
experienced educators to tune up the system’s parameters to 
adjust the accuracy of the learning style recognition. 

I. INTRODUCTION 
owadays, adaptive learning has been the critical asset in 
asynchronous learning systems aiming to provide the 
most promising outlook for diversifying learning [1].  

In Adaptive Educational Hypermedia Systems (AEHS) 
among other components, the Learning Style (LS) plays a 
crucial role in adaptive e-learning [2], [3]. Researchers as 
Reye [4] face the question of establishing suitable 
techniques for handling the abstraction and uncertainty of 
the classification proposed by the cognitive theorists. In 
previous work [5], [6], two models for LS recognition have 
been suggested. Both are based on the Learning Style 
Inventory (LSI) introduced by Kolb [7]. In the first paper, a 
direct application of Kolb’s inventory (via a probabilistic 
expert system) to the purpose of online LS detection has 
been suggested. In the second work, a “Learning Activity 
Factors” (LAFs) set has been used, to the purpose of LS 
detection as well. The list of LAFs and their relational links 
to the LSs are those indicated in Kolb’s [16].  

In literature on finds a wide variety of LAFs that have 
been introduced by cognitive scientists [14], [15]. LAFs 
serve as a medium to categorize the learner’s cognitive 
preferences. It has been shown (Kolb [16]) that LAFs map 
on LSs. It also appears that degree of relation varies in terms 
of the LAF’s influence on a certain LS. Such relations may 
be influenced by factors such as cultural environment, 
learner’s age or psychological status influence. Experts as 
cognitive scientists or well experienced educators may 
recognize the degree of dependency on such factors and so 
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they will be able to tune up an intelligent system in order to 
express in a best possible way a LS recognition procedure. 

The term “learning style” is widely used in education and 
training and refers to a range of constructs from instructional 
preferences to cognitive style [9]. A wide range of LS 
inventories and related questionnaires have been proposed to 
be serving as LS recognition tools. In spite of this theoretical 
advance, individual researchers continue to design and 
develop their own instruments without sufficient regard for 
extant theory and measures, consequently there is the 
potential for real confusion amongst researchers and 
practitioners alike. As Furnham notices [10] “the 
proliferation of eponymous questionnaires that overlap 
considerably cannot be good for the development of the 
discipline”. If the field is to progress there is a need to 
delineate cognitive styles and learning styles as separate 
constructs (if indeed they are such). The LSI has been the 
subject of analyses by Willcoxson and Prosser [11], Yahya 
[12] and Loo [13]. Their findings gave some support to the 
LSI’s two-dimensional structure; however they did not 
consider LS in relation to other constructs. Kolb’s learning 
theory sets out four distinct LSs (or preferences), which are 
based on a four-stage learning cycle, which might also be 
interpreted as a “learning cycle”. In this respect Kolb's 
model is particularly elegant, since it offers both a way to 
understand individual people’s different LSs, and also an 
explanation of a cycle of experiential learning that applies to 
the vast majority of humans. 

In this work we introduce an adjustable tool that allows 
experts to reinforce the system’s LS recognition ability. To 
this end, we develop a three layer Fuzzy Cognitive Map 
(FCM). The inner layer contains LSs, the middle one 
contains LAFs and the outer layer refers to the 48 statements 
one can find in the Kolb’s LSI [7].  Each pair of layers 
(outer–middle, and middle–inner) consist a complete 
bipartite oriented and weighted graph. Student’s responses to 
inventory reflect on certain LAFs according to relations 
which have been pointed out by experts. At a second step 
LAF reflect on LSs.  Unlike the technique of LSs 
recognition which is based directly to student’s response to 
LS inventory, the proposed schema allows the cognitive 
scientists or experienced educators to interfere, tuning up the 
system, in order to contribute on the accuracy of the 
recognition. For example, a teacher, having its own clear 
diagnosis on a learner’s LAFs, can tune up the system’s 
weights in order to adjust it in situation at hand. 

Furthermore, techniques similar the one introduced in [8], 
reduces disturbances from misleading answers caused by 
several reasons. The system described in this work analyzes 
information from responses to questionnaire supplied by the 
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system’s descendant users (users that completed the 
questionnaire before the present user) and the system’s 
present user as well. The proposed corresponding algorithm 
utilizes what appears to be reasoning capabilities so as to 
reach final LS estimations. Finally, the tool monitors the 
influence of lucky and slippery answers on LS estimation. 
This is achieved by introducing the Fault Implication 
Avoidance Algorithm (FIAA). 

The rest of the paper is structured as follows. Section II 
describes briefly the principals of FCM. In Section III the 
logic and the implementation of FIAA are presented, 
following by Section IV which describes the proposed LS 
recognition procedure. Finally, the conclusions and the plans 
for our future work are given in Section V. 

II. FUZZY COGNITIVE MAPS 
Fuzzy Cognitive Maps (FCM) is a soft computing tool 

which can be considered as a combination of fuzzy logic and 
neural networks techniques. FCM representation is as simple 
as an oriented and weighted compact graph. For example, 
the simple FCM, which is depicted in figure 1, consists of 
seven nodes which represent an equivalent number of 
concepts. Concepts represent key factors and characteristics 
of the modeled system and stand for inputs, outputs, 
variables, states, events, actions goals and trends of the 
system. Each concept Ci is characterized by a numeric value 
V(Ci) which indicates the quantitative measure of the 
concept’s presence in the model. Each two distinct nodes are 
joined by at most one weighted arc. The arcs represent the 
causal relationships that relate pairs of connected concepts. 
The degree of causality of concept Ci to concept Cj is 
expressed by the value of the corresponding weight wij. 
Experts describe this degree using linguistic variables for 
every weight, so this weight wij for any interconnection can 
range from –1 to 1. 

 
There are three types of causal relationships expressing 

the type of influence among the concepts, as they 
represented by the weights wij. Weights can be positive, 
negative or can also be zero. Positive weight means the 
increasing influence a concept implies to its adjacent 
concept of the graph, as on the other hand, negative weight 
means that as concept Ci increases, concept Cj decreases on 
the wij ratio. In absence of relation between Ci and Cj, the 
weight wij equals zero. 

Since there is a vast and sometimes controversial variety 
of expert’s opinion on the weight with which a concept 
influences another concept, it is worthfull to introduce a 
suitable algorithm for the adjustment of the set of weights in 
FCM. As it has been already mentioned, the numerical 
values of weights have to lay in the interval [-1,1], as the 
FCM will converge either to a fixed point, or limit cycle or a 
strange attractor Dickerson and Kosko [17]. In the case in 
hands, where the FCM is called to support decision making 
process, as the recognition of learner’s style is, it is better to 
converge to a certain region which is suitable for the 
selection of a single decision. 

Initially, every concept gets a hypothetic value and as the 
time proceeds (i.e. new learners use the system), the values 
of the concepts change, as they are under the influence of the 
adjacent concepts and their corresponding weights. 

At the step n the value Vn(Ci) of the concept Ci is 
determined by the relation 
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where Vn+1(Ci) is the value of the concept Ci at the discrete 
time step n+1.  

For this research we used the more general formulation 
which is proposed in [5] 
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Where 0 ≤ k1 ≤ 1 and 0 ≤ k2 ≤ 1.  
The coefficient k1 defines the concept’s dependence of on 

its interconnected concepts, while the coefficient k2 
represent the proportion of contribution of the previous 
value of the concept in the computation of the new value. In 
other words, k2 is the effect of the knowledge the system has 
gained by the previous users. We selected k1=k2=0.5 as this 
results in smoother variation of the values of the concepts 
after each recalculation and more discrete final values.   

Function f is a predefined threshold function. Generally 
two kinds are used in the FCM framework. f(x)=tanh(x) is 
used for the transformation of  the content of the function in 
the interval [-1,1]. We used the unipolar sigmoid function, as 
we want to restrict values of concepts between 0 and 1. The 
function is given by: 
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where λ > 0  determines the steepness of the sigmoid. Plots 
of the threshold function for various values of the constant λ 
are shown in the figure 2. As V(Ci)>0 , these values easily 
become greater than 1 after some iterations. Taking a look at 
plot (b) in figure 2, we can easily understand that values 
greater than 1 are squashed towards value 1. This leads to 
discreteness loss that is needed in order to have a safe 
decision of user’s LS. Increasing functions steepness makes 
things worse (plot (a) in figure 2). Selecting λ=1 we tried out 
translating function’s graph to the right, which, as we will 
see later, gave greater discreteness to the values of output 
concepts.  

 
Fig. 1.  An example of a Fuzzy Cognitive Map. 



 
 

 

III. FAULT IMPLICATION AVOIDANCE ALGORITHM 
Let us consider three pairs to be selected from a 

questionnaire consisting of the statements (A), (B), and (C). 
Logical implication determines that once the statement (A) 
is chosen between (A) and (B) in the first selection pair, and 
(B) is chosen between (B) and (C) in the second selection 
pair, the choice of (A) instead of (C) is obligatory (Table I). 
As the first two selections lead to (A)>(B)>(C) order of 
preference. Alternatively, reverse choices in pairs 1 and 2 
((B) and (C) instead of (A) and (B) accordingly) leads to the 
order (C)>(B)>(A). In every other combination of choices in 

pairs 1 and 2, no logical implication appears and pair 3 
remains open to choose from its statements. At this point a 
question arises: What if a selection in pair 3 can better 
represent the user’s preference than pair 1 or 2, the system 
do not allow a choice to be made in pair 3 and moreover 
those choices lead to wrong order of (A) and (C). The 
answer is that pair 3 can only be “locked”, ranking 
statements (A) and (C) in a wrong way, in the very rare case 
the user’s choices in pairs 1 and 2 are both against his/her 
preferences. In case were only one choice from pairs 1 or 2 
is against the user’s real preferences, pair 3 remains 
“unlocked” waiting the user’s selection. Obviously, the 
probability of two sequential “wrong” choices is 
considerably smaller than making one “wrong” choice, even 
in cases of statistical dependence. 

 

 

 
 Analogously, for more than three selections, the final 

TABLE I 
EXAMPLE OF FAULT IMPLICATION AVOIDANCE 

Pair Statement Input Method 

A user selection 1 
B user selection 

B user selection 2 
C user selection 
A automatic selection 

3 C automatic selection 

 
Fig. 2. Graphical representation of unipolar sigmoid function. 
Plots for the cases: (a)  f(2x), (b)  f(x), (c)  f(x-0.5), (d)  f(x-1) 

 
 
Fig. 3. Logical diagram of Fault Implication Avoidance Algorithm 



 
 

ranking can be reached by responding to a subset of the set 
of selections pairs. Figure 3 presents a binary tree which is 
the logical diagram for a set of 4 statements as appears in 
each item of LSI. The paths end in every possible 
combination of responses a user can give in an item. Nodes 
of the tree represent the “logical ifs” i.e. the user’s choices in 
every pair of statements.  

For example the leave [A>B>C>D] denotes the end of a 
sequence of choices at nodes (“logical ifs”) which are 
presented in Table II. 

  
  

 

 
Apart from “logical ifs”, the parallelograms represent the 

statements that are “locked” because of FIAA. The “locked” 
statements are disabled or hidden (they are faded in the 
form), making them unable to be selected (figure 4). For 
example the leave [C>D>A>B] denotes the end of a 
sequence of unabled and disabled choices as appears in 
Table III.  

In the printed LSI there are no such possibilities, as the 
student has to deal with every single selection pair in the 
item. It has been noticed that some students who succeeded 
an early final ranking, they conflict it by their late responses. 
The original printed LSI reduces fault logical implication 

influence on the final estimation by repeating the ranking 
procedure 8 times (8 items). Taking advantage of the 
computer capabilities the proposed FIAA makes a step 
further to face possible fault logical implications. 

In our work, the application of FIAA in LSI provided the 
revised form of the inventory. In every inventory’s item, 
users respond to limited number of pairs which varies from 
three to six (figure 4). Therefore, a total number of 24 
minimum up to 48 maximum selections are required. The 
remaining pairs take the right values automatically.  

 

IV. LEARNING STYLE RECOGNITION 
Kolb’s learning theory sets out four distinct learning 

styles (or preferences), which are based on a four-stage 
learning cycle (figure 5), which might also be interpreted as 
a “learning cycle”. According to David Kolb (1999), 
diagnosis of LS can be based on the learner’s response to the 
inventory proposed by him. Based on a description of the 
way one learns as well as the way one deals with ideas and 
day-to-day situations in his/her life, this inventory has 
proven to be a useful diagnostic tool. The learner responds to 
an 8-item inventory. Each item refers to a certain issue 
which reflects on four different statements that match to 
user’s LSs. These statements, combined by two, produce a 
set of six selection pairs for each item, as presented in 
Section III. According to user’s selections, a final score is 
resulted and represented on a two-dimensional Cartesian 
plane giving a dominated vector located on a quadrant. In 
some cases the resulting vector lays on, or in the vicinity of 
the bisectors. 

 
 
Referring to Kolb’s LS inventory we introduce a table of 

possible qualitative relations of LS inventory’s item 
responses to LAFs (Table IV). Let us consider a set of LAFs, 
i.e. (I) Experimentation, (II) Influencing People, (III) 
Implementing a solution, (IV) Emotion/Intuition and (V) 
Scientific, Analytic, Theoretic. Let us now consider one out 
of the eight items in Kolb’s LSI, namely item 2. Using the 
FIAA a learner’s responds to item 2 result to the item’s 
statements final rank [A>B>C>D], so as the FCM’s upper 
layer takes values 1.00, 0.75, 0.50, 0.25 accordingly. 

 

 
Fig. 4. Item example of revised on-line inventory. Pairs five and six are 
locked and automatically completed due to implication limitations. (no 
radio buttons are marked by default, the user must make the selection) 
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Fig. 5. Kolb’s Learning Cycle

TABLE II 
SEQUENCE OF CHOICES FOR LEAVE [A>B>C>D] 

A instead of B 
C instead of D 
A instead of D 
A instead of C 
B instead of D 
B instead of C 

TABLE III 
SEQUENCE OF CHOICES FOR LEAVE [C>D>A>B] 

A instead of B 
C instead of D 
D instead of A 

C instead of A (disabled) 
D instead of B (disabled) 
C instead of B (disabled) 



 
 

 
The fuzzy values that have been assigned in Fuzzy 

Analyst [18] appear in tables IV and V. The constructed 
FCM is presented in figure 6 and the results with a final rank 
of LSs appear in figure 7. The case in hands shows that 
Learner’s responses to LSI item 2 imply that the leading LS 
is Active Experimentation (A.E.). Results from each 

inventory’s item contribute to the statistic which produces 
the final LS recognition.  

 

 

 

 
 

 
Fig. 6. The FCM for item 2. 

TABLE IV 
EXAMPLE OF FUZZY RELATIONS  

(Statements of Item 2 to LAFs) 

Statement LAF Linguistic Variable 

Experimentation weak 
Influencing People none 

Implementing Solution none 
Emotion/Intuition strong 

A 

Scientific/Analytic very weak 
Experimentation weak 
Influencing People none 
Implementing Solution none 
Emotion/Intuition weak 

B 

Scientific/Analytic very strong 
Experimentation very  strong 
Influencing People none 
Implementing Solution strong 
Emotion/Intuition strong 

C 

Scientific/Analytic weak 
Experimentation weak 
Influencing People none 
Implementing Solution none 
Emotion/Intuition none 

D 

Scientific/Analytic very weak 

 

TABLE V 
EXAMLE OF FUZZY RELATIONS (LAFS TO LSS) 

LAF LS Linguistic Variable 

Concrete Experience strong 
Reflective Observation weak 
Abstract Conceptualization normal 

Experimentation 

Active Experimentation very strong 
Concrete Experience normal 
Reflective Observation very weak 
Abstract Conceptualization weak Influencing People 

Active Experimentation strong 
Concrete Experience normal 
Reflective Observation very weak 
Abstract Conceptualization normal 

Implementing Solution 

Active Experimentation very strong 
Concrete Experience very strong 
Reflective Observation weak 
Abstract Conceptualization very weak 

Emotion-Intuition 

Active Experimentation strong 
Concrete Experience very weak 
Reflective Observation strong 
Abstract Conceptualization very strong Scientific-Analytic 
Active Experimentation weak 



 
 

 

V. CONCLUSION AND FUTURE WORK 
In this paper we described a tool for LS recognition. It has 

to be stressed out that the number and the type of the LAFs 
applied in the schema can be modified from experts in the 
field of cognitive psychology. Also, the fuzzy relations of 
each pair of layers (questionnaire statements-LAFs and 
LAFs-LSs) can be easily modified to refine the LS 
recognition efficiency.  FCM is a tool that can provide a 
solid solution for LS recognition, as it can handle efficiently 
the fuzziness and uncertainty of a LS diagnosis. 

Also the application of FIAA and the knowledge gained 
by the descendant users provide additional value to the 
proposed system. 

An extended research is conducted with real learners 
answering the LSI and the gathered results will provide 
evidence on the accuracy and the efficiency of the FCM 
proposed in this work. 
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Fig. 7. Chart Analysis for item 2. 


