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Abstract 
 

 

Crystallography has a huge impact in our understanding of how biological molecules interact and 
function. It is an experimental scientific field where the main purpose of scientists is to 
determine the arrangement of atoms in crystalline solids. X- ray crystallography is a technique in 
which the atoms in a crystal under study cause a beam of incident x-rays to diffract and give a 
diffraction pattern. From this diffraction pattern someone can measure the angles and intensities 
of the diffracted beams. However, in order to produce a three-dimensional picture of the density 
of electrons within a crystal, a crystallographer also needs the phases of the diffracted waves. 
This constitutes the phase problem in crystallography. Several methods have been developed to 
overcome this obstacle, among them chemical modification methods and more mathematical 
approaches, which consider the relationships between the measured intensities and treats them 
with analytical and statistical techniques. The later are called direct methods and the purpose of 
this study, is to investigate whether artificial neural networks, are able to approximate the 
relationships used in these methods and therefore estimate the phases of the diffracted waves, 
using only the observed intensities. Neural networks are algorithmic models, which can be 
trained to estimate or approximate functions dependent on a large amount of inputs and are 
generally unknown. For the aforementioned purpose several feed-forward networks have been 
tested, using backpropagation learning techniques. The results obtained showed that these 
networks were unable to assign proper phases to the aforementioned intensities. That leads to the 
conclusion that this class of neural networks is unable to learn such relationships, and more 
sophisticated custom networks or techniques may be needed to obtain better results. 
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Chapter 1:  Introduction to Crystallography and 
Artificial Neural Networks 
 

As the title suggests, this thesis is mainly concerned with crystallography (more 
specifically with the phase problem) and artificial neural networks. Before the analysis of 
the main subject of this project begins, it would be useful for the reader, to become 
familiar and understand some basic concepts, regarding these two scientific fields. This is 
the purpose of this chapter – to introduce those concepts to the reader and set the 
theoretical framework. A thorough presentation falls outside the scope of this 
introduction but more information can be found, by consulting the provided references. 

After this introduction, in chapter 2 the aim of this study is explained. That section could 
also be considered as a ‘preface’ of this study. A description of some important 
characteristics of neural networks follows and the implementation of these networks is 
discussed. In chapter 3 the experiments that have been made are described and their 
results are presented and analyzed. The study closes with the conclusions in which the 
outcome of the experiments is been discussed and suggestion for future research are been 
made. 

In the text wherever mathematical relationships are discussed the following notation has 
been used: 

The scalars are represented with italic letters. 

The vectors are represented with bold small letters. 

The matrices are represented with BOLD capital letters. 

 

1.1 Introduction to Crystallography 
 

X- ray crystallography, can de defined as a tool with which scientists can identify the 
atomic and molecular structure of a crystal. The knowledge of this structure can be very 
important in many scientific fields. However it is not possible to ‘see’ this structure by 
the usual methods because these components of matter (atoms and molecules) are too 
small for us to view. X- ray crystallography as the name implies, uses x-rays which are a 
form of electromagnetic radiation. Microscopes which are used to see objects that are too 
small for the naked eye use light. Light itself is a form of electromagnetic radiation of 
wavelength between about 400nm (violet) and 800nm (red). ([1] p.18) Although 
microscopes also use electromagnetic radiation to picture small objects, their resolution is 
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not high enough to enable us to define the molecular structure of an object under study. 
We cannot see the details of an object with a microscope unless these details are 
separated by at least half the wavelength of the radiation used to view them. [21] Because 
of this and the spectrum of the visible light, there is no point in trying to view atoms that 
are separated in molecules by distances of the order of 10-8 cm (0.1 Angstrom) with a 
microscope. In order to see atoms we need to use appropriate radiation with wavelengths 
in the nanometer range. X-rays are this kind of radiation, with wavelengths ranging from 
0.01 to 10 nanometers, corresponding to frequencies in the range of 30 petahertz to 
30 exahertz (3×1016 Hz to 3×1019 Hz) and energies in the range of 100eV to 100 keV. 
That been said, if we could built a super microscope that would enable us to view atoms, 
then this microscope would have to employ X rays rather than visible light. ([4] p.1-5) 

 

1.1.1     A microscope analogy  
 

When we use an ordinary optical or electron microscope, a beam of radiation falls into 
the object under study and this radiation is then scattered by the object. This scattered 
radiation is then recombined by an appropriate lens system and results in an image of the 
scattering matter appropriately magnified. A light microscope operates by means of a 
series of lenses which diverge and focus the light passing through them, while an electron 
microscope uses magnetic lenses in an analogous manner. In microscopes like these 
where lenses are used to recombine the scattered waves, the relationship between the 
phases of those waves is being maintained. The above mentioned relationship between 
the phases refers to the phase difference, which is the difference, expressed in degrees, 
between two waves having the same frequency and referenced to the same point in time. 
For example Fig.1-1 shows the appearance of two waves with the same frequency and 
wavelength, being propagated side by side, as for instance, in two adjacent strings. 
Although the waves are identical in general form they are seen to be ‘out of step’, as if 
the wave in each string had set out at different times. ([1]-p. 114-121) 
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Figure 1-1. Phase difference between two waves 

 

The reason we are interested in the phase relationship between the waves is that it plays 
an important role on the result of the summation of waves. The net amplitude caused by 
two or more waves traversing the same space is the sum of the amplitudes which would 
have been produced by the individual waves separately (principle of superposition). 
Waves exactly in phase (phase difference=0) reinforce each other because their wave 
crests coincide. This is known as constructive interference. Waves exactly out of phase 
(phase difference=ʌ) cancel each other, because troughs coincide with crests, giving no 
resultant wave. This is known as destructive interference. If the waves are partially out of 
phase then the degree to which they affect each other depends on their phase difference 
and the relative magnitudes of the amplitude maxima of each wave. ([1]-p. 114-121) 

On a smaller scale than that of optical microscopes which employ visible light, X-rays 
whose wavelengths are much shorter, are scattered by the electrons in atoms. If an 
appropriate lens system existed, we could recombine those scattered X-rays, as in a 
hypothetical ‘X-ray microscope’ and get the requested image. Scattered X-rays, however, 
cannot be focused normally by any currently known experimental technique, hence direct 
visualization of an image as would be formed in a microscope is beyond present 
technology. Longer wavelength X-rays [22] or scanning tunneling microscope techniques 
[23] enable us to get a picture on the shape of molecules, but only those on the surface of 
a structure. ([4] p.1-5) 

This is the reason that leads us to resort to the less obvious phenomenon of diffraction. It 
is an alternative but indirect way to view the molecules and it involves studies of solids in 
a crystalline arrangement. This crystalline arrangement (from which the term 
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crystallography comes from) is essential because the diffraction pattern of a single 
molecule is too weak to be observable. When the molecules are arranged in a crystal, 
however, this pattern is reinforced because of the repeating units (molecules) and can be 
readily observed at specific points that have a direct relationship with the shape and form 
of the crystal. A diffraction pattern has potentially the same information content as a 
direct image, but this information is not obviously expressed in structural terms. The 
result of the analysis of this pattern is a complete three-dimensional elucidation of the 
arrangement of atoms in the crystal under study. The information is obtained as two 
elements. The first one is the atomic positional coordinates which indicates the position 
of each atom in the repeated units of the crystals. From these a scientist can calculate, 
with high precision inter-atomic distances and angles of the atomic components. Thus, he 
can learn about the conformation of molecules in a crystal. The second element is the 
atomic displacement parameters which indicate the extent of atomic motion or disorder in 
the molecule. ([4] p.1-5, [1] p. 21-22) 

As mentioned above x-rays is a form of electromagnetic radiation with wavelengths 
shorter than visible light. Thus, the effects of these rays when they impinge on an object 
with similar dimensions to their wavelength can de described by using the theory of 
Christian Huygens [24] who suggested that light was a wave like motion analogous to 
water waves. Diffraction effects are observed only if the obstacle used is not too much 
greater than the wavelength of the waves that impinge on it. Each wave has an undulating 
displacement, which is called the amplitude of the wave and a distance between crest, 
which constitutes its wavelength. The displacement is periodic in time and/or space. 
When an object scatters a beam of light (or x-rays), if someone wants to assess the 
disturbance of the beam, he needs to know the relative phases (phase differences) of all 
the scattered waves. That happens because the relative phases have a profound effect on 
the intensities of the scattered beams, as a result of the principle of superposition. In an x-
ray experiment the beams scattered by an object (crystal) are captured on photographic 
films, or some other detectors (see [2] Chapter 6). The relative phases and intensities of 
the scattered beams are determined by the atomic arrangement in the crystal. X-ray 
detection devices however, can only sense the intensity of the waves. ([4] p.1-5, [1] p. 21-
22) 

This is not the case in optical microscopes, where the lenses used, are composed of glass 
and refract visible light waves, collect the waves scattered and combine them again with 
due appreciation for their relative phases. That been said a comparison can be made 
between light microscopy and X-ray diffraction as shown Fig.1-2.  
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Figure 1- 2. Comparison between a) light microscopy and b) X-ray diffraction 

 

In x- ray diffraction, beams which are scattered by electrons in the crystal are essential in 
order to see small objects, such as atoms. As mentioned earlier we cannot use lenses in 
this situation. The only things we can directly obtain are the intensities of the diffracted 
beams (the diffraction pattern) on the photographic film (or detection device). However, 
the relative phases are lost, and they must be derived in a different way. This lack of 
phase information is what we refer to as the phase problem. Should the relative phases 
be obtained, a crystallographer can then recombine all the information (intensities-
phases) with proper mathematical computation techniques (Fourier synthesis) and obtain 
an electron density map which in turn gives information about the structure of the 
molecules in the crystal under study.  
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1.1.2     Crystals, Lattices and Symmetries 
 

In the previous section we introduced the term ‘crystal’. In this section this term will be 
described. The established basic scientific definition of a crystal is that is a solid 
composed of a regularly repeated arrangement of atoms. ([4] p.33) Solids which possess 
a long-range, well- defined, three dimensional ordering of molecules which are in close 
proximity to one another and have relatively strong interactions between them, belong to 
a state known as crystalline state. ([1] p.21) The most obvious property of a crystal is it’s 
macroscopic geometrical shape which is a direct result of the aforementioned ordering of 
molecules. Crystals are bound by plane faces. These faces are a consequence of the 
regular stacking of molecules in layers. Every face in a crystal represents a plane parallel 
to a molecular layer. However, someone must be careful before he characterizes a solid 
as crystal because with the unaided eye, some materials may seem as crystals while they 
are not. For example fragments of glass and quartz (which is a crystalline) look similar to 
each other, but glass in not crystalline. Glass is amorphous because it has an atomic 
arrangement that shows only short-range order over a few atomic dimensions. ([1] p.11-
21, [3] p.7) 

 A crystallographer who wants to study the molecular structure of a material with x-ray 
diffraction must have a crystal of this material. For example biologists and biochemists 
who want to study molecules such as proteins, can form crystals of the macromolecules 
of interest, provided that the appropriate conditions for their crystallization can be found. 
(More on this subject can be found in [2] - chapter 4, [4] - chapter 2, and [3] p. 489-499)  

As mentioned above crystals present an internal regularity. We call that structure which is 
regularly repeated in space the motif. The motif is the structural unit and can be quite 
complex. It could be a single molecule or a group of several molecules, a group of ions, 
or whatever is appropriate to describe the overall geometric arrangement. Now that the 
motif is defined we can create a conceptual array of points which defines the geometrical 
relation between the motifs. This array is called the lattice. ([1] p.60-63) The lattice can 
be created if each group of atoms, that is repeated in the crystal at regular intervals (the 
motif) is replaced by a representative point. This collection of points is called the crystal 
lattice. A crystal structure therefore can be expressed with the conceptual relationship: 

Crystal structure= lattice * motif 

Where the operator ‘*’ stands for convolution, a mathematical operation, which in this 
case associates the motif in each point in the lattice. This can be pictured in Fig. 1-3. 
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Figure 1- 3. Relationship between Crystal lattice, Motif and Crystal structure 

 

The two- dimensional lattices, as the one depicted in Fig.1-3 are called plane lattices 
while, three- dimensional lattices are called space lattices. Both of these lattices are 
defined in terms of crystallographic unit vectors and crystallographic unit cells. Unit cells 
help us represent the regularity and symmetry of the lattice. The unit cell is the basic 
building unit of a crystal and is repeated continuously in three (or two) dimensions to 
form it. It can be considered as the analogous of bricks which are repeated in order to 
construct a wall. Using the same analogy the edges of a crystal (plane faces) are 
represented by the edges of that wall.([4] p.7) 

 A conventional crystallographic unit cell (in three dimensions) is a parallelepiped 
defined by the space lattice and serves to display the symmetry of the lattice in a 
convenient manner. This cell in turn is defined by three (or two- in two dimensions) non-
coplanar lattice vectors. These vectors specify three directions which define the 
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crystallographic axes. In Fig. 1-4 a unit cell in three dimensions is depicted which is 
described by the unit vectors a,b,c which in turn define the  crystallographic axes 
respectively. Various two dimensional lattices are also shown with their unit cells and the 
vectors that define them.   

 

Figure 1-4. Up: 3-D crystallographic unit cell with axes a,b,c. Down: 2-D  lattice described by 
crystallographic unit vectors a,b 

Any point in a three dimensional lattice can be described using the crystallographic unit 
vectors as: ݎ ൌ ݌ Ԧܽ ൅ ሬܾԦݍ ൅ ݎ Ԧܿ                                                          (1.1) 

When someone performs an operation (such as a rotation) on a geometrical object and 
this operation results in an object that cannot be distinguished from the original 
disposition, then this operation is called a symmetry operation. The geometrical locus 
which remains unchanged by such an operation comprises a symmetry element. Crystal 
structures may be characterized by a set of symmetry elements which is an important 
property of well- ordered, geometrical objects. The symmetry of the lattices is such that 
in two dimensions only five lattices exist, while in three dimensions fourteen lattices are 
defined, known as Bravais lattices. These lattices are called plane and space lattices 
respectively. Symmetry operations which do not involve a translation may be regarded as 
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acting on a single point. In two dimensions when we consider all the possible 
combinations of symmetry operations which do not involve a translation, then this 
produces 10 point groups. When symmetry operations that include a translation are also 
regarded we get 17 space groups. In three dimensions combinations that do not involve a 
translation result in 32 point groups or crystal classes. When translation is involved 
Symmetry elements can be combined in groups and it can be shown that 230 distinctive 
arrangements are possible. ([1]p.89-91) Each of these arrangements is called a space 
group and they are all listed and described in volume A of the International Tables for 
Crystallography.[7] More on symmetry elements, groups and classes can be found in [1] 
p.59-91, [4] p. 33-68 and p.105-138 and in [8] p.1-31 

 

1.1.3     X-rays are electromagnetic waves 
 
The fact that in the present day we consider the nature of light as a wave motion is the 
result of the work of Christiaan Huygens who considered light to be a wave disturbance, 
in contrast to Isaac Newton who claimed that light is a stream of particles. ([4] p.74) 
Visible light and x-rays are actually electromagnetic waves, where an electric field E and 
a magnetic field H oscillate in a wave-like form in two mutually perpendicular planes (E, 
H are not matrices according to the notation, in this situation, but vectors). The difference 
between light and x-rays is the range of their wavelengths (x-rays have much shorter 
wavelengths). The nature of an electromagnetic wave is shown in Fig. 1-5. 
 

 
Figure 1-5. Nature of electromagnetic waves 
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Each of the fields which constitute the electromagnetic wave can be described with wave 
equations. A simple (plane) wave such as a sine wave (or sinusoid) can be expressed with 
the equation: ߰ሺݎԦǡ ሻݐ ൌ ߰଴݁௜ሺ௞ሬԦ ௥Ԧିఠ௧ሻ                                       (1.2) 

Where ȥ(r,t) is an amplitude function (for example of the electric field) with respect to a 
point in space r(x,y,z), in a given time t and ȥ0 is the amplitude maximum. Vector k, is a 
vector with the same direction as that of the propagation of the wave and has a magnitude 
equal to 2ʌ/Ȝ where Ȝ is the wavelength. The term Ȧ is equal to 2ʌf, where f is the 
frequency of the wave. 

Waves follow the principle of superposition which states that a total wave disturbance 
due to an array of sources is the sum of the individual disturbances due to each 
source.([1]p.133) This principle can be elucidated, if we consider the general equation for 
(plane) waves: ߰ሺݎԦǡ ሻݐ ൌ σ ߰௡݁௜ሺ௞ሬԦ ௥Ԧିఠ೙௧ାఝ೙ሻ௡                 (1.3) 

This equation shows that a complex wave can be analyzed in a sum of simpler waves. It 
also shows that, in order to find the total disturbance, the relative phases of the waves are 
necessary, as mentioned in paragraph 1.1. The term in parenthesis at the exponential 
represents the phase of a wave, and the term ĳn in particular is the phase difference 
between the current wave and a wave considered as origin [such as the wave in equation 
(1.2)]. 

The intensity of a wave is the square magnitude of the wave amplitude, ܫ ൌ ȁ߰ሺݎԦǡ  ሻȁଶ       (1.4)ݐ

A more detailed analysis of waves is given in [1] p.93-133 and [25]. 
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1.1.4     Diffraction, Fourier Transformations and Reciprocal 
lattices. 
 

When an electromagnetic wave passes through matter, the electric field causes charged 
particles such as protons and electrons to oscillate. When a particle oscillates it creates 
wave-like disturbances in the electric field and this result in the particles becoming 
secondary sources of electromagnetic radiation. This effect is known as scattering, and it 
is the main phenomenon that occurs when x-rays pass through materials. On a larger 
scale diffraction is a phenomenon which results from the scattering of x-rays in crystals. 
Basically these two phenomena are different sides of the same coin. We talk about 
scattering when the wave-obstacle interaction is such that the dimensions of the obstacle 
and the wavelength of the wave motion are comparable. On the other hand, we talk about 
diffraction when the wave-obstacle interaction is such that the dimensions of the obstacle 
are much larger than that of the wavelength of the wave motion.  In other words, a 
combination of scattering events gives rise to the macroscopic event of diffraction. ([1] 
p185-186) 

 X-ray scattering is mainly a result of electrons. That happens because x-rays have high 
frequencies and protons are much heavier than electrons. Therefore electrons scatter more 
efficiently x-rays to the point where we consider that the total diffraction pattern due to x-
rays is essentially a product of electron scattering only. ([1] p133) 

When someone performs an X-ray experiment his purpose is to determine the intensities 
of the scattered waves. From these intensities with various mathematical calculations 
which simulate the action of a lens, a crystallographer tries to define an electron density 
map of the crystal. The electron density map of a crystal is a three-dimensional 
description of the electron density in a crystal structure. This map describes the contents 
of the unit cells averaged over the whole crystal and not the contents of a single unit cell 
(this is important where structural disorder is present). Three-dimensional maps are often 
evaluated as parallel two-dimensional contoured sections at different heights in the unit 
cell. The electron density, is the concentration of electrons per unit volume, expressed as 
electrons per Å3 and as a function of position x,y,z, is the Fourier transform of the 
structure factors (which are discussed later). [E-1] After the construction of this map, 
atomic nuclei positions may be associated with peaks of the electron density and the more 
dense the peak is, the higher the atomic number of the nucleus is at that site.([1]p.133) 

As mentioned earlier whenever a wave motion, such as x-rays, interacts with an obstacle, 
such as a crystal, diffraction occurs. The diffracted waves form a pattern which is 
determined by the nature and structure of the obstacle. This pattern of radiation scattered 
by the object is called its diffraction pattern. At this point an example with light can help 
the reader understand the nature of diffraction and how can someone obtain information 
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from a diffraction pattern. We know from experience that, when a beam of light falls on 
an object which is large compared to the wavelength of light, relatively sharply defined 
shadows are cast, because light is considered to travel in straight lines. However, when 
the wavelength of the light and the size of the object are of the same order of magnitude, 
an amount of light spreads into the area expected to be in shadow. This effect can be 
observed when light passes through a narrow slit or from the fringes of parallel dark and 
bright bands that are produced when light passes through two narrow slits. These fringes 
constitute the diffraction pattern of these two narrow slits.  In diffraction the straight-line 
path of a wave front travelling through a uniform medium is caused to change direction. 
This is a different phenomenon from refraction in which the bending of light occurs when 
the nature of the medium changes. The diffraction pattern contains information on the 
structure of the diffracting obstacle. ([4] p.75-77, [1] p.220-224) It can be shown ([1] 
p.185-220) that if an obstacle can be described by an amplitude function f(r), where r is a 
vector in one (in one dimension r is a scalar), two or three-dimensional space and f(r) is 
zero everywhere outside the boundaries of the obstacle, then the diffraction pattern 
amplitude F(k) is given by the Fourier transform of f(r): ܨ൫ሬ݇Ԧ൯ ൌ ׬   ݂ሺݎԦሻ݁௜௞ሬԦ  ௥Ԧ௔௟௟ ௥Ԧ  Ԧ      (1.5)ݎ݀ 

Where k is defined as in equation (1.3) for the scattered waves and the integral is double 
if it refers to two dimensions and triple if it refers to three dimensions. This equation 
gives us the diffraction pattern if the obstacle (f(r)), is known. 

Conversely, if the diffraction pattern is known, then using the Fourier inversion theorem, 
we can infer the amplitude function f(r) (hence, the description of the object) in terms of 
F(k) as follows: ݂ሺݎԦሻ ൌ ׬ ൫ሬ݇Ԧ൯݁ି௜ ௞ሬԦܨ    ௥Ԧ௔௟௟ ௞ሬԦ  ݀ሬ݇Ԧ      (1.6) 

Fourier transforms are mathematical expressions which serve as tools for calculations in 
many different branches of science (such as engineering and signal processing). There are 
several common conventions for defining the Fourier transform. One of these is: ܨሺ݇ሻ ൌ ଵξଶగ ׬ ݂ሺݔሻ݁௜௞௫݀ݔାஶିஶ       (1.7) 

Basically Fourier transforms enable us to express a function originally expressed in terms 
of a variable x, in terms of another variable k (in signal processing for example it can 
switch from time expressions of a signal to frequency expressions) and has some very 
interesting and appealing properties such as the easy calculation of convolutions. If 
someone wants to switch back to the original variable, he can use the inverse Fourier 
transform: 
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݂ሺݔሻ ൌ ଵξଶగ ׬ ሺ݇ሻ݁ି௜௞௫݀݇ାஶିஶܨ      (1.8) 

The difference between expressions (1.7), (1.8) and (1.5), (1.6) is the fraction outside the 
integral, which was omitted for simplification. Fourier transforms are generally complex 
numbers by nature. Some interesting properties of these transforms are: 

 The more extended a function f(x) is, the narrowest its Fourier transform is as a 
function of k. 

 The narrowest a function f(x) is, the wider its Fourier transform is as a function of 
k. 

 The Fourier transform of a non-symmetrical function is complex (it contains a 
real and imaginary part) 

 The Fourier transform of an anti-symmetrical function (f(x) = -f(x)) is imaginary. 

 The Fourier transform of a symmetrical function (f(x) =f(-x)) is real. ([1] p.135-
183, [8] p.85-88) 

Just as visible light can be diffracted by small objects, x-rays are diffracted by electrons. 
The effect is about the same and only the scale differs. The diffracted waves have the 
same wavelength and frequency, in general, as the incident waves but are propagated in 
all directions in space. That happens because the oscillation of the electrons that produces 
those secondary waves, have the same frequency as the electromagnetic wave that causes 
them to oscillate. This phenomenon is referred to as coherent scattering. ([2] p.81) The 
diffraction patterns observed are the result of the interference between diffracted waves. 
Interference between waves occurs when they are travelling in the same direction. If 
these waves have the same wavelength, as in the case of x-ray scattering, they express the 
effects of constructive or destructive interference as discussed in section 1.1. The 
amplitude of the wave that results from the interference of two (or more) waves with the 
same wavelength is determined by their path difference which is the fraction of a 
wavelength one wave is out of phase with another. The extent of this path difference 
(which results in phase difference, see Fig.1-1) depends on the angular deviation of the 
direction of the diffracted beam from that of the direct beam and on the wavelength of 
radiation. At large angles the diffracted beams are out of phase and that results in 
destructive interference. Thus the diffracted beam in these angles is weak. One wave is 
more out of phase with its ‘neighbor’, the larger this angle is and the shorter the 
wavelength of radiation. At angles where the diffracted waves are in phase the diffracted 
beam is strong while at other angles the diffracted waves may cancel each other (ʌ phase 
difference) and no diffracted beam is observed. In Fig. 1-6 the diffraction of light from a 
single slit is shown. Since a single slit has width, waves travelling in the same direction 
from the two edges will interfere with each other in the manner mentioned above. The 
phase difference between those waves is greater as the width of the slit increases. Thus 
the diffraction beam will be narrower. As someone can notice in Fig.1-6 the intensity 
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variation is bell-shaped. This shape is called envelope profile and in inversely 
proportional to the width of the slit. This is in agreement with equation (1.5) because we 
mentioned that the more extended a function of the object is (wider slit), the narrowest its 
Fourier transform (and diffraction pattern) is. ([2] p.74-80)  

 

Figure 1-6. Explanation of the diffraction pattern of a single slit. At higher angles the intensity of the 
diffracted beam is weak. 

 

Up to now, the diffraction pattern of a single slit has been considered. The diffraction 
pattern of a crystal is basically the diffraction pattern of a well-defined array. In this array 
there are molecules at well defined distances between them, that act as scattering centers. 
The diffracted waves from these scattering centers are combined and give a precise and 
clear diffraction pattern. This is not the case for example, for a liquid, whose diffraction 
pattern is rather diffuse and imprecise because of the random position of the molecules. 
The diffraction pattern of a regular array retains intensity only at isolated regularly 
spaced positions. These positions can be considered as sampling regions. As an example 
let’s consider a one-dimensional array, an array of slits, at equal distances, with the same 
width. Their diffraction pattern can be considered as a composition of two elements. 
These elements are depicted in Fig. 1-7. The first element consists of the sampling 
regions mentioned above which result from the interference of waves scattered from 
equivalent points in different slits. The locations of these regions are connected through a 
reciprocal relationship with the spacing between the slits, which could be roughly 
considered as a crystal lattice of a one-dimensional crystal. The second element is the 
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envelope profile which has the shape of a bell and results from the interference of waves 
scattered by an individual slit. ([2] p.80, [1] chapter 7)  

 

Figure 1-7. Elements of diffraction pattern. A) The envelope is wider for narrow slits, and vice versa. 
The sampling regions are denser for larger spacing between slits and sparser for small spacing 

between slits. B) The diffraction pattern (intensities of beams) of N narrow slits. 

From these patterns some rules can be inferred about the way in which they give 
information of the structure of a crystal like obstacle. ([1] p.250) 

 The position of the main peaks can give information on the lattice of a crystal. 

 The shape of each peak gives information on the overall object shape (e.g. the size 
of the crystal) 

 The set of intensities of all the main peaks gives information on the structure of 
the motif (unit cell) 

The positions of the sampling regions, where the intensities of the diffracted beams reach 
their peaks (the intensity of each peak is determined by the envelope), constitute the 
‘reciprocal lattice’ of the array of slits, if this array is considered as a one-dimension 
crystal lattice. This result can be extended in two and three dimension crystal lattices 
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from which someone can derive their reciprocal lattices which represent the sampling 
points. The term ‘reciprocal’, can be justified from the fact that the distances between 
points in the original crystal lattice and the distances between points in the reciprocal 
lattice, which is connected to the diffraction pattern, are inversely related. ([2] p.89-97) 
The reciprocal lattice, can be described in terms of three base vectors a*,b*,c* in a 
similar way the crystal lattice is described with crystallographic unit vectors in equation 
(1.1). The reciprocal lattice base vectors a*,b*,c* are defined by specific equations in 
terms of the crystallographic unit vectors a,b,c. (see [1] p.274) When vectors a*,b*,c* 
represent a primitive reciprocal lattice we can define a vector G which represents a vector 
from the origin to any point in this lattice, such as: ܩԦ ൌ ሬሬሬሬԦכܽ ݄ ൅ ሬሬሬԦכܾ ݇ ൅  ሬሬሬԦ     (1.9)כܿ ݈

Vector G defines a reciprocal lattice vector. If the reciprocal lattice is primitive then h,k,l 
in (1.9) are integers only. A lattice is primitive when in contains primitive cells. A 
primitive cell contains only one lattice point (each vertex of the cell sits on a lattice point 
which is shared with the surrounding cells, each lattice point is said to contribute 1/n to 
the total number of lattice points in the cell where n is the number of cells sharing the 
lattice point). [E-3] Conventionally, reciprocal lattice points are represented with these 
three integers h,k,l written as a triplet hkl with neither parentheses or commas. If any of 
the h,k,l is negative this is indicated by a superscript bar. We refer to this lattice points 
such as 100, 231 etc and the corresponding reciprocal lattice vectors are written as G100, 
G231. ([1] p.275) 

 In Fig. 1-8, the scattering vector of a diffraction event is presented. The vector ki is the 
wave vector of the incident beam of x-rays to the crystal (direction of ki, is parallel to the 
propagation of the incident beam). Vector kd represents the wave vector of the diffracted 
beam. Both ki and kd have the same magnitude. ǻk= kd - ki represents a vector describing 
the change in direction which has occurred as a result of the diffraction and is called the 
scattering vector. [E-2] Angle 2ș is called the scattering angle, while angle ș is called 
Bragg angle. 

 

Figure 1-8. Scattering vector ǻk and scattering angle ș. 
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Three dimensional diffraction patterns are usually described in terms of the scattering 
vector ǻk. When the reciprocal lattice vector G is multiplied by a scalar 2ʌ, is an allowed 
solution of Laue equations, and so represents a scattering vector corresponding to a 
diffraction maximum. Laue equations derive from the realization that the path length 
differences for waves diffracted by atoms separated by one crystal lattice translation must 
be an integral number of wavelengths for diffraction to occur.([2] p.81) This condition 
must be true for all three dimensions at the same time for the three crystal lattice 
translations and is expressed by Laue equations: ߂ሬ݇Ԧ ߙԦ ൌ ሬ݇Ԧ ሬܾԦ߂    , ߨ݄ʹ ൌ ሬ݇Ԧ Ԧܿ߂   ,  ߨ݇ʹ ൌ  (1.10)                                  ߨ݈ʹ

which have to be satisfied simultaneously (h,k,l are the same as in equation (1.9) ). A 
more mathematical approach on Laue equations can be found in ([1] p.260-272).  

Exactly how the reciprocal lattice corresponds to the actual directions in which waves are 
diffracted from a crystal, and the manner in which is related to the array of spots on an x-
ray diffraction photograph can be explained with the help of the Ewald sphere. Ewald 
sphere or sphere of reflection is a geometric construct which shows the relationship 
between the wave vectors of the incident and diffracted beams, the diffraction angle for a 
given reflection, and the reciprocal lattice of the crystal. [26] Ewald sphere can be 
considered one of the geometrical interpretations of Bragg’s law: ݊ߣ ൌ ʹ݀௛௞௟  ௛௞௟      (1.11)ߠ݊݅ݏ 

where Ȝ is the wavelength, ș is one half of the scattering angle for this particular point in 
the diffraction pattern (which refers to the hkl point in reciprocal lattice) and dhkl  is the 
perpendicular spacing between the (hkl) set of crystal lattice planes. Crystal lattice planes 
are planes in the crystal lattice that are rich in lattice points. ([2] p. 83-84) Parallel sets of 
planes in a crystal lattice may be identified by a set of three integers (hkl), called the 
Miller indices, which have no common factor. The reciprocal lattice vector Ghkl in 
equation (1.9) is perpendicular to the (hkl) set of planes in the real lattice. ([1] p.283-
286). Bragg tells us that in a diffraction experiment, we measure the intensities of waves 
scattered from planes (denoted by hkl) in the crystal. In equation (1.11) n is an integer, 
the order of reflection. This is an integer associated with a given interference fringe of a 
diffraction pattern. The first order arises as a result of a path difference, between 
diffracted waves, of one wavelength. Nth order represents a path difference of n 
wavelengths. Bragg’s law and Laue equations are equivalent and describe the same 
phenomenon in different ways. ([2] p. 81- 87) 
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1.1.5     Structure factors and electron density maps. 
 

Until now the effects of the periodic nature of a crystal to its diffraction pattern has been 
discussed. It has been mentioned earlier in the previous paragraph, that the information 
about the contents of the unit cell in a crystal, is contained in the set of intensities of all 
the main peaks (envelope effect). The diffraction of x-rays by the contents of the unit cell 
is determined by Thomson (or coherent) scattering by the electrons. Since the unit cell is 
associated with the lattice and the diffraction pattern is sampled at specific regions (the 
reciprocal lattice points hkl) the amplitude of the diffraction pattern is associated with 
particular lattice points. These specific regions of the diffraction pattern at the reciprocal 
lattice points are associated with terms called Structure factors, which are given by: ܨ௛௞௟ ൌ ׮ܸ ǡݔሺߩ ǡݕ ሻ ݁ଶగ௜ ሺ௛௫ା௞௬ା௟௭ሻଵ଴ݖ  (1.12)    ݖ݀ ݕ݀ ݔ݀ 

where V represents the volume of the unit cell and ȡ(x,y,z) is the electron density map as 
a function of position x,y,z (from now on referred as electron density map).  

Someone can notice that the set of structure factors in equation (1.12) is in fact the 
Fourier transform of the electron density map ȡ(x,y,z) and that structure factors are 
generally complex quantities. Therefore if a crystallographer can determine these 
structure factors from an x-ray diffraction experiment, he is able to calculate the electron 
density map through an inverse Fourier transform.  Since this inverse transform does not 
refer to a continuous function but to a discrete function the integrals in the inverse 
Fourier transform are converted to sums. The electron density map therefore is given by: ߩሺݔǡ ǡݕ ሻݖ ൌ ଵ௏  σ σ σ ௛௞௟ܨ  ݁ିଶగఐ ሺ௛௫ା௞௬ା௟௭ሻ௟௞௛        (1.13) 

The calculation of the electron density map using structure factors is called Fourier 
analysis and it is the ultimate purpose of a crystallographer who performs a crystal 
structure analysis. ([1] p.320-362) 

Electron density maps ȡ(x,y,z) in many occasions are plotted as two-dimensional contours 
of x,y, at regular intervals of z and they are combined to form a final three dimensional 
contour map. From this contour map nuclear positions and molecular structure 
information can be derived. (Figures 1-9, 1-10) 
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Figure 1-9. Numerical values of the calculated electron density (a) at grid points and (b) at a two-
dimensional contour plot, showing how contours are drawn in two dimensions 

. 

 

Figure 1-10. Electron density map and model of Penicillin created by Dorothy Crowfoot Hodgkin in 
1945 based on her work on X-ray crystallography 
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The form of equation (1.12) in not the most appropriate for the calculation of the 
structure factors from the contents of the unit cell. A more appropriate equation for this 
calculation can be derived. If the jth atom in a molecular structure has coordinates (xj, yj, 
zj) the equation for the structure factors can be defined as: ܨ௛௞௟ ൌ σ ௝݂݁ଶగ௜ ሺ௛௫ೕା௞௬ೕା௟௭ೕሻ௝     (1.14) 

where fj is the atomic scattering factor. ([1] p.320-362) 

Since x-rays are scattered by electrons, the amplitude of the scattered beam by an atom is 
proportional to the number of electrons there are around that atom. That number is its 
atomic number Z. Atomic scattering factors fj are expressed as the ratio of the scattering 
of an atom to the scattering by a single electron under the same conditions. ([2] p.87-89) 
Values of atomic scattering factors are influenced by the scattering angle and as the 
scattering angle increases the value of the scattering factors falls. This is a result of the 
size of the atoms. Atoms in reality are not just ideal points, and this causes some 
destructive interference between waves scattered by various regions of the atoms. If the 
electron cloud around the atom is wide the falloff in the intensity of the diffracted beams 
is greater at higher scattering angles. A zero value of fj for a particular scattering angle 
means that the incident beam is not deflected at all in that direction.  Values of scattering 
factors can be derived theoretically and are listed for individual atoms as a function of the 
scattering angle in International Tables for X-ray crystallography. Generally fj can be 
considered as a real quantity, if anomalous scattering is not present. If an atom shows 
anomalous scattering then fj is a complex quantity. Anomalous scattering happens when 
the energy of the incident beam is close to that which will change the quantum state of an 
electron within an atom. In this occasion scattering does not obey the rules (the equation) 
of Thomson scattering. 

In this discussion, for the derivation of the diffraction pattern of the structure of the unit 
cell, we silently assumed that the atoms are located at fixed points in space. The 
assumption that the nuclei are fixed at single points in the lattice, and stay motionless 
there, is true only at temperatures very close to zero. At non-zero temperatures, and as the 
temperature increases, the thermal motion of the atoms causes a variation in the exact real 
lattice structure. With proper calculations we can take this effect into account and correct 
the atomic scattering factors for thermal vibrations. ([1] p.377-383, [2] p.272-273) 
Corrected scattering factors are given by: ሺ ௝݂ሻ் ൌ ௝݂  ݁ି஻ೕሺೞ೔೙మഇഊమ ሻ

      (1.15) 

Ǻj is the temperature factor, and its value depends on the atom under study and the 
temperature at which the diffraction takes place. Ǻj is a positive quantity and its value for 
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atoms at various temperatures can be found in Vol.III of the International Tables for X-
ray Crystallography. The factor (sin2ș/Ȝ2) is also positive. 

Figure 1-11 shows the relationships between crystal lattices, reciprocal lattices, structure 
factors, and contents of the unit cell discussed so far. 

 

Figure 1-11. relationships between crystal lattices, reciprocal lattices, structure factors, and contents 
of the unit cell 

 

1.1.6     The phase problem 
 

The aim of a crystallographer, who performs an x-ray diffraction experiment, is to 
determine the molecular structure of a crystal by calculating the electron density function 
according to the Fourier synthesis described by equation (1.13). In order to calculate this 
equation we need the values of all the structure factors. Structure factors as stated in 
paragraph 1.5 are generally complex quantities. That means that they are composed of 
two elements, just as any complex number: their magnitude and phase. This is shown in 
the following equation: ܨ௛௞௟ ൌ ȁܨ௛௞௟ȁ ݁௜ ఈ೓ೖ೗                 (1.16) 

where Įhkl  represents the phase of the structure factor. Therefore the calculation of the 
electron density map requires the knowledge of all structure factors in both magnitude 
and phase. In x-ray diffraction experiments, however, only the intensities of the 
reflections are measured, and information on the relative phases is lost because the 
intensity of a structure factor is equal to |Fhkl|

2. The phases cannot be obtained directly 
from physical measurements. Thus half the information is lost during this procedure. This 
problem can be further illustrated in an Argand diagram (Fig.1-12) in which complex 
numbers are represented as points. In order for a simple point to be represented, both the 
magnitude and the angle have to be defined. The magnitude alone defines only the radius 
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of a circle. If only the magnitude |Fhkl| is known then the structure factor can have any 
value for the angle Įhkl from 0 to 2ʌ, and can be any point in the circle defined by the 
dashed red line. ([1] p.411-416)  

 

Figure 1-12. Argand diagram for a structure factor, with determined magnitude and unknown 
phase. 

 

The derivation of the correct values of the structure factors in both magnitude and phase 
from the relative intensities |Fhkl|

2 constitutes the Phase problem. A crystallographer must 
be able to reconstruct an electron density map in a systematic way, by approximating as 
far as possible, a correct set of phases for the structure factors.  The importance of phases 
in obtaining the correct structural information can be illustrated in Fig.1-13(from Kevin 
Cowtan's Book of Fourier [E-4]) In this figure we can see that the calculation of an 
`electron-density map' using amplitudes from the diffraction pattern of a duck and phases 
from the diffraction pattern of a cat results in a cat.[27] 

The phase problem is fundamental in crystallography. One important feature of this 
problem derives from the fact that, mathematically speaking the relationship between 
structure factor magnitudes and electron density in not necessarily a one-to-one 
relationship. The operation of going from an arbitrary electron density to structure factors 
amplitudes is unique, but this is not the case when we consider the opposite path. A set of 
structure factors does not necessarily correspond to one electron density function. In this 
sense as Taylor G. says in [27]: “There is no formal relationship between the amplitudes 
and phases; the only relationship is via the molecular structure or electron density. 
Therefore, if we can assume some prior knowledge of the electron density or structure, 
this can lead to values for the phases. This is the basis for all phasing methods”. The 
practical success of crystallographic methods lies in the fact, that in reality, electron 
density functions are not arbitrary distributions, but are connected with real objects, and 
are subject to certain restrictions. For example, electron density function is expected to be 
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real, positive, continuous and concentrated into spherical regions which represent atoms. 
These restrictions are severe and form the theoretical basis for direct methods. Also 
atoms should be located at places where they form reasonable molecules, in terms of 
angles and interatomic distances. It has been shown theoretically that the first restrictions 
are not sufficient to guarantee uniqueness of solution while the effects of the second are 
harder to judge. ([2] p265-267) 

 

 

Figure 1-13. The importance of phases in carrying information. Top, the diffraction pattern, or 
Fourier transform (FT), of a duck and of a cat. Bottom left, a diffraction pattern derived by 

combining the amplitudes from the duck diffraction pattern with the phases from the cat diffraction 
pattern. Bottom right, the image that would give rise to this hybrid diffraction pattern. In the 

diffraction pattern, different colors show different phases and the brightness of the color indicates 
the amplitude. 

 

Occasionally, various methods have been proposed to deduce the relative phase angles of 
the structure factors. “For many crystallographers, the very existence of the phase 
problem makes the structure solution of a crystalline substance an adventure to be tackled 
with chemical and physical intuition, imagination and mathematical expertise.” ([5] p.1) 
Some commonly used ways to deal with the challenge of phase determination are 
described below. 
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Constraints of direct methods: These methods are based on the positivity and atomicity of 
electron density and leads through statistical methods to phase relationships between 
normalized structure factors. Direct methods will be discussed in more detail in chapter 2. 

Interpretation of interatomic vectors: In these methods an initial trial structure is obtained 
through Patterson and heavy atom methods. From these structures calculated phase 
angles can be derived. (See [1] p.398-411 and p. 425-427, [2] p.270-299, [4] p. 301-317) 
These methods are very useful when the molecules contain heavy atoms, such as metal 
complexes, or when they have considerable symmetry. 

Isostructural crystal comparison: The definition of isostructural or isomorphous crystals 
as given by [E-5] is: “Two crystals are said to be isomorphous if (a) both have the same 
space group and unit-cell dimensions and (b) the types and the positions of atoms in both 
are the same except for a replacement of one or more atoms in one structure with 
different types of atoms in the other (diadochy), such as heavy atoms, or the presence of 
one or more additional atoms in one of them (isomorphous addition).” Phases can be 
estimated by comparing such crystals and this method is the method of choice for 
macromolecular (such as protein) phase determination. ([4] p.284-285) 
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1.2 Introduction to Artificial Neural Networks. 
 

Kröse B. states that: “Artificial neural networks can be most adequately characterized as 
computational models with particular properties such as the ability to adapt or learn, to 
generalize, or to cluster or organize data and which operation is based on parallel 
processing.” ([14] p.13) Artificial neural networks can be described as statistical learning 
models that were inspired by biological neural networks and were originally introduced 
as very simplified models of brain function. Biological neural networks constitute the 
central nervous systems of animals, and particularly the brain. Humans throughout the 
ages have always been concerned about the function of their brains. Questions about the 
production of our mental activities, and how the physical activities of our brain, gives rise 
to our thoughts emotions and behaviors, always intrigued scientists. The “father of 
neuroscience,” Santiago Ramon y Cajal, argued at the turn of the 20th century that the 
brain was made up of neurons woven together in a highly specific way.[29] Researchers 
since then explore new methodologies that shed light on this age-old mystery. 

These questions, however, are not of special interest to neuroscientists and biologists 
only. Computer scientists are also attracted by features of human thought that would like 
to embed in their computational models. A computer usually works following the 
directions of an algorithm, which is described in a fixed program. That is one way to 
‘teach’ a computer to do a certain task. Nonetheless there are certain problem categories 
that cannot be formulated as algorithms (e.g. the purchase price of a real estate). These 
problems usually depend on many subtle factors which our brains can calculate 
approximately while computers cannot, in a traditional manner.  

One of the important differences between the function of human brains and computers, 
that help us tackle the kind of problems mentioned above, is that humans can learn while 
computers cannot. In a conventional computer, usually there exist a single processor 
implementing a sequence of arithmetic and logical operations, nowadays at speeds 
approaching billion operations per second, but they luck the adaptability of a brain and 
the ability to learn through examples. A computer is static, while a biological neural 
network can reorganize itself during its lifespan. A neural network does not need to be 
programmed, it can learn from training samples or by means of encouragement.  

This feature, the capability to learn, results in the capability of networks to generalize and 
associate data. After successful training in a class of problems, a neural network can find 
solutions in problems of the same class. For example if someone in math class learns 
through examples how to solve certain problems, then he can solve problems, similar but 
not the same to the problems in the examples used. Another example connected to 



30 
 

computer vision and pattern recognition problems is our ability to separate trees from 
bushes, although we have not seen these exact bushes and trees before.  

This capability of generalization in turn results in a degree of fault tolerance. Fault 
tolerance refers to the ability of a system to produce reasonable responses when it is 
provided with noisy input data, or when the system has internal errors (e.g. when 
damaged). Someone can understand that when he considers the fact that human brains 
have a vast amount of interconnected neurons, which reorganized themselves but are also 
influenced by external factors. External factors such as alcohol, certain health conditions, 
drugs, environmental influences etc can destroy neurons, yet our cognitive abilities are 
not significantly affected (when the damage is not too extended). ([16] p. 3-8) A 
demonstration of our ability to interpret noisy data is the fact that most humans can read 
jumbled words, for example the following sentence: “I cnduo't bvleiee taht I culod 
aulaclty uesdtannrd waht I was rdnaieg.” (Translation: I couldn't believe that I could 
actually understand what I was reading.)  

Another important feature of neural networks is their parallelism. The largest part of the 
brain is working continuously with its highly interconnected simple units (neurons) 
working in parallel. That enables the brain to achieve high performances (as a matter of 
time). Today’s computer processors have a speed 106 times faster than the basic 
processing elements of the brain. When the abilities are of processors and neurons are 
compared, the neurons are much simpler. The difference between a computer and a 
neural network lies in the structural and operational trends. While in a conventional 
computer the instructions are executed sequentially in a complicated and fast processor, 
the brain is a massively parallel interconnection of relatively simple and slow processing 
elements. ([10] chapter 1) Artificial neural networks are also inherently parallel 
algorithms and can take advantage of multicore CPUs (central processing units) and 
clusters of computers arranged to make parallel calculations, in order to reduce 
computation times.  

For these reasons artificial neural networks can help scientists approach problems in an 
alternative way, and actually ‘teach’ computers to solve problems with the use of learning 
paradigms or reinforcement learning.  Today artificial neural networks are being used in 
many areas because of their appealing features and capabilities. Google uses neural 
networks for image tagging (automatically identifying an image and assigning 
keywords), while Microsoft has developed neural networks that can help convert spoken 
English speech into spoken Chinese speech. 

Despite the advantages and effectiveness of neural networks in many areas, they tend to 
consume considerable amounts of time and money. From a more practical side, the 
implementation of large and effective software neural networks (for difficult problems), 
demands considerable processing and storage resources. Biological neural networks are 
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especially made to work through processing of signals in neurons highly interconnected, 
and by propagating signals from one neuron to another in a most efficient way. However, 
the simulation of this procedure in Von Neumann architectures is not always effective in 
terms of computer memory, hard disk space and processing power, because of the 
amount of interconnections between neurons. 

Nevertheless advances in computer technology have limited these restrictions. Faster 
computers and faster algorithms made possible the usage of neural networks to solve 
complex industrial problems that required too much computation. The number of neural 
network applications, the money that has been invested in neural network software and 
hardware, and the depth and breadth of interest in these devices is enormous. The 
applications of artificial neural networks are expanding in many scientific fields because 
neural networks are capable of solving problems in fields such as engineering, science 
and mathematics, medicine, business, finance and literature. Specifically medical 
applications of neural networks include Breast cancer cell analysis, EEG and ECG 
analysis, prosthesis design, optimization of transplant times, hospital expense reduction, 
hospital quality improvement and emergency room test advisement. ([12] chapter 1, p.1-
5) 

1.2.1 Simplified Biological Neural Networks 
 

Artificial neural networks appeared as simplified models of biological neural models and 
particularly as models of the brain function. In this section a simplified model of a 
biological neural network is presented in order to consider the analogies between 
artificial and biological networks. The network discussed in this section is only remotely 
related to its biological counterpart.  

An adult male human brain contains on average 86.1 +/- 8.1 billion neurons which are 
highly interconnected. [30] Neurons are cells with specialized membranes which allow 
the transmission of signals to neighboring neurons. In Fig.1-14 the structure of a neuron 
is illustrated. These neurons, for the purposes of this analysis have three basic 
components: the dendrites, the cell body and the axon. The dendrites are tree-like 
receptive networks of nerve fibers that carry electrical signals into the cell body. The 
axon extends from the basic cell body and constitutes the output of a neuron. Axon 
typically divides into sub-branches and terminates at a synapse. Synapse is called the 
point of contact between an axon of one cell and a dendrite of another cell. The axon 
serves as an electrical pulse transmitter from the cell body to the synapses and it does so 
by transferring Na+ ions. The arrival of a voltage pulse through the axon to a synapse 
stimulates the release of neurotransmitting chemicals across the synaptic cleft towards the 
postsynaptic cell, which is the receiving part of the next neuron. This postsynaptic cell 
passes the signal via the dendrite to the main part of the (next) neuron body. The signals 
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which arrive to the cell body of a neuron through dendrites constitute its input. The cell 
body then sums the inputs (the incoming signals), and if this sum has sufficient strength 
to overcome a certain threshold, an output signal is produced and delivered through the 
axon to the synapses and the neurons that follow. The output signal from the neuron is 
some nonlinear function of the input stimuli. It is the arrangement of neurons and the 
strengths of the individual synapses, determined by a complex chemical process that 
establishes the function of the neural network. ([13] p.1-2) 

 

Figure 1-14. Simplified structure of a neuron and connection between two neurons 

 

Each neuron has between a few and a few thousand synapses on its dendrites, giving a 
total of about 1014 synapses (connections) in the brain. Part of the structure of the neural 
network is defined at birth while other parts are developed later through learning 
processes, as new connections are made, others are strengthened and others are 
weakened. The ‘strength’ of the synaptic connection between neurons can be chemically 
altered by the brain in response to favorable and unfavorable stimuli, in such a way as to 
adapt the organism to function optimally within its environment. The process of learning 
a new face is actually a process of altering various synapses in the neural network 
structure. ([12] chapter 1, p.1-9) This is the reason why synapses are believed to be the 
key to learning in biological systems.  

 
As stated earlier this is an oversimplified model, used to demonstrate the similarities 
between biological and artificial neural networks. The later do not approach by any 
means the complexity of the former but two key similarities may be observed. The first 
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similarity is that both networks consist of simple building blocks, the neurons, which 
serve as computational devices. Artificial neurons are of course simpler than biological. 
The second important similarity is that learning influences the strength of the connections 
between the neurons and that these connections basically determine the function of the 
network. When someone trains a network he basically tries to determine the appropriate 
connections between neurons. ([12] chapter 1, p.1-9) 

 

1.2.2 Neuron model and architecture of neural network 
 

As stated earlier an artificial neural network is an information-processing system that has 
certain performance characteristics in common with biological neural networks. In the 
previous section we described a simplified biological neural network. In this section a 
basic mathematical model of an artificial neuron we will be presented and the 
interconnection between those neurons will be described. The purpose of this section is to 
help the reader understand the basic operation of an artificial neural network (from now 
on referred simply as neural networks). 

A neural network consists of a large number of simple processing elements called 
neurons, units, or nodes. Each neuron is connected with other neurons by means of 
directed communication links which are associated with a numerical value called 
‘weight’. The weights, just as the strength of the synapses in biological neural networks 
represent information being used by the network to solve a problem. Neurons accept 
signals and have an internal state, called activity level, or activation of the neuron, which 
is a function of the inputs it has received. This function is called transfer function (or 
activation function). The activation of the neuron may also be referred as the output of 
the neuron. A neuron typically sends its activation to several other neurons. It can send 
only one signal at a time, although that signal can be sent to several other neurons. ([9] 
p.3-6) In some cases each neuron also has an external input, that means an input that does 
not represent a variable of the problem, nor a signal from other neurons, which is also 
connected with the neuron through a weighted link. This external input is usually set to 1 
and the weight of the link that connects it to the neuron is called bias, or offset. 

Fig.1-15 shows a single input neuron. The input p which is a scalar is multiplied by the 
weight w, which is also a scalar and is sent to a summer (Ȉ). The other (external) input is 
weighted by a bias b and is also set to the summer. The summer output n is often referred 
as the net input, and it goes into a transfer function f which produces the output Į of the 
neuron. 
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Figure 1-15. A single- input neuron with bias 

 

Scalars w and b are both adjustable parameters of the neuron. Transfer functions are 
usually chosen by the designer of the neural network and the parameters w and b are 
adjusted by some learning rule so that the input/output relationship of the neuron meets a 
specific goal. The contribution for positive weights wn is considered as an excitation and 
for negative wk as inhibition. 

Neurons rarely have a single input and bias as in Fig.1-15. They usually have more than 
one input. In this case the output Į of a neuron which has R inputs p1,p2…pR with weights 
corresponding to these inputs w: w1,w2…wR and a bias b will be: ܽ ൌ ݂ ሺܾ ൅ σ ௝ோ௝ୀଵ݌௝ݓ ሻ     (1.16) 

The previous equation can also be written in matrix form, where w and p are vectors 
containing the weights w1,w2…wR and inputs p1,p2…pR  respectively: ܽ ൌ ݂ሺ࢖࢝ ൅ ܾሻ        (1.17) 

This multiple input neuron is shown in Fig. 1-16. This type of neuron that calculates its 
output based on equation (1.16) is called sigma unit (because of the Greek letter 
representing the summer). The term in the parenthesis in equation (1.16), which estimates 
the net input of the unit, is called propagation rule of the unit. It is called that way 
because it is used to estimate the signal (output) the neuron will propagate to neurons 
connected with it. The propagation rule in equation (1.16) is not the only available rule 
for the estimation of the net input of a neuron, but it is the most popular. The propagation 
rule defines the name of the unit. Thus, apart from sigma units, there are also product 
units [31], which use multiplication and sigma-pi units ([14] p.16) which have a more 
complicated rule, using sums and products. The later rules are not commonly used but 
can help in the solution of some problems.  
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Figure 1-16. Multiple-input neuron 

 

In most problems a single neuron does not provide the necessary flexibility in a neural 
network (with one neuron after all we can barely call it a network) to adjust its weights 
and approach acceptable solutions. A larger amount of neurons is usually needed to 
operate in parallel in what is called a layer of neurons. One such layer is shown in Fig.1-
17, with S neurons in the layer. In the same manner as before, p is the input vector. The 
output now includes S values as the number of neurons, and can be represented with a 
vector Į. The same applies for biases, which are now represented by vector b. Of 
particular interest is the weight matrix which is no longer a vector but a matrix with 
dimensions SxR (Neurons in the layer X Number of inputs). Each row represents a 
neuron and each column an input. Hence the weight matrix has the form: 

 

 

      
 (1.19) 

 

 
The row indices of the elements of matrix indicate the destination neuron associated with 
that weight, while the column indices indicate the source of the input for that weight. 
Thus, the indices in w4,5 say that this weight represents the connection to the forth neuron 
from the fifth source. 
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Figure 1-17. Layer of S neurons and its output 

Most of the time the number of neurons in a layer, does not equal to the numbers of 
inputs. Also transfer functions in a layer do not have to be the same. Different transfer 
functions can exist in a layer. It is the same as combining some of these networks (with 
same transfer functions in their layers) in parallel. Both would have the same inputs, and 
each of them would produce some of the outputs. 

Layers of functions can be combined to create various architectures of neural networks 
with different capabilities. In Fig. 1-18, a multilayer neural network is shown. Multilayer 
neural networks are layers of neurons combined in series. In this layer the output of the 
first layer serves as input to the second layer, and the output of the second layer, serves as 
input to the third layer. The third layer is usually called the output layer. The first and 
second layers are called hidden layers, because we have no access to them through inputs 
or outputs (it is like considering the neural network as a black box). Multilayer neural 
networks are complicated by nature and we will need complicated symbolism to describe 
them. Specifically superscripts will be used to identify the layers. Thus, W1 refers to the 
weight matrix of the first layer, b2 refers to the bias vector of the second layer and so on. 
In Fig. 1-18 all the layers have the same number of neurons (S) and this result in square 
weight matrices for the second and the third layer (SxS). It should be noted that this is not 
always the case as layers with different number of neurons can be combined. A final note 
on Fig. 1-18, in order to avoid confusion, is that the symbol w3

S
3
S
2 means: the weight of 

the third layer that connects the s neuron of the second layer (source) to the s neuron of 
the third layer (destination). ([12] p.1-12) 
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Figure 1-18. Three- layered (multilayer) neural network and its output 

The connections in this neural network are characterized as directed links, in the sense 
that signals are always propagated from the first layer to the second and from the second 
to the third, and not in the opposite direction. These networks are called feedforward 
networks.  

The feedforward network architecture is not the only available architecture in neural 
networks. Many other network architectures are available, with different features and 
capabilities. The network described so far is a static network. This means that the output 
can be calculated directly from the input through feedforward connections. In dynamic 
networks, the output depends not only on the current input to the network, but also on the 
current or previous inputs, outputs or states of the network. Such networks are recurrent 
networks which can have some feedback (recurrent) connections and contain memory 
elements. ([12] Chapter 14, p.2) Other recurrent neural networks, called bi-directional 
neural networks allow the flow of signals in connections in both directions. [32] There 
are also networks used for pattern classification, which are based on competition and 
contain connections to themselves, while other networks of the same type (competitive) 
such as counterpropagation networks may have more complex architectures. ([9] p.156-
202) These networks architectures will not be considered here, as they are not used in this 
project. 
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1.2.3     Transfer functions and training of artificial neural 
networks 
 
Transfer function as described in the previous section is basically the rule which gives the 
effect of the total input on the activation of the unit.  Usually, the activation function is a 
non decreasing monotonic function of the total input of the unit, although activation 
functions are not restricted to non decreasing functions. Some sort of hard limiting 
threshold function is used many times (such as a sign function), while others a linear or 
semi-linear function is preferred.  For these smoothly limiting functions often an S-
shaped sigmoid function is used (for example a hyperbolic tangent). In some cases, the 
output of a unit can be a stochastic function of the total net input of the unit (as for 
example in radial basis function networks). In these cases the activation (output) of the 
neurons is not deterministically determined by the neuron’s net input, but the input 
determines the probability p that a neuron gets a high activation value. ([14] p.16-17) Fig. 
1-19, shows various activation functions for a neuron. 
 

 
Figure 1-19. Various types of activation functions for a neuron 

 
  As mentioned earlier, neural networks adapt their weights, to meet the needs of a 
particular problem by means of a procedure called training. Thus, in addition to the 
architecture, a very important characteristic of neural networks is the method by which 
they set the values of their weights. Training procedures can be classified into three 
general types: unsupervised training, reinforcement learning and supervised training. 
These types are presented below: 

Unsupervised learning is the biologically most plausible method, but is not suitable for 
all problems. Only the input patterns are given; the network tries to identify similar 
patterns and to classify them into similar categories. Self-organizing nets group similar 
input vectors together without the use of training data to specify what typical member of 
each group looks like or to which group each vector belongs. Unsupervised learning can 
also be used in other tasks, other than clustering. 

Reinforcement learning is a procedure in which the network receives a logical or a real 
value after network completion of a sequence, which defines whether the result is right or 
wrong. Intuitively someone can say that this procedure should be more effective than 
unsupervised learning since the network receives specific criteria for problem-solving. 
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Supervised learning is perhaps the most typical neural network setting, where training is 
accomplished by presenting a sequence of training vectors, or patterns, each associated 
with a target output vector. The training set consists of input patterns as well as their 
correct results in the form of the precise activation of all output neurons. Thus, for each 
training set that is fed into the network, the output can directly be compared with the 
correct solution and the network weights are changed according to their difference. The 
purpose is to change the weights in a way that the network will not only remember the 
correct values for the inputs it has been trained with, but also to provide plausible 
answers to unknown, similar input vectors (generalization). 

 

Despite the importance of the training method and the adjustability of the weights, some 
nets occasionally have fixed weights and do not need the iterative procedure of training 
but these are just special cases. Neural networks are being used to accomplish different 
tasks that fall into many areas such as mapping, clustering, constrained optimization and 
function approximation. There is a correspondence between the type of training that is 
appropriate and the type of problem someone wishes to solve. ([9] p. 15-17) 
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Chapter 2:  Approaching the phase problem with 
feed forward neural networks 
 

In the first chapter an attempt to introduce some basics concepts on crystallography and 
neural networks has been made. These basic terms will be needed for the chapters that 
follow. With what has been presented so far in mind, in chapter 2, the purpose of this 
project will be defined and the details of the implementation of the neural networks that 
have been used will be discussed. 

 

2.1 Aim of the study 
 
Crystallography enables us to “see” our molecular biology in images and one of its major 
focuses is the study and determination of the 3D structures of proteins to gain functional 
insights on the structure of proteins. Our understanding of how biological molecules 
interact is often presented as a number of images derived from bio-molecular 
crystallography. In molecular biology, crystallographic approaches are often used to 
study the structure and conformation of proteins which are involved in various regulatory 
processes under normal and diseased conditions. Being a sub-nano imaging technique, 
crystallography provides unbiased insight into the complex features of proteins, DNA, 
and RNA, and their relationships to substrates, inhibitors, and binding partners.   

X-ray crystallography is sometimes regarded as a science in its own right and, indeed, 
there are many professional crystallographers who devote all their efforts to the 
development and practice of the subject. The fundamental problem these scientists face is 
the phase problem. Various methods have been proposed each with its own advantages 
and disadvantages, yet the phase problem has not gone away.  

A substantial proportion of the techniques used for phase determination are the direct 
methods. Those are techniques of phase determination which involve solely the 
comparison of structure factor magnitudes derived from the study of a crystal without any 
reference to prior knowledge of likely structures, or isomorphous crystals. At present, 
direct methods are the preferred method for phasing crystals of small molecules having 
up to 1000 atoms in the asymmetric unit and they are routinely used for the solution of 
small structures. However, they are not generally capable to determine structures of 
larger molecules such as proteins by themselves [33] and have only recently been applied 
to the solution of small proteins containing about 50 amino acid residues. [34] 

The starting point of this project, was the thought that neural networks could be used to 
help in the determination of phases of protein structures, by means of only the directly 
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observed experimental data. If neural networks through training could learn the necessary 
relationships, as those used in direct methods, or at least approximate them in a 
reasonable fashion, it would greatly enhance the work of crystallographers working 
towards this direction. Furthermore, successful neural networks could be analyzed later 
and maybe provide more information in this area. An additional appealing feature of 
neural networks is their parallel structure: all of the neurons are operating at the same 
time. Even though most artificial neural networks are currently implemented on 
conventional digital computers, their parallel structure makes them ideally suited to 
implementation using VLSI, optical devices and parallel processors. This ability of neural 
networks gives an additional motivation, because really efficient systems could be 
created (in terms of computational time) that would aid in protein structure 
determination. 

The aim of this study is to examine whether training of neural networks that reach this 
target is feasible. This is done by considering the case of simple two dimensional, 
centrosymmetric arbitrary structures. This is a much simpler case than that of a real 
structure in many ways, but if neural networks produce successful results for cases like 
this, additional research can be done for more complicated structures. 

Neural networks are being used to accomplish different tasks that fall into many areas 
such as mapping, clustering and function approximation. The strategy followed for neural 
networks in this project is that of function approximation. For this reason feed- forward 
networks were selected to be trained, using backpropagation algorithms, because these 
networks are considered to possess universal function approximation capabilities. 

 

2.2 Direct Methods 
 

Direct methods are those mathematical techniques that attempt to solve the phase 
problem from the observed amplitudes through purely mathematical techniques, with no 
recourse to structural chemical information. This is the feature that these techniques have 
in common with the neural network we wish to determine, because this neural network 
after training will not have access to structural chemical information when new structures 
will be presented to it, in order to determine its phases. The only information it will be 
given are the observed amplitudes, just as the case of direct methods. So, successful 
neural networks, most probably would be function approximations of relationships used 
in direct methods. This is the reason why direct methods are briefly described in this 
section. 
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Direct methods are based on two basic criteria. The first is that given a set  of  observed 
amplitudes  |F(hkl)| ,  the corresponding phases must be such as to produce (or be 
consistent with) non negative electron density values everywhere. The second criterion is 
that, if the atoms in a structure are identical and spherically symmetrical, and do not 
overlap in space, diffracted amplitudes and phases are connected by exact equations. The 
second criterion may be extended in a probabilistic sense to the case of unequal atoms. 
([5] p. 2-6)  

Direct methods involve the comparison of the structure factors magnitude, and in order to 
generalize the mathematics a unitary structure factor Uhkl  is defined: ܷ௛௞௟ ൌ ி೓ೖ೗ிబబబ  ൌ ி೓ೖ೗σ ௙ೕೕ                       (2.1) 

The unitary structure factor has absolute values that range from 0 to 1 and they are 
actually structure factors with the effects of atomic size removed. Uhkl  is a structure factor 
which has the same phase as Fhkl but whose values range from -1 to +1. These extreme 
values correspond to the cases where all atoms scatter in phase. Unitary structure factors 
with unity absolute value, are rarely if ever found but the larger the value observed the 
greater are the constraints which are placed on the atomic position.([2] p.323-325)  Uhkl 

represents the fractional value of a given structure factor as compared with its maximum 
possible value. 

Another useful quantity in direct methods is the normalized structure factor Ehkl : ܧ௛௞௟ ൌ ௎೓ೖ೗ழȁ௎೓ೖ೗ȁమவభȀమ       (2.2) 

where 

൏ ȁܷ௛௞௟ȁଶ ൐ ൌ  ͳܰ ෍ ȁܷ௛௞௟ȁଶ௛௞௟  

 in which the summation is over the N values of |Uhkl| 
2 corresponding to all reciprocal 

lattice sites, hkl. ൏ ȁܷ௛௞௟ȁଶ ൐ଶ therefore, represents the average value of |Uhkl| 
2. The 

advantage of Ehkl is that it has been shown that its use is tantamount to regarding the 
atoms within a structure as points which do not suffer from thermal motion. ([1] p.459-
460) Another advantage is that, since all classes of Bragg reflections are normalized to 
the same value, it is possible to compare set of reflections. The distribution of the | Ehkl | 
values is in principle, and often in practice, independent of the size and content of the unit 
cell. It does depend however, on the presence or absence of a center of symmetry in the 
space group. This way the structure factors are modified so that the maximum 
information on atomic position can be extracted from them. 
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The first direct methods to be introduced were the Harker-Kaspar inequalities. In this 
method which assumes that we work on centrosymmetric crystals, all structure factors 
Fhkl and hence all unitary structure factors Uhkl are real. This is a result of the Fourier 
transform properties, because as mentioned in the first chapter the Fourier transform of a 
symmetrical function (f(x) =f(-x)) is real. This means that the structure factors have 0 or ʌ 
phases and therefore are assigned with positive or negative signs respectively. 

This method is based in the following relationship: ܷ௛௞௟ଶ ൑ ଵଶ ሺͳ ൅ ܷଶ௛ ଶ௞ ଶ௟ሻ     (2.3) 

In case ܷ ௛௞௟ଶ> ½ then ܷଶ௛ ଶ௞ ଶ௟≥ 0 or in other words the sign of reflection 2h2k2l is 
positive whatsoever its absolute value is. Note that the sign of hkl may have both values. 

In practice the case ܷ௛௞௟ଶ> ½ does not occur often. However, when |ܷଶ௛ ଶ௞ ଶ௟ȁ is large, 
the expression (2.3) requires the sign of 2h2k2l to be positive even if Uhkl is somewhat 
smaller than ½. Moreover, when ȁܷ௛௞௟ȁ  and ȁܷଶ௛ ଶ௞ ଶ௟ȁ are reasonably large, but at the 
same time (2.3) is fulfilled for both signs of ܷଶ௛ ଶ௞ ଶ௟ it is still more likely that the sign of 
2h2k2l is positive than negative. For example, for ȁܷ௛௞௟ȁ ൌ ͲǡͶ and ȁܷଶ௛ ଶ௞ ଶ௟ȁ ൌ Ͳǡ͵ 
when the sign of 2h2k2l is assumed positive, from equation (2.3) we have 0,16≤0.5+0.3 
which is certainly true, and when the sign of 2h2k2l is assumed negative we have 
0,16≤0.5-0.3 which is also true. Then probability arguments indicate that the positive sign 
is more likely. This probability is a function of ȁܷ௛௞௟ȁ abd ȁܷଶ௛ ଶ௞ ଶ௟ȁ and in this example 
the positive sign probability for 2h2k2l is >90%. ([6] p.8)  

Different inequalities may be generated for all the 230 space groups. This represents a 
formidable range of possible relationships to try, but certain difficulties arise. One of 
them is the fact that the use of inequalities alone cannot identify all the phases 
unambiguously. The drawback of inequalities is that, to obtain definite results the 
reflections used must have amplitudes which are very sizable fractions of F000. Another 
limitation is that inequalities are restricted in centrosymmetric crystals. The resolution of 
a positive/negative sign is a far simpler problem than the identification of a phase angle 
anywhere between 0 and 2ʌ. No useful inequalities have been found for the non 
centrosymmetric crystal. ([1] p.460-463) 

Another, more powerful approach to the problem of phase determination is provided by 
the probability relationships. When the magnitudes of the unitary structure factors are not 
large enough for inequalities but still relatively large, it is possible to set up equations of 
signs which are probably true, and from these to extract phase information. These sign 
relationships are based on the Sayre equation: ܨ௛௞௟ ൌ ߮௛௞௟ σ σ σ ௛ᇲ௞ᇲ௟ᇲ  ௟ᇲܨ ௛ି௛ᇲǡ௞ି௞ᇲǡ௟ି௟ᇲ௞ᇲ௛ᇲܨ     (2.4) 
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where ĳhkl is a calculable scaling term. The implication of Sayre’s equation is that any 
structure factor Fhkl can be calculated as the sum of the products of pairs of structure 
factors whose indices add to give (hkl). At first sight equation (2.4) may appear useless 
since to determine one factor we must know the other two. However, Sayre pointed out, 
that for the case where Fhkl is large, the series must strongly tend towards one direction 
(+/-, talking about centrosymmetric cases) and that this direction is generally determined 
by the agreement in sign among products between large structure factors. Thus for the 
case of three large reflections: ܵ݅݃݊ሺܨ௛௞௟ሻ ൎ ܵ݅݃݊ሺܨ௛ᇲ௞ᇲ௟ᇲሻ ܵ݅݃݊ሺܨ௛ି௛ᇲǡ௞ି௞ᇲǡ௟ି௟ᇲሻ   or ܵ݅݃݊ሺܨ௛௞௟ሻ ܵ݅݃݊ሺܨ௛ᇲ௞ᇲ௟ᇲሻ ܵ݅݃݊ሺܨ௛ି௛ᇲǡ௞ି௞ᇲǡ௟ି௟ᇲሻ ൎ ͳ  (2.5) 

where “ൎ” means “probably equal”. The sign function may return ±1. Equation (2.5) is 
the probability equation derived from Sayre’s equation and is the basis for most of the 
current methods of phasing. Since the phases of unitary structure factors and normalized 
structure factors are the same as those of the corresponding structure factors Fhkl , it also 
applies to these modified factors. In addition, equation (2.5) holds in those cases in which 
inequalities also apply, for this reason inequalities are often ignored in practice. Sayre’s 
equation can be extended in the case of non centrosymmetric crystals. ([2] p.321-324) 
For structure factors with large values: ߮ି௛ି௞ି௟ ൅ ߮௛ᇲ௞ᇲ௟ᇲ ൅ ߮௛ି௛ᇲǡ௞ି௞ᇲǡ௟ି௟ᇲ ൎ Ͳ   (2.6) 

where ĳhkl is the phase of the hkl reflection. This is known as the ‘sum of angles’ formula 
and reflections (-h-k-l), (h’k’l’), (h-h’ k-k’ l-l’) define a “triplet” of reflections whose 
angles are related. ([5] p.4-6) The Bragg reflections ሺതʹ13), (42ͷത) and (͸തͳʹ) for example 
provide such a triplet.Various analyses have been carried out to determine the statistical 
interpretation of relation (2.6) so that the probability of its being correct may be 
quantified. 

 These relative phase combinations are of great importance in direct methods and they are 
called structure invariants, because they are uniquely determined by the crystal structure 
and are independent of the choice of origin. There also exist many more linear 
combinations of relative phases whose values remain unchanged when the location of the 
origin is changed provided these changes are made subject to specific space group 
symmetry constraints. These are called structure seminvariants. ([4]p. 290-293) 

 Back to the centrosymmetric case, one of the problems associated with the use of 
probabilities is that they can give the signs of a certain structure factor only if it is 
associated with two others already known. Often a few signs may be known 
unambiguously or may be arbitrarily allotted. For most of the space groups, the phases of 
three Bragg reflections may be chosen arbitrarily according to certain rules, and this 
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choice will define the origin of the unit cell. These reflections are called origin-fixing 
reflections. ([3] p.352-354) The definition of the origin of the unit cell is important 
because although it will not affect the magnitudes of the structure factors it will affect 
their relative phases. Starting with these phases several others may be determined. But 
one of the features of the use of the probabilities is that it is not possible to assign phases 
to all structure factors simply by moving from one reciprocal point to the next. The 
technique works for sets of triplets, and sooner or later it becomes stuck. We can use sign 
symbols to determine other phases. Suppose a certain structure factor which has a large 
magnitude but unknown phase. We can allot a sign symbol a to the phase of this structure 
and then define other structure factors phases in terms of a, which means same sign as the 
first structure factor whose phase we allotted this sign, or –Į, which means the opposite 
sign. This process may be repeated as often as needed if the procedure stuck again, and 
eventually most of the structure factors may be given either as an unambiguous sign or 
one of the symbols Į,b,c… we have assigned. 

These symbols represent one of two possibilities, a positive or a negative sign. If n 
symbols were used there are 2n possible ways in which the set of structure factors may be 
associated with signs. For a structure expressed with only a small number of signs, it is 
relatively easy to calculate a Fourier synthesis and an electron density map for each of 
these possibilities Inspection of these maps may allow the selection of one of them as 
being consistent with other information known about the structure.  

The problem is far more complicated for non centrosymmetric structures, because the 
phase can take values from 0 to 2ʌ. There is one particular probability relation, known as 
the tangent formula which is applicable to these cases, and has been widely known:    ܽ௛ ൌ ழหா೓ᇲห หா೓ష೓ᇲห ୱ୧୬ሺ௔೓ᇲା௔೓ష೓ᇲሻவ೓ᇲழหா೓ᇲห หா೓ష೓ᇲห ୡ୭ୱሺ௔೓ᇲା௔೓ష೓ᇲሻவ೓ᇲ    (2.7) 

where <…>h’ notation stands for an average taken over all values of h`k`l`. ([1] p.463-
465) 
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2.3 Neural Network Implementation 
 

Neural networks in this project were implemented in MATLAB. MATLAB (matrix 
laboratory) is implemented for many operating systems. In this study it was used in 
Microsoft Windows 7 environment and in Linux based Ubuntu operating system. The 
simulations of neural networks run on a computer based on an Intel i7 core central 
processor with 4 gigabyte RAM.   

MATLAB was used because it is already in use in many institutions and is practical for 
data analysis, data extraction, data processing, plotting and many more. It is a multi-
paradigm numerical computing environment and fourth-generation programming 
language and in many cases prototype solutions are obtained faster in MATLAB than 
solving a problem by using other programming languages. This software is widely 
available and, because of its matrix/vector notation and graphics, is a convenient 
environment in which to experiment with neural networks. It offers a simple, flexible and 
structured script language with many similarities with Pascal and supports the easy 
creation and linking of libraries. One of the libraries it offers is the Neural Network 
Toolbox. With this toolbox, neural network algorithms can be quickly implemented, and 
large scale problems can be tested conveniently. Specifically, version 8.0 of the Neural 
Network Toolbox was used. 

 One of the main disadvantages of MATLAB is that applications written in this language 
usually perform worse, in terms of calculation time, than applications written in more 
classic programming languages such as C, C++, Fortran etc. However, this is not 
necessarily the case with the implementation of neural networks examined in this project. 
In a recent study the implementation in MATLAB of a neural network training algorithm, 
the back propagation algorithm which is used in this project, was compared with several, 
other back propagation programs which were written in the C++ language. The 
MATLAB implementation was about 3 times faster and that happens because neural 
networks algorithms make heavy use of matrices multiplications (for example as in 
equation (1.17)) and MATLAB is optimized for this kind of calculations.   

Scripts and programs used in this project can be found in the appendix at the end of 
thesis. 
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2.3.1 Structures under Study – Input/output data 
 

In this section the data used to train, test and evaluate the neural networks are presented. 
For this study simple two dimensional centrosymmetric structures are employed to 
examine the ability of neural networks to approximate phase relationships. More 
specifically arbitrary structures that belong to the oblique p2 two-dimensional space 
group are used. The oblique p2 space group is illustrated in Fig.2-1, in the form given in 
the International Tables. The twofold axis is at the origin of the cell and it will reproduce 
one of the structural units, represented by an open circle, in the way shown. The right 
hand diagram shows the symmetry elements; the twofold axis manifests itself in two 
dimensions as a centre of symmetry. It will be seen that three other centers of symmetry 
are generated at the points (x, y) = (½,0), (0,½) and (½,½). The four centers of symmetry 
are all different in that the structural arrangement is different as seen from each of them. 
([8] p.25) 

 

Figure 2-1. The two dimensional space group p2 as it appears in International Tables for X-ray 
crystallography 

 

The dimensions of the sides of the unit cell which is used in our experiments are 10 Å and 
15 Å. The angle is set at 110 degrees. In each of these unit cells we suppose that there are 
30 identical atoms, with 2 electrons each, at random positions.  

A program in C language has been created, that produces these structures that belong to 
the oblique p2 space group. More specifically the program sets random x,y coordinates 
for the position of the atoms, and given a maximum resolution value which defines the 
number of reflections, it calculates the structure factors for this arrangement of atoms in 
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the unit cell, based on equation (1.14). In this group of crystals, the origin is usually taken 
on the center of symmetry in the unit cell at 0, 0. The equation that gives the structure 
factors of the unit cell with an origin of coordinates at the point 0, 0 is:  ([3] p.353) 

௛௞బǡబܨ  ൌ σ ௝݂ ݏ݋ܿ ௝ݔሺ݄ߨʹ ൅ ௝ሻே௝ୀଵݕ݇            (2.8) 
 

A thermal motion is also taken into account and that is why a thermally corrected 
scattering factor is needed in the equation (as the one in equation (1.15)). That means that 
a temperature factor is also necessary to be defined in the program. Resolution represents 
the average uncertainty for all atoms. In contrast, the temperature factor quantifies the 
uncertainty for each atom. For each arbitrary structure created, the output of the program 
are the values of the structure factors of the hk reflections (we use two indices because we 
are in two dimensions) defined both in magnitude and phase. The phase has the form of a 
positive or negative sign since we refer to a centrosymmetric structure, because its 
Fourier transformation is a real number.  

In this project’s experiments a value of 1 Å is used as maximum resolution, and a value 
of 10 is assigned to the temperature factor.  

When we perform a Fourier synthesis of the structure factors calculated from this 
program we can get the electron density map of the structure it represents. Two examples 
of structures produced by the C program are shown in Fig. 2-2. The Fourier synthesis of 
the structure factors has been made with the “Pepinsky’s machine” program. [E-6] 
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Figure 2-2. The electron density maps of two random structures created to be used with the neural 
networks 

 

From the outputs of this program we determine the inputs of the neural networks. The 
input in the desired neural network has to be something that is directly connected to the 
observed data of a diffraction experiment. That is, the amplitude of the structures factors 
without their phases (sign). Thus the input of neural networks is the absolute value of the 
structure factors produced be the program in C. Other forms of input data that could be 
useful, since they are related with the use of direct methods, are the absolute values of the 
unitary structure factors (given from equation (2.1)) and the absolute values of 
normalized structure factors (given from equation (2.2)). These factors can be used as 
inputs, because they can be readily estimated from the observed experimental data 
(absolute values of structure factors).  
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Unitary structure factors are obtained using equation (2.1) in the outputs the program in C 
produces. Normalized structure factors have a more complex formula and they are 
estimated more easily directly from the C program, when we omit the thermal correction 
for the scattering factor. This is equivalent to a temperature factor Ǻj equal to 0 (equation 
(1.15)). This result comes from the fact that the use of normalized structure factors is 
tantamount to regarding the atoms within a structure as points which do not suffer from 
thermal motion. The absolute values of structure factors, unitary and normalized factors 
are all used as inputs in different networks. 

The output data of the neural networks present a wider variety and depends on the 
structure of the neural network and the input used. The only thing all networks have in 
common, regarding their outputs is the number of these outputs. Each network needs to 
return something that will give us information on the phase of each structure factor. That 
means we need as many outputs as inputs. For each input which consists of the absolute 
value of a structure factor we must get a result, an output, which will inform us about its 
phase. One thing must be noted here: the outputs mentioned in this paragraph, which are 
produced basically from the C program, are the correct, the desired outputs of the neural 
networks we wish to create. They are used in the training procedure, as training patterns 
and their values are often referred as targets.  

Up to now the number and the type of inputs in the neural network has been defined, as 
well as the number of outputs. Another important decision is the type of the network.  

As mentioned earlier neural networks are being used to accomplish different tasks that 
fall into many areas such as pattern classification, clustering and function approximation. 
The strategies of pattern classification and clustering were not used because they don’t 
seem to match the needs of the problem. The purpose is the creation of a neural network 
that is able to estimate the phases of the structure factors of a crystal under study by 
means of the observed amplitudes of the diffraction pattern. In the simple case of a 
simplified two dimensional structure such as the one described above, 225 structure 
factors are produced from the C program. That means we need 225 inputs and 225 
outputs, one for each phase. Now if someone wants to train a pattern classification neural 
network, during training he has to present at least one sample of each pattern in the 
network. In this case the different patterns the neural network wishes to classify is the 
different combinations of +/- signs in the outputs. That means the network has to be 
trained with at least 2225 samples with different outputs, even for a simple structure like 
this, let alone for real life proteins. The same holds for a clustering strategy, the clusters 
formed from the problem as it is defined reaches impractical sizes. For these reasons the 
strategy followed for neural networks in this project is that of function approximation, 
which is implemented with feed forward neural networks. These neural networks through 
training could approximate relationships used in the direct methods such as the sign 
relationships of triplets.   
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2.3.2 Feed Forward Networks and Function approximation. 
 

Feed forward neural networks can be used as general function approximators. In this 
section the flexibility of these networks for implementing functions will be illustrated 
with an example. The notation of section 1.1.2 will be used. 

In Fig. 2-4 a multilayer feed forward neural network is shown. 

 

 
Figure 2-3. Function approximation network with the outputs of each layer 

 
 This network consists of two layers. The first layer, described as Log-sigmoid layer is 
the hidden layer of the network. This layer is called log-sigmoid because it uses the 
following S-shaped logistic sigmoid transfer function: ݂ଵሺ݊ሻ ൌ ଵଵା௘ష೙      (2.9) 

where the ݂ଵሺ݊ሻ notation represents the transfer function of the first layer, n being the net 
input of the neurons. Fig. 2-4 shows the graph of this function and its representative 
symbol. 
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Figure 2-4. Graph and symbol of the logistic sigmoid function (logsig) 

The second layer, which is also the output of the neural network, has a linear function 
(actually it is the linear parent function) as transfer function: ݂ଶሺ݊ሻ ൌ ݊ଶ               (2.10) 

where ݊ ଶ does not represent the squared value of n, but stands for the net input of the 
second layer. This linear function will be called purelin (as noted in MATLAB) from 
now on and its graph and symbol is given in Fig. 2-5. 

 

Figure 2-5. Graph and symbol of the linear parent function (purelin) 

 

The two layer network in Fig. 2-3 is called a 1-2-1 network because it has one input, 2 
neurons in the hidden layer and one output. For this example the following values are set 
for the biases and weights of the network. 
ଵǡଵଵݓ  ൌ ͳͲ          ݓଶǡଵଵ ൌ ͳͲ         ܾଵଵ ൌ െͳͲ   ܾଶଵ ൌ ͳͲǡ ଵǡଵଶݓ ൌ ͳ          ݓଵǡଶଶ ൌ ͳ        ܾଶ ൌ Ͳ  
 
 
The network response for these parameters is shown in Figure 2-6, which plots the 
network output Į2 as the input p is varied over the range [-2,2]. 
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Figure 2-6. Network response for specified values of parameters 

 
The response consists of two steps, one for each of the log-sigmoid neurons in the first 
layer. By adjusting the network parameters the shape and location of each step changes, 
as described in Fig. 2-7. This figure shows how the network biases in the first (hidden) 
layer can be used to locate the position of the steps in (a).In (b) the effect of the weights 
to the slope of the steps is illustrated, while (d) shows how the bias in the second (output) 
layer shifts the entire network response up or down. 

 
Figure 2-7. Effects of various parameters changes in the network response 

 

This example shows the flexibility of this type of networks. (example used from [12] p.4-
7) These feed forward networks can be used to approximate almost any function, given a 
sufficient number of neurons in the hidden layer. A non linear activation function, such as 
the logistic function is used to squash the sum of the net input.  It has been shown that 
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networks with two layers, non-linear transfer functions in the hidden layer and a linear 
transfer function in the output layer can approximate a wide variety of functions of 
interest to any degree of accuracy, given the appropriate parameters [33].  

During this project mostly neural networks similar or based to the one described here 
were used. These networks mainly differ in the transfer function of the hidden layer and 
the number of neurons in the hidden layer. Specifically the networks use two types of 
transfer functions in the hidden layer. The first type is the logistic sigmoid function in 
equation (2.9), and the second is the hyperbolic tangent sigmoid which is simply a scaled 
and shifted version of the logistic sigmoid. The equation for this function is given by: ݂ሺ݊ሻ ൌ ଶଵା௘షమ೙ െ ͳ     (2.11) 

The plot and the symbol of this function is given in Fig.2-8. 

 

Figure 2-8 Plot and symbol of the Hyperbolic tangent sigmoid transfer function 

In function approximation neural networks usually hyperbolic tangent sigmoid functions 
are used, however these two functions are considered equivalent in backpropagation 
networks (discussed later) especially with the use of a linear transfer function in the 
output layer of the network. [35] Although they are equivalent in some cases the use of 
one of these transfer functions, instead of the other may present advantages, depending 
on the problem. 

The question which arises now is how the parameters which will allow us to approximate 
a function are defined. This is done during the process of training as described in the next 
section. 
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2.3.3 Training algorithm 
 

As written above, one of the most appealing characteristic of neural networks is their 
capability to familiarize with problems by means of training and, after sufficient training, 
to be able to solve unknown problems of the same class. This approach is referred to as 
generalization.  

A neural network during training, adapts to the problem and ‘learns’. Theoretically a 
neural network could learn by developing new connections, deleting existing 
connections, changing connection weights, changing the threshold values of the 
activation function of the neurons, varying some of the neuron transfer functions, 
developing new neurons, or deleting existing neurons. Most of the abovementioned 
functions can be performed by simply changing the weights, which is the most common 
procedure. A connection may be deleted by assigning a zero value to its weight, while an 
inactive connection can by activated by changing its zero value to something else. The 
threshold values of activation functions can be modified through the biases. Thus, we 
perform any of the first four of the learning paradigms by just changing the weights.([16] 
p. 51-53) 

The change of neuron functions is difficult to implement, not very intuitive and not 
exactly biologically motivated. This is why it is not used during training in this project. 
The development and deletion of new neurons, is similar to trying different networks 
with different numbers of neurons in their hidden layer, and this subject will be addressed 
later. 

Thus, a training algorithm is needed that is going to adjust the weights to suitable values. 
In this case supervised learning will be used, because the neural networks are going to be 
trained with examples with known, inputs and outputs. In supervised learning the training 
set consists of input patterns as well as their correct results in the form of the precise 
activation of all output neurons. These patterns are given from the C program with the 
procedure discussed in 2.3.1 and are called training patterns. The correct results are 
referred as targets. Thus, for each training set that is fed into the network the output, for 
instance, can directly be compared with the correct solution (target) and the network 
weights can be changed. 

Another issue that has to be regarded is when the weights are adjusted during the training 
procedure. There are two choices: incremental and batch training. In incremental or 
online training the weights and biases are updated after each input-target pattern is 
presented, and these patterns are presented in the neural networks as sequences. In batch 
or offline training the weights and biases are only updated after all of the inputs and 
targets are presented. The total error of all the patterns presented is calculated by means 
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of an error function operation and the weights are adjusted properly. These two methods 
have been found to perform similarly in a wide variety of problems. [34] In this study we 
use the batch training method for all networks. 

The basic training algorithm used in multilayer feed forward networks, is called 
backpropagation and is an abbreviation for “backpropagation of errors”. This algorithm 
involves the mathematical basis of an optimization technique called gradient descent. 

Gradient descent is a first-order optimization algorithm and its concept will be discussed 
in the following paragraph. Gradient descent procedures are generally used where we 
want to minimize n-dimensional functions. As an example we can use a network just as 
the one in Fig.2-3. Let’s say a training pattern is presented to this network. The training 
pattern consists of an input and a desired output (target). When the input is presented to 
the network it produces an output according to the values of its weights. This output is 
then compared with the target of the training pattern (the desired output) and an error 
function is produced. Error functions can take many forms according to the problem, but 
they always depend on the difference between the output of the network and the target. 
As someone can see this error function depends on the output of the neural network 
which depends on its weights. Thus, the error function is a function of the weights of the 
neural network. The purpose of the training of a neural network is to minimize this error. 
In our example suppose that all the weights are fixed except for two weights, say w2

1,2 

and w2
1,2. We can then plot the error function in a 3d graph. The independent variables 

are the values of the two weights. The error function surface can probably take many 
forms and depends on the problem. Fig. 2-9 presents an example. In order to find the 
weights for which the error function minimizes (the minima of the error function) we use 
the gradient of the error function. Gradient is a vector whose components are the partial 
derivatives of the function and is always perpendicular to the contour lines, showing the 
direction in which the function ascends. Thus, the negative of the gradient shows the 
direction of descent. From a random starting point using the gradient descent algorithm, 
we can move from that point, with small steps, whose directions are dictated by the 
negative gradient, to the minima of the error function. ([16] p.61-66) 
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Figure 2-9 Visualization of the gradient descent on a two-dimensional error function. x,y axes 
represent the weights, while z axis is the value of the error function. (left) Contour plot of the error 

function (right) 

 

This concept can extend to n-dimensional functions, and is it used by the 
backpropagation algorithm, through a rule, which is called the generalized delta rule and 
defines how the weights are adjusted, after the presentation of a training pattern. The 
detailed description and the equations of the generalized delta rule are omitted, because 
the point is to present the philosophy of the algorithm and not the detailed mathematical 
description. After all, as discussed later, different equations may be used, but the steps of 
the algorithm remain the same, as the principle of descent gradient. 

The basic backpropagation training algorithm, involves two phases. During the first 
phase the input is presented and propagated forward through the network to compute the 
output value for each unit in the output layer. This output, the network produces based on 
its current weights, is then compared with the targets of the training pattern (each training 
pattern contains the input and the target). This comparison results in an error signal į for 
each output unit, which is estimated from the generalized delta rule. The second phase 
involves a backward pass through the network (analogous to the initial forward pass) 
during which the error signal is passed to each unit in the network and the appropriate 
weight changes are made (dictated by the generalized delta rule again). This second 
backward pass allows the recursive computation of į for each layer. The first step is to 
compute į for each of the output units. This is simply the difference between the actual 
and desired output values times the derivative of the squashing function. We can then 
compute weight changes for all connections that feed into the final layer. After this is 
done, then compute į’s for all units in the penultimate layer. This propagates the errors 
back one layer, and the same process can be repeated for every layer. The backward pass 
has the same computational complexity as the forward pass. [11] 
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The whole procedure just described, constitutes one iteration of the algorithm, or as it is 
called one epoch. After this, the weights of the network are changed and hopefully in a 
direction that minimizes the error between the outputs of the network and the desired 
values. However, rarely if not ever the network produces the derided outputs with just 
one pass of this algorithm. This algorithm works with small steps towards the minima of 
the error function. After the two phases are completed and the weights change, the 
training pattern must be presented again in the network. If the difference between the 
outputs of the network and the targets, produce an acceptable error then the training of 
the network stops. Otherwise, the training procedure continues until the outputs reach the 
desired accuracy. 

Gradient descent procedures provide good results in many cases and are promising, but 
not foolproof techniques. Gradient descents often converge against suboptimal minima. 
Every gradient descent procedure can, for example, get stuck within a local minimum. 
This problem is increasing proportionally to the size of the error surface, and there is no 
universal solution. Fig 2-9 presented a simple error surface with well defined and “easily 
accessible” global minima, but this is not always the case. Take for example an error 
surface like the one in Fig. 2-10. This error surface has many local minima and gradient 
descent procedures can easily get stuck in one of them, preventing it from accessing the 
global minima. In reality, one cannot know if the optimal minimum is reached and 
considers training successful, if an acceptable minimum is found. Another problem 
presents when the algorithm passes through a very flat surface of the error surface. In this 
occasion the gradient of the error function is really small and the algorithm converges 
really slowly, requiring a large number of training epochs. 

 

Figure 2-10. A complicated error surface with many local minima. 
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Neural networks created in this project do not use the basic backpropagation algorithm 
but a variation. There are various alternatives to the backpropagation algorithm, all of 
them with their own advantages and disadvantages. Most of them were created with 
faster convergence of the algorithm in mind. In the backpropagation algorithm there is a 
parameter called learning rate, which is defined by the designer to small values. A really 
small value of the learning rate makes the algorithm converge too slowly, requires a large 
number of iterations and may stuck easier in local minima.. A large value for the learning 
rate makes the algorithm faster, and it prevents it from becoming stuck in swallow local 
minima, but it renders the algorithm unstable and may overshoot the point of global 
minima. The choice of the learning rate is a challenge, when designing neural networks, 
and it was the starting point from which the variations on backpropagation begun.  

The variation used in this project belongs to the numerical optimization methods and is a 
member of the conjugate gradient algorithms. As mentioned above, the basic 
backpropagation algorithm adjusts the weights in the steepest descent direction (negative 
of the gradient). This is the direction in which the performance function is decreasing 
most rapidly. It turns out that, although the function decreases most rapidly along the 
negative of the gradient, this does not necessarily produce the fastest convergence. In the 
conjugate gradient algorithms a search is performed along conjugate directions, which 
produces generally faster convergence than steepest descent directions. In the training 
algorithm discussed up to this point, the learning rate is used to determine the length of 
the weight update (step size). In most of the conjugate gradient algorithms, the step size 
is adjusted at each iteration. A search is made along the conjugate gradient direction to 
determine the step size, which minimizes the error function along that line.([20] chapter 
5, p.17) 

Specifically the algorithm used is the scaled conjugate gradient which is too complex to 
explain in a few lines, but the basic idea is to combine a model-trust region approach, 
with a conjugate gradient approach. This algorithm was chosen based on various tests 
performed by Mathworks (creators of MATLAB) in which they compared the speed of 
their training algorithms in different problems. ([20] chapter 5, p.32-50) From these tests 
it seems that the scaled conjugate gradient, seem to perform well over a wide variety of 
problems, particularly for networks with a large number of weights, such as the networks 
designed in this project. Another important advantage of this algorithm is that it has 
relatively modest memory requirements. 

The progress of these algorithms depends on the starting point of the network in the error 
surface. That is the initial values of all the parameters (weights) of the network before 
any training. Usually the weights are initialized with random small values (most 
commonly between -0.5, +0.5). ([9] p.296-297) If the network starts its training from 
different random points in the error surface (different initial parameters) then it might 
converge at different points which represent local or global minima. The choice of initial 



60 
 

weights will influence whether the net reaches a global or local minima of the error and 
how quickly it converges. There is no method to guarantee that this point is a global or 
local minima. To overcome this difficulty the network should be re-initialized and trained 
more times. The network that produces the smallest error, is the one that performs better. 
Usually five times of re–initialization are enough.   

One modification of the common random weight initialization is the Nguyen-Widrow 
Initialization. The initialization of the weights from the inputs to the hidden units is 
designed to improve the ability of the hidden units to learn. This is accomplished by 
distributing the initial weights and biases so that, for each input pattern, it is likely that 
the net input to one of the hidden units will be in the range in which that hidden unit will 
learn more readily (in other words in the range where the derivative of its transfer 
function is greater). This modification has a factor of randomness and each time the net is 
initialized it produces different values. That network using this modification also needs to 
be initialized some times, but its convergence will be faster. ([9] p.296-298) 

The Nguyen-Widrow Initialization is the chosen method for initialization of all neural 
networks in this project and is implemented in the neural network toolbox of MATLAB. 

 

2.3.4 Network size and Generalization 
 

One of the key issues in designing a multilayer network is determining the number of 
neurons to use. The number of neurons used in the output and input layer of the neural 
networks has been determined by the nature of the problem in 2.3.1. Another important 
feature of the network architecture that needs to be determined is the number of neurons 
in the hidden layer and the number of hidden layers. 

Deciding upon the appropriate number of hidden nodes and layers is largely a matter of 
experience. There are no hard and fast rules for this issue. With many problems, 
sufficient accuracy can be obtained with one or two hidden layers and 5–10 hidden nodes 
in those layers. In practice, such a large number of nodes may be required that it is more 
efficient to go to a second hidden layer. If the number of neurons are less as compared to 
the complexity of the problem data then underfitting may occur. Underfitting occurs 
when there are too few neurons in the hidden layers to adequately detect the signals in a 
complicated data set. The complexity of a neural network is determined by the number of 
free parameters that it has (weights and biases). If a network is too complex for a given 
data set, that means if it has unnecessary more neurons, then it is likely to overfit and to 
have poor generalization (it will memorize the data). [13] 
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 Many researcher put their best effort in analyzing the solution to the problem that how 
many neurons are kept in hidden layer in order to get the best result, but unfortunately no 
body succeed in finding the optimal formula for calculating the number of neurons that 
should be kept in the hidden layer so that the neural network training time can be reduced 
and also accuracy in determining target output can be increased.[18] Practically, it is very 
difficult to determine a good network topology just from the number of inputs and 
outputs. It depends critically on the number of training examples and the complexity of 
the problem. 

In terms of neural networks, the simplest model is the one that contains the smallest 
number of free parameters (weights and biases), or, equivalently, the smallest number of 
neurons. To find a network that generalizes well, we need to find the simplest network 
that fits the data. 

There are at least five different approaches which have been used to produce simple 
networks: growing, pruning, global searches, regularization, and early stopping. Growing 
methods start with no neurons in the network and then add neurons until the performance 
is adequate. Pruning methods start with large networks, which likely overfit, and then 
remove neurons (or weights) one at a time until the performance degrades significantly. 
Various forms of this technique have been called optimal brain damage and optimal brain 
surgeon. Global searches, such as genetic algorithms, search the space of all possible 
network architectures to locate the simplest model that explains the data. The other two 
techniques are called regularization and early stopping and are discussed later in this 
section. 

In this project we are not interested in the optimal neural network which approaches the 
problem. The purpose is to collect evidence on whether neural networks are able to 
represent relationships that will enable to deduce the phases of observed structure factors. 
So pruning or growing techniques will not prove particularly useful. A number of neural 
networks with different sizes are tested ranging from a few neurons to some hundred 
neurons in the hidden layer. In those structures the technique of early stopping is used, 
instead of pruning/growing techniques, to avoid overfitting. Also architectures with two 
hidden layers are tested. Multiple hidden layers are usually used in applications where 
accuracy is important and the training time is not an issue. The drawback of using 
multiple hidden layers in the neural network is that they are more prone to fall in bad 
local minima. [13] 

As mentioned earlier one of the problems that occurs during neural network training is 
called overfitting. The error on the training set is driven to a very small value, but when 
new data is presented to the network the error is large. The network has memorized the 
training examples, but it has not learned to generalize to new situations. The problem is 
illustrated in Fig.2-11. 
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Figure 2-11. Overfitting and poor extrapolation problems 

 

In Fig. 2-11, the function under approximation is represented with the blue line. The 
black dots represent the training data with which a neural network has been trained, and it 
seems that they are noisy, because they are not on the blue line. The black line represents 
the response of the neural network. As someone can notice, the neural network perfectly 
represents its training pattern but it cannot generalize because it does not follow the blue 
line as it should. That happens in the range of values [-3, 0] of the independent variable 
(horizontal axis). This is probably happening because the network has too many neurons 
and can represent a more complex function than the one in blue line. A smaller network 
would not have enough power to overfit the data. Instead of removing neurons from the 
network we could train it with less iterations.  

In Fig.2-11 the problem of extrapolation is also depicted. This can be shown  in the range 
of values [0, 3], where we can see that the neural network response is not similar to the 
function. That happens because there are no training data for this area. In this case the 
network is extrapolating beyond the range of the input data. 

The neural network in Fig.2-11 is trained again with the proper number of iterations and 
its response is shown again in Fig.2-11. 
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Figure 2-12. Good generalization and poor extrapolation 

 

In this case it is noticeable that the neural network generalizes well in the range [-3, 0], 
where adequate training data is present, but the extrapolation problem still remains, in the 
range [0, 3]. This is understandable, since the network has been provided with no 
information about the characteristics of the function in this range. The network response 
outside this range will be unpredictable. This is why it is important to have training data 
for all regions of the input space where the network will be used. In our case the only 
way to ensure that is by using a large number of training patterns. Also if the number of 
parameters in the network is much smaller than the total number of points in the training 
set, then there is little or no chance of overfitting. The networks used in this study have a 
really large numbers of free parameters and although it is easy to collect more data and 
increase the size of the training set with the program in C, training a large network like 
this with a vast amount of training patterns may be impractical. That is why the early 
stopping method has been chosen. 

As has been said, the strategy of early stopping is used to prevent overfiting of the data. 
The early stopping procedure is simpler than regularization mentioned before and it 
provides almost the same results. ([12] chapter 13) That is why it has been selected as the 
method to prevent overfiting.  

In the early stopping method we divide the data into two sets. The first subset is the 
training set, which is used for computing the gradient and updating the network weights 
and biases using the algorithm mentioned at 2.3.3. The second subset is the validation set. 
The data in the validation set are not used as a training pattern and represents data 
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unknown to the network. The error on the validation set is monitored during the training 
process. The validation error will normally decrease during the initial phase of training, 
as does the training set error. However, when the network begins to overfit the data, the 
error on the validation set will typically begin to rise. When the validation error increases 
for a specified number of iterations (called validation checks), the training is stopped, and 
the weights and biases at the minimum of the validation error are returned. 

Except of overfiting the early stopping method also prevent us from training a neural 
network aimlessly. In a condition when the error on the validation data rises, even if the 
network has not memorized the training set, that usually means that the network is unable 
to represent a solution to the problem and something different should be tried. 

Except of these two sets in this project we also use a third set, called the test set. The test 
set error is not used during the training, but it is used to compare different models. It is 
useful to plot the test set error during the training process. If the error in the test set 
reaches a minimum at a significantly different iteration number than the validation set 
error, this may indicate a poor division of the data set. ([20] p.55-56) 

 

2.3.5 Output format of Neural Network experiments and 
representation of results 
 

Neural networks are implemented in MATLAB using its neural network toolbox. Every 
network is given a set of training patterns which are created with the C program 
described in 2.3.1. From the outputs of this program input data for the neural network are 
created using the absolute values of the structure factors or the absolute values of the 
unitary and normalized factors.  

The outputs which represent the phases of the structure factors can take various forms 
depending on the experiment. Specifically three types are used: 

Structure factor form: The target outputs are defined as the signed structure factors. 

Bipolar form: In bipolar form the target output for each class of structure factor can take 
the values +1 when the corresponding structure factor is positive (phase=0) and -1 when 
it is negative (phase=ʌ). Remember that structure factors from centrosymmetric 
structures are real numbers. 

Binary form: In binary form the target outputs are represented with 0 when the 
corresponding structure factors are positive and 1 when they are negative. 
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The structure factor form obviously is the most natural representation, but it may be 
easier for the neural networks to learn relationships with bipolar or binary representation, 
because structure factor form demands from the network to learn the production of 
continuous values, while the other forms have only two possible options.  

It is not necessary for the networks to produce outputs with high accuracy, as long as 
these outputs can be classified as positive or negative phases. For example it is not 
necessary for the binary form outputs to be exactly zero or one. If a threshold that 
separates the two phases is created, that is enough. A network that assigns to its outputs 
values larger than 0,5 for positive phases and values smaller than 0,5 to negative values 
can be considered successful (of course 0,5 can be some other value). The same holds for 
the structure form where every positive output can be considered as a positive phase and 
every negative value as a negative phase, regardless of the absolute value of the output. 

For most of the experiments three graphs are created. The first one is the performance 
graph which shows how the error function minimizes during training. This function, also 
called performance function, is the one the network wishes to minimize with its training 
algorithm. The performance function used in all networks in this study, is the mean 
squared error function (mse):  ݉݁ݏ ൌ ଵ௡σ ሺݐ௜ െ ௜ሻଶ௡௜ୀଵ݋       (2.12) 

where ݐ௜ is the target value for the ith output of the neural network and ݋௜ is its actual 
output. The number of outputs is n. 

An example of a performance function graph (from now on, simply called performance) 
is shown in Fig.2-13. 
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Figure 2-13. An example performance plot 

 

In the plot in Fig.2-13, someone can see how the performance is altered after each 
iteration of the training algorithm. This is a typical result where the performance of the 
training set decreases continuously, while the validation set decreases up to the point 
where overfiting occurs. In this graph we can also see that maybe the validation set is not 
so well defined (poor division of data sets) because the curves of the test and he 
validation sets have important differences according to where their minimums are 
located. This network was trained for 20 epochs, but after the 14th epoch (iteration) the 
validation performance started to increase (remember: a good performance is a 
performance with small value). After six validation checks the network stops its training 
and returns to the state where the minimum validation performance was observed. This is 
indicated by the green circle. 

The second plot created from the experiments is a linear regression plot of targets relative 
to outputs of the neural. Fig. 2-14 shows an example regression plot. 
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Figure 2-14. Examples of regression plots 

 

In these plots someone can see how the targets are related to the actual outputs. In the 
upper plot, when the target value of an output unit is 8, the plot shows that the network 
produces a value really close to 8 for this output unit. The R value at the top of the plot is 
the correlation coefficient and has a value of one when the targets match the outputs 
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perfectly. When R is one a perfect linear fit is accomplished. The perfect linear fit is 
represented by a diagonal dashed line in the plot. The blue line represents the best linear 
fit for the network’s data. The closer this line is to the dashed line the better the network 
performs, and the targets match to the outputs. An R value of 0 represents uncorrelated 
data and a negative value of R represent data correlated inversely.  

The third graph which is created is the train state graph. An example is shown in Fig.2-15 

 

Figure 2-15. Example train state graph 

 

This graph gives information on the training process of the neural network. The upper 
plot shows how the value of the gradient changes during training, and the plot below 
shows events of validation checks. A validation check occurs, when the performance 
(error) on the validation data set increases after a training epoch, as mentioned in 
paragraph 2.3.4. Validation checks are represented by red diamonds with blue outline in 
the graph.  In the example in Fig. 2-15, a network is trained and the performance of the 
validation data set (from now on, called validation performance) is minimized after each 
training cycle, until epoch 165 (approximately- as someone can see from the graph). 
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When a diamonds lies in the zero line of the vertical axis (“val fail” in the vertical axis 
stands for validation fail) it means that after this training epoch the validation 
performance decreases. At epoch 165 a diamond can be seen not at the zero line, but at 
the line of the vertical axis representing the value ‘1’. A diamond in this line shows that 
after the completion of the 165 training cycle, the validation performance increased. At 
this point the minimum validation performance achieved so far is that after the 
completion of the 164 training epoch. The training continues with one more training 
epoch. After the completion of the 166 training epoch, the validation performance is 
lower than that of epoch 164. In this case the training continues normally. However, if the 
validation performance did not decrease we would have a second validation check event, 
represented by a diamond at the line of the vertical axis representing the value ‘2’. As it 
should be clear so far the values in the vertical axis represent the number of successive 
iterations (or training cycles – training epochs) that the validation performance fails to 
decrease. When a maximum number of such successive iterations is reached the training 
procedure stops and we return to that state of the neural network where the minimum 
validation performance was reached. This number of maximum successive iterations 
without validation performance decrease is a parameter whose value is determined by the 
designer of the neural network. In the example of Fig. 2-15 the number of maximum 
successive validation checks is set to 6. As someone can see from the graph when the 
validation checks reach a maximum of 6 the training process stops at epoch 364. The best 
validation performance was at epoch 364-6=358. 

These three plots give enough information about the training process of a neural network 
and its performance and allow the user to evaluate the network and come to useful 
conclusions. 

There are four conditions for a training process to stop. The first one is to reach the 
maximum number of validation checks (early stopping). The second is to reach a defined 
performance goal. A zero performance goal is used to all networks. A neural network 
which approximates a function almost never reaches a zero performance goal of course. 
The zero value was set because a certain goal is not defined, the networks are trained 
until they reach their maximum potential. The third occasion for the training to stop, is 
when the gradient reaches a really small value (e-6 ~ 0.002478). In this case the algorithm 
probably is in a very flat surface of the error function and further training will not lead 
anywhere after a reasonable number of iterations. In the abovementioned graphs someone 
can see why a training process may have stopped. The last condition is when the training 
has reached a maximum number of training iterations (epochs). 
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2.3.6 The example of a satisfactory network 
 

Now that the tools for the evaluation of a network have been given a question arises: how 
the results of an efficient network would look like? As mentioned earlier, it is not 
necessary for the networks to produce outputs with high accuracy, as long as these 
outputs can be classified as positive or negative phases with the use of some sort of 
threshold. In this section an example of a satisfactory result will be presented. Suppose 
that a network, with binary representation of the outputs, after training produced the 
regression plot in Fig.2-16 for inputs with which it has not been trained. 

 

Figure 2-16. Regression plot of a successful neural network.  

 

From this plot it can be observed that the blue line (best linear fit) is close enough to the 
dashed line (perfect linear fit) and the R value is close to one. This graph was created 
after the presentation of 4000 unknown patterns. All the networks have 225 outputs as 
discussed in 2.3.1. That means that this plot has 4000 x 225=900000 points. It can be 
observed that many of the points that should be one take zero or even negative values, 
and many of the values that should be 0 take values close to 1. A threshold therefore may 
be difficult to be defined and because the points on the plot are really dense we can make 
only assumptions about their distribution. For this reason a histogram should be created. 
Two histograms are presented in Fig.2-17. These histograms have been created from the 
same data presented in Fig.2-16. The red histogram represents the outputs of the network 
that should be one, while the blue histogram represents the values of the outputs that 
should be zero.  
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Figure 2-17 (left). Histograms of the outputs of a successful neural network 

Figure 2-18 (right). Probability density function of a successful neural network 

 

In these histograms we see that these points follow a Gaussian bell shaped distribution, 
and so we can plot a probability density function using Gaussian kernel density 
estimation as the one in Fig. 2-18. The blue line represents the probability density 
function of the outputs that should be one. In this figure it is obvious that a threshold of 
0.5 would assign the correct phase to almost all the structure factors, with a small number 
of false signs. This is the reason this network would be considered as a really good 
network for the purposes of this project. The performance of this network (mse) was 
0.02.  

The data presented in this section do not come from a properly trained and tested neural 
network, but from a network trained with almost identical training and validation sets for 
reasons of demonstration only. With these graphs in mind a comparison between the 
results obtained from the experiments and what is the desired outcome is easier. 
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Chapter 3:  Experiments and results 
 

In chapter 2, the philosophy of the neural networks and the training algorithm has been 
explained. In this chapter, details about the architecture and the procedure of each 
experiment will be presented, along with the results these experiments produced. 

 

3.1 Abbreviated notation of neural networks. 
 

In this chapter an abbreviated notation of neural networks is being used, instead of the 
one used so far. This notation is used by MATLAB and is more practical for complex 
networks with a large amount of neurons and connections. It would be useful to sacrifice 
a few lines to describe it. In Fig. 3-1 the notation used so far (a) and the abbreviated 
notation (b) are illustrated for the neural network of Fig.1-16 in the first chapter. 

 

Figure 3-1.  (a ) Notation with all the connections drawn. (b) Abbreviated notation. 

 

As shown in Figure 3-1, the input vector p is represented by the solid vertical bar at the 
left. The dimensions of p are displayed below the variable as Rx1 , indicating that the 
input is a single vector of elements. These inputs go to the weight matrix W, which has 
columns but only one row in this single neuron case. If there were S neurons in the layer 
the dimension of W would be SxR. A constant 1 enters the neuron as an input and is 
multiplied by a scalar bias b. In the case of the S neurons the bias would be a vector b 
with S elements. The net input to the transfer function f  is n, which is the sum of the bias 
b and the product Wp. The neuron’s output is a scalar in this case. If we had more than 
one neuron, the network output would be a vector. 
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After this example there should be no confusion with the representation of the neural 
networks that follow.  

 

3.2 Experiments with structure factors as input data 
 

The first neural networks that have been tested were networks whose input data were the 
absolute values of structure factors, produced by random structures of the two 
dimensional p2 space group as explained in section 2.3.1.  

 

3.2.1 Networks with hyperbolic tangent sigmoid transfer function and 
bipolar output data. 
 

Networks of this type are shown in Fig. 3-1, as they are presented in MATLAB. 

 

Figure 3-2. Hyperbolic tangent sigmoid transfer function networks 

 

As someone can notice this network has 225 inputs, one for each structure factor, 225 
outputs which correspond to the phases of these structures and 225 output neurons in the 
output layer (output layers produce the outputs of the network, thus outputs=neurons in 
the output layer). In this figure the hidden layer has 20 neurons, and is drawn in a red box 
to show that this number is variable. Various networks with different number of neurons 
in the hidden layer are tested and evaluated. 

The target outputs which represent the phases of the structure factors have the bipolar 
form ±1, with 1 representing a positive value (phase=0), and -1 a negative value 
(phase=ʌ) as mentioned in section 2.3.1. From now on when hyperbolic tangent sigmoid 
transfer functions are used, bipolar outputs will be considered the default target output, 
unless something different is mentioned.  
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The networks have two layers, one hidden layer with a hyperbolic tangent sigmoid 
transfer function and one output layer with a linear transfer function. 

These networks were trained with different numbers of training pairs. Specifically each 
one of them was trained in cycles, where 2000, 4000, 6000, and 10000 structure patterns 
were presented to them. In every occasion 60% of these patterns were allocated to the 
training set, 20% of them to the validation set and 20% of them to the test set. The 
patterns of each set are chosen randomly. These sets are used for early stopping 
procedures and evaluation of the networks.  By training the networks with different 
training pattern sizes, an estimation of how this size affects the performance of the 
network can be made. 

The number of neurons in the hidden layer ranges from 5 to 600 neurons, with large 
intervals. Specifically networks with 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 400, 
500 and 600 neurons in the hidden layer were tested. As mentioned in the previous 
chapter the purpose in not to define the optimum number of neurons for a network, but to 
see if this kind of network can represent a solution to the phase problem. By assigning a 
range of different number of neurons in the hidden layer an estimation of how this 
parameter affects the performance of these networks can be made. Larger networks can 
represent more complex relationships, while smaller networks are trained easier, need 
fewer training pairs, and generalize better (if they have enough power to represent the 
relationships). The consideration of smaller intervals would create many more networks 
to train which is a time consuming procedure especially in the range of 200-600 neurons. 

 One of the main factors that make these networks and the networks that follow really 
complex is the large number of inputs and outputs. For example a network with 20 
neurons in the hidden layer has 9245 adjustable weight parameters. This number derives 
from the fact that each input is connected to each neuron in the hidden layer, so there are 
225X20=4500 connections there. Each of these neurons has a bias, so in the first layer 
there are 4500+20=4520 connections. These neurons are connected with the 225 neurons 
of the output layer, so there are 4500 connections there also. The output neurons have 
also biases, which make the total number of connections to the network equal to 
4520+4500+225=9245. The large number of these connections makes the error function 
surface really complex, and this creates problems to the training procedure which is more 
likely to get stuck at local minima. 

All of these networks were re-initialized and trained three times. For the initialization of 
weights the Nguyen-Widrow method was used. This strategy helps in avoiding bad local 
minima in the error surface. Also, a maximum number of 4000 epochs and 6 validation 
checks was defined for the training. After each re-initialization the training patterns are 
divided again in three subsets in a random fashion (60% training set, 20% validation set, 
20% test set). 
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Thus, there were trained: ሺ                                               ሻ    ሺ                                                        ሻ x  

(number of re-initializations) = 4 x 15 x 3= 180 networks. 

These networks produced similar results to those depicted in Fig. 3-3. Fig 3-3, shows the 
performance plot of the second re-initialization of a network with 40 neurons in the 
hidden layer, trained with 6000 patterns (patterns during the remainder of the text may 
also be referred as samples). At this point it should be noted that the number of re-
initialization is not an important factor and from now on, it will be omitted.  

 

Figure 3-3. Performance plot of the second re-initialization of a network with 40 neurons in the 
hidden layer, trained with 6000 patterns 

 

From Fig. 3-3, it should be observed that the training, validation and test sets have 
identical performance plots. This is an indication of excellent data division. The 
validation set is representative of the problem (ensured through the test set) and early 
stopping happens at the time the network no longer converges to the solution of the 
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problem. This is happening because a large number of patterns was presented to the 
network, and an adequate percentage of them was allocated to the test and validation sets. 
Similar plots are produced from experiments with 2000, 4000 and 10000 samples.  

The regression plot for the same network is presented in Fig. 3-4 and is representative of 
the results of all the networks been trained. In this plot the results for each subset 
(training, validation, test) is drawn separately and the result of the whole set is plotted at 
the lower right part under the title ‘Overall’.  

 

Figure 3-4. Regression plots of the second re-initialization of a network with 40 neurons in the hidden 
layer, trained with 6000 patterns 

 

It is clear that network training did not stop because the network overfitted the training 
data, as the best linear fit for the training data set is far from the dashed diagonal line, but 
because the validation set’s error performance was not decreased after the 180th epoch 
(Fig.3-3).  That means the network is not able to approach a solution to the problem, and 
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cannot map the data in a reasonable manner that provides generalization. The network’s 
performance is really poor and this is indicated by the fact that the error function has a 
value of ~1, in a target space of -1 and 1. That means, in average values that should be 1, 
are 0 and values that should be -1 are also 0. This is more clearly shown in Fig. 3-4.  This 
figure shows in a more direct way that regardless of the value of the target for each 
output neuron, the actual output of the network is somewhere between 0.5 and -0.5 with 
values similarly distributed for both targets around 0. That means that a threshold which 
separates negative from positive phases cannot be set; practically meaning the network 
cannot give information on the phases of the structure factors. This is further illustrated 
by the histogram in Fig.3-5. The data of this histogram are the same as those used for the 
regression plot. The blue shape is for those outputs that should be -1, and the red for 
those outputs that should be 1. These histograms overlap each other with only a slight 
shift which is not enough to separate phases. 

 

Figure 3-5. Histogram of the outputs of the second re-initialization of a network with 40 neurons in 
the hidden layer, trained with 6000 patterns 

 

When someone compares Fig. 3-4 with Fig. 2-16 in section 2.3.6 which shows an 
example of a satisfactory network (unlike the one in Fig.3-4) a question may arise: Why 
the network in paragraph 2.3.6 seems to work while the network in this paragraph does 
not? As mentioned in paragraph 2.3.6 the data presented in Fig. 2-16 do not come from a 
properly trained and tested neural network. This network was trained with 4000 patterns 
but only 1000 of them were different. This means that 1000 different patterns were 
presented 4 times (at each training epoch) at the network. For this reason, when the data 
was separated in training, validation and test sets, the validation and test sets contained 
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information almost identical to that of the training set. As a result, after a training epoch 
the performance (error) in the training set decreases (even slightly, the training 
performance always decreases after a training epoch) and so does the performance in the 
validation set (since the data in both sets is similar). This leads to many training epochs, 
as the early stopping technique is not triggered because the algorithm (falsely) supposes 
that the network generalizes well (although it actually memorizes the patterns). Many 
training epochs in turn lead to the memorization of these 1000 different patterns and the 
results in Fig. 2-16 are produced. All this procedure mentioned above was just a ‘trick’ to 
produce an example of how a satisfactory network would look like in our results. Of 
course when this network is tested with a pattern different than the 1000 patterns it was 
trained with, it does not produce good results. This fact shows that memorization of some 
patterns in not helpful but generalization is needed. On the other hand the network of Fig. 
3-4 was trained with 6000 different patterns. Even if the training, validation and test sets 
were identical as before the memorization of 6000 instead of 1000 patterns is more 
difficult and would require more training epochs. In addition this network is properly 
trained. This means its training, validation and test sets do not contain the same patterns. 
At the first few epochs the training and validation performance decrease and training 
continues without problems. After a few epochs however, the validation performance 
begins to increase and the early stopping technique stops the training procedure before 
the network begins to reproduce the training pattern (the R-value in Fig. 3-4 is really 
small even for the training set). At this point the early stopping technique prevents us 
from wasting time training a network which cannot generalize. It is neither necessary nor 
useful for a network to fit the training data as long as the validation performance in not 
decreasing. If the network continued its training process, after a relatively large number 
of training iterations it could reproduce its training data set (the training R value would be 
significantly higher) but that would be useless because the network would just memorize 
its training set (the situation we described before for the network of section 2.3.6). The 
reason why the network of Fig 3-4 has a small training data set R-value is that it is not 
given enough training iterations (as they are not necessary).  

Networks with a higher numbers of neurons in the hidden layer performed similarly. The 
only difference was that their outputs were more concentrated near 0 values, the ranges of 
outputs been smaller, and their histograms been narrower. In Fig. 3-6 the regression plot 
of a network with 600 neurons is shown (trained with 10000 samples). 
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Figure 3-6. Regression plots of a network with 600 neurons in the hidden layer, trained with 10000 
patterns 

 

The results for all the 180 neural networks can be summarized in a plot of the best error 
function performance they achieved for their validation sets. This is shown in Fig. 3-7. 
This plot represents discrete data points. A continuous line was used, however to connect 
those points, in order to render the plot more visible and interpretable. The horizontal axis 
is the number of neurons in the hidden layer and is presented 3 times for each neuron 
(one for each re-initialization). Smaller values in this plot mean better performances. 

In Fig.3-7, someone can notice that using more training patterns has a positive result in 
the network performance regardless the number of neurons, which was something 
expected. In addition, neural networks which have over 100 neurons behave better 
especially when a smaller number of training patterns is available (blue and red lines). 
One important characteristic is that the performance when more neurons are used tends to 
a value of one, but never below it. This is an indication that more neurons will not help in 
this situation, and probably this is the best performance this neural network architecture 
can achieve given this form of data. 
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Figure 3-7. Best validation performances of networks with hyperbolic tangent sigmoid transfer function and bipolar output data, using structure factors 
as inputs. 
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The R values (correlation coefficient) for each of the training, test and validation sets can 
also be plotted in a similar manner. For the figures to be interpretable in Fig. 3-8, the R 
values have been plotted in different graphs, according to the number of training samples 
used. The horizontal axis is, again the ascending number of neurons in the hidden layer. 
Blue lines represent the training set’s R value, green lines the corresponding values for 
the test set, and red lines the validation set. Only the general shape is of interest and not 
the exact values in this plot. The greater the R value, the better the targets match to the 
outputs. 

 

Figure 3-8. R values plots of hyperbolic tangent transfer function neural networks. Horizontal axis: 
ascending number of neurons in the hidden layer. Blue lines: Training set. Green lines: test set Red 

lines: Validation set 

 

The information someone can get from Fig. 3-8 is that the training set’s R values are 
higher for all cases. All R values are really small to produce useful networks but here just 
a comparison is been made. In all networks the R values for the validation and the test 
sets are of the same magnitude, which is something someone wants, it indicates good data 
division. Actually if we expand the plots so that details can be distinguished, the R values 
in the validation sets are slightly higher which is something expected, as the network 
decided to stop its training based on this set, and in a way it is ‘tailored’ to this set. This is 
not a problem in this case because as we mentioned many times, the data division is 
good, and the R value differences are really small.  
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From now on mainly the validation error function (mse) performance will be used for the 
comparison of neural networks, because it seems to produce more concise results. 

As far as the number of training epochs is concerned the only thing that was observed 
was that the epoch’s mean value of all networks been trained with a particular size of 
samples, is increased with the sample size which is a logical and expected result (Fig.3-
9). 

 

Figure 3-9. Mean value of training epochs with respect to the number of training patterns used 

 

Such a detailed analysis, as the one made in this section, is not necessary for the purposes 
of this project, especially when the performances of the networks examined are poor (as 
the ones obtained so far). After all, the values compared for these networks were slightly 
different. The above analysis was made just to illuminate some characteristics of the 
behavior of the networks. 

In the cases of the following experiments a detailed analysis will be omitted if it is not 
necessary. 
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3.2.2 Networks with logistic sigmoid transfer function and binary output 
data. 
 

Networks of this type are shown in Fig. 3-10, as they are presented in MATLAB. 

 

Figure 3-10 Logistic sigmoid transfer function networks 

 

The only difference between these networks and the hyperbolic tangent sigmoid transfer 
function networks presented in the previous section is the use of a logistic sigmoid 
transfer function in the neurons of the hidden layer. Everything said about the hyperbolic 
tangent sigmoid transfer function networks is valid for the networks in this section too, 
with the exception of the output format. 

In these networks, a binary representation of outputs for the phases is more appropriate, 
because the range of their transfer function in the hidden layer is between 0 and 1. Of 
course they can represent any value, because of the output linear layer, but their training 
is considered easier if the binary form is used. 

The target outputs which represent the phases of the structure factors have the binary 
form (0 or 1), with 0 representing a positive value (phase=0), and 1 a negative value 
(phase=ʌ) as mentioned in section 2.3.5. From now on when logistic sigmoid transfer 
functions are used, binary outputs will be considered the default target output, unless 
something different is mentioned. 

The same rules were followed for the experiments of these networks and 180 networks 
have been tested just as in the case of the hyperbolic tangent networks. The results 
obtained were similar. The networks showed poor performance and stopped training 
before they had the opportunity to overfit the training set’s data. The difference between 
the results is that in this case neural networks with smaller number of neurons in their 
hidden layer had better performances than networks with a large number of neurons in 
the hidden layer. Also, neural networks with small number of neurons had narrower 
distribution of outputs, than those of networks with many neurons. These results are 
exactly the opposite of the results obtained with hyperbolic tangent networks and can be 
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summarized in Figures 3-11 and 3-12. The details on these figures are not so important, 
that is why they are not depicted in large pictures. 

These networks also performed poorly and they are not appropriate for determining the 
phases of structure factors. 

 

Figure 3-11.Typical regression plots of  Logistic sigmoid transfer function : 
 (a) A network with a large number of neurons (500) and (b) A network with fewer number of 

neurons (20) 
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Figure 3-12. Best validation performances of neural networks with logistic sigmoid transfer function.  
Horizontal axis: Number of neurons in the hidden layer. 

 

Another thing that was observed during the training of these networks is that they 
demanded fewer iterations to reach their max validation performance compared to 
hyperbolic tangent networks. This is shown in Fig. 3-13, where the networks from left to 
right are presented as follows: first networks trained with 2000 samples are presented 
with ascending order neurons in the hidden layer, then networks trained with 4000 
samples are presented with ascending order of neurons in the hidden layer and so on.  



86 
 

 

Figure 3-13. Comparative graph of number of training epochs for the logistic sigmoid neural 
networks and the hyperbolic tangent sigmoid networks 

 

3.2.3 Networks with logistic sigmoid transfer function and structure output 
data type. 
 

These networks are like the networks in the previous section and are shown in Fig. 3-10. 

The difference of these networks is that the target outputs of the network are the signed 
structure factors (its actual values). The networks tested so far didn’t provide good results 
and an alternative approach had to be tried. It was thought that if the targets of the outputs 
were the structure factors which have a range of values (in the data used in the 
experiments) between -27.4510 and 31.1890, that better results could be obtained. The 
reason behind this is that neural networks will try to approximate at most times a value 
larger than 1 for positive signs and smaller than -1 (or 0) for negative values. The average 
absolute value of the structure factors in the data set is 2.3399.  Even if these outputs do 
not approach their target values sufficiently at least they have more chances, to be 
positive when the target is positive and negative when the target is negative. Another 
reason is that Sayre’s equation (2.4) from which the relationship of triplets is derived, 
uses the values of the structure factors and not just the signs, so it is possible for a neural 
network to be able to approximate this relationship easier. 
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Just like the cases before 180 neural networks were tested. A typical regression plot of 
the response of the network is shown in Fig. 3-14 

 

Figure 3-14. Typical regression plot of neural networks with structure factor target outputs (this 
particular network has 150 neurons in the hidden layer) 

 

These neural networks provide similar results as those shown in Fig. 3-14. The graphs of 
the performances of these networks were not distinguishable (they overlapped each other) 
so an average of the three re-initializations of each network was taken and a bar graph 
was plotted instead. This is shown in Fig. 3-15. 
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Figure 3-15. Average of best validation performances of neural networks with structure factor target 
outputs 

 

 It is obvious that performances have great values, and the networks cannot approach the 
structure factor’s values. However, what about their signs? The outputs of 10 of the 
neural networks with the smaller performances were assigned values equal to 1 if they 
had positive values and -1 if they had negative values. The same happened for the 
original signed structure factors. These signs of the structure factors were the targets and 
the signs of the responses of the network the output. Then the regression plot of these was 
created, and is presented in Fig. 3-16. All the points of this plot are assigned to the four 
edges (1, 1), (-1, -1), (1, -1), (-1, 1) and are represented by four circles. The best linear fit 
indicated by the blue line, shows that these signs are not correlated. It was estimated that 
49,4785% of the signs were allocated correctly. This is a number very close to 50%, and 
that is equivalent to a random distribution of signs. Therefore these networks cannot be 
uses for assignment of phases in structure factors. 

The number of training epochs of these structures is between the logistic sigmoid 
networks and the hyperbolic tangent networks. 
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Figure 3-16. Typical regression plot of the sign relationship of targets and outputs 

 

3.2.4 Product net input Neural Networks with hyperbolic tangent sigmoid 
transfer function and bipolar outputs. 
 

The architecture of these networks is shown in Fig. 3-17.  

 

Figure 3-17. Product net input Neural Networks with hyperbolic tangent sigmoid transfer function 

 

These inputs have an importance difference in comparison with the others, pointed by the 
red arrow in Fig. 3-17. The net input of the neuron is not the sum of the weighted inputs 
and biases, but their product. The other features of the network and the experiment 
procedure remain the same. 
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In Fig. 3-18 the best validation performances are shown. As someone can see these 
networks also perform poorly and are not capable to determine the signs of structure 
factors. A typical regression plot of the responses of these networks is very much like the 
regression plots of hyperbolic tangent networks shown in Fig. 3-6. 

 

 

Figure 3-18. Best validation performances of product net input neural networks with hyperbolic 
tangent sigmoid transfer function 

 

3.2.5 Neural Networks with 2 hidden layers hyberbolic tangent transfer 
function and bipolar output data. 
 

Neural networks with 2 hidden layers are usually used when accuracy is needed. They are 
more complex networks and their architecture is shown in Fig. 3-19. 

 

Figure 3-19. Neural Networks with 2 hidden layers and hyberbolic tangent transfer functions in both 
of them 
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The red boxes show that the number of neurons in these layers is adjustable. In this 
experiment the number of neurons in these two layers, is the same because that way the 
network trained easier. [18] 

In this section when it is said that a network has 5 neurons, it means that it has 5 neurons 
in the first hidden layer and 5 neurons in the second hidden layer. Sample sizes of 4000, 
6000 and 10000 training patterns are presented to the networks and the networks tested 
consists of 5, 10, 20, 40, 50, 100, 150, 200, 250, 300, and 350 neurons. The networks are 
reinitialized 3 times. 

A typical regression plot of the responses of these networks is shown in Fig. 3-20. It can 
be noticed that these networks have very narrow distributions. 

 

Figure 3-20. A typical regression plot of the responses of 2 hidden layers hyberbolic tangent transfer 
function networks (in this example 50-50 neurons in the hidden layers) 

 

The best validation performance graph is shown in Fig. 3-21. 
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Figure 3-21. Best validation performances of neural networks with 2 hidden layers and hyperbolic 
tangent transfer functions 

 

3.3 Experiments with unitary structure factors as input 
data 
 

These experiments follow the philosophy of the experiments presented so far, but instead 
of structure factors, in the inputs of the neural network are presented the unitary structure 
factors. The target outputs of the networks are either bipolar or binary formats of the 
signs of the factors, or the values of the unitary structure factors with signs, in the case of 
structure output format. The reason why unitary structure factors are used is because they 
are present in important relationships in direct methods and because their absolute values 
are in the range of 0 to 1. Values in that range presented at the input of a neural network 
may be beneficial for the training of a neural network because of the form of the transfer 
functions. [9] 

Because the experiments are identical, the details will be skipped (as they were analyzed 
in the previous sections) and only the results of the experiments will be presented. 
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3.3.1 Neural Networks with hyperbolic tangent sigmoid transfer function 
 

In these experiments the training pattern sizes (or sample sizes) used were 4000, 6000 
and 10000. The size of 2000 was omitted after the first experiments because it was 
considered small. The best validation performances are presented in Fig. 3-22. The 
results are similar in form with that of structure factors for the same network architecture, 
but the performances values are significantly smaller. However the typical regression 
plot, in Fig. 3-23 shows, that the signs at the outputs are still uncorrelated with the correct 
signs. Also the distribution of the outputs is narrower for all the networks than those of 
neural networks with structure factors as inputs. 

 

Figure 3-22.  Best Validation performances of neural networks with hyperbolic tangent sigmoid 
transfer function (unitary) 
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Figure 3-23. Typical regression plot of the responses of neural networks with hyperbolic tangent 
sigmoid transfer function (unitary) – (in this example 200 neurons -10000 sample size) 

 

3.3.2 Neural Networks with logistic sigmoid transfer function 
 

These networks were tested for sizes of 6000 and 10000 training patterns. The results are 
shown in Fig. 3.24. The lines are similar with those of the corresponding neural network 
architecture tested with structure factors, with smaller performances. The typical 
regression plots of the responses are shown in Fig. 3-25. A figure for all the R-values is 
shown in Fig. 3-26, which has the same philosophy as Fig. 3-8. It is drawn here just to 
illustrate that all the R-values are very small and the signs are still uncorrelated. Similar 
plots can be produced for all the networks examined so far.  
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Figure 3-24. Best Validation performances of neural networks with logistic sigmoid transfer function (unitary) 

 

Figure 3-25. Typical regression plot of neural networks with logistic sigmoid transfer function 
(unitary) (in this example 300 neurons with 6000 samples) 
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Figure 3-26.  R values plots of neural networks with logistic sigmoid transfer function (unitary). 
Horizontal axis: ascending number of neurons in the hidden layer. Blue lines: Training set. Green 

lines: test set Red lines: Validation set 

 

3.3.3 Networks with logistic sigmoid transfer function and structure output 
format. 
 

The results of these experiments are presented in Figures 3-27 and 3-28. 

 

Figure 3-27. Best Validation performances of neural networks with logistic sigmoid transfer function 
(unitary- structure output format) 
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Figure 3-28.  R values plots of neural networks with logistic sigmoid transfer function (unitary-
structure output format). Horizontal axis: ascending number of neurons in the hidden layer. Blue 

lines: Training set. Green lines: test set Red lines: Validation set 

 

3.3.4  Product net input Neural Networks with hyperbolic tangent sigmoid 
transfer function and bipolar outputs. 
 

The results of these experiments are presented in Figures 3-29 and 3-30. 

 

Figure 3-29. Best Validation performances of neural networks with product net input and hyperbolic 
tangent sigmoid transfer function (unitary) 
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Figure 3-30. .  R values plots of neural networks with product net input and hyperbolic tangent 
sigmoid transfer function (unitary). Horizontal axis: ascending number of neurons in the hidden 

layer. Blue lines: Training set. Green lines: test set Red lines: Validation set 

 

3.4 Experiments with normalized structure factors as 
input data 

 

These experiments follow the philosophy of the experiments presented so far, but 
normalized structure factors are used. The target outputs of the networks are either 
bipolar or binary formats of the signs of the factors, or the values of the normalized 
structure factors with signs, in the case of structure output format. The reason why 
normalized structure factors are used is because they are present in important 
relationships in direct methods and because these factors are modified so that the 
maximum information on atomic position can be extracted from them. There is a chance 
that neural networks can interpret the values of these factors in a more efficient way. 

Because the experiments are identical, the details will be skipped (as they were analyzed 
in the previous sections) and only the results of the experiments will be presented. 

 

3.4.1 Neural Networks with hyperbolic tangent sigmoid transfer function 
 

The networks in these experiments were re-initialized only two times. 

The results of these experiments are presented in Figures 3-31, 3-32 and 3-33. 
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Figure 3-31 Best Validation performances of neural networks with hyperbolic tangent sigmoid 
transfer function (normalized) 

 

Figure 3-32. Typical regression plot of neural network with hyperbolic tangent sigmoid transfer function 
(normalized) - (in this example 250 neurons with 6000 samples) 
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Figure 3-33. R values plots of neural network with hyperbolic tangent sigmoid transfer function 
(normalized). Horizontal axis: ascending number of neurons in the hidden layer. Blue lines: Training 

set. Green lines: test set Red lines: Validation set 

 

3.4.2 Neural Networks with logistic sigmoid transfer function 
 

The networks in these experiments were re-initialized only two times and only the set of 
10000 training patterns was used. 

The results of these experiments are presented in Figures 3-34, 3-35 and 3-36. 

 

 

Figure 3-34 Best Validation performances of neural networks with logistic sigmoid transfer function 
(normalized) 
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Figure 3-35. Typical regression plot of neural networks with logistic sigmoid transfer function 
(normalized) - (in this example 200 neurons with 10000 samples) 

 

 

Figure 3-36. . R values plots of networks with logistic sigmoid transfer function (normalized). 
Horizontal axis: ascending number of neurons in the hidden layer. Blue lines: Training set. Green 

lines: test set Red lines: Validation set 
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3.4.3 Networks with logistic sigmoid transfer function and structure output 
format. 
 

The results of these experiments are presented in Figures 3-37, 3-38 and 3-39. 

 

 

Figure 3-37. Best Validation performances of neural networks with hyperbolic tangent sigmoid 
transfer function (normalized-structure format output) 
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Figure 3-38. Typical regression plot of neural networks with logistic sigmoid transfer function 
(normalized- structure output format) - (in this example 200 neurons with 10000 samples) 

 

 

Figure 3-39. . R values plots networks of neural networks with logistic sigmoid transfer function 
(normalized- structure output format). Horizontal axis: ascending number of neurons in the hidden 

layer. Blue lines: Training set. Green lines: test set Red lines: Validation set 



104 
 

 

3.4.4  Product net input Neural Networks with hyperbolic tangent sigmoid 
transfer function and bipolar outputs. 
 

The results of these experiments are presented in Figures 3-40, 3-41 and 3-42. 

 

 

 

Figure 3-40. Best Validation performances of neural networks with product net input hyperbolic 
tangent sigmoid transfer function (normalized) 
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Figure 3-41. Typical regression plot of neural networks with product net input and hyperbolic 
tangent sigmoid transfer function (normalized)- (in this example 100 neurons with 10000 samples) 

 

 

Figure 3-42. . R values plots of neural networks with product net input hyperbolic tangent sigmoid 
transfer function (normalized)). Horizontal axis: ascending number of neurons in the hidden layer. 

Blue lines: Training set. Green lines: test set Red lines: Validation set 
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3.5 Experiments with cascade forward networks. 
 

The architecture of these networks is shown in Fig. 3-43. 

 

Figure 3-43. Architecture of cascade forward neural networks. 

 

These networks are similar to feed-forward networks, but include a connection from the 
input and every previous layer to following layers. As with feed-forward networks, a 
two-or more layer cascade-network can learn any finite input-output relationship 
arbitrarily well given enough hidden neurons. 

Again the red box symbolizes that neurons in this layer can be adjusted. 

The target outputs of these experiments are the signed normalized structure factors. Only 
a small number of experiments were done with cascade forward networks and these were 
conducted using normalized structure factors. That is why there are no graphs for these 
experiments but the results are given in Table 3-1. 

 

neurons samples 

best 

performance training R value 

Validation R 

value Test R value 

5 10000 60,16960723 0,099175492 0,010195462 0,006966992 

30 10000 60,0049261 0,018951802 0,001298844 -6,30E-05 

100 10000 60,42573374 0,0199853 0,001772751 -0,00099319 

300 10000 60,27218647 0,019831413 0,001165748 0,000627646 

600 10000 59,9736326 0,046939668 0,005939168 0,000606556 

Table 3-1. Results of cascade forward neural networks (structure output format) 
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A typical regression plot of the responses of these networks is given in Fig. 3-45. 

 

 

 

Figure 3-45. Typical regression plot of cascade forward neural networks (structure output format)- 
(in this example 30 neurons with 10000 samples) 

 

These network although they were not tested as extensively as the other networks don’ t 
seem to perform better. 

In these networks a different approach was also tested when they were trained with 
bipolar target outputs. Up to now, the maximum validation checks were set to 6. As 
mentioned the surface of the error function in this problem may be very complex 
including many local minima. One thought is to increase the maximum validation checks 
to see how the training process behaves, and if someone can obtain better results by 
altering this parameter. The results in Table 3-2 were obtained with the maximum 
validation checks set to 100. 
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neurons samples best performance Training R value Validation R value Test R value 

5 10000 1,051627195 0,165167915 0,008464952 0,009956194 

30 10000 1,042042179 0,183878431 0,009708404 0,012371126 

100 10000 1,048879361 0,164089265 0,008513067 0,006864098 

100 10000 1,039575157 0,188088904 0,006883337 0,010243637 

300 10000 1,040865027 0,170099876 0,007244676 0,007243171 

300 10000 1,036592754 0,13387581 0,007221175 0,005511023 

600 10000 1,028847286 0,144741432 0,005645011 0,005967183 

600 10000 1,03819209 0,119049656 0,005131547 0,003821427 

Table 3-2. Results of cascade forward neural networks (bipolar outputs) – Validation checks set to 
100 

 

A typical regression plot of the responses of these networks may by shown in Fig. 3-46. 

 

Figure 3-46. Typical regression plot of cascade forward neural networks – bipolar targets – 
validation checks set to 100 
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In all cases except of one, the network reached its best validation performance after 6 
validation checks. Only in one case (with 30 neurons) the network performed about 50 
validation checks and then produced a better performance by adjusting its weights. This 
case is shown in Fig. 3-47. 

 

Figure 3-47. Validation checks of cascade forward neural networks – bipolar targets – 30 neurons – 
max validation checks set to 100 

 

Another method tested was to bypass the early stopping procedure and train the network 
for 4000 epochs, without considering a validation set. Only a training set was used at the 
end of training to evaluate the outputs of the network to unknown inputs. This test was 
performed only to three networks 

The results of these tests are shown in Table 3-3. 

neurons samples training R value Test R value 

5 10000 0,154997568 0,011726415 

30 10000 0,145105423 0,006360455 

100 10000 0,281009047 0,004999469 

 

Table 3-3. Results of cascade forward neural networks (bipolar outputs) – Maximum epochs=4000, 
no early stopping. 

 

As it has been expected we obtain better results for training R values, because the 
networks slowly learns the training patterns, but the test R-value remains low, because 
the network does not generalize. Also the error function performance after a number of 
epochs becomes almost flat, which means that the network learns very slowly. This is 
shown in Fig. 3-48. 
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Figure 3-48. Performance plot of cascade forward neural network (300 neurons-10000 samples). 
Maximum epochs=4000, no early stopping. 

 

In all cases the efficiency of the networks are not good enough. 

 

3.6 Neural Networks and origin. 
 

During the experiments of this study, none of the tested architectures showed promising 
results. That fact led to a thought that neural networks may be able to represent the 
phases of the structure factors in a form that is not visible to us using the regression plot. 

Specifically neural networks may be able to represent relationships of triplets but produce 
results (phases) with an origin of coordinates fixed at a different point than the one used 
to produce the structure factos in the training data (equation (2.8)). Remember that when 
the origin changes, the absolute values of the structure factors (and the unitary and 
normalized factors) remain the same, but their phases change. Input data does not give 
information on the origin, only on the relative magnitudes of the structure factors. Target 
outputs on the other hand refer to an origin at 0,0 but the network may be capable to learn 
just the relationships of the signs (e.g. the triplets) and not information on the origin.  

Having that in mind, a modified algorithm was created for networks trained with training 
patterns whose target outputs are the signed structure factors. This algorithm trains the 
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network as usual but has a difference in the early stopping process. The difference is that 
the validation set has as output targets the absolute values of the structure factors. When 
the network after each iteration, is evaluated with the validation set, the inputs of the 
validation set are presented to the network, its outputs are produced, and then the absolute 
values of the outputs of the network are compared with the absolute values of the 
structure factors of the validation set. From this comparison the error function 
performance is estimated and the algorithm continuous as usual. With this algorithm the 
network supposedly will be encouraged to learn the structure factors independently of the 
sign, and the number of training epochs is expected to increase, before early stopping 
halts the training process. This procedure is not supported by the neural network toolbox, 
because we are comparing different outputs during the presentation of training sets and 
different “outputs” during the presentation of the validation set. The algorithm which was 
created overcomes this difficulty in the expense of larger computational times.  

The results are shown in Fig. 3-49 and Fig.3-50. The normalized structure factors are 
used. Each network (with hyperbolic tangent transfer function) was re-initialized 3 times. 
In Fig. 3-48 the error function performance is estimated by comparing the absolute values 
of the outputs and the absolute values of the normalized structure factors in the validation 
set. In Fig. 3-50 the regression plot for 4 situations is drawn. In ‘train’ the target outputs 
(signed normalized structure factors) and the outputs of the network are plotted for the 
training set. In ‘Train absolutes’ the absolute values of the target outputs and the absolute 
values of the outputs of the network are plotted for the training set. In ‘validation-test 
signed’ the signed structure factors (which are not the target outputs) and the outputs of 
the network are plotted for the validation set. In ‘Validation’ the target outputs (absolute 
values of the structure factors) and the absolute values of the outputs of the network are 
plotted for the training set (this is where the error function is based).  

 

Figure 3-49. Best validation performances of a neural network with hyperbolic tangent transfer 
function, trained with the modified early stopping algorithm. 
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Figure 3-50. Typical regression plot of a neural network with hyperbolic tangent transfer function, 
trained with the modified early stopping algorithm – (in this example 300 neurons – 10000 samples) 

 

During this experiment an important increase in the training epochs was not observed. 
The R- values remained low, indicating uncorrelated data once again even for the 
absolute values of the normalized structure factors. In this case in order to increase the 
training epochs it would be easier to skip the early stopping process altogether. After all 
with a large size of training patterns the network is not very likely to overfit within a 
reasonable number of epochs. 

The method to evaluate if the neural networks produce results that have a different origin-
fixing is to calculate the Fourier synthesis of their outputs and compare it with the Fourier 
synthesis of the original structure factors. Specifically we get the signs of the outputs the 
neural networks produce and the absolute values of the original structure factors (which 
are known after a real diffraction experiments). Then we calculate the Fourier synthesis 
of these ‘hybrid’ structure factors and we compare it with the correct structure factors. If 
the electron density maps produced are similar, but the one produced by the ‘hybrid’ 
structure factors is shifted compared to the original that means that the network produces 
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results with different origin-fixing. In this case the signs are different from those in the 
training patterns but the relationships among the signs are those dictated by direct 
methods and produce the correct electron density map and subsequently the correct 
structure. 

Some of the networks with the best performances were compared (not just from this 
experiment but also from the experiments described in the previous sections) with four 
structures. The results were too many to describe them all so some representative 
examples will be shown here. 

The first interesting result of this procedure concerns networks with a few numbers of 
neurons in their hidden layer (~up to 10-15). These networks most of the time produce 
very similar results in their outputs, regardless their inputs. If the Fourier synthesis of the 
outputs of these networks is made they give almost the same results for almost any input 
(the Fourier synthesis from the outputs, not the ‘hybrid’ factors described above). An 
example is given in Fig.3-51. Five different molecular structures were tested with this 
neural network and it produced the same results. This is not the case with networks which 
have a larger number of neurons in their hidden layers. Different inputs produce different 
outputs in these networks. When the ‘hybrid’ structure factors are used in a Fourier 
synthesis then the results are different for different inputs, even for networks with small 
number of neurons in the hidden layer. 
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Figure 3-51. Fourier synthesis of the outputs of a neural network with 10 neurons trained with 10000 
samples using the modified algorithm of early stopping (hyperbolic tangent sigmoid transfer 

function) The outputs were produced by two different inputs. However, the Fourier synthesis of the 
outputs is almost identical. 

 

The second interesting but unfortunate result is that all the networks tested with the 
abovementioned method (15 networks) using the ‘hybrid’ structure factors had different 
Fourier syntheses than that of the electron density of the two dimensional molecular 
structures under determination. Thus, the hypothesis that neural networks produced 
phases with the origin fixed at different points than 0, 0 was wrong. These 15 networks 
were selected so as to cover a range of neurons in the hidden layer, and had good 
performances when compared with other networks from the same experiment. Two 
examples will are shown in Fig. 3-52 and 3-53. 
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Figure 3-52.  A comparison between the Fourier syntheses of the real electron density map of a 
structure (right), and the ‘hybrid’ structure factors provided by a neural network with 150 neurons 

in the hidden layer (left). (Hyperbolic tangent sigmoid transfer function- trained with 10000 samples) 
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Figure 3-53. A comparison between the Fourier syntheses of the real electron density map of a 
structure (right), and the ‘hybrid’ structure factors provided by a neural network with 550 neurons 
in the hidden layer (left). (hyperbolic tangent sigmoid transfer function- trained with 10000 samples) 
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Conclusion 
 

The phase problem was, and remains a major problem in X- ray crystallography. There is 
no formal relationship between the amplitudes and phases; the only relationship is via the 
molecular structure or electron density. Therefore, if someone can assume some prior 
knowledge of the electron density or structure, this can lead to values for the phases. 
Throughout this study that prior knowledge was given in the form of training patterns to 
the neural networks and it was hoped that neural networks would be able to generalize 
and represent relationships based on constraints of the electron density of molecules. 

A large number of experiments have been conducted with a variety of feed forward 
neural networks architectures which can approximate functions arbitrarily well. In these 
experiments the performance of neural networks reached a plateau regardless the number 
of neurons used in the hidden layer. This plateau was different when modified structure 
factors (unitary, normalized) were presented to the network, and when the transfer 
function of the hidden layers changed. However, one thing in common was that all 
networks had small correlation coefficient values when the target outputs and the actual 
outputs of the networks were considered. This result showed uncorrelated values of target 
outputs and actual outputs. Even when only the signs of the outputs were taken into 
consideration and were compared with the correct signs, it seemed that neural networks 
assigned signs to structure factors in a random fashion. Finally, the possibility of neural 
networks producing phases, with an origin of coordinates fixed at a different point, other 
than the one used to calculate the structure factors of the training patterns, was 
considered. This possibility was examined by comparing the Fourier syntheses of the 
outputs of the neural network, and this comparison showed that this is not the case. 

Generally as a conclusion, it can be said that the results of this study, showed that feed 
forward neural network are not capable of representing relationships between phases of 
structure factors or modified structure factors, at least not in a simple manner.  This could 
be due to the fact that the restrictions of the electron density distributions are not 
sufficient to guarantee a unique solution ([2] p.268) and that maybe inhibits the learning 
procedure of neural networks. The possibility of a modified neural network or learning 
algorithm that could lead to a successful sign assignment has not been excluded. Further 
research could be conducted to determine such a network or algorithm and different 
approaches can be taken.  

Suggestions for further research could be the use of radial basis transfer functions 
(although these also work as general function approximators) and the processing of inputs 
before their presentation to the network. Input patterns could be presented in a self-
organizing feature map (such as a Kohonen network) trained using unsupervised learning. 
This network then could classify the input vectors according to some characteristics and 
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then these classes of inputs could be used to train different networks for sign assignment. 
This method could possibly help the training of networks. 

Closing this study it should be mentioned that the phase problem remains a challenging 
field of research. Existing techniques have drawbacks, severely limiting the rate at which 
important new structures are solved. The structure determination of a number of 
biologically important molecules has been hampered by technical challenges regarding 
this issue. The development of an efficient phase determination technique could boost the 
progress of molecular biology (and related) sciences even further. 
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Figure Sources 
 
Figure 1- 1. Phase difference between two waves 
Source: http://www.radio-electronics.com/info/rf-technology-design/pll-
synthesizers/phase-locked-loop-tutorial.php 
 
Figure 1- 2. Comparison between a) light microscopy and b) X-ray diffraction 
Source: Glusker, J.P. and Trueblood, K.N. Crystal structure analysis. A Primer. 2nd 
edition. Oxford University Press: New York, Oxford (1985)  
 
Figure 1- 3. Relationship between Crystal lattice, Motif and Crystal structure 
Source: [4] page 63 
 
Figure 1- 4. Up: 3-D crystallographic unit cell with axes a,b,c. Down: 2-D  lattice 
described by crystallographic unit vectors a,b 
Source: Up: http://ictwiki.iitk.ernet.in/wiki/index.php/File:Jk1_7.png  Down: 
http://www.sci.sdsu.edu/TFrey/Bio750/Bio750X-Ray.html 
 
Figure 1- 5. Nature of electromagnetic waves 
Source: http://hyperphysics.phy-astr.gsu.edu/hbase/waves/emwavecon.html 
 
Figure 1- 6. Explanation of the diffraction pattern of a single slit. At higher angles the 
intensity of the diffracted beam is weak. 
Source: [4] page 79 
 
Figure 1- 9. Numerical values of the calculated electron density (a) at grid points and (b) 
at a two-dimensional contour plot, showing how contours are drawn in two dimensions 
Source: [4] page 351 
 
Figure 1- 10. Electron density map and model of Penicillin created by Dorothy Crowfoot 
Hodgkin in 1945 based on her work on X-ray crystallography 
Source: http://dataphys.org/list/electron-density-map-and-molecular-model-of-penicillin/ 
 
Figure 1- 11. relationships between crystal lattices, reciprocal lattices, structure factors, 
and contents of the unit cell 
Source: [4] page 89 
 
Figure 1- 14. The importance of phases in carrying information. Top, the diffraction 
pattern, or Fourier transform (FT), of a duck and of a cat. Bottom left, a diffraction 
pattern derived by combining the amplitudes from the duck diffraction pattern with the 
phases from the cat diffraction pattern. Bottom right, the image that would give rise to 
this hybrid diffraction pattern. In the diffraction pattern, different colours show different 
phases and the brightness of the colour indicates the amplitude. 
Source: [2] 
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Figure 1-14. Simplified structure of a neuron and connection between two neurons 
Source: [13] page 2 
 
Figure 1-15. A single- input neuron with bias 
Source:[12] chapter 2, page 3 
 
Figure 1-16. Multiple input neuron 
Source: [12] chapter 2, page 7 
 
Figure 1-17. Layer of S neurons 
Source: [12] chapter 2, page 9 
 
Figure 1-19. Various types of activation functions for a neuron 
Source: [14] page 17 
 
Figure 2-1. The two dimensional space group p2 as it appears in International Tables for 
X-ray crystallography 
Source: [8] page 25 
 
Figure 2-3. Function approximation network with the outputs of each layer 
Source:[12] chapter 11, page 5 
 
Figure 2-4. Graph and symbol of the logistic sigmoid function (logsig) 
Source: https://en.wikipedia.org/wiki/Logistic_function 
 
Figure 2-5. Graph and symbol of the linear parent function (purelin) 
Source: http://www.jleemack.com/linear-parent-function.html 
 
Figure 2-6. Network response for specified values of parameters 
Source: [12] chapter 11, page 6 
 
Figure 2-7. Effects of various parameters changes in the network response 
Source: [12] chapter 11, page 7 
 
Figure 2-8 Plot and symbol of the Hyperbolic tangent sigmoid transfer function 
Source: 
http://www.willamette.edu/~gorr/classes/cs449/Maple/ActivationFuncs/active.html 
 
Figure 2-9 Visualization of the gradient descent on a two-dimensional error function. x,y 
axes represent the weights, while z axis is the value of the error function. (left) Contour 
plot of the error function (right) 
Source: [16] page 62 
 
Figure 2-10. A complicated error surface with many local minima. 
Source: http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Probs/NLP 
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Figure 2-11. Overfitting and poor extrapolation problems 
Source:[12] chapter 13, page 14 
 
Figure 2-12. Good generalization and poor extrapolation 
Source: [12] chapter 13, page 14 
  
Figure 3-1.  (a) Notation with all the connections drawn. (b) Abbreviated notation. 
Source: [12] chapter 2, page 8 
 

 

  



122 
 

Bibliography 
 

 
1. Sherwood , Dennis. Crystals, X-rays and Proteins. John Wiley & Sons, 1976 
 
2. Stout, George H., and Lyle H. Jensen. X-Ray Structure Determination: A practical 

guide. London: The Macmillan Company Collier-Macmillan Limited 
 

3. Ladd, Mark, and Rex Palmer. Structure Determination by X-ray Crystallography. 
5th edition, Springer, 2013 

 
4. Glusker, Jenny P., Mitchell Lewis, and Miriam Rossi. Crystal Structure Analysis 

for Chemists  and Biologists. John Wiley & Sons, 1994 
 

5. Ladd, M.F.C., and R.A. Palmer. Theory and Practice of Direct Methods in 
Crystallography. New York: Plenum Press, 1980 

 
6. Schenk, H. An Introduction to Direct Methods. The most Important Phase 

Relationships and their Application in Solving the Phase Problem. Wales: 
University College Cardiff Press, 1984 

 
7. Hahn, Theo. International Tables for Crystallography, Volume A, Space-Group 

Symmetry. Wiley & Sons, 2006 
 

8. Woolfson, M.M. An introduction to X-ray crystallography. Second edition, 
Cambridge University Press, 1997 

 
9. Fausett, Laurene V. Fundamentals of Neural Networks: Architectures, Algorithms 

And Applications. 1st  edition, Pearson,  1993 
 

10. Halici, Ugur. Artificial Neural Networks. EE543 Lecture Notes, METU EEE, 
Ankara  

 
11. Rumelhart, D.E., G.E. Hinton, and R.J. Williams. Parallel distributed processing: 

explorations in the microstructure of cognition, vol. 1. Pages 318-362, MIT Press, 
1986 

 
12. Hagan, Martin T.,Howard B Demuth, Mark H Beale, and Orlando De Jesús. 

Neural Network Design. 2nd edition, Martin Hagan, 2014 
 

13. Bailer,Jones, Coryn A.L. , Ranjan Gupta, and Harinder P. Singh, eds. An 
introduction to artificial neural networks. Automated Data Analysis in 
Astronomy, Narosa Publishing House, New Delhi, India, 2001 

 
14. Kröse ,Ben, and Patrick van der Smagt. An Introduction to Neural Networks. 

University of Amsterdam, 1996 



123 
 

 
15. Rojas, Raúl. Neural Networks, A Systematic Introduction. Springer-Verlag, 

Berlin, 1996 
 

16. Kriesel, David. A brief introduction to Neural Networks. Available at: 
http://www.dkriesel.com , 2007 

 
17. Suzuki, Kenji, Isao Horiba, and Noboru Sugie. A Simple Neural Network Pruning 

Algorithm with Application to Filter Synthesis. Netherlands: Kluwer Academic 
Publishers, 2001 

 
18. Karsoliya, Saurabh. Approximating Number of Hidden layer neurons in Multiple 

Hidden Layer BPNN Architecture. International Journal of Engineering Trends 
and Technology, Volume3 Issue6, 2012 

 
19. Moustafa , Akram A. Performance Evaluation of Artificial Neural Networks for 

Spatial Data Analysis. Contemporary Engineering Sciences, Vol. 4, no. 4, pages 
149 – 163, 2011 

 
20. Demuth ,Howard, and Mark Beale. Neural Network Toolbox, For Use with 

MATLAB: User’s Guide. Version 4, Mathworks Inc, 2002 
 

21. Porter, A.B. On the diffraction theory of microscopic vision. Phil.Mag. 11, pages 
154-166 (1906) 

 
22.  Sayre,D. J.Kirz, R.Feder, B.Kim, and Spiller E. Potential operating region for 

ultrasoft X-ray microscopy of biological materials. Science 196, pages 1339-1340 
(1977) 

 
23. Binnig, G., H.Rohrer, Gerber C., and Weibel E. Tunneling through a controllable 

vacuum gap. J. Appl. Phys.40, pages 178-180 (1982) 
 

24. Huygens, C. Treatise on light in which the causes of the events that result in 
reflection and refraction are explained. Of particular interest is the unusual 
refraction of Iceland spar. Pierre van der Aa: Leiden (1960). English translation: 
Thompson, S.P. Macmillan: London (1912) 

 
25. Grifiths, David J. Introduction to Electrodynamics. Second edition, Prentice Hall, 

International. Sections 8.1.1 to 8.2.2 
 

26. Ewald, P. P.. "Introduction to the dynamical theory of X-ray diffraction". Acta 
Crystallographica Section A 25: 103 (1969) 

 
27. Taylor, G. The phase problem. Acta Crystallographica Volume 59, Part 11, Pages 

1881-1890  (November 2003) 
 



124 
 

28. Institute of Medicine (US) Forum on Neuroscience and Nervous System 
Disorders. 

 
29. From Molecules to Minds: Challenges for the 21st Century. Workshop Summary, 

US, Washington(DC).  National Academies Press (2008) Available at: 
http://www.ncbi.nlm.nih.gov/books/NBK50989/ 

30. Azevedo, Frederico A.C. et al. Equal numbers of neuronal and nonneuronal cells 
make the human brain an isometrically scaled-up primate brain. Journal of 
Comparative Neurology,Volume 513, Issue 5, pages 532–541, 10 April 2009 
 

31. Ismail A., and A. P. Engelbrecht Training product units in feedforward neural 
networks using particle swarm optimization. Available at: 
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E4DB29BE6E86E8660
6E0496523262DF7?doi=10.1.1.33.8647&rep=rep1&type=pdf 
 

32. Schuster, and Paliwal. Bidirectional recurrent neural networks. IEEE Transactions 
on Signal Processing, 45:2673–81, November 1997. 

 
33. G Cybenko, Continuous-Valued Neural Networks with Two Hidden Layers Are 

Sufficient, Tehnical Report, Department of Computer Sciene, Tufts University, 
Medford, Massahusetts,1989. 

 
34. Read ,Jesse, Albert Bifet , Bernhard Pfahringer , and Geoff  Holmes. Batch 

Incremental versus Instance-Incremental Learning in Dynamic and Evolving 
Data. Advances in Intelligent Data Analysis XI, Lecture Notes in Computer 
Science Volume 7619, 2012, pages 313-323 

 
35. Harrington ,Peter B. Sigmoid transfer functions in backpropagation neural 

networks. Anal. Chem., 65 (15), pages 2167–2168 (1993) 
 

Electronic sources 
 

E-1. http://reference.iucr.org/dictionary/Electron_density_map 
E-2. http://www.rodenburg.org/theory/scatteringvector18.html 
E-3. http://www.doitpoms.ac.uk/tlplib/crystallography3/unit_cell.php 
E-4. http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html 
E-5. http://reference.iucr.org/dictionary/Isomorphous_crystals 
E-6. http://utopia.duth.gr/~glykos/pepinsky.html 
 
 

  



125 
 

Appendix: Scripts and Programs 
 

 

A.1  Structure data creation (C language program) 
 

This is the program mentioned in section 2.3.1. 

 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
 
#define getrand ((float)(random())/RAND_MAX) 
 
/*Unit cell */ 
#define CELL_A 10.0 
#define CELL_B 15.0 
#define CELL_BETA 1.91986217719376 /*This is 110 degrees in rad */ 
 
/* Number of atoms per assymetric unit and their temperature factor */ 
#define NOF_ATOMS 30 
#define TEMP_FACT 10 
 
/* Maximum resolution for data in Amstrgong */ 
#define RESO 1.0 
 
main() 
{ 
    int data_set, data_sets; 
    FILE *out; 
    char filename[300]; 
    float reso; 
    int h,k,i; 
    float x[NOF_ATOMS]; 
    float y[NOF_ATOMS]; 
    float F; 
     
    srandom( time(NULL)); 
     
    printf("Number of data sets to produce: "); 
    scanf("%d", &data_sets); 
     
    for(data_set=0; data_set<data_sets; data_set++) 
    { 
        sprintf(filename,"p2_%05d.dat", data_set); 
        out=fopen(filename,"w"); 
         
        /*produce atomic positions */ 
        for(i=0; i<NOF_ATOMS; i++) 
        { 
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            x[i]=getrand; 
            y[i]=getrand/2.0; 
        } 
         
        /* for all reflection indeces ... */ 
        for(h=-(int)(CELL_A/RESO+1); h<=(int)(CELL_A/RESO+1); h++) 
            for(k=0;k<=(int)(CELL_B/RESO+1);k++) 
            { 
                /* is resolution within limits? */ 
                
reso=sqrt(1.0/((1.0/(sin(CELL_BETA)*sin(CELL_BETA)))*(h*h/(CELL_A*CELL_
A)+k*k/(CELL_B*CELL_B)-(2*h*k*cos(CELL_BETA)/(CELL_A*CELL_B)) ))); 
                 
                /*if yes, calculate structure factor and write out. 
Apply temerature factor of TEMP_FACT A^2 */ 
                if(reso>=RESO && !(h==0&&k==0)) 
                { 
                    F=0.0; 
                    for(i=0;i<NOF_ATOMS;i++) 
                        F+=2*cos(2*M_PI*(h*x[i]+k*y[i]))*exp(-
TEMP_FACT/(4.0*reso*reso)); 
                    fprintf(out, "%5d %5d %15.5f 1.0\n", h,k,F); 
                } 
            } 
         
             
            fprintf(out, "\n"); 
            fclose(out); 
    } 
} 

     
 
 

A.2  Matlab code that checks if all files created with the program in 
C contain the same number of reflections 
 

 
function [status] = Reflection_check( num_of_files ) 
%    
% If status is '1', files are OK -- same number of reflections in all 
files 
  
status=logical(0); 
Num_of_anaklaseis=int8(0); 
  
    for i=1:num_of_files 
        string=strcat('reflection files/p2 (',num2str(i),').dat'); 
%file path 
        string  %show the file path in workspace 
        data=importdata(string);   
        data=data(:,3); 
            if(Num_of_anaklaseis==0) 
                Num_of_anaklaseis=length(data); 
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            else 
                status=Num_of_anaklaseis==length(data); 
                    if(~status) 
                        return 
                    end 
            end 
    end 
  
end 
 
 
 

A.3  Matlab programs for experiments with structure factors as 
input data 
 

A.3.1  Creation of training patterns suitable for neural networks 
     
function [ neural_inputs, neural_outputs ] = Input_loader( 
num_of_files, type, test ) 
%SYNTAX [inputs,outputs]=Input_loader (num_of_files, "type", "test") 
% 
%  num_of_files is the number of files (samples) that will be used 
%  Type = output type  //  "Bipolar" (outputs=-1,1) "Binary"(outputs 
0,1) 
%"Structure"(output= structure factor with sign) 
%  Test= "Train" if we need data from the training folder or "Test" for 
the 
%  test folder 
% 
%--It takes a files that contain reflections of structures (created by 
the program in C) 
% and returns as inputs of a neural network the absolute value of 
structure 
% factors and outputs depending on "Type" variable 
  
structure_cell=cell(1); 
  
if(strcmp(test,'Train'))   %check for train or test folder 
    folder='reflection_files\'; 
elseif(strcmp(test,'Test')) 
    folder='reflection_files\testing_reflection_files\'; 
else 
    msg='There is a fault in the test argument' 
    return 
end 
   
    for i=0:num_of_files-1 
        %how many zeros for the filename (00001 klp) make filename 
        if(i<=9) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
p2_0000',num2str(i),'.dat'); 
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        elseif(i<=99) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
p2_000',num2str(i),'.dat'); 
        elseif(i<=999) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
p2_00',num2str(i),'.dat'); 
        elseif(i<=9999); 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
p2_0',num2str(i),'.dat'); 
        else 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
p2_',num2str(i),'.dat'); 
             
        end 
         
        %load 
        data=importdata(string); 
        structure_cell(i+1)={data(:,3)};    
    end 
  
%inputs regardless of type 
neural_inputs=abs(cell2mat(structure_cell)); 
  
%outputs depending on type 
if(strcmp(type,'Bipolar')) 
    neural_outputs=sign(cell2mat(structure_cell)); 
elseif(strcmp(type,'Binary')) 
    neural_outputs=double(cell2mat(structure_cell)>0); 
elseif(strcmp(type,'Structure')) 
    neural_outputs=double(cell2mat(structure_cell)); 
else 
    msg='There is a fault in the type argument' 
    return 
end 
  
end 
 

A.3.2      Networks with hyperbolic tangent sigmoid transfer function and bipolar 
output data 
 

A.3.2.1     Neural network training and application – basic function 
 

function [line_results]= Neural_test_function(sample_size,Num_neurons, 
iteration_no) 
% function with 1 hidden layer -- tansig transfer function 
% line_results saves 9 columns 
% 1: Neurons used in the neural 
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% 2: Samples used 
% 3: Best Validation Performance 
% 4: Train R-value (regression) 
% 5: Validation R-value (regression) 
% 6: Test R-value (regression) 
% 7: Overall R-value (regression) 
% 8: Gradient at the LAST epoch 
% 9: Number of (all) epochs 
%this line is used in the excell presentantion as part of an array 
(line) 
%which iteration (re-initialization) of the neural is this? used in the 
%file name produced (iteration_no) 
  
%input files 
[inputs,targets]=Input_loader(sample_size,'Bipolar','Train'); 
[rows,columns]=size(inputs); 
  
clear rows; 
                                    
% Create Network 
numHiddenNeurons = Num_neurons;  % Adjust as desired 
clear Num_neurons; 
net = newff(inputs,targets,numHiddenNeurons); 
net.trainFcn='trainscg'; 
  
net.divideParam.trainRatio = 60/100;  % Adjust as desired 
net.divideParam.valRatio = 20/100;  % Adjust as desired 
net.divideParam.testRatio = 20/100;  % Adjust as desired 
  
%set trainParam 
net.trainParam.showWindow=false; 
net.trainParam.showCommandLine=true; 
  
%set max epochs = 4000 
net.trainParam.epochs=4000; 
  
%create filename string 
filename_string=strcat(' 
1hidden',num2str(numHiddenNeurons),'neurons',num2str(columns),'samples_
_iteration_',num2str(iteration_no),'_'); 
desktop_message=strcat('training',filename_string) 
clear desktop_message; 
  
% Train and Apply Network 
[net,tr] = 
train(net,inputs,targets,'useParallel','yes','showResources','yes'); 
outputs = sim(net,inputs,'useParallel','yes','showResources','yes'); 
  
    %separate your training,validation and test data sets and results 
    trainTargets=targets(:,tr.trainInd(:)); 
    validTargets=targets(:,tr.valInd(:)); 
    testTargets=targets(:,tr.testInd(:)); 
     
    trainOutputs=outputs(:,tr.trainInd(:)); 
    validOutputs=outputs(:,tr.valInd(:)); 
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    testOutputs=outputs(:,tr.testInd(:)); 
  
                     % Plot  and save -- then clear memory 
plotperform(tr) 
%print -dtiffn 1hidden2neurons100samples_PERFORMANCE 
command_string=strcat('print -djpeg',filename_string,'_PERFORMANCE'); 
eval(command_string) 
close 
  
plottrainstate(tr) 
command_string=strcat('print -djpeg',filename_string,'_TRAIN_STATE'); 
eval(command_string) 
close 
  
plotregression(trainTargets,trainOutputs,'Train',validTargets,validOutp
uts,'Validation',testTargets,testOutputs,'Test',targets,outputs,'Overal
l'); 
%print -dtiffn 1hidden2neurons100samples_REGRESSION 
command_string=strcat('print -djpeg',filename_string,'_REGRESSION'); 
eval(command_string) 
close 
  
% Line result implementation 
line_results(1)=numHiddenNeurons; 
line_results(2)=sample_size; 
line_results(3)=tr. best_vperf; 
x=corrcoef(trainTargets,trainOutputs); 
line_results(4)=x(2); 
x=corrcoef(validTargets,validOutputs); 
line_results(5)=x(2); 
x=corrcoef(testTargets,testOutputs); 
line_results(6)=x(2); 
x=corrcoef(targets,outputs); 
line_results(7)=x(2); clear x; 
line_results(8)=tr.gradient(end); 
line_results(9)=tr.num_epochs;   %NOT tr.best_epochs 
  
%save all variables 
command_string=strcat('save',filename_string,'Variables') 
  
clear columns;      %clear what you don't need to be saved 
clear filename_string; 
clear trainTargets trainOutputs validTargets validOutputs testTargets 
testOutputs; 
  
eval(command_string) 
  
%clear all except line_results 
clear Num_neurons command_string inputs net numHiddenNeurons outputs 
sample_size targets testTargets tr; 
  
close all; 
  
end 
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A.3.2.2     Multiple applications of basic function 
 

function [results] = 
Testing_neural(sample_sizes,neuron_numbers_array,iterations) 
%iterations--> how many times to re-initialize the network and try the 
experiments again 
  
[rows,numberOf_SampleExperiments]=size(sample_sizes); 
[row,numberOf_DifferentSingleHiddenExperiments]=size(neuron_numbers_arr
ay); 
clear rows 
  
%first check small samples first in all neural networks for faster 
%production of results 
  
%creation of results array 
results=zeros( 
(numberOf_SampleExperiments*numberOf_DifferentSingleHiddenExperiments*i
terations ),9); 
index=1; 
  
    for i=1:numberOf_SampleExperiments 
        sample_size=sample_sizes(i); 
            for ii=1:numberOf_DifferentSingleHiddenExperiments 
                for iteration_no=1:iterations 
                    Num_neurons=neuron_numbers_array(ii); 
                    
line_results=Neural_test_function(sample_size,Num_neurons,iteration_no)
; 
                    %save in the index 
                    results(index,:)=line_results; 
                    index=index+1; 
                end 
            end 
     
    end 
end 
 
 

A.3.2.3     Execute multiple applications of basic function for the experiments 
 

function [void] = Executer 
     
diary('log file___date_TANSIG') 
  
matlabpool open 
    
%WATCH RATIOS BEFORE EXECUTION!!! 
  
%test with bipolar- tansig 
 sample_array=[2000 4000 6000 10000]; 



132 
 

 neuron_array=[5 10 20 30 40 50 100 150 200 250 300 350 400 500 600]; 
 results1=Testing_neural(sample_array,neuron_array,3); 
 save ('_results', 'results'); 
 
matlabpool close 
  
%play alert sound 
Data = load('handel.mat'); 
sound(Data.y, Data.Fs) 
  
diary off 
  
end 

 

A.3.3     Networks with logistic tangent sigmoid transfer function and binary 
output data 
 

A.3.3.1     Neural network training and application – basic function 
 

function [line_results]= 
Neural_test_function_binary(sample_size,Num_neurons,iteration_no) 
%function with 1 hidden layer – logsig transfer function 
% line_results saves 9 columns 
% 1: Neurons used in the neural 
% 2: Samples used 
% 3: Best Validation Performance 
% 4: Train R-value (regression) 
% 5: Validation R-value (regression) 
% 6: Test R-value (regression) 
% 7: Overall R-value (regression) 
% 8: Gradient at the LAST epoch 
% 9: Number of (all) epochs 
%this line is used in the excell presentantion as part of an array 
(line) 
%which iteration (re-initialization) of the neural is this? used in the 
%file name produced 
  
%input files 
[inputs,targets]=Input_loader(sample_size,'Binary','Train'); 
[rows,columns]=size(inputs); 
  
clear rows; 
                       
% Create Network 
numHiddenNeurons = Num_neurons;  % Adjust as desired 
clear Num_neurons; 
net = newfit(inputs,targets,numHiddenNeurons); 
net.trainFcn='trainscg'; 
  
net.divideParam.trainRatio = 60/100;  % Adjust as desired 
net.divideParam.valRatio = 20/100;  % Adjust as desired 
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net.divideParam.testRatio = 20/100;  % Adjust as desired 
  
%set trainParam 
net.trainParam.showWindow=false; 
net.trainParam.showCommandLine=true; 
  
%set transfer function 
net.layers{1}.transferFcn='logsig'; 
  
%set max epochs to 4000 
net.trainParam.epochs=4000; 
  
%create filename string 
filename_string=strcat(' 
LOGSIG_1hidden',num2str(numHiddenNeurons),'neurons',num2str(columns),'s
amples_4000epochs__iteration_',num2str(iteration_no),'_'); 
desktop_message=strcat('training',filename_string) 
clear desktop_message; 
  
% Train and Apply Network 
[net,tr] = 
train(net,inputs,targets,'useParallel','yes','showResources','yes'); 
outputs = sim(net,inputs,'useParallel','yes','showResources','yes'); 
  
%separate your training,validation and test data sets and results 
    trainTargets=targets(:,tr.trainInd(:)); 
    validTargets=targets(:,tr.valInd(:)); 
    testTargets=targets(:,tr.testInd(:)); 
     
    trainOutputs=outputs(:,tr.trainInd(:)); 
    validOutputs=outputs(:,tr.valInd(:)); 
    testOutputs=outputs(:,tr.testInd(:)); 
  
      % Plot  and save -- then clear memory 
plotperform(tr) 
%print -dtiffn 1hidden2neurons100samples_PERFORMANCE 
command_string=strcat('print -djpeg',filename_string,'_PERFORMANCE'); 
eval(command_string) 
close 
  
plottrainstate(tr) 
command_string=strcat('print -djpeg',filename_string,'_TRAIN_STATE'); 
eval(command_string) 
close 
  
plotregression(trainTargets,trainOutputs,'Train',validTargets,validOutp
uts,'Validation',testTargets,testOutputs,'Test',targets,outputs,'Overal
l'); 
%print -dtiffn 1hidden2neurons100samples_REGRESSION 
command_string=strcat('print -djpeg',filename_string,'_REGRESSION'); 
eval(command_string) 
close 
  
% Line result implementation 
line_results(1)=numHiddenNeurons; 
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line_results(2)=sample_size; 
line_results(3)=tr. best_vperf; 
x=corrcoef(trainTargets,trainOutputs); 
line_results(4)=x(2); 
x=corrcoef(validTargets,validOutputs); 
line_results(5)=x(2); 
x=corrcoef(testTargets,testOutputs); 
line_results(6)=x(2); 
x=corrcoef(targets,outputs); 
line_results(7)=x(2); clear x; 
line_results(8)=tr.gradient(end); 
line_results(9)=tr.num_epochs;   %NOT tr.best_epochs 
  
%save all 
command_string=strcat('save',filename_string,'Variables') 
clear columns;      %clear what you don't need to be saved 
clear filename_string; 
clear trainTargets trainOutputs validTargets validOutputs testTargets 
testOutputs; 
  
eval(command_string) 
  
%clear all except line_results 
clear Num_neurons command_string inputs net numHiddenNeurons outputs 
sample_size targets testTargets tr; 
  
close all; 
  
end 
 

A.3.3.2     Multiple applications of basic function 
 

function [results] = 
Testing_neural_binary(sample_sizes,neuron_numbers_array,iterations) 
  
[rows,numberOf_SampleExperiments]=size(sample_sizes); 
[rows,numberOf_DifferentSingleHiddenExperiments]=size(neuron_numbers_ar
ray); 
clear rows 
  
%Results creation 
results=zeros( 
(numberOf_SampleExperiments*numberOf_DifferentSingleHiddenExperiments*i
terations ),9); 
index=1; 
  
    for i=1:numberOf_SampleExperiments 
        sample_size=sample_sizes(i); 
            for ii=1:numberOf_DifferentSingleHiddenExperiments 
                for iteration_no=1:iterations 
                    Num_neurons=neuron_numbers_array(ii); 
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line_results=Neural_test_function_binary(sample_size,Num_neurons,iterat
ion_no); 
                    results(index,:)=line_results; 
                    index=index+1; 
                end 
            end 
    end 
end 
 

A.3.3.3     Execute multiple applications of basic function for the experiments 
 

function [void] = Executer 
     
diary('log file___date_logsig) 
  
matlabpool open 
    
%WATCH RATIOS BEFORE EXECUTION!!! 
  
%test with binary- logsig 
 sample_array=[2000 4000 6000 10000]; 
 neuron_array=[5 10 20 30 40 50 100 150 200 250 300 350 400 500 600]; 
 results1= Testing_neural_binary(sample_array,neuron_array,3); 
 save ('_results', 'results'); 
 

matlabpool close 
  
%play alert sound 
Data = load('handel.mat'); 
sound(Data.y, Data.Fs) 
  
diary off 
  
end 
 

A.3.4     Networks with logistic tangent sigmoid transfer function and structure 
output data 
 

A.3.4.1     Neural network training and application – basic function 
 

function [line_results]= 
Neural_test_function_structures(sample_size,Num_neurons, iteration_no) 
% function me 1 hidden layer – tansig and structure output data 
% line_results saves 9 columns 
% 1: Neurons used in the neural 
% 2: Samples used 
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% 3: Best Validation Performance 
% 4: Train R-value (regression) 
% 5: Validation R-value (regression) 
% 6: Test R-value (regression) 
% 7: Overall R-value (regression) 
% 8: Gradient at the LAST epoch 
% 9: Number of (all) epochs 
%this line is used in the excell presentantion as part of an array 
(line) 
%which iteration (re-initialization) of the neural is this? used in the 
%file name produced 
  
%input files 
[inputs,targets]=Input_loader(sample_size,'Structure','Train'); 
[rows,columns]=size(inputs); 
  
clear rows; 
                               
% Create Network 
numHiddenNeurons = Num_neurons;  % Adjust as desired 
clear Num_neurons; 
net = newfit(inputs,targets,numHiddenNeurons); 
net.trainFcn='trainscg'; 
  
net.divideParam.trainRatio = 60/100;  % Adjust as desired 
net.divideParam.valRatio = 20/100;  % Adjust as desired 
net.divideParam.testRatio = 20/100;  % Adjust as desired 
  
%set trainParam 
net.trainParam.showWindow=false; 
net.trainParam.showCommandLine=true; 
  
%set transfer function 
net.layers{1}.transferFcn='logsig'; 
  
%set max epochs to 4000 
net.trainParam.epochs=4000; 
  
%create filename string 
filename_string=strcat(' 
LOGSIG_1hidden',num2str(numHiddenNeurons),'neurons',num2str(columns),'s
amples_4000epochs_STRUCTURE__iteration_',num2str(iteration_no),'_'); 
desktop_message=strcat('training',filename_string) 
clear desktop_message; 
  
% Train and Apply Network 
[net,tr] = 
train(net,inputs,targets,'useParallel','yes','showResources','yes'); 
outputs = sim(net,inputs,'useParallel','yes','showResources','yes'); 
  
   %separate your training,validation and test data sets and results 
    trainTargets=targets(:,tr.trainInd(:)); 
    validTargets=targets(:,tr.valInd(:)); 
    testTargets=targets(:,tr.testInd(:)); 
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    trainOutputs=outputs(:,tr.trainInd(:)); 
    validOutputs=outputs(:,tr.valInd(:)); 
    testOutputs=outputs(:,tr.testInd(:)); 
  
                       % Plot  and save -- then clear memory 
plotperform(tr) 
%print -dtiffn 1hidden2neurons100samples_PERFORMANCE 
command_string=strcat('print -djpeg',filename_string,'_PERFORMANCE'); 
eval(command_string) 
close 
  
plottrainstate(tr) 
command_string=strcat('print -djpeg',filename_string,'_TRAIN_STATE'); 
eval(command_string) 
close 
  
plotregression(trainTargets,trainOutputs,'Train',validTargets,validOutp
uts,'Validation',testTargets,testOutputs,'Test',targets,outputs,'Overal
l'); 
%print -dtiffn 1hidden2neurons100samples_REGRESSION 
command_string=strcat('print -djpeg',filename_string,'_REGRESSION'); 
eval(command_string) 
close 
  
% Line result implementation 
line_results(1)=numHiddenNeurons; 
line_results(2)=sample_size; 
line_results(3)=tr. best_vperf; 
x=corrcoef(trainTargets,trainOutputs); 
line_results(4)=x(2); 
x=corrcoef(validTargets,validOutputs); 
line_results(5)=x(2); 
x=corrcoef(testTargets,testOutputs); 
line_results(6)=x(2); 
x=corrcoef(targets,outputs); 
line_results(7)=x(2); clear x; 
line_results(8)=tr.gradient(end); 
line_results(9)=tr.num_epochs;   %NOT tr.best_epochs 
  
%save all variables 
command_string=strcat('save',filename_string,'Variables') 
  
clear columns;      %clear what you don't need to be saved 
clear filename_string; 
clear trainTargets trainOutputs validTargets validOutputs testTargets 
testOutputs; 
  
eval(command_string) 
  
%clear all except line_results 
clear Num_neurons command_string inputs net numHiddenNeurons outputs 
sample_size targets testTargets tr; 
  
close all; 
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end 
 

A.3.4.2     Multiple applications of basic function 
 

function [results] = 
Testing_neural_structures(sample_sizes,neuron_numbers_array,iterations) 
%iterations--> how many times to re-initialize the network and try the 
experiments again 
  
[rows,numberOf_SampleExperiments]=size(sample_sizes); 
[row,numberOf_DifferentSingleHiddenExperiments]=size(neuron_numbers_arr
ay); 
clear rows 
  
%results creation 
results=zeros( 
(numberOf_SampleExperiments*numberOf_DifferentSingleHiddenExperiments*i
terations ),9); 
index=1; 
  
    for i=1:numberOf_SampleExperiments 
        sample_size=sample_sizes(i); 
            for ii=1:numberOf_DifferentSingleHiddenExperiments 
                for iteration_no=1:iterations 
                    Num_neurons=neuron_numbers_array(ii); 
                    
line_results=Neural_test_function_structures(sample_size,Num_neurons,it
eration_no); 

 
                    results(index,:)=line_results; 
                    index=index+1; 
                end 
            end 
     
    end 
end 
 

 

A.3.4.3     Execute multiple applications of basic function for the experiments 
 

function [void] = Executer 
     
diary('log file___date_structure) 
  
matlabpool open 
    
%WATCH RATIOS BEFORE EXECUTION!!! 
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%test with bipolar- tansig-structures 
 sample_array=[2000 4000 6000 10000]; 
 neuron_array=[5 10 20 30 40 50 100 150 200 250 300 350 400 500 600]; 
 results1= Testing_neural_structures(sample_array,neuron_array,3); 
 save ('_results', 'results'); 
 

matlabpool close 
  
%play alert sound 
Data = load('handel.mat'); 
sound(Data.y, Data.Fs) 
  
diary off 
  
end 
 

 

A.3.5     Product net input Neural Networks with hyperbolic tangent sigmoid 
transfer function and bipolar output data 
 

A.3.5.1     Neural network training and application – basic function 
 

function [line_results]= 
Neural_test_function_netprod(sample_size,Num_neurons, iteration_no) 
% function with 1 hidden layer and product instead of sum for net input 
% line_results saves 9 columns 
% 1: Neurons used in the neural 
% 2: Samples used 
% 3: Best Validation Performance 
% 4: Train R-value (regression) 
% 5: Validation R-value (regression) 
% 6: Test R-value (regression) 
% 7: Overall R-value (regression) 
% 8: Gradient at the LAST epoch 
% 9: Number of (all) epochs 
%this line is used in the excell presentantion as part of an array 
(line) 
%which iteration (re-initialization) of the neural is this? used in the 
%file name produced 
  
%input files 
[inputs,targets]=Input_loader(sample_size,'Bipolar','Train'); 
[rows,columns]=size(inputs); 
  
clear rows; 
                             
% Create Network 
numHiddenNeurons = Num_neurons;  % Adjust as desired 
clear Num_neurons; 
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net = newfit(inputs,targets,numHiddenNeurons); 
net.trainFcn='trainscg'; 
  
net.divideParam.trainRatio = 60/100;  % Adjust as desired 
net.divideParam.valRatio = 20/100;  % Adjust as desired 
net.divideParam.testRatio = 20/100;  % Adjust as desired 
  
%set trainParam 
net.trainParam.showWindow=false; 
net.trainParam.showCommandLine=true; 
  
%set net input function 
net.layers{1}.netInputFcn='netprod'; 
  
%set max epochs 
net.trainParam.epochs=4000; 
  
%create filename string 
filename_string=strcat(' 
PRODUCT_1hidden',num2str(numHiddenNeurons),'neurons',num2str(columns),'
samples__iteration_',num2str(iteration_no),'_'); 
desktop_message=strcat('training',filename_string) 
clear desktop_message; 
  
% Train and Apply Network 
[net,tr] = 
train(net,inputs,targets,'useParallel','yes','showResources','yes'); 
outputs = sim(net,inputs,'useParallel','yes','showResources','yes'); 
  
%separate your training,validation and test data sets and results 
    trainTargets=targets(:,tr.trainInd(:)); 
    validTargets=targets(:,tr.valInd(:)); 
    testTargets=targets(:,tr.testInd(:)); 
     
    trainOutputs=outputs(:,tr.trainInd(:)); 
    validOutputs=outputs(:,tr.valInd(:)); 
    testOutputs=outputs(:,tr.testInd(:)); 
  
                 % Plot  and save -- then clear memory 
plotperform(tr) 
%print -dtiffn 1hidden2neurons100samples_PERFORMANCE 
command_string=strcat('print -djpeg',filename_string,'_PERFORMANCE'); 
eval(command_string) 
close 
  
plottrainstate(tr) 
command_string=strcat('print -djpeg',filename_string,'_TRAIN_STATE'); 
eval(command_string) 
close 
  
  
plotregression(trainTargets,trainOutputs,'Train',validTargets,validOutp
uts,'Validation',testTargets,testOutputs,'Test',targets,outputs,'Overal
l'); 
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%print -dtiffn 1hidden2neurons100samples_REGRESSION 
command_string=strcat('print -djpeg',filename_string,'_REGRESSION'); 
eval(command_string) 
close 
  
% Line result implementation 
line_results(1)=numHiddenNeurons; 
line_results(2)=sample_size; 
line_results(3)=tr. best_vperf; 
x=corrcoef(trainTargets,trainOutputs); 
line_results(4)=x(2); 
x=corrcoef(validTargets,validOutputs); 
line_results(5)=x(2); 
x=corrcoef(testTargets,testOutputs); 
line_results(6)=x(2); 
x=corrcoef(targets,outputs); 
line_results(7)=x(2); clear x; 
line_results(8)=tr.gradient(end); 
line_results(9)=tr.num_epochs;   %NOT tr.best_epochs 
  
%save all variables 
command_string=strcat('save',filename_string,'Variables') 
  
clear columns;      %clear what you don't need to be saved 
clear filename_string; 
clear trainTargets trainOutputs validTargets validOutputs testTargets 
testOutputs; 
  
eval(command_string) 
  
%clear all except line_results 
clear Num_neurons command_string inputs net numHiddenNeurons outputs 
sample_size targets testTargets tr; 
  
close all; 
  
end 
 

A.3.5.2     Multiple applications of basic function 
 

function [results] = 
Testing_neural_product(sample_sizes,neuron_numbers_array,iterations) 
%iterations--> how many times to re-initialize the network and try the 
experiments again 
  
[rows,numberOf_SampleExperiments]=size(sample_sizes); 
[row,numberOf_DifferentSingleHiddenExperiments]=size(neuron_numbers_arr
ay); 
clear rows 
  
%Results creation 
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results=zeros( 
(numberOf_SampleExperiments*numberOf_DifferentSingleHiddenExperiments*i
terations ),9); 
index=1; 
  
    for i=1:numberOf_SampleExperiments 
        sample_size=sample_sizes(i); 
            for ii=1:numberOf_DifferentSingleHiddenExperiments 
                for iteration_no=1:iterations 
                    Num_neurons=neuron_numbers_array(ii); 
                    
line_results=Neural_test_function_netprod(sample_size,Num_neurons,itera
tion_no); 
 
                    results(index,:)=line_results; 
                    index=index+1; 
                end 
            end 
    end 
 end 
 

A.3.5.3     Execute multiple applications of basic function for the experiments 
 

function [void] = Executer 
     
diary('log file___date_product) 
  
matlabpool open 
    
%WATCH RATIOS BEFORE EXECUTION!!! 
  
%test with bipolar- tansig -- product 
 sample_array=[2000 4000 6000 10000]; 
 neuron_array=[5 10 20 30 40 50 100 150 200 250 300 350 400 500 600]; 
 results1= Testing_neural_product(sample_array,neuron_array,3); 
 save ('_results', 'results'); 
 

matlabpool close 
  
%play alert sound 
Data = load('handel.mat'); 
sound(Data.y, Data.Fs) 
  
diary off 
  
end 
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A.3.6     Neural Networks with 2 hidden layers and hyperbolic tangent sigmoid 
transfer functions and bipolar output data 
 

A.3.6.1     Neural network training and application – basic function 
 

function [line_results]= 
Neural_test_function_layers_epochs(sample_size,Num_neurons,max_epochs, 
iteration_no) 
% function with 2 hidden layers 
% line_results saves 9 columns 
% 1: Neurons used in the neural 
% 2: Samples used 
% 3: Best Validation Performance 
% 4: Train R-value (regression) 
% 5: Validation R-value (regression) 
% 6: Test R-value (regression) 
% 7: Overall R-value (regression) 
% 8: Gradient at the LAST epoch 
% 9: Number of (all) epochs 
%this line is used in the excell presentantion as part of an array 
(line) 
%which iteration (re-initialization) of the neural is this? used in the 
%file name produced 
  
  
%input files 
[inputs,targets]=Input_loader(sample_size,'Bipolar','Train'); 
[rows,columns]=size(inputs); 
[rows,no_hidden_layers]=size(Num_neurons); 
clear rows; 
  
                                    
% Create Network 
numHiddenNeurons = Num_neurons;  % Adjust as desired 
clear Num_Neurons; 
net = newfit(inputs,targets,numHiddenNeurons); 
net.trainFcn='trainscg'; 
  
net.divideParam.trainRatio = 60/100;  % Adjust as desired 
net.divideParam.valRatio = 20/100;  % Adjust as desired 
net.divideParam.testRatio = 20/100;  % Adjust as desired 
  
%set trainParam 
net.trainParam.showWindow=false; 
net.trainParam.showCommandLine=true; 
  
%set max epochs 
net.trainParam.epochs=max_epochs; 
  
  
%create filename string 
filename_string=strcat(' _',num2str(no_hidden_layers),'hidden_'); 
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   for i=1:no_hidden_layers 
        
filename_string=strcat(filename_string,num2str(numHiddenNeurons(i)),'-
'); 
    end 
filename_string=strcat(filename_string,'neurons',num2str(columns),'samp
les_',num2str(max_epochs),'maxEpochs__iteration_',num2str(iteration_no)
,'_'); 
desktop_message=strcat('training',filename_string) 
clear desktop_message; 
  
% Train and Apply Network 
[net,tr] = 
train(net,inputs,targets,'useParallel','yes','showResources','yes'); 
outputs = sim(net,inputs,'useParallel','yes','showResources','yes'); 
  
  
 %separate your training,validation and test data sets and results 
    trainTargets=targets(:,tr.trainInd(:)); 
    validTargets=targets(:,tr.valInd(:)); 
    testTargets=targets(:,tr.testInd(:)); 
     
    trainOutputs=outputs(:,tr.trainInd(:)); 
    validOutputs=outputs(:,tr.valInd(:)); 
    testOutputs=outputs(:,tr.testInd(:)); 
  
  
                   % Plot  and save -- then clear memory 
plotperform(tr) 
%print -dtiffn 1hidden2neurons100samples_PERFORMANCE 
command_string=strcat('print -djpeg',filename_string,'_PERFORMANCE'); 
eval(command_string) 
close 
  
plottrainstate(tr) 
command_string=strcat('print -djpeg',filename_string,'_TRAIN_STATE'); 
eval(command_string) 
close 
  
plotregression(trainTargets,trainOutputs,'Train',validTargets,validOutp
uts,'Validation',testTargets,testOutputs,'Test',targets,outputs,'Overal
l'); 
%print -dtiffn 1hidden2neurons100samples_REGRESSION 
command_string=strcat('print -djpeg',filename_string,'_REGRESSION'); 
eval(command_string) 
close 
  
% Line result implementation 
line_results(1)=numHiddenNeurons(1); 
line_results(2)=sample_size; 
line_results(3)=tr. best_vperf; 
x=corrcoef(trainTargets,trainOutputs); 
line_results(4)=x(2); 
x=corrcoef(validTargets,validOutputs); 
line_results(5)=x(2); 
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x=corrcoef(testTargets,testOutputs); 
line_results(6)=x(2); 
x=corrcoef(targets,outputs); 
line_results(7)=x(2); clear x; 
line_results(8)=tr.gradient(end); 
line_results(9)=tr.num_epochs;   %NOT tr.best_epochs 
  
  
%save all variables 
command_string=strcat('save',filename_string,'Variables') 
  
clear columns;      %clear what you don't need to be saved 
clear filename_string; 
clear trainTargets trainOutputs validTargets validOutputs testTargets 
testOutputs; 
  
eval(command_string) 
  
%clear all except line_results 
clear Num_neurons command_string inputs net numHiddenNeurons outputs 
sample_size targets testTargets tr; 
  
close all; 
  
end 
 

 

A.3.6.2     Multiple applications of basic function 
 

function [results] = 
Testing_neural_multiple_layers(sample_sizes,neuron_numbers_array, 
epochs, iterations) 
%iterations--> how many times to re-initialize the network and try the 
experiments again 
  
[rows,numberOf_SampleExperiments]=size(sample_sizes); 
[numberOf_DifferentSingleHiddenExperiments,columns]=size(neuron_numbers
_array); 
clear columns 
  
%results creation 
results=zeros( 
(numberOf_SampleExperiments*numberOf_DifferentSingleHiddenExperiments*i
terations ),9); 
index=1; 
  
    for i=1:numberOf_SampleExperiments 
        sample_size=sample_sizes(i); 
            for ii=1:numberOf_DifferentSingleHiddenExperiments 
                for iteration_no=1:iterations 
                    Num_neurons=neuron_numbers_array(ii,:); 
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line_results=Neural_test_function_layers_epochs(sample_size,Num_neurons
, epochs,iteration_no); 

 
                    results(index,:)=line_results; 
                    index=index+1; 
                end 
            end 
    end 
end 
 
 

A.3.6.3     Execute multiple applications of basic function for the experiments 
 

function [void] = Executer 
     
diary('log file___date__2_hidden_tansig) 
  
matlabpool open 
    
%WATCH RATIOS BEFORE EXECUTION!!! 
  
sample_array=[4000 6000 10000]; 
 
neurons=[5 5];   
results1=Testing_neural_multiple_layers(sample_array,neurons,4000,3); 
save ('results1', 'results1'); 
 
neurons=[10 10];   
results2=Testing_neural_multiple_layers(sample_array,neurons,4000,3); 
save ('results2', 'results2'); 

 
neurons=[20 20];   
results3=Testing_neural_multiple_layers(sample_array,neurons,4000,3); 
save ('results3', 'results3'); 

 
neurons=[40 40];   
results4=Testing_neural_multiple_layers(sample_array,neurons,4000,3); 
save ('results4', 'results4'); 
 
neurons=[50 50];   
results5=Testing_neural_multiple_layers(sample_array,neurons,4000,3); 
save ('results5', 'results5'); 
 
neurons=[100 100];   
results6=Testing_neural_multiple_layers(sample_array,neurons,4000,3); 
save ('results6', 'results6'); 
 

neurons=[150 150];   
results7=Testing_neural_multiple_layers(sample_array,neurons,4000,3); 
save ('results7', 'results7'); 
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neurons=[200 200];   
results8=Testing_neural_multiple_layers(sample_array,neurons,4000,3); 
save ('results8', 'results8'); 
 

neurons=[250 250];   
results9=Testing_neural_multiple_layers(sample_array,neurons,4000,3); 
save ('results9', 'results9'); 
 

neurons=[300 300];   
results10=Testing_neural_multiple_layers(sample_array,neurons,4000,3); 
save ('results10', 'results10'); 
 

neurons=[350 350];   
results11=Testing_neural_multiple_layers(sample_array,neurons,4000,3); 
save ('results11', 'results11'); 
 

matlabpool close 
  
%play alert sound 
Data = load('handel.mat'); 
sound(Data.y, Data.Fs) 
  
diary off 
  
end 
 

A.4     Matlab programs for experiments with unitary structure factors 
as input data 

 

A.4.1     Creation of training patterns suitable for neural networks 
 
function [ neural_inputs, neural_outputs ] = Input_loader_unitary( 
num_of_files, type, test ) 

 
%works with unitary structure files from ref_files 
% 
%IMPORTANT!!!! 
% REMEMBER TO CHANGE NUMBER OF ATOMS IF NECESSARY (how many atoms are 
% supposed to be in the ref_files (p2_xxxx.dat) ) 
 
%SYNTAX [inputs,outputs]=Input_loader (num_of_files, "type", "test") 
% 
%  num_of_files is the number of files (samples) that will be used 
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%  Type = output type  //  "Bipolar" (outputs=-1,1) "Binary"(outputs 
0,1) 
%"Structure"(output= structure factor with sign) 
%  Test= "Train" if we need data from the training folder or "Test" for 
the test folder 
% 
%--It takes a file that contains reflections of structures (created by 
the program in C) 
% and returns as inputs of a neural network the absolute value of 
unitary structure factors 
% factors and outputs depending on "Type" variable 
 
number_of_atoms=30; 
  
structure_cell=cell(1); 
  
if(strcmp(test,'Train'))   %check for training or test folder 
    folder='reflection_files\'; 
elseif(strcmp(test,'Test')) 
    folder='reflection_files\testing_reflection_files\'; 
else 
    msg='There is a fault in the test argument' 
    return 
end 
  
    for i=0:num_of_files-1 
        %how many zeros for the filename (00001 klp) make filename 
        if(i<=9) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
p2_0000',num2str(i),'.dat'); 
        elseif(i<=99) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
p2_000',num2str(i),'.dat'); 
        elseif(i<=999) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
p2_00',num2str(i),'.dat'); 
        elseif(i<=9999); 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
p2_0',num2str(i),'.dat'); 
        else 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
p2_',num2str(i),'.dat'); 
             
        end 
            
        %load 
        data=importdata(string); 
        structure_cell(i+1)={data(:,3)/(2*number_of_atoms)};    
    end 
  
%inputs regardless of type 
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neural_inputs=abs(cell2mat(structure_cell)); 
  
%outputs depending on type 
if(strcmp(type,'Bipolar')) 
    neural_outputs=sign(cell2mat(structure_cell)); 
elseif(strcmp(type,'Binary')) 
    neural_outputs=double(cell2mat(structure_cell)>0); 
elseif(strcmp(type,'Structure')) 
    neural_outputs=double(cell2mat(structure_cell)); 
else 
    msg='There is a fault in the type argument' 
    return 
end 
  
end 
 

A.4.2     Networks with hyperbolic tangent sigmoid transfer function and bipolar 
output data 
 

A.4.2.1     Neural network training and application – basic function 
 

The code is the same as the code in A.3.2.1 but instead of line: 

[inputs,targets]=Input_loader(sample_size,'Bipolar','Train'); 
 

We use the line: 

[inputs,targets]=Input_loader_unitary(sample_size,'Bipolar','Train'); 
  

A.4.2.2     Multiple applications of basic function 
 

Same as the code in section A.3.2.2 

 

A.4.2.3     Execute multiple applications of basic function for the experiments 
 

Same as the code in section A.3.2.3 

 

A.4.3     Remaining experiments with unitary structure factors. 
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The codes are the same as described for section A.3. The difference is that instead of 
function “Input_loader”, the function “Input_loader_unitary” is used, when necessary (as 
described in section A.4.2.1).  

 

A.5     Programs for experiments with unitary structure factors as 
input data 
 

A.5.1     Structure data creation for unitary structure factor experiments (C 
language program) 
 
#include <stdio.h>  
#include <math.h>  
#include <stdlib.h>  
 
#define getrand ((float)(random())/RAND_MAX)  
 
/*Unit cell */  
#define CELL_A 10.0  
#define CELL_B 15.0  
#define CELL_BETA 1.91986217719376 /*This is 110 degrees in rad */  
 
/* Number of atoms per assymetric unit and their temperature factor */  
#define NOF_ATOMS 30  
#define TEMP_FACT 10  
 
/* Maximum resolution for data in Amstrgong */  
#define RESO 1.0  
 
main()  
{  
    int data_set, data_sets;  
    FILE *out, *uni_out;  
    char filename[300];  
    char uni_filename[300];   
    float reso;  
    int h,k,i;  
    float x[NOF_ATOMS];  
    float y[NOF_ATOMS];  
    float F;  
    float E;  
      
    srandom( time(NULL));  
      
    printf("Number of data sets to produce: ");  
    scanf("%d", &data_sets);  
      
    for(data_set=0; data_set<data_sets; data_set++)  
    {  
        sprintf(filename,"p2_%05d.dat", data_set);  
 sprintf(uni_filename,"evalue_p2_%05d.dat", data_set);  
        out=fopen(filename,"w");  
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 uni_out=fopen(uni_filename,"w");  
          
        /*produce atomic positions */  
        for(i=0; i<NOF_ATOMS; i++)  
        {  
            x[i]=getrand;  
            y[i]=getrand/2.0;  
        }  
          
        /* for all reflection indeces ... */  
        for(h=-(int)(CELL_A/RESO+1); h<=(int)(CELL_A/RESO+1); h++)  
            for(k=0;k<=(int)(CELL_B/RESO+1);k++)  
            {  
                /* is resolution within limits? */  
                
reso=sqrt(1.0/((1.0/(sin(CELL_BETA)*sin(CELL_BETA)))*(h*h/(CELL_A*CELL_
A)+k*k/(CELL_B*CELL_B)-(2*h*k*cos(CELL_BETA)/(CELL_A*CELL_B)) )));  
                  
                /*if yes, calculate structure factor and write out. 
Apply temerature factor of TEMP_FACT A^2 */  
                if(reso>=RESO && !(h==0&&k==0))  
                {  
                    F=0.0;  
      E=0.0;  
                    for(i=0;i<NOF_ATOMS;i++){  
                        F+=2*cos(2*M_PI*(h*x[i]+k*y[i]))*exp(-
TEMP_FACT/(4.0*reso*reso));  
   E+=2*cos(2*M_PI*(h*x[i]+k*y[i]));  
   }  
                    fprintf(out, "%5d %5d %15.5f 1.0\n", h,k,F);  
      fprintf(uni_out, "%5d %5d %15.5f 1.0\n", h,k,E);   
                }  
            }  
          
              
            fprintf(out, "\n");  
     fprintf(uni_out, "\n");   
            fclose(out);  
     fclose(uni_out);   
    }  
} 

 

A.5.2     Creation of training patterns suitable for neural networks 
 
function [ neural_inputs, neural_outputs ] = Input_loader_evalue( 
num_of_files, type, test ) 

 
%SYNTAX [inputs,outputs]=Input_loader (num_of_files, type, test?) 
 
structure_cell=cell(1); 
  
%file paths below lead to the evalue_p2_xxxx.dat files created by the c 
program in section A.4.1 
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if(strcmp(test,'Train'))   %check for training or test folders 
    folder='ref_files_me_evalues\eval\'; 
elseif(strcmp(test,'Test')) 
    folder='ref_files_me_evalues\test_set\eval\'; 
else 
    msg='There is a fault in the test argument' 
    return 
end 
  
  
    for i=0:num_of_files-1 
        %how many zeros for the filename (00001 klp) make filename 
        if(i<=9) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
evalue_p2_0000',num2str(i),'.dat'); 
        elseif(i<=99) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
evalue_p2_000',num2str(i),'.dat'); 
        elseif(i<=999) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
evalue_p2_00',num2str(i),'.dat'); 
        elseif(i<=9999); 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
evalue_p2_0',num2str(i),'.dat'); 
        else 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
evalue_p2_',num2str(i),'.dat'); 
             
        end 
         
         
        %load 
        data=importdata(string); 
        structure_cell(i+1)={data(:,3)};    
    end 
  
%inputs regardless of type 
neural_inputs=abs(cell2mat(structure_cell)); 
  
%outputs depending on type 
if(strcmp(type,'Bipolar')) 
    neural_outputs=sign(cell2mat(structure_cell)); 
elseif(strcmp(type,'Binary')) 
    neural_outputs=double(cell2mat(structure_cell)>0); 
elseif(strcmp(type,'Structure')) 
    neural_outputs=double(cell2mat(structure_cell)); 
else 
    msg='There is a fault in the type argument' 
    return 
end 
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end 
 
 
 

A.5.3     Networks with hyperbolic tangent sigmoid transfer function and bipolar 
output data 
 

A.5.3.1     Neural network training and application – basic function 
 

The code is the same as the code in A.3.2.1 but instead of line: 

[inputs,targets]=Input_loader(sample_size,'Bipolar','Train'); 
 

We use the line: 

[inputs,targets]=Input_loader_evalue(sample_size,'Bipolar','Train'); 
  

A.5.3.2     Multiple applications of basic function 
 

The code is the same as the code in A.3.2.2 

 

A.5.3.3     Execute multiple applications of basic function for the experiments 
 

The code is the same as the code in A.3.2.3 

 

A.5.4     Remaining experiments with unitary structure factors. 
 

The codes are the same as described for section A.3. The difference is that instead of 
function “Input_loader”, the function “Input_loader_evalue” is used, when necessary (as 
described in section A.5.3.1).  
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A.6     Programs for experiments with cascade forward nets 
 
 

A.6.1     Networks with hyperbolic tangent sigmoid transfer function and bipolar 
output data—Maximum validation checks set to 100 - basic function 
 

function [line_results]= 
Neural_test_function_cascade(sample_size,Num_neurons, iteration_no) 
% function with 1 hidden layer –cascade network 
% line_results saves 9 columns 
% 1: Neurons used in the neural 
% 2: Samples used 
% 3: Best Validation Performance 
% 4: Train R-value (regression) 
% 5: Validation R-value (regression) 
% 6: Test R-value (regression) 
% 7: Overall R-value (regression) 
% 8: Gradient at the LAST epoch 
% 9: Number of (all) epochs 
%this line is used in the excell presentantion as part of an array 
(line) 
%which iteration (re-initialization) of the neural is this? used in the 
%file name produced 
  
%input files 
[inputs,targets]=Input_loader_evalue(sample_size,'Bipolar','Train'); 
[rows,columns]=size(inputs); 
  
clear rows; 
                                    
% Create Network 
numHiddenNeurons = Num_neurons;  % Adjust as desired 
clear Num_neurons; 
net = cascadeforwardnet(numHiddenNeurons); 
net.trainFcn='trainscg'; 
  
 net.divideParam.trainRatio = 60/100;  % Adjust as desired 
 net.divideParam.valRatio = 20/100;  % Adjust as desired 
 net.divideParam.testRatio = 20/100;  % Adjust as desired 
  
%set trainParam 
net.trainParam.showWindow=false; 
net.trainParam.showCommandLine=true; 
  
%set max epochs = 4000 
net.trainParam.epochs=4000; 
  
net.trainParam.max_fail=100; 
  
%create filename string 
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filename_string=strcat(' 
Cascade_1hidden',num2str(numHiddenNeurons),'neurons',num2str(columns),'
samples_EVALUES_iteration_',num2str(iteration_no),'_'); 
desktop_message=strcat('training',filename_string) 
clear desktop_message; 
  
net=init(net); 
% Train and Apply Network 
[net,tr] = 
train(net,inputs,targets,'useParallel','yes','showResources','yes'); 
outputs = sim(net,inputs,'useParallel','yes','showResources','yes'); 
  
    %separate your training,validation and test data sets and results 
    trainTargets=targets(:,tr.trainInd(:)); 
    validTargets=targets(:,tr.valInd(:)); 
    testTargets=targets(:,tr.testInd(:)); 
     
    trainOutputs=outputs(:,tr.trainInd(:)); 
    validOutputs=outputs(:,tr.valInd(:)); 
    testOutputs=outputs(:,tr.testInd(:)); 
  
                  % Plot  and save -- then clear memory 
plotperform(tr) 
%print -dtiffn 1hidden2neurons100samples_PERFORMANCE 
command_string=strcat('print -djpeg',filename_string,'_PERFORMANCE'); 
eval(command_string) 
close 
  
plottrainstate(tr) 
command_string=strcat('print -djpeg',filename_string,'_TRAIN_STATE'); 
eval(command_string) 
close 
  
plotregression(trainTargets,trainOutputs,'Train',validTargets,validOutp
uts,'Validation',testTargets,testOutputs,'Test',targets,outputs,'Overal
l'); 
%print -dtiffn 1hidden2neurons100samples_REGRESSION 
command_string=strcat('print -djpeg',filename_string,'_REGRESSION'); 
eval(command_string) 
close 
  
  
% Line result implementation 
line_results(1)=numHiddenNeurons; 
line_results(2)=sample_size; 
line_results(3)=tr. best_vperf; 
x=corrcoef(trainTargets,trainOutputs); 
line_results(4)=x(2); 
x=corrcoef(validTargets,validOutputs); 
line_results(5)=x(2); 
x=corrcoef(testTargets,testOutputs); 
line_results(6)=x(2); 
x=corrcoef(targets,outputs); 
line_results(7)=x(2); clear x; 
line_results(8)=tr.gradient(end); 
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line_results(9)=tr.num_epochs;   %NOT tr.best_epochs 
  
%save all variables 
command_string=strcat('save',filename_string,'Variables') 
  
clear columns;      %clear what you don't need to be saved 
clear filename_string; 
clear trainTargets trainOutputs validTargets validOutputs testTargets 
testOutputs; 
  
  
eval(command_string) 
  
%clear all except line_results 
clear Num_neurons command_string inputs net numHiddenNeurons outputs 
sample_size targets testTargets tr; 
  
close all; 
  
end 
 
 
%***** NOTE: for the same experiment with maximum validation checks =6 
just set the variable net.trainParam.max_fail=6.  *************** 
 
 

A.6.2     Networks with hyperbolic tangent sigmoid transfer function and bipolar 
output data—No validation set - basic function 
 

function [line_results]= 
Neural_test_function_no_val(sample_size,Num_neurons, iteration_no) 
% function me 1 hidden layer –cascede network –no validation set 
% line_results saves 9 columns 
% 1: Neurons used in the neural 
% 2: Samples used 
% 3: Best Validation Performance 
% 4: Train R-value (regression) 
% 5: Validation R-value (regression) 
% 6: Test R-value (regression) 
% 7: Overall R-value (regression) 
% 8: Gradient at the LAST epoch 
% 9: Number of (all) epochs 
%this line is used in the excell presentantion as part of an array 
(line) 
%which iteration (re-initialization) of the neural is this? used in the 
%file name produced 
  
%input files 
[inputs,targets]=Input_loader_evalue(sample_size,'Bipolar','Train'); 
[rows,columns]=size(inputs); 
  
clear rows; 
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% Create Network 
numHiddenNeurons = Num_neurons;  % Adjust as desired 
clear Num_neurons; 
net = cascadeforwardnet(numHiddenNeurons); 
net.trainFcn='trainscg'; 
  
%set trainParam 
net.trainParam.showWindow=false; 
net.trainParam.showCommandLine=true; 
  
%set max epochs = 4000 
net.trainParam.epochs=4000; 
  
%net.trainParam.max_fail=100; 
  
net.divideFcn=''; 
  
%create filename string 
filename_string=strcat(' 
Cascade_1hidden',num2str(numHiddenNeurons),'neurons',num2str(columns),'
samples_EVALUES_iteration_',num2str(iteration_no),'_'); 
desktop_message=strcat('training',filename_string) 
clear desktop_message; 
  
net=init(net); 
% Train and Apply Network 
[net,tr] = 
train(net,inputs,targets,'useParallel','yes','showResources','yes'); 
outputs = sim(net,inputs,'useParallel','yes','showResources','yes'); 
  
%validation final outputs --> normal, not for mse 
[val_inputs, val_targets2 ] = Input_loader(3000, 'Bipolar','Test' ); 
val_outputs2=sim(net,val_inputs,'useParallel','yes','showResources','no
'); 
  
    %separate your training,validation and test data sets and results 
     trainTargets=targets(:,tr.trainInd(:)); 
%     validTargets=targets(:,tr.valInd(:)); 
     testTargets=val_targets2; 
%      
     trainOutputs=outputs(:,tr.trainInd(:)); 
%     validOutputs=outputs(:,tr.valInd(:)); 
     testOutputs=val_outputs2; 
  
  
                    % Plot  and save -- then clear memory 
plotperform(tr) 
%print -dtiffn 1hidden2neurons100samples_PERFORMANCE 
command_string=strcat('print -djpeg',filename_string,'_PERFORMANCE'); 
eval(command_string) 
close 
  
plottrainstate(tr) 
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command_string=strcat('print -djpeg',filename_string,'_TRAIN_STATE'); 
eval(command_string) 
close 
  
plotregression(trainTargets,trainOutputs,'Train',testTargets,testOutput
s,'Test'); 
%print -dtiffn 1hidden2neurons100samples_REGRESSION 
command_string=strcat('print -djpeg',filename_string,'_REGRESSION'); 
eval(command_string) 
close 
   
% Line result implementation 
line_results(1)=numHiddenNeurons; 
line_results(2)=sample_size; 
line_results(3)=NaN; 
x=corrcoef(trainTargets,trainOutputs); 
line_results(4)=x(2); 
%x=corrcoef(validTargets,validOutputs); 
line_results(5)=NaN; 
x=corrcoef(testTargets,testOutputs); 
line_results(6)=x(2); 
%x=corrcoef(targets,outputs); 
line_results(7)=NaN; clear x; 
line_results(8)=NaN; 
line_results(9)=NaN;   %NOT tr.best_epochs 
  
%save all variables 
command_string=strcat('save',filename_string,'Variables') 
  
clear columns;      %clear what you don't need to be saved 
clear filename_string; 
clear trainTargets trainOutputs validTargets validOutputs testTargets 
testOutputs; 
  
  
eval(command_string) 
  
%clear all except line_results 
clear Num_neurons command_string inputs net numHiddenNeurons outputs 
sample_size targets testTargets tr; 
  
close all; 
  
end 

 
 

A.7     Programs for experiments with neural network and origins – 
modified early stopping algorithm 
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A.7.1     Creation of training patterns suitable for neural networks with modified 
early stopping algorithm 
 

The “input_loader_evalue” function is used (described in A.4.2) as well as the function 
that follows: 
 
 
 
function [ neural_inputs, neural_outputs ] = Input_loader_org2_evalue( 
num_of_files, test ) 
%SYNTAX [inputs,outputs]=Input_loader_org2_evalue (num_of_files, test?) 
% 
%for the origins experiment --> gives the validation set where inputs= 
target outputs 
 
structure_cell=cell(1); 
  
if(strcmp(test,'Train'))   %check for train or test folder 
    folder='ref_files_me_evalues\eval\'; 
elseif(strcmp(test,'Test')) 
    folder='ref_files_me_evalues\test_set\eval\'; 
else 
    msg='There is a fault in the test argument' 
    return 
end 
  
    for i=0:num_of_files-1 
        %how many zeros for the filename (00001 klp) make filename 
        if(i<=9) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
evalue_p2_0000',num2str(i),'.dat'); 
        elseif(i<=99) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
evalue_p2_000',num2str(i),'.dat'); 
        elseif(i<=999) 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
evalue_p2_00',num2str(i),'.dat'); 
        elseif(i<=9999); 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
evalue_p2_0',num2str(i),'.dat'); 
        else 
            
string=strcat('C:\Users\Dimitris_bio\Documents\MATLAB\matlab\',folder,'
evalue_p2_',num2str(i),'.dat'); 
             
        end 
         
         
        %load 
        data=importdata(string); 
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        structure_cell(i+1)={data(:,3)};    
    end 
  
%inputs regardless of type 
neural_inputs=abs(cell2mat(structure_cell)); 
%outputs for structure type 
neural_outputs=neural_inputs; 
  
end 
 
 

A.7.2     Neural networks with modified early stopping algorithm —basic function 
 

function [line_results]= 
Neural_test_function_structures_org3_no_paral(sample_size,Num_neurons,i
teration_no,valid) 
% function me 1 hidden layer  valid==max_validation checks 
%modified early stopping!! 

 
% line_results saves 9 columns 
% 1: Neurons used in the neural 
% 2: Samples used 
% 3: Best Validation Performance 
% 4: Train R-value (regression) 
% 5: Validation R-value (regression) I-O (apo ena simeio kai meta) 
% 6: Validation R-value (regression) signed 
% 7: Train R-value absolutes (regression) 
% 8: Gradient at the LAST epoch -> not applied here 
% 9: Number of (all) epochs 
%this line is used in the excell presentantion as part of an array 
(line) 
%which iteration (re-initialization) of the neural is this? used in the 
%file name produced 
  
%input files 
  
[inputs,targets]=Input_loader_evalue(sample_size,'Structure','Train'); 
[rows,columns]=size(inputs); 
  
clear rows; 
  
%validation set input 
max_validation_input=4000; %how many files in testing folder 
  
val_size=uint16((sample_size/100)*30);          %30 train set 
if(val_size>max_validation_input) 
val_size=max_validation_input; 
end 
[val_inputs, val_targets ] = Input_loader_org2_evalue( val_size, 'Test' 
); 
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number_of_epochs=0; %counts how many epochs are needed for the best 
performance 
                        
% Create Network 
numHiddenNeurons = Num_neurons;  % Adjust as desired 
clear Num_Neurons; 
net = cascadeforwardnet(numHiddenNeurons); 
net.trainFcn='trainscg'; 
  
net.divideFcn=''; 
  
%set trainParam 
net.trainParam.showWindow=false; 
net.trainParam.showCommandLine=false; 
  
%set transfer function 
net.layers{1}.transferFcn='tansig'; 
  
net=init(net); 
  
%create filename string 
filename_string=strcat(' 
TANSIG_ORG3_1hidden',num2str(numHiddenNeurons),'neurons',num2str(column
s),'samples_4000epochs_EVALUE_Valid_',num2str(valid),'__iteration_',num
2str(iteration_no),'_'); 
desktop_message=strcat('training',filename_string) 
clear desktop_message; 
  
%set initial performance value 
val_outputs=sim(net,val_inputs,'useParallel','yes','showResources','yes
'); 
val_outputs=abs(val_outputs); 
  
old_perf = mse(net,val_targets,val_outputs) 
  
index_i=1; %index that helps to fill the performance array 
perf_array(1)=old_perf; 
number_of_epochs=0; 
epoch_array(1)=0; 
  
outputs=sim(net,inputs,'useParallel','yes','showResources','no'); 
train_perf=mse(net,targets,outputs); 
train_perf_array(index_i)=train_perf; 
  
%set initial max epochs to 2 (not 1- does not work) 
net.trainParam.epochs=2; 
  
max_validation=0; 
  
new_net=net; 
%----- the iterations for 4000 epochs max start HERE ********** 
  
for ii=1:4000 
    % Train Network external iteration 
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    [new_net,new_tr] = 
train(new_net,inputs,targets,'useParallel','no','showResources','yes'); 
  
    %train outputs and performance 
    
outputs=sim(new_net,inputs,'useParallel','no','showResources','no'); 
    train_perf= mse(new_net,targets,outputs); 
    index_i=index_i+1; 
    train_perf_array(index_i)=train_perf; 
    number_of_epochs=number_of_epochs+1; 
     
    epoch_array(index_i)=number_of_epochs; 
     
    %validation outputs and performance 
    
val_outputs=sim(new_net,val_inputs,'useParallel','no','showResources','
no'); 
    val_outputs=abs(val_outputs); 
  
    new_perf = mse(new_net,val_targets,val_outputs); 
    perf_array(index_i)=new_perf; 
     
    %show progress every ten epochs in workspace 
    if(mod(number_of_epochs,10)==0)number_of_epochs  
        new_perf 
    end 
  
    %all good continue training 
    if(new_perf<old_perf) 
        old_perf=new_perf; 
        net=new_net; 
        tr=new_tr; 
        %reset validation check 
        max_validation=0; 
    end 
  
    %worse performance--> go to previous state and decrease epochs 
    if(new_perf>old_perf) 
      
         max_validation=max_validation+1; 
    end 
     
     %max validation check reached -- 
    if(max_validation==valid) 
        msg='max_validation_reached' 
         break 
    end 
  
end 
  
%for testing 
 
val_outputs=sim(net,val_inputs,'useParallel','yes','showResources','no'
); 
     val_outputs=abs(val_outputs); 



163 
 

  
     test_perf = mse(net,val_targets,val_outputs); 
  
  
%train outputs 
outputs = sim(net,inputs,'useParallel','yes','showResources','no'); 
  
%validation final outputs --> normal, not for mse 
[val_inputs, val_targets2 ] = Input_loader_evalue( val_size, 
'Structure','Test' ); 
val_outputs2=sim(net,val_inputs,'useParallel','no','showResources','no'
); 
  
perf_array 
tr.epoch=epoch_array; 
tr.perf=perf_array; 
tr.vperf=train_perf_array; 
[col,rows]=size(epoch_array); 
tr.num_epochs=rows-1; 
tr.tperf=train_perf_array; %just for debugging 
tr.best_vperf=test_perf; 
tr.best_epoch=rows-1-valid; 

 
                    % Plot  and save -- then clear memory 
 plotperform(tr) 
 %plot(epoch_array,perf_array,epoch_array,train_perf_array,'--') 
% plot(perf_array,epoch_array,train_perf_array,epoch_array,'--') 
%close 
%semilogy(epoch_array,perf_array,epoch_array,train_perf_array,'--') 
  command_string=strcat('print -djpeg',filename_string,'_PERFORMANCE'); 
  eval(command_string) 
  close 
  
  plot(epoch_array,perf_array,epoch_array,train_perf_array,'--') 
  command_string=strcat('print -
djpeg',filename_string,'_PERFORMANCE2'); 
  eval(command_string) 
  close 
   
plotregression(targets,outputs,'Train',val_targets2,val_outputs2,'Valid
ation-Test signed',abs(targets),abs(outputs),'Train 
Absolutes',val_targets,val_outputs,'Validation absolutes I-O');  %the 
last is used in mse 
 %print -dtiffn 1hidden2neurons100samples_REGRESSION 
 command_string=strcat('print -djpeg',filename_string,'_REGRESSION'); 
 eval(command_string) 
 close 
  
% Line result implementation 
line_results(1)=numHiddenNeurons; 
 line_results(2)=sample_size; 
 line_results(3)=test_perf; 
 x=corrcoef(targets,outputs); 
 line_results(4)=x(2); 
 x=corrcoef(val_targets,val_outputs); 
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 line_results(5)=x(2); 
 x=corrcoef(val_targets2,val_outputs2); 
 line_results(6)=x(2); 
 x=corrcoef(abs(targets),abs(outputs)); 
 line_results(7)=x(2); 
 line_results(8)=NaN; 
 line_results(9)=number_of_epochs;   %NOT tr.best_epochs 
  
%save all 
filename_string=strcat(filename_string,'Variables'); 
%save(filename_string, 'net','tr'); 
save(filename_string, 'net','tr'); 
clear columns;      %clear what you don't need to be saved 
clear filename_string; 
clear trainTargets trainOutputs validTargets validOutputs testTargets 
testOutputs; 
  
  
  
%clear all except line_results 
clear Num_neurons command_string inputs net numHiddenNeurons outputs 
sample_size targets testTargets tr; 
  
close all; 
  
end 
 
 

A.7.3     Multiple applications of basic function 
 

function [results] = 
Testing_neural_structures_org3_no_paral(sample_sizes,neuron_numbers_arr
ay,iterations,valid) 
%iterations--> how many times to re-initialize the network and try the 
experiments again 
  
[rows,numberOf_SampleExperiments]=size(sample_sizes); 
[row,numberOf_DifferentSingleHiddenExperiments]=size(neuron_numbers_arr
ay); 
clear rows 
  
%results creation 
results=zeros( 
(numberOf_SampleExperiments*numberOf_DifferentSingleHiddenExperiments*i
terations ),9); 
index=1; 
  
    for i=1:numberOf_SampleExperiments 
        sample_size=sample_sizes(i); 
            for ii=1:numberOf_DifferentSingleHiddenExperiments 
                for iteration_no=1:iterations 
                    Num_neurons=neuron_numbers_array(ii); 
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line_results=Neural_test_function_structures_org3_no_paral(sample_size,
Num_neurons,iteration_no,valid); 

 
                    results(index,:)=line_results; 
                    index=index+1; 
                end 
            end 
    end 
 end 
 

A.7.4     Execute multiple applications of basic function for the experiments 
(example) 
 

function [void] = Executer 
         
diary('Origin_evalues_tansig_experiment') 
  
 

%matlabpool open---- optional command, in this program sometimes 
causes problems because training procedures are called multiple times 
for short periods 
matlabpool open 
 
samples=10000; 
neuron_array=[20 300 500];  
 
%maximum validation checks are set to 60 
results=Testing_neural_structures_org3_no_paral(samples,neuron_array,1,
60);  
save ('_results', 'results'); 
  
matlabpool close    % only if matlabpool open is used at the start of 
the program… 
  
%play alert sound 
Data = load('handel.mat'); 
sound(Data.y, Data.Fs) 
  
diary off 
  
end 
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A.8     Creation of histogram plots 
 

A.8.1     Separation of values that should represent positive or negative phases at 
the output of a neural network 
 

function [zeros,ones]= zeros_ones(filename) 
% for binary output "0-1" 
%and for bipolar (instead of zeros in zeros variable -1 are saved) 
%For structures data type this function makes no sense 
  
load(filename); 
%tar_sum=sum(targets(:)) 
[rows,columns]=size(targets); 
  
%fill ones and zeros- creates an array that saves which values should 
be 1  
%in ones variable and which values should be zero 0 at zeros variable  
%(or -1 for bipolar outpu data) 
  
ones=1; 
zeros=1; 
x=1; 
y=1; 
for row=1:rows; 
    for column=1:columns; 
        if(targets(row,column)==1) 
            ones(x)=outputs(row,column); 
            x=x+1; 
        else 
            zeros(y)=outputs(row,column); 
            y=y+1; 
        end 
    end 
end 
 
end 
 

 

A.8.2     Histogram creation 
 

function [void]= histogram_plot(filename,bins) 
%SYNTAX [void]= histogram_plot(filename,bins) 
  
% zeros,ones function 
[zeros,ones]=zeros_ones(filename); 
filename=strcat(' _',filename); 
filename=regexprep(filename,'Variables','Histogram'); 
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hold off 
  
%plot them together 
hist(ones,bins); 
  
%set red colour for "ones" 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','r','EdgeColor','b') 
  
  
hold on; 
hist(zeros,bins); 
  
    %save plot 
command_string=strcat('print -djpeg',filename,'.jpeg'); 
eval(command_string) 
close 
  
end 
 
 


