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Abstract 
 

 A thorough explanation of the protein folding mechanism was not available for almost 

50 years. In recent years, several experimental and theoretical approaches have been applied 

to give new insights into the protein folding process. In the present thesis, a Molecular 

Dynamics simulation of peptide T in DMSO solution was performed. Peptide T is a synthetic 

octapeptide fragment, which corresponds to the region 185-192 of the gp120 HIV coat 

protein and functions as a viral entry inhibitor.  In order to validate the accuracy of MD 

simulations we compared our results with the NMR experimental conclusions derived from 

the study that Picone and her colleagues had conducted: “A 500 MHz study of peptide T in a 

DMSO solution”. Their results suggested that a type I β-turn including the four C-terminal 

residues, T5, N6, Y7, and T8, in which T8 is bonded to T5 CO was the most prominent structure 

in solution. Our results have shown that peptide T is highly flexible, comprising a dynamic 

system. The main structural characteristics observed were turns and helices, with a greater 

preference for β-turns. According to our calculations, the most preferred conformation for 

residues 5-8 was a β-turn type IV. Moreover, the C-terminal sequence proved to be more 

stable than the rest of the peptide. Comparison between the experimental and simulation-

derived chemical shifts verified a reasonable agreement between the two sets of data. 

Overall, the MD simulation managed to predict with sufficient accuracy the folding behavior, 

dynamic properties, and structural characteristics of peptide T, as these have been identified 

in the experiment.  
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Περίληψη 
 

 Μία αναλυτική περιγραφή του μηχανισμού της πρωτεϊνικής αναδίπλωσης δεν ήταν 

διαθέσιμη για περίπου 50 χρόνια. Τα τελευταία χρόνια, έχουν εφαρμοστεί αρκετές 

πειραματικές και θεωρητικές προσεγγίσεις με σκοπό την καλύτερη κατανόηση της 

διαδικασίας αναδίπλωσης των πρωτεϊνών. Στη παρούσα πτυχιακή εργασία 

πραγματοποιήθηκε μία προσομοίωση Μοριακής Δυναμικής του πεπτιδίου Τ σε διάλυμα 

DMSO. Το πεπτίδιο Τ είναι ένα συνθετικό οκταπεπτίδιο, το οποίο αντιστοιχεί στην περιοχή 

185-192 της πρωτεϊνης gp120 του καλύμματος του ιού HIV και λειτουργεί ως αναστολέας 

της εισόδου του ιού στα κύτταρα. Με σκοπό να επιβεβαιώσουμε την ακρίβεια της μεθόδου 

των προσομοιώσεων Μοριακής Δυναμικής συγκρίναμε τα αποτελέσματά μας με τα 

συμπεράσματα που προέκυψαν από το πείραμα NMR, που πραγματοποίησαν η Picone και 

οι συνεργάτες της: “A 500 MHz study of peptide T in a DMSO solution”. Τα αποτελέσματά 

τους υπέδειξαν ότι μία β-στροφή τύπου Ι, που περιλαμβάνει τα τέσσερα C-τελικά αμινοξικά 

κατάλοιπα, T5, N6, Y7, και T8, στα οποία το T8 σχηματίζει δεσμούς με το T5 CO, ήταν η πιο 

πιθανή δομή σε διάλυμα. Τα αποτελέσματά μας έδειξαν ότι το πεπτίδιο Τ είναι ιδιαίτερα 

ευέλικτο, συνιστώντας ένα δυναμικό σύστημα. Τα κύρια δομικά χαρακτηριστικά του που 

παρατηρήθηκαν ήταν οι στροφές και οι έλικες, με μεγαλύτερη προτίμηση στις β-στροφές. 

Σύμφωνα με τους υπολογισμούς μας, η προτιμώμενη διαμόρφωση για τα κατάλοιπα 5-8 

ήταν β-στροφή τύπου IV. Eπιπρόσθετα, το C-τελικό τμήμα της αλληλουχίας αποδείχτηκε ότι 

είναι πιο σταθερό σε σχέση με το υπόλοιπο πεπτίδιο. Η σύγκριση μεταξύ των πειραματικών 

χημικών μετατοπίσεων και αυτών που προέκυψαν από την προσομοίωση επαλήθευσε ότι 

υπάρχει ικανοποιητική συμφωνία μεταξύ τους. Συνολικά, η προσομοίωση Μοριακής 

Δυναμικής προέβλεψε με ικανοποιητική ακρίβεια το πρότυπο αναδίπλωσης, τις δυναμικές 

ιδιότητες και τα δομικά χαρακτηριστικά του πεπτιδίου Τ, όπως αυτά αποδίδονται στο 

πείραμα. 
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“If we were to name the most powerful 

assumption of all, which leads one on 

and on in an attempt to understand life, 

it is that all things are made of atoms and 

that everything that living things do can 

be understood in terms of the jigglings 

and wigglings of atoms.” 

 

                                 -Richard P. Feyman 

                                 NOBEL LECTURE, 1965 
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1. Introduction 

 

1.1 Proteins 
     

The word protein was first mentioned in a letter sent by 

the Swedish chemist Jöns Jakob Berzelius to Gerhardus Johannes 

Mulder on July 10, 1838. He wrote: “The name protein that I 

propose for the organic oxide of fibrin and albumin, I wanted to 

derive from the Greek word πρώτειος because it appears to be the 

principal substance of animal nutrition”[1].  

Proteins are the most abundant biological 

macromolecules, characterized by high heterogeneity and 

demonstrate a wide range of biological functions, including 

catalyzing metabolic reactions, providing mechanical support 

and immune protection, transporting and storing molecules, 

such as oxygen, generating movement, transmitting signals and, 

regulating cell growth and differentiation[2][3]. 

The functional properties of proteins are linked with their 

three-dimensional structure. Protein structure can be examined 

into four major categories (primary structure, secondary 

structure, tertiary and quaternary structure) (Figure 1.1). The 

building blocks of proteins are amino acids. Primary structure 

refers to the amino acid sequence of a polypeptide chain. Specific 

parts of the polypeptide chain can form secondary structures. 

The most common secondary structure elements are α-helices 

and β-sheets. Secondary structures are stabilized by hydrogen 

bonds between the main-chain peptide groups. Tertiary 

structure refers to the three-dimensional shape of a polypeptide 

chain. Protein molecules that consist of more than one 

polypeptide chain form a quaternary structure. The formation of 

tertiary or quaternary structures, causes distant amino acids to 

approach each other to form a functional region, an active site.  The three-dimensional 

structure occurs because polypeptide chains fold and form compact and self-contained 

structural regions, known as domains. 

In order to be able to perceive the biological function of proteins, we should manage 

to predict the three-dimensional structure from the amino acid sequence. This is commonly 

known as the “protein folding problem”, one of the major challenges in the field of Molecular 

Biology[4].  

Figure 1.1: The four levels of 
protein structure: primary 
structure, secondary structure, 
tertiary structure and 
quaternary structure. (adapted 
without permission from 
National Human Genome 
Research Institute) 



2 
 

1.2 The Protein Folding Problem 
 

The protein folding problem refers to how a protein’s amino acid sequence 

determines its 3D structure. The mechanism by which a polypeptide chain folds from the 

denatured random coil state to the native protein structure is a fundamental aspect of 

Structural Biology. A thorough explanation of the mechanism by which proteins fold was not 

available for almost 50 years, despite the substantial effort that had been dedicated to this 

problem[5]. Notable research activity in this field was conducted by Christian Anfinsen and 

Cyrus Levinthal.  

Christian Anfinsen performed a series of 

denaturation-renaturation experiments using the enzyme 

Ribonuclease-A (Figure 1.2) and by 1962 he had 

developed the "thermodynamic hypothesis of protein 

folding”, according to which the native or natural 

conformation of a protein is thermodynamically the most 

stable (i.e., the Gibbs free energy of the whole system is 

lowest) in the intracellular environment. These 

experiments proved that the native conformation of a 

protein is defined by the total of the interatomic 

interactions and therefore, by the amino acid sequence, in a 

given environment[6]. 

In 1968 Cyrus Levinthal, in an effort to define the kinetic parameters that determine 

protein folding, noted that a protein chain of ordinary size would require an enormously long 

folding time to find the native state by a random search among all possible configurations. 

Indeed, for a polypeptide chain of 150 residues with three possible conformations for every 

residue, the time needed to search all possible conformations of the chain is 1048 years. Since 

protein folding time ranges between 0.1 to 1000 seconds, Levinthal’s statement is known as 

“Levinthal’s paradox”[4][5][7]. Levinthal proposed that there is a pathway of folding, which 

means that there is “a well-defined sequence of events which follow one another so as to carry 

the protein from the unfolded random coil to a uniquely folded metastable state”[8].  

 

 

1.3 Protein Folding Models 
 

Several models of protein folding have been suggested. The proposals were based 

mainly on known structures, to restrict the conformational space that is examined and the 

folding duration to the experimental scale. Examples include the “nucleation-growth” model, 

the “diffusion-collision” model, the “nucleation-condensation” model, and the “jigsaw-puzzle” 

model. The majority of these models are descriptive and do not offer a means of calculating 

Figure 1.2: Τhree-dimensional 
structure of Ribonuclease-A. 
(reproduced without permission 
from Wikipedia) 
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the approximate folding time, which is a crucial factor for the resolution of Levinthal’s 

paradox[5]. 

The “nucleation-growth” model proposes that the initial stages of 3D structure 

formation (nucleation) take place autonomously in distinct regions of globular protein 

molecules. The growth of the nucleus occurs by adding peptide chain segments that are close 

to the nucleus in the amino acid sequence. This process would create native protein 

structures with separate regions of continuous polypeptide chain[9]. 

According to the “diffusion-collision” model, proteins consist of distinct parts 

(elementary microdomains), each sufficiently short for all conformational alternatives to be 

examined rapidly. The microdomains diffuse and microdomain-microdomain collisions 

occur, leading to the formation of higher aggregates[10]. 

The “nucleation-condensation” model suggests that secondary and tertiary structure 

interactions happen simultaneously. The nucleation-condensation mechanism uses diffuse, 

extended regions rather than classic nuclei, which are well-formed elements of structure 

present in ground states, and has the minimum accumulation of intermediates since the 

nucleus does not form until the transition state[11][12]. 

The “jigsaw-puzzle” model suggests that the evolution of amino acid sequences would 

benefit multiple paths to the folded-native state. The analogy of a jigsaw puzzle, with 

multiple routes to a single solution, seems to be suitable[13]. 

Recently, a so-called “New View” has emerged, replacing the concept of “folding 

pathways” with “energy landscapes”. According to the “energy landscape theory”, “folding 

pathways” are not the correct explanation for the kinetic problem Levinthal raised. The 

“energy landscape theory” describes the process of reaching a global free energy minimum 

(satisfying Anfinsen’s experiments) and fulfills Levinthal’s kinetic problem, by multiple 

folding routes on funnel-like energy landscapes[14]. An energy landscape is the free energy of 

each conformation as a function of the degrees of freedom. The vertical axis of the funnel 

represents the ‘internal free energy’ of a particular chain conformation. The many lateral 

axes represent the conformational coordinates. Each conformation is depicted by a point on 

the multidimensional energy surface. High energy conformations are displayed as hills, 

whereas low energy conformations as valleys. The kinetic process of folding and unfolding a 

protein can be compared to the movement of a ball on this energy surface, so that each 

protein molecule corresponds to a ball rolling on the energy landscape, moving through the 

hills and valleys, finally ending in the bottom of the funnel, the native state[15]. Different types 

of energy landscapes are presented in Figure 1.3. 

Levinthal’s “golf course” energy landscape (Figure 1.3a) represents Levinthal’s 

random search problem. When a ball rolls randomly on a flat course, it requires a long time 

to find, and fall in, the hole. The “grooved golf course” landscape (Figure 1.3b) presents the 

‘pathway’ solution to Levinthal’s random search problem. Starting from a denatured 

conformation A, the folding molecule goes through a tunnel on the landscape, to the native 

structure N. The “HP+” landscape (Figure 1.3c) is an idealization showing that the decrease 
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of a protein’s internal free energy, leads to a reduction of its conformational freedom. The 

“bumpy bowl” model (Figure 1.3d) is a rugged energy landscape with kinetic traps, energy 

barriers, and narrow paths, which lead to the native structure. The “moat” energy landscape 

(Figure 1.3e) depicts that a protein can follow a slow or a fast folding process. The 

“champagne glass” model (Figure 1.3f) illustrates how conformational entropy can cause 

free energy barriers to the folding process. In this model, the rate-limiting factor for folding 

is the wandering on the flat plateau as the polypeptide chain attempts to locate its way 

downhill[15]. 

 
 

     

 

 

Figure 1.3: Different energy landscapes. (a) The Levinthal ‘s “golf course” landscape. N is the native 
conformation. The chain searches for N randomly. (b) The “grooved golf course” landscape presents the 
‘pathway’ solution to the random search problem. A pathway leads from a denatured conformation A to 
the native conformation N. (c) The “HP+” landscape is an idealized funnel landscape. The reduction of the 
protein’s free energy leads to the native structure. (d) The “bumpy bowl” energy landscape is a rugged 
energy landscape with kinetic traps, energy barriers and some narrow paths, which lead to the native 
structure. (e) The “moat” landscape illustrates that a protein could have a fast-folding process (A), or, 
when a kinetic trap is present, a slow-folding process (B). (f) The “champagne glass” landscape illustrates 
how conformational entropy can cause free energy barriers to the folding process. (adapted without 
permission from Dill & Chan, Nature Structural Biology, 1997) 
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1.4 Experimental methods to study protein folding 
 

Many biophysical methods have been applied over the past years to describe the 

folding of a variety of proteins[16]. Common experimental methods include X-ray 

crystallography (XRC), Nuclear Magnetic Resonance (NMR) spectroscopy, Circular 

Dichroism (CD), and Cryogenic Electron Microscopy (Cryo-EM).  

X-ray crystallography is currently the most preferred method for structure prediction 

of proteins and biological macromolecules. This method aims to determine the 3D molecular 

structure from a crystal. A crystalline sample is exposed to an x-ray beam and then the 

resulting diffraction patterns are analyzed. The pattern of the diffraction spots provides 

information regarding the crystal packing symmetry and the size of the repeating unit that 

forms the crystal. The intensities of the spots can be utilized to produce an electron density 

map. This map is then used to obtain the molecular structure of the protein[17]. 

NMR spectroscopy has been widely used to analyze the structure of small molecules, 

small proteins, or protein domains. The only prerequisite of this method is a small volume 

of concentrated protein solution that is placed in a strong magnetic field. Certain atomic 

nuclei, and particularly those of hydrogen atoms, have a magnetic moment or spin. The spin 

aligns along the strong magnetic field. In response to applied radiofrequency (RF) pulses of 

electromagnetic radiation the spin changes to a misaligned, excited state. With the return of 

the excited hydrogen nuclei to their aligned state, RF radiation is emitted. This radiation can 

be calculated and displayed as a spectrum. The environment of each hydrogen nucleus 

influences the nature of the emitted radiation. When a nucleus is excited, it affects the 

absorption and emission of radiation by nearby nuclei. Two-dimensional NMR (2D NMR) is 

a set of NMR techniques giving data plotted in a space defined by two frequency axes rather 

than one. 2D NMR spectra supply more information about a molecule than one-dimensional 

NMR spectra and are particularly valuable for structure determination. It is possible by 2D 

NMR to differentiate the signals from hydrogen nuclei in different amino acid residues and 

to recognize and calculate the small shifts in these signals that appear when these hydrogen 

nuclei are in close proximity, for interaction to take place. The size of these shifts represents 

the distance between the interacting pair of hydrogen atoms and consequently, gives 

information about the distances between the parts of the protein molecule. Combining this 

information with the amino acid sequence of the protein molecule, it is feasible to obtain the 

3D structure of the protein[18]. The usefulness of the NMR method lies in its specificity at the 

level of distinct atoms. This method can define the distribution of structures in a 

conformational ensemble from parameters extracted from the spectra. The calculation of 

Nuclear Overhauser Effects (NOEs) can detect the proximity of pairs of atoms. Less specific 

information is available from the measurement of chemical shifts[19]. 

Circular dichroism (CD) is used for the definition of secondary structure elements and 

folding characteristics of proteins that have been acquired using recombinant techniques or 

purified from tissues. The most common applications are to find out whether an expressed, 

https://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5688/
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purified protein is folded, or if a mutation disturbs its configuration or stability and to study 

protein-protein interactions[20]. 

Cryogenic Electron Microscopy (Cryo-EM) is a method for imaging frozen-hydrated 

samples at cryogenic temperatures by electron microscopy. Cryo-EM examines the specimen 

without the use of artificial treatments such as fixing, dehydration, and staining, allowing the 

representation of the native state of biological structures[21]. 

 

 

  1.5 Computational methods to study protein folding 
 

Although experimental techniques for determining protein structure, provide high-

resolution structural information about a subset of proteins, they are difficult, expensive, and 

time-consuming. Protein structures that could not be found using experimental techniques, 

can be predicted by various computational approaches[22]. There are three main categories 

of computational protein structure prediction methods: comparative modeling, ab initio 

methods, and fold recognition methods. 

Comparative modeling, also known as homology modeling, is considered to be the 

most reliable method for protein structure prediction. In comparative modeling, the 

structure of a protein is predicted by comparing its amino acid sequence with the sequences 

of proteins of known structure. The assumption is that proteins with similar sequences have 

similar structures. If a strong similarity is found, it can be assumed that the proteins have 

similar structures. If no strong similarities can be found, then comparative modeling cannot 

be used[23]. The accuracy of predictions made by comparative modeling greatly relies on the 

degree of sequence similarity. If the target and the template have more than 50% sequence 

identity, predictions are usually of high quality, whereas when they share less than 30% of 

their sequences, the prediction will possibly contain significant errors[24]. 

Ab initio methods use only the information in the target sequence. There are two 

branches of ab initio prediction: knowledge-based methods and simulation methods. 

Knowledge-based prediction methods predict structures by applying rules, which are 

derived from observations made on known protein structures. Simulation methods attempt 

to predict protein structures by simulating the protein folding process using basic physics. 

The central principle of simulation-based protein structure prediction is that the native fold 

of a protein can be identified by discovering the configuration of the protein molecule with 

the lowest energy as determined by an appropriate potential energy function[23]. 

Fold recognition methods rely on the concept that structure is evolutionary more 

conserved than sequence. Therefore, the variety of different folds is more restricted than 

suggested by sequence diversity.  These methods attempt to detect a model fold for a given 

target sequence among the known folds even if no sequence similarity can be identified[24]. 
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A worldwide experiment for protein structure prediction, the Critical Assessment of 

protein Structure Prediction (CASP) is taking place every two years since 1994 has helped in 

the advancement of methods of identifying protein structure from sequence[25]. 

 

 

1.6 Secondary structure elements 
 

During protein folding the hydrophobic side chains are being packed towards the 

center of the protein molecule, forming a hydrophobic core and a hydrophilic outer surface. 

The packing of hydrophobic side chains towards the interior of proteins is extremely dense. 

Given the conformational restrictions caused by the steric hindrances generated by the side-

chains, protein folding resembles a three-dimensional puzzle. Concurrently, the protein’s 

backbone chain must also fold into the hydrophobic core of the molecule. However, the 

presence of imine groups (NH) and carbonyl groups (C’=O) in each peptide group, which act 

as proton donors and proton receptors, respectively, results in high hydrophilicity of the 

main chain. In a hydrophobic environment, these polar groups must be neutralized, via the 

formation of hydrogen bonds. As a result, stable conformational patterns form, known as 

secondary structure elements. The most common types of secondary structures are α-helices 

and β-sheets (Figure 1.4). 

 

 

 

 

 

Figure 1.4: (a) Ball-and-strick model of an α-helix showing the interchain hydrogen bonds. (b) 
Parallel β-sheet structure. (c) Anti-parallel β-sheet structure. The color coding is the following: grey: 
carbon atoms, white: hydrogen atoms, red: oxygen atoms, blue: nitrogen atoms and purple: R groups. 
(adapted without permission from Nelson & Cox, Lehninger Principles of Biochemistry).  
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Both structures are characterized by hydrogen bonds between NH and C’ =O groups 

of the main chain[4]. A helix is the simplest arrangement the polypeptide chain can adopt. The 

repeating unit is a single turn of the helix, which extends about 5.4 Å along the long axis. Each 

helical turn includes 3.6 amino acid residues. In all proteins, the helical twist of the helix is 

right-handed. The β-sheet is formed of β-strands, extended conformations of 5 to 10 

residues. The adjacent polypeptide chains in a β-sheet can be either parallel or antiparallel, 

meaning that they have the same or opposite amino-to-carboxyl orientations, respectively. 

Τhe repeating unit is shorter for the parallel conformation (6.5 Å, vs. 7 Å for antiparallel) and 

the hydrogen-bonding patterns differ as well[2]. 

The two structural elements analyzed above are not the only ones present in protein 

structures. Examples of other secondary structure elements include αL-helices or left-

handed α-helices, 310-helices (3 residues and 10 atoms per turn), π-helices (4.1 residues per 

turn), β-turns, and random coils[4]. 

 

 

1.7 φ, ψ dihedral angles 
 

        In order to describe secondary structure elements, it is 

important to understand the main parameters that define the 

conformation of a polypeptide chain. Assuming a dipeptide of 

residues n and n+1, the peptide group includes the Cα carbon 

atom and the C’=O group of residue n, as well as the NH group 

and Cα carbon atom of residue n+1. Since peptide groups lack 

flexibility, due to the inflexible nature of the C’-N peptide bond, 

they only have two 

degrees of freedom that 

correspond to the 

torsion angles of N-Cα 

and Cα-C’ bonds. These 

dihedral torsion angles 

are called φ and ψ, 

respectively[4] (Figure 

1.5). In principle, φ and 

ψ angles can have any 

value between -180o and 

+180o, but many values are prohibited by steric 

interference between amino acid side chains and main-

chain atoms[2]. 

Figure 1.5: The φ and ψ torsion 
angles. (reproduced without 
permission from Wikipedia) Figure 1.6: A Ramachandran plot showing 

the allowed secondary structures. 
(reproduced without permission from 
Nelson & Cox, Lehningher, principles of 
Biochemistry).  
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Allowed values for φ and ψ become evident when they are plotted against each other 

in a Ramachandran plot (Figure 1.6), introduced by the Indian biophysicist G. N. 

Ramachandran. Each dot of the plot corresponds to the φ, ψ values of one amino acid residue, 

which is part of a well-defined structure. In the Ramachandran plot the allowed φ, ψ angle 

values of the residues that form the various secondary structure patterns, are represented 

as distinct regions. More specifically, the α-helix region is depicted in the lower-left quadrant, 

the β-sheet region in the upper left quadrant, and the αL-helix region in the upper right 

quadrant of the plot[4]. 

 

 

1.8 β-turns 
 

β-turns are the most common type of nonrepetitive structural pattern present in 

proteins, comprising on average 25% of the residues[26]. Turns have a significant role in 

proteins; they are the connecting elements that link different secondary structure elements 

(for example the ends of two adjacent segments of an antiparallel β-sheet),[2] they provide a 

direction change for the polypeptide chain and have been associated with molecular 

recognition and protein folding. Therefore, since β-turns were first recognized substantial 

effort has been dedicated to their analysis and the prediction of turns from the amino acid 

sequence[26]. The structure is a 180o turn involving four amino acid residues (i, i+1, i+2, 

i+3)[2]. 

β-turns (Figure 1.7) were first 

recognized by Venkatachalam in 1968, 

who was studying favorable 

conformations of three consecutive 

peptide units using model-building 

techniques. He recognized three 

conformations (I, II, and III) that formed 

a hydrogen bond between the main 

chain carboxyl oxygen of the first 

residue (i) and the amino-group 

hydrogen of the fourth (i+3) and their 

main-chain mirror images (I’, II’, III’) 

that would be disfavored due to steric 

interactions. In 1973 Lewis et al. found 

that 25% of β-turns do not possess the 

hydrogen bond proposed by 

Venkatachalam and they extended the 

definition of β-turns to incorporate these 

Figure 1.7: The four most common β-turn types (a) type I, (b) 
type II, (c) type I’, (d) type II’. (adapted without permission 
from Appavu et al., Transcriptomics: Open Access, 2016) 
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examples. The definition states that the distance between Cα atoms of residues i and i+3 is 

less than 7 Å and that the chain is not in a helical conformation. Using this they broadened 

the number of turn types to 10 (I, I’, II, II’, III, III’, IV, V, VI, VII) some categories were based 

on φ, ψ angles, whereas others were based on less-stringent criteria. The classification of β-

turns, using φ, ψ angles, into seven conventional turn types (I, I’, II, II’, IV, Via, VIb) and a new 

class of β-turn,  type VIII is now widely accepted[27]. 

In terms of the positional potentials, generally, hydrophilic residues are more likely 

to be present in turns than hydrophobic residues. This is because turns are usually on the 

solvent-exposed, outer surface of proteins. Residues such as glycine, proline, asparagine, and 

aspartic acid are strongly preferred in turn conformations. There are significant differences 

between the potentials at each position; for instance, proline is favored at the first 2 positions 

of turns (i, i+1), whereas glycine is favored at the last 2 positions (i+2, i+3), and asparagine 

and aspartic acid are strongly favored at positions i and i+2[28]. 

 

 

1.9 Peptide folding simulations 
 

Peptides are short chains of between two and fifty amino acids, linked by peptide 

bonds. Studies based on experimental techniques and molecular dynamics simulations have 

proven that peptide fragments tend to form native-like secondary structures. Experimental 

techniques, such as NMR, demonstrate that long peptide fragments adopt native-like 

conformations. This also applies to some short peptides in solution. Consequently, peptide 

conformational propensities that are extracted from the protein databank (PDB) are 

extensively used in protein-structure prediction methods[29]. 

Peptides are small systems that mimic many of the characteristics and complexities 

of larger molecular systems, such as proteins. Peptide folding simulations and experiments 

describe the dynamics and molecular mechanisms of primary events of protein folding. In 

terms of computational power, peptides are a more tractable system than proteins, and 

experimentally, they fold at extremely fast rates. Therefore, peptide systems provide a 

connection link between theoretical and experimental understanding of protein 

folding[30][31]. 

It is also important to mention that peptide simulations aim for a better 

understanding of the folding mechanisms and play a vital role in the improvement of physics-

based three-dimensional structure prediction methods. More specifically, peptides are 

widely used for the development, advancement, validation, and optimization of force fields, 

to improve the ability of simulations to represent physical reality[31]. 
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1.10 Human Immunodeficiency Virus 
 

Human immunodeficiency viruses HIV-1 and HIV-2 are two species of Lentiviruses 

that infect humans[32]. HIV, along with related retroviruses belong to a class of enveloped 

fusogenic viruses that include coronaviruses, paramyxoviruses, and orthomyxoviruses. The 

activation of all of the above viruses depends on post-translational cleavage. HIV causes the 

depletion of CD4+ T helper lymphocytes in their hosts and as a result, the acquired 

immunodeficiency syndrome (AIDS) develops[33]. AIDS was first reported as a new disease 

in the United States in 1981 when increasing numbers of young homosexual men yielded to 

rare infections and malignancies[34]. The isolation of HIV-1 followed, 2 years later. The 

disease was found to be established in heterosexual populations of central and east Africa[35]. 

The viral infection can have disastrous effects on host defense mechanisms, causing a wide 

range of opportunistic infections and neoplasms. HIV is one of the most extensively studied 

viruses and innovations in structural biology and molecular immunology have led to 

substantial advances and a better understanding of its mechanisms of function and effects 

on the human immune system[36]. HIV entry into the host cell is a complex mechanism that 

consists of various steps (Figure 1.8). 

 

 

 

The first step of the viral replication cycle includes the adhesion of the virus to the 

host cell and the fusion of the cell and the viral membranes with the subsequent entry of the 

viral core into the cytoplasm of the host cell. HIV delivers its genome into the host cell 

cytoplasm following a complex series of steps, while at the same time evading the host 

immune response. Firstly, virions must attach to the target cell either by the viral envelope 

protein (Env) or host cell membrane proteins integrated into the virion. The attachment of 

HIV to the host cell brings the protein Env close to the viral receptor and coreceptor, 

Figure 1.8: HIV entry into the host cell. (1) Attachment to the host cell. (2) Binding to the host protein CDC4. (3) 
Conformational changes in Env, allowing coreceptor binding, membrane fusion initiates. (4) Membrane fusion. (adapted 
without permission from Wilen et al., Cold Spring Harbor Perspectives in Medicine, 2012) 
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therefore increasing the efficiency of infection. The second step of viral entry involves the 

attachment of Env to the host protein CD4, its primary receptor. Env is a highly glycosylated 

trimer of the exterior envelope glycoprotein, gp120, and the transmembrane envelope 

glycoprotein, gp41 heterodimers. The role of the gp120 subunit is to assist with receptor 

binding. The third step entails coreceptor binding (either CCR-5 or CXCR-4) and is 

considered to be the trigger that stimulates the membrane fusion potential of Env. The fourth 

step involves the movement of the virus particle to the productive binding site. In the final 

step membrane fusion induced by Env occurs[37]. All these steps of viral entry are shown in 

Figure 1.8. 

 

 

1.11 gp120 
 

 The exterior envelope glycoprotein gp120 plays a significant role in receptor binding 

and interactions with neutralizing antibodies. Structural information regarding gp120 is 

essential for the determination of the mechanism of HIV infection and the design of new 

therapeutic approaches. 

The structure of gp120 protein 

has been determined as a complex with 

the N-terminal two domains of CD4, 

and a Fab from the human neutralizing 

monoclonal antibody 17b, which 

partially mimics the HIV-1 co-receptor. 

The 3D structure of this ternary 

complex is presented in Figure 1.9.  

The core of gp120 is comprised 

of 25 β-strands, 5 α-helices, and 10 

defined loop segments. The protein’s 

polypeptide chain is folded into two 

major domains, the inner and outer 

domains. The inner domain includes a 

two-helix, two-strand bundle with a 

small five-stranded β-sandwich at its 

C-terminal end. The outer domain 

includes a stacked double barrel.  The 

proximal barrel of the outer domain 

consists of a six-stranded, mixed-

directional β-sheet that is twisted to 

embrace helix α2, while the distal 

Figure 1.9: 3D structure of the gp120-CD4-Fab ternary complex. 
The cartoon diagram illustrates gp120 in pink, the N-terminal two 
domains of CD4 in yellow, and the Fab in blue and purple. PDB ID: 
1GC1 
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barrel of the outer domain is a seven-stranded antiparallel β-barrel. The outer domain is 

situated in such a way so that the outer barrel and inner bundle axes are almost parallel. 

 
The proximal end of the 

outer domain includes variable 

loops V4 and V5 and the loops LD 

and LE which also seem to have a 

sequence variability, as well as 

loop LC, which is close in the three-

dimensional space with loop LA of 

the inner domain. The distal end of 

the outer domain includes loop V3, 

as well as loop LF, which helps in 

the formation of a β20-β21 β-

hairpin. Τhe β-hairpin forms 

hydrogen bonds with the V1/V2 

stem of the inner domain. This 

leads to the formation of an 

antiparallel, four-stranded 

“bridging sheet”, which acts as a 

minidomain[33]. Figure 1.10 is a 

3D representation of core gp120. 

 

 

1.12 Peptide T 
 

It has been suggested that the interaction between HIV-1 and its host cell receptors 

could entail the region 185-192 of the gp120 coat protein[38], which corresponds to the 

gp120 V2 region[39]. The synthetic octapeptide fragment with the sequence: ASTTTNYT, is 

known as peptide T due to its high threonine content and it was proven to function as a viral 

entry inhibitor by blocking the binding of both isolated gp120 and HIV-1 with the CD4 

receptor[38][39][40]. Later studies have suggested that both the CD4 receptor and a co-receptor 

are needed for the invasion of healthy cells by HIV-1. The core fragment of gp120 presented 

in Figure 1.10 is depleted of some variable regions, including the variable V2 loop, which 

includes peptide T. Nevertheless, the likely structure of the V1/V2 stem is modeled and 

located above the gp120 core, in close proximity with the antibody fragment.  Furthermore, 

the authors of the study that determined the ternary structure of the complex presented in 

Figure 1.9, proposed that CD4 binding induces a conformational change in gp120, which 

translocates the V1/V2 loop even closer to the co-receptor, implying that the V2 region may 

Figure 1.10:  Ribbon diagram representing the structure of core gp120. 
Τhe color-coding is red for α-helices, salmon for β-strands, and grey for 
loops. (adapted without permission from Kwong et al., Nature, 1998) 
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be involved in the interaction with the chemokine co-receptor, and/or the CD4 receptor[38]. 

A later study reported the structure of V1/V2 in complex with a human antibody, PG9 and 

they concluded that V1/V2 forms a four-stranded β-sheet domain, involving four anti-

parallel β-strands[41]. 

 Peptide T is endowed with a strong chemotactic activity on human monocytes, which 

is associated with the blockage of CD4 binding[38]. The chemotactic activity could be inhibited 

by anti-CD4 monoclonal antibodies (Mabs). The core peptide required for chemotactic 

activity is the pentapeptide: Thr-Thr-Asn-Tyr-Thr[42]. Other biological activities include its 

pharmacological ability to prevent neuronal cell death produced by the envelope protein, 

which leads to the evaluation of peptide T as a potential therapeutic agent for the 

neuropsychiatric and neurological deficits of AIDS[43]. Peptide T has also a potential 

capability to resolve psoriatic lesions[44]. Psoriasis affects 2–4% of the population, and an 

increased occurrence of psoriasis has been identified in patients infected with HIV. Although 

peptide T seems to have positive outcomes in the treatment of psoriasis, little is known 

regarding the mechanism of peptide T action in treating this disease. Examples of the 

possible mechanisms that peptide T may use include its ability to interact with somatostatin, 

with the vasoactive intestinal polypeptide (VIP), and with the epidermal growth factor to 

regulate cell growth,  its capacity to affect the synthesis of somatostatin, etc[45]. It is also 

important to note that peptide T has the ability to weaken neuroinflammation associated 

with Alzheimer’s disease (AD)[44]. AD is correlated with aging and is defined by brain 

inflammation leading to neocortical atrophy. Neocortical atrophy and the depletion of large 

neocortical neurons are also frequent characteristics of HIV infection of the brain, implying 

convergence of pathogenic pathways. The capacity of chronic Dala1-peptide T-amide 

(DAPTA), the modified analog of peptide T, treatment to prohibit reductions in cortical 

thickness and loss of supplementing cortical neurons suggests novel research areas related 

to the pathogenesis of dementia that involves neuronal loss, even when triggered by 

different etiologic agents (AIDS vs. AD)[46]. 

Several clinical trials have been conducted to evaluate peptide T as a possible 

treatment. Between 1987 and 1989 the National Institutes of Mental Health (NIMH) 

conducted phase I clinical trials to test immunological parameters, along with viral load 

changes. The results revealed that the synthetic peptide was entirely non-toxic and also 

exhibited several symptomatic improvements. However, a randomized double-blind placebo 

clinical trial of internasal peptide T for the treatment of painful distal neuropathy associated 

with AIDS concluded that there was no significant difference in pain scores. Many placebo-

controlled trials have proven that peptide T has clinical benefits in reversing memory loss 

and cognition related to HIV infection[46]. Since then, several controversial data have been 

reported on the possible therapeutic applications of the peptide, which resulted in a loss of 

interest in peptide T for the treatment of AIDS. The discovery of the role of chemokine 

receptors introduced a re-examination of the peptide and its analogs[38][46]. 
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1.13 Purpose of the present thesis 

 

During a disease outbreak, alternative therapies such as drug repurposing, 

vaccination, and immunotherapy are more effective than traditional drug discovery, which 

is inherently slow to cope with the need for timely therapeutic solutions. Both vaccination 

and immunotherapy are based on peptide targets. Peptide-based therapies can be more 

rapid and cost-effective in clinical settings. Other advantages of peptides include their high 

biological activity, specificity and affinity to desired targets, and low toxicity, due to the 

limited possibility for accumulation in the body[47][48]. Thus, a better understanding of the 

structure and function of peptides has proven to be a crucial factor that can contribute to the 

improvement of human health and disease management[48].  

The purpose of the present thesis is to study the folding mechanism of peptide T 

through Molecular Dynamics simulations and to compare our results with the results from 

the NMR experiment that Picone et al. had conducted: “A 500 MHz study of peptide T in a 

DMSO solution”. In this publication, they studied peptide T as a zwitterion in DMSO solution 

by means of proton NMR spectroscopy at 500MHz. More specifically, NMR spectra were 

obtained at 500 MHz, double-quantum-filtered (DFQ) COSY, and NOESY spectra were run 

and chemical shifts of all backbone protons and temperature coefficients of the labile 

protons were reported. The chemical shift data indicated a non-random conformational 

state. They found that the residues S2 and T8, whose resonances of the NH groups are broader 

than the other five,  might adopt a singular conformational position and that the side chains 

of two of the four threonines, whose methyl groups both resonate at 1.03 ppm, are in a 

similar environment. To their surprise, the NOESY spectrum showed effects between NHs of 

T4 and T5 and Y7 and T8, findings that indicate the presence of well-defined conformers. They 

concluded that peptide T presents an unusual degree of conformational order in DMSO 

solution. The minimal value of the T8 chemical shift in the range of 298-330K, the diagnostic 

NOE between the NHs of Y7 and T8, and variable temperature data were consistent with a 

type I β-turn including the four C-terminal residues, T5, N6, Y7, and T8, in which T8 is bonded 

to T5 CO. Although this conformation seemed to be the most prominent, they believed that it 

was not the only one present in solution. It seemed to be the only one detectable due to the 

non-linear dependence of NOE on interatomic distances[49].  

In the literature reporting computer simulations, it is quite common to find a 

statement such as “the simulation results are in agreement with the experimental results”[30]. 

The statement mentioned previously has sometimes been used vaguely or without much 

consideration. The validity of the methodology or calculations is often supported just by a 

qualitative or incidental agreement[30]. One of the major concerns when evaluating the 

effectiveness of MD simulations of proteins or peptides is the degree to which the 

simulations sufficiently sample the conformational space of the protein or peptide. If a 

property is inadequately sampled over the MD simulations, the results obtained will be of 

limited value[50]. 
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The aim of this project was to analyze the molecular dynamics trajectory, study the 

structural properties of peptide T and examine which are the most likely conformations that 

it can adopt using physics-based methods, under the scope of comparing the simulation 

results with the physical reality. We also calculated the simulation-derived chemical shifts 

and tried to measure the divergence from the experimentally determined chemical shift 

values. A more detailed description of the workflow that we followed can be found in the 4.1 

section of this thesis.  
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2. Molecular Dynamics Simulations 

 

 

2.1 Introduction 
 

Molecular dynamics simulations were first introduced by Alder and Wainwright in 

the late 1950s to analyze the interactions of hard spheres. The first molecular dynamics 

simulation of a realistic system was the simulation of liquid water, which was carried out by 

Rahman and Stillinger in 1974. The first protein simulation was the simulation of the bovine 

pancreatic trypsin inhibitor (BPTI) in 1977. Nowadays, this method has become a routine 

and a variety of molecular dynamics experiments have been conducted, such as molecular 

dynamics simulations of solvated proteins, protein-DNA complexes as well as lipid systems, 

addressing a wide range of issues, including the thermodynamics of ligand binding and the 

folding of small proteins. Also, molecular dynamics simulation techniques are extensively 

used in experimental techniques such as X-ray crystallography and NMR structure 

prediction[51].  

There are two main categories of simulation techniques: Molecular Dynamics 

Simulations (MD) and Monte Carlo Simulations (MC).  Additionally, there is a whole series of 

hybrid techniques that combine characteristics from both of the above-mentioned methods. 

The main advantage of MD over MC is that it allows us to investigate the dynamical 

properties of the system, such as transport coefficients, time-dependent responses to 

perturbations, rheological properties, and spectra[52]. 

By following the dynamics of a molecular system in space and time, we can gain new 

insights concerning the structural and dynamic properties of our system, such as molecular 

geometries and energies, mean atomic fluctuations, local fluctuations, enzyme-substrate 

binding, rates of configurational changes, free energies, and the nature of different types of 

concerted motions[53]. Moreover, computer simulations act as a bridge between microscopic 

length and time scales and the macroscopic world, as well as between theory and 

experiment. MD simulations allow us to access information that would be difficult to obtain 

through classical experiments, make comparisons with experimental results, or test a new 

theory[52]. 

 

 

2.2 Statistical Mechanics 
 

 Molecular dynamics simulations describe a system at the microscopic level, using 

variables such as atomic positions and velocities. The conversion of this microscopic 

information to macroscopic observables requires statistical mechanics. Statistical mechanics 

is the field of physical sciences that focuses on understanding macroscopic systems from the 
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properties of individual molecules comprising the system. Time-independent statistical 

averages are often introduced, to link the macroscopic to the microscopic system[51]. 
 Nevertheless, not all properties of a system can be directly measured in a simulation. 

Most of the aspects that can be measured in a simulation cannot be compared to 

experimental data, since none of the experimental approaches provides such detailed 

information. Instead of using such explicit information, a typical experiment calculates 

average properties, averaged over a large number of particles and over the time of the 

measurement. If we intend to use computer simulations as the numerical equivalent of 

experiments, we must be aware of what kind of averages we should aim to measure, and to 

do so, we need to introduce the “language” of statistical mechanics[54]. 

 

 

2.3 Classical Mechanics and Integration Algorithms 
 

 MD simulations are based on Newton’s second law of motion. Knowing the force 

applied to each atom, it is feasible to define the acceleration of each atom in the system. 

Integration of the equations of motion then produces a trajectory that describes the 

positions, velocities, and accelerations of the particles as they change with time. Then, from 

the trajectory analysis, we can determine the average values of properties of the system. The 

method is deterministic; once the positions and velocities of every atom are known, the state 

of the system can be easily predicted at any time. 

 Using mathematical terms to describe the above said, Newton’s equation of motion is 

given by 

 

                                                                  𝐹𝑖 = 𝑚𝑖𝑎𝑖                                                                           (2.1) 
 

where 𝐹𝑖  is the force applied on particle i, 𝑚𝑖 is the mass and 𝑎𝑖 the acceleration of particle i. 

The force can also be expressed as a gradient of potential energy 

 

                                                                       𝐹𝑖 = −∇𝑖𝑉                                                                                     (2.2) 

 
The combination of equations (2.1) and (2.2) leads to the following two equations 

 

−
ⅆ𝑉

ⅆ𝑟𝑖

= 𝑚𝑖

ⅆ2𝑟𝑖

ⅆ𝑡2
 

 

 (2.3) 

𝑎𝑖 = −
1

𝑚𝑖

ⅆ𝑉

ⅆ𝑟𝑖

 
 (2.4) 
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Therefore, it is possible to calculate a trajectory knowing only the initial positions of atoms, 

an initial distribution of velocities, and the acceleration, which is defined by the gradient of 

the potential energy function. As mentioned previously, the equations of motion are 

deterministic. This means that knowing the positions and velocities at time zero, then it is 

possible to calculate the positions and velocities of the system at any other given time, t. The 

initial positions can be derived from experimental structures, which were solved by 

experimental techniques such as X-ray Crystallography and NMR spectroscopy. The 

velocities, vi, are often selected randomly from a Maxwell-Boltzmann or Gaussian 

distribution at a given temperature 

 

𝑝(𝜈𝑖𝑥) = (
𝑚𝑖

2𝜋𝑘𝐵𝑇
)

1∕2

𝑒𝑥𝑝 [−
1

2

𝑚𝑖𝜈𝑖𝑥
2

𝑘𝐵𝑇
] 

   
(2.5) 

 

where kB is Boltzmann’s constant and T is the temperature of the system. The temperature 

can be calculated using the relation 

 

𝑇 =
1

(3𝑁)
∑

|𝑝𝑖|

2𝑚𝑖

𝑁

𝑖=1

 

 

   

(2.6) 

where N is the number of atoms in the system. The potential energy is a function of the 

atomic positions (3N) of all the atoms in the system. Due to the complexity of this function, 

the equations of motion can only be solved numerically, but not analytically. Alternatively 

stated, there is no analytical solution to the equations of motion, either because of the 

complicated nature of the potential energy function or because of the extended 

computational time needed. As a consequence, numerical algorithms have been developed 

for the integration of the equations of motion. The most noteworthy integration algorithms 

are the Verlet algorithm, the Leap-frog algorithm, the Velocity Verlet, and Beeman’s 

algorithm.  

 The majority of the above algorithms are based on Taylor’s series of expansion, the 

main advantage of which is the reduction of an equation’s terms 

 

𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝜈(𝑡)𝛿𝑡 +
1

2
𝑎(𝑡)𝛿𝑡2 + ⋯ 

 

   

(2.7) 

𝜈(𝑡 + 𝛿𝑡) = 𝜈(𝑡) + 𝛼(𝑡)𝛿𝑡 +
1

2
𝑏(𝑡)𝛿𝑡2 + ⋯ 

   

(2.8) 

 

𝑎(𝑡 + 𝛿𝑡) = 𝑎(𝑡) + 𝑏(𝑡)𝛿𝑡 + ⋯ 

   

(2.9) 
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Regarding the proper selection of the algorithm, it is essential to consider the algorithm’s 

ability to conserve energy and momentum, its computational efficiency, and its integration 

time step, thereby the results will be as close to reality as possible, though a level of 

inaccuracy will inevitably be present[51].  

 

 

2.4 Force Fields 
 
 Force fields are empirical functions that calculate the energy of a system as a function 

of the nuclear positions[55]. The majority of the current generation force fields (or potential 

energy functions) provide a fairly sufficient compromise between computational efficiency 

and accuracy[51]. However, the development of parameter sets is a very challenging task, 

demanding rigorous optimization and parameterization and substantial efforts will be 

required to further improve their accuracy[51][52]. Among the most commonly known and 

widely used force fields are the Assisted Model Building for Energy Refinement (AMBER)[56], 

Chemistry at Harvard Macromolecular Mechanics (CHARMM)[57], Groningen Molecular 

Simulation (GROMOS)[58], and Optimized Potentials for Liquid Simulation (OPLS)[59]. The 

value of the energy is calculated as a sum of internal, or bonded, interactions and external, 

or non-bonded, interactions 

 

                                            V(R) = Ebonded + Enon-bonded                                                                    (2.10) 

 
Ebonded is a sum of three terms corresponding to three types of atom movement, bond 

stretching, angle bending, and bond rotation 

 

                                   Ebonded = Ebond-stretch + Eangle-bend + Erotate-along-bond                            (2.11) 

 
The first term of the above equation is a harmonic potential representing the interaction 

between two atoms bonded with a covalent bond (Figure 2.1a). The energy of the bond is a 

function of the displacement from the ideal bond length, b0. Kb is the force constant that 

determines the strength of the bond. Both the ideal bond length and the force constant are 

specific for each pair of bound atoms 

 

                                                  Ebond-stretch = ∑ 𝐾𝑏(𝑏 − 𝑏0)2 
                                                                                  1,2 pairs  

     (2.12) 

 

The second term in equation 2.11 is also a harmonic potential, which refers to the angle 

deviation of a bond angle θ from the ideal value θ0 (Figure 2.1b). Values θ0 and Kθ vary 

depending on the chemical type of each atom comprising the angle 
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nonbonded 

pairs 

                                                  Ebond-bend = ∑ 𝐾𝜃(𝜃 − 𝜃0)2 
                                                                                                           angles  

     (2.13) 

 

The last term in equation 2.11 calculates the potential energy of the system as a function of 

the rotations of dihedral angles (Figure 2.1c). This potential is periodic, it describes the 

steric barriers between atoms separated by 3 covalent bonds and is frequently expressed as 

a cosine function  

 

                                                  Erotate-along-bond = ∑ 𝐾𝜑(1 − cos (𝑛𝜑)) 
                                                                                                                            1-4 pairs  

     (2.14) 

 

 

 The second term in equation 2.10 is the energy term that represents the nonbonded 

interactions, and it has two components, the van der Waals interaction energy, and the 

electrostatic interaction energy  

 

                                                Enon-bonded = Evan-der-Waals + Eelectrostatic                              (2.15) 

 

The van der Waals interaction between two atoms is the result of an equilibrium between 

repulsive and attractive forces. The van der Waals interaction is modeled using the Lennard-

Jones potential 

  

                                                 Evan-der-Waals  =  ∑    (
𝐴𝑖𝑘

𝑟𝑖𝑘
12 −

𝐶𝑖𝑘

𝑟𝑖𝑘
6 ) 

 

 

(2.16) 

 

where A and C are atom-dependent constants. The possibility of interaction between two 

atoms increases as the distance between them decreases. There is a specific distance, called 

the equilibrium distance in which the potential energy reaches a minimum value. If the 

Figure 2.1: Schematic representations of three types of molecular vibrations. Bonded interactions include: (A) covalent 
bond stretching, (B) angle bending and (C) rotation around bonds. (adapted without permission from Doh & Lee, Computers 
& Structures, 2016) 
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nonbonded 

pairs 

distance between the two atoms becomes shorter than the equilibrium distance, repulsive 

forces become dominant, whereas if the distance increases, then attractive forces become 

dominant. 

The second component of equation 2.15 is the electrostatic interaction energy and is 

represented by Coulomb’s potential 

 

                                                Eelectrostatic =  ∑   
𝑞𝑖𝑞𝑘

𝐷𝑟𝑖𝑘
 

  (2.17) 

 

where D is the effective dielectric constant and r is the distance between two atoms having 

charges qi and qk[51]. 

 

 

2.5 The Role of Solvent in Molecular Dynamics Simulations 
 

 The use of solvent in MD simulations has a great impact on the structure, dynamics, 

and thermodynamics of biological molecules. One of the most crucial properties of the 

solvent is the screening of electrostatic interactions[51].  In the present project, we studied 

the folding process of peptide T in a Dimethyl Sulfoxide (DMSO) solution. DMSO is thought 

to solvate backbone NHs very strongly, favor extended conformers[38], and usually, reduce, 

or even prevent the formation of stable secondary structure conformations[60]. However, in 

some cases, e.g. peptide T, DMSO favors folded conformations. Also, the viscosity of the DMSO 

medium is higher than water and as a result, it can mimic at least one of the physicochemical 

features of membranes and cytoplasm[38]. 

 There are two main ways to incorporate solvent 

effects in an MD simulation, the implicit solvent 

models, and the explicit solvent models. In the 

implicit treatment of the solvent, an effective 

dielectric constant is included in the electrostatic 

term of the potential energy function. In the explicit 

treatment of the solvent, solvent molecules are 

included in the simulation. In this method, solvent 

boundary conditions must be imposed to prevent the 

diffusion of solvent molecules away from the protein 

and also, to allow calculation of macroscopic 

properties of the system. The most common 

treatment of the boundary is the periodic boundary 

conditions method (Figure 2.2). Periodic boundary 

conditions allow a simulation to be performed using 

a comparatively small number of particles so that the 

Figure 2.2: Periodic boundary conditions. The 
box in the center is the primary box. (reproduced 
without permission from Attig et. al., NIC series, 
2004) 
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particles experience forces as if they were in a bulk solution. According to this method, the 

molecule under study is placed in the central box, defined as the primary box. The primary 

box is surrounded by eight neighboring boxes[51]. Every atom can interact with its neighbors 

and thus, if an atom moves out of the primary simulation box, an image particle enters the 

primary box, replacing it[52]. 

  

 

2.6 AMBER 
 

Amber is a collection of programs applied to perform and analyze MD simulations. It 

also refers to a series of classical molecular mechanics force fields, used for biomolecular 

simulations. The most commonly used versions of the Amber force field are the ff94, ff99SB, 

ff03, and GAFF[61]. The ff94 version has been the most widely used with the AMBER suite of 

programs since its publication. This version introduced the set of parameters needed for all-

atom protein simulations. Special features of the ff94 version include explicit use of all 

hydrogen atoms, fixed partial charges on atom centers, no specific functional form for 

hydrogen bonding, and dihedral parameters suitable for relative quantum-mechanical (QM) 

energies of alternative rotamers of small molecules. Although ff994 has been extensively 

used, certain limitations were reported, such as the over-stabilization of α-helices. The ff96 

and ff99 versions aimed to improve the parameters used for the calculation of φ, ψ dihedral 

angles. A new parameter set, denoted as ff99SB replaced the existing parameters for 

backbone dihedrals angles. This parameter set accomplishes a better balance of secondary 

structure elements[62]. The improvement of the amino acid side-chain torsion potentials of 

the Amber ff99SB force field, lead to new force fields, ff99SB-ILDN[63], ff99SB-STAR[64], and 

ff99SB-STAR-ILDN[62][63][64]. 
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3. Methods 

 

 

3.1 Introduction 
 

The study of the folding mechanism of peptide T was conducted through a Molecular 

Dynamics simulation using the NAMD program, a software developed for high-performance 

simulations of large biomolecular systems[65]. For the peptide’s simulation, we used the 

AMBER force field, 99SB-STAR-ILDN[62][63][64]. 

Reliable simulations are computationally extremely intensive. In order to increase 

the computing power and reduce the computational cost, the use of parallel computers, 

which create a cluster, is usually preferred[66]. The simulation was carried out by Norma, a 

stateless Beowulf-class computing cluster based on the Caos NSA GNU/Linux distribution. 

Norma consists of 40 CPU cores, 46 GB of physical memory, and 6 GPGPUs distributed over 

10 nodes which are based on Intel’s Q6600 Kentsfield 2.4 GHz quad processors and are 

connected via a dedicated HP ProCurve 1800-24G gigabit ethernet switch. Each of the nine 

nodes offers four cores, 4 GB of physical memory, and two (gigabit) network interfaces. Only 

one node is based on Intel’s i7 965 extreme which offers 6GB of physical memory plus a 

CUDA-capable GTX-295 card. Of the eight Q6600-based nodes, four are equipped with Nvidia 

GTX-460 GPU. The head node comes with four cores, eight GB of physical memory, 1.5 TB of 

storage in the form of a RAID-5 array of four disks, three (gigabit) network interfaces, and a 

Nnvidia GTX-260 GPU. Norma, which is located at the Department of Molecular Biology and 

Genetics of Democritus University of Thrace, is presently used almost exclusively for 

computational biology and crystallography projects of the Structural and Computational 

Biology group[67]. 

 

 

3.2 Starting molecular dynamics simulations with NAMD 
 

In order to start an MD simulation, NAMD requires at least three files: 

• Α PDB file which contains the atomic coordinates and/or velocities for the system. 

PDB files are available through the PDB database (https://www.rcsb.org/), or they 

can be generated by the user. These files include information about the record type, 

atom ID, atom name, residue name, residue ID, x, y, z coordinates, occupancy, and 

temperature factor[68]. 

• A force field parameter file, which contains all the numerical constants required for 

the evaluation of forces and energies, given a structure file and atomic coordinates. 

The parameter file defines bond strengths, equilibrium lengths, etc. NAMD is able to 

https://www.rcsb.org/
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use different types of force fields (CHARMM, X-PLOR, AMBER, GROMACS)[68]. We used 

the parameter file of the AMBER 99SB-STAR-ILDN force field. 

• A configuration file that specifies to NAMD how the simulation should be run. This file 

includes the dynamic options and values that NAMD should use, such as the number 

of timesteps to perform, initial coordinates, etc. It also determines what features are 

active or inactive and how long the simulation should continue[68][69]. A detailed 

description of the steps of our simulation is presented in the following section. 

 

 

3.3 System preparation and simulation protocol 
 

The first step in conducting the simulation was the preparation of the system. The 

PDB file for the initial fully extended state of peptide T was generated. This step was followed 

by the solvation and ionization of the system, which was performed using the program LEAP 

from the AMBER tools distribution. The simulation was conducted using periodic boundary 

conditions with a cubic unit cell sufficiently large to guarantee a minimum separation 

between the neighboring cells of at least 16 Å. We studied the dynamics of the folding 

simulation of peptide T using a mixed DMSO/water system. The adaptive tempering method 

was used, and the temperature ranged between 280 and 380K. 

Prior to the start of the simulation, an energy minimization step was conducted in 

order to remove any strong Van der Waals interactions, which could cause structural 

distortion and as a result, lead to an unstable simulation. An entire box of solvent was then 

added onto the peptide and those solvent molecules that overlapped with the peptide were 

removed. Then the heating phase followed during which initial velocities at a low 

temperature were assigned to each atom of the system and the simulation begins. 

Periodically, new velocities were assigned at a slightly higher temperature and the 

simulation continues. This procedure is repeated until the preferred temperature is reached. 

When the desired temperature is reached, the simulation continues and during this phase, 

several properties are examined, such as the pressure, the structure, the temperature, and 

the energy. During the equilibration phase, the simulation is run until these properties 

become stable with respect to time. If there is a significant increase or decrease in 

temperature, the velocities can be scaled accordingly, so that the temperature returns close 

to its desired value[51]. The final step of the simulation is the production phase, during which 

the simulation is run for the time length required, which can range from several hundred ps 

to ns or more. During this step, system coordinates at different times are stored in the form 

of trajectories and are then used for different calculations (calculation of the mean energy, 

root mean square fluctuations between structures, etc.)[70]. 

Our system was first energy minimized (Appendix, A1) for 2000 conjugate gradient 

steps and then the temperature was increased (Appendix, A1) with a ΔT step of 20K until the 
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final desired temperature of 320K. Subsequently, the system was equilibrated under 

constant temperature and pressure (NpT conditions) until the volume was equilibrated. The 

temperature and pressure were controlled using the Nosé-Hoover Langevin dynamics and 

Langevin piston barostat control methods, as implemented by the NAMD program. For the 

production phase (Appendix, A2), the Verlet-I multiple-step integration algorithm was 

used. The inner timestep was 2.5 fs, with nonbonded interactions being calculated every one 

step. The long-range electrostatic interactions were calculated every two timesteps, using 

the Particle Mesh Ewald method (PME). The cutoff for the Van der Waals interactions was 

set at 8 Å and the SHAKE algorithm was used to restrict all bonds involving hydrogen atoms.  

    The trajectory was obtained by saving the atomic coordinates every 0.8 ps. The simulation 

had a total duration of 4.04 μs and resulted in 5056000 frames. 

 

 

3.4 Trajectory analysis and Programming Languages 
 

The programs CARMA[71] and its GUI program GRCARMA[72] along with custom scripts 

have been used for the majority of our analyses, including the removal of overall 

rotations/translations, calculation of φ, ψ dihedral angles, calculation of RMSD’s from a 

chosen reference structure, dihedral space principal component analysis (dPCA) and 

corresponding cluster analysis, calculation of average structures and production of PDB files 

from the trajectories. CARMA requires as input two files, a DCD and a Protein Structure File 

(PSF) file.  The DCD file is the trajectory file, a binary file that contains sets of coordinates for 

the system. Each set of coordinates corresponds to one frame in simulation time[68]. The PSF 

file includes all of the molecule-specific information needed to apply a particular force field 

to a molecular system (atoms, bonds, angles, dihedrals, impropers, etc.)[73]. Secondary 

structure assignments were calculated using the program STRIDE[74]. Other structural 

analyses were performed using the promotif[75] program. The molecular graphics 

representations and figure preparations were performed with VMD[76], a molecular 

visualization program that uses 3-D graphics and built-in scripting[77], CARMA, and 

WebLogo[78]. For the production of colour-coding scatter plots, which illustrate the 

conformational clusters obtained by the dPCA analysis we used the plotting program, plot[79]. 

Chemical shifts were calculated using the program SPARTA+[80].  

 In order to process our data, analyze our results, and compare the experimental and 

simulation-derived chemical shifts, we used the Perl (Practical Extraction and Report 

Language) programming language. Perl is a high-level, general-purpose, interpreted, 

dynamic programming language. It was originally developed by Larry Wall in 1987[81]. The 

R statistical package, an open-source programming language environment suitable for 

statistical computing and graphics[82], was also used for plotting part of our data.  
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4. Results 
 

 

4.1 Introduction 
 

    In this section of the thesis, we are going to focus on the analysis of the trajectory derived 

from the MD simulation we performed on peptide T. The overall workflow that we followed 

for this project is presented below: 

• Secondary structure analysis using the algorithm STRIDE[74] and the logo-generating 

program WebLogo[78]. 

• Further structural analysis of turns and helices using the promotif[75] program. 

• Construction of free energy landscapes of peptide T via dihedral angle Principal 

Component Analysis and cluster isolation.  

• Association of high-density peaks with distinct peptide conformers, visualization of 

this structural information with schematic diagrams of representative and 

superposition structures. 

• Application of Good-Turing[83] statistics to ascertain the extent of sampling and 

statistical significance. 

• Calculation of chemical shifts and comparison with the experimental data. 

 

 

4.2 Secondary structure analysis 
 

The assignment of secondary structural elements is a crucial step in the 

determination of three-dimensional protein structures. There are several secondary 

structure assignment methods, which use different approaches and produce different 

assignments. Examples of these approaches include detection of patterns in inter-Cα 

distances, analysis of bond angles and lengths between consecutive Cα atoms, analysis of 

hydrogen bonding patterns, comparison of interatomic distance matrices of structural 

fragments with reference distances.  

Intending to identify the peptide’s basic structural characteristics, we performed a 

secondary structure analysis using the algorithm STRIDE (secondary STRuctural 

IDEntification). STRIDE is an automated algorithm for protein secondary structure 

assignment from atomic coordinates, which is based on both hydrogen bond energy (Ehb) 

and statistically derived backbone torsional angle information[74]. The color coding used for 

the STRIDE-derived per residue secondary structure assignments (Figure 4.1A) is the 

following: pink for α-helices, purple for 310-helices, cyan for turns, and white for random coil. 

For a better understanding of the peptide’s secondary structure preferences, we produced 

two WebLogo graphs (Figure 4.1B, Figure 4.1C). WebLogo is a program that generates 
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sequence logos. Each logo consists of stacks of letters, one for each position in the sequence, 

and the height of the symbols within the stack represents the relative frequency of the 

corresponding amino acid at that specific position[78]. The first WebLogo graph (Figure 

4.1B) is a representation of the per residue SRIDE-derived secondary structure assignments 

and corresponds to all the frames of the simulation, whereas the second WebLogo graph 

(Figure 4.1C) to the frames with an adaptive tempering temperature of less than 320 K and 

as a result represents more stable conformations. The isolation of stable conformers was 

possible because the simulation was performed using the adaptive tempering method which 

automatically adjusts the thermostat according to the energy of the system. The symbols 

used correspond to α-helices (H), 310-helices (G), turns (T), and random coils (C). 

According to the results obtained from STRIDE and WebLogo, we can observe that 

peptide T is highly flexible and that the majority of residues are being assigned to turn or coil 

states. Assignments to helical structures (α-helices and 310-helices) are very rare, with only 

some minor occurrences. When we observe more closely the WebLogo diagrams, we can see 

that there are no considerable differences between them and that the first and last residues 

are quite flexible. This behavior is expected for such a short peptide. Residues 3-5 tend to 

form mostly turns, while we can identify some minor occurrences of coil, 310-helical, and 

even α-helical structures. 

The experimental data of Picone et.al. suggested that peptide T could adopt fairly 

stable conformations and proposed that a helical segment (either α-helical or 310-helical) 

could be present, but the most tenable hypothesis was the one of a 5-8 β-turn[49]. These are 

the main structural characteristics observed in our analysis as well, but the difference 

between those two analyses is that our results suggest a significant degree of flexibility in 

the system.  
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Figure 4.1: Secondary structure analysis overview. (A) Secondary structure diagram produced by the program STRIDE. 
The color coding is pink for α-helices, purple for 310-helices, cyan for turns and white for random coil. (B) The WebLogo-
derived representations of the per residue STRIDE-derived secondary structure assignments corresponding to all the 
frames of the simulation. (C) The WebLogo-derived representations of the per residue STRIDE-derived secondary structure 
assignments corresponding to the frames of the simulation with an adaptive tempering temperature of less than 320 K. For 
(B) and (C) each letter corresponds to a different secondary structure element: H to α-helices, G to 310-helices, T to turns 
and C to random coil. 
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4.3 Structural analysis of turns and helices 
 

In order to further analyze the main structural characteristics (turns and helices) of 

peptide T, we used the promotif program. The program analyzes a protein coordinate file 

and provides information about the structural motifs present in the protein. This program 

provides details about the following structural features in proteins: secondary structure, β, 

and γ turns, helical geometry and interactions, β-strands and β-sheet topology, β-bulges, β-

hairpins, β-α-β units, ψ-loops, disulfide bridges, and main-chain hydrogen bonding patterns. 

Promotif creates postscript files for each type of motif in the protein, and a summary page, 

which gives a short description of each motif. 

First, we analyzed the β-turns, which are defined as four consecutive residues (i, i+1, 

i+2, i+3) where the distance between the Cα atoms of residues i and i+3 is less than 7 Å and 

the central two residues are not helical. β-turns are organized in different categories 

according to the φ, ψ angles of residues i+1, and i+2. The ideal angles for each β-turn category 

are shown in Table I. The φ, ψ angles were allowed to vary by ±30o from these ideal values, 

with one angle being allowed to deviate by 40o[75]. 

    

 

Turn type 

 

β-turns 

 

φi+1 

 

ψi+1 

 

φi+2 

 

ψi+2 

     
I -60o -30o -90o 0o 

II -60o 120o 80o 0o 

VIII -60o -30o -120o 120o 

I’ 60o 30o 90o 0o 

II’ 60o -120o -80o 0o 

VIa1a -60o 120o -90o 0o 

VIa2a -120o 120o -60o 0o 

VIba -135o 135o -75o 160o 

                   IV                                                        Turns excluded from above categories 

 
 

Table I: Ideal φ, ψ dihedral angles for the nine categories of β-turns. VIa1a and VIa2a require cis-proline at position i+2, 

therefore this turn type is not being studied in this project. 
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We studied the presence and the corresponding frequency of each β-turn type, using 

the whole trajectory.  The table below (Table II) shows the frequency of each β-turn class 

for every possible sequential amino acid tetrad. The five different possible combinations 

were the following: a. 1-Ala-2-Ser-3-Thr-4-Thr, b. 2-Ser-3-Thr-4-Thr-5-Thr, c. 3-Thr-4-Thr-

5-Thr-6-Asn, d. 4-Thr-5-Thr-6-Asn-7-Tyr, e. 5-Thr-6-Asn-7-Tyr-8-Thr. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

           Table II: The frequency of each β-turn type for every possible sequential amino acid tetrad.  

 

 

As it can be seen, the most preferred β-turn types are type I and IV, while β-turns type 

II, VIII, I’ and II’ are not so frequent. According to the above results, the most prominent β-

turn type for the amino acid sequences: 1-Ala-2-Ser-3-Thr-4-Thr and 2-Ser-3-Thr-4-Thr-5-

Thr is a type I, while the second most preferred β-turn type is type IV. For the sequences 4-

Thr-5-Thr-6-Asn-7-Tyr and 5-Thr-6-Asn-7-Tyr-8-Thr, the most preferred β-turn type is type 

IV, followed by type I. 

The next step was to analyze the second most prominent, according to our 

calculations, secondary structure element, helices. Promotif generates a table, which gives 

basic information about each type of helix recognized by the secondary structure assignment 

program, such as the helix number, the start, and end residue, helix type, the number of 

residues and the amino acid sequence, helix length and unit rise (both in Å), the number of 

residues per turn, the helix pitch in Å, and a measure of the deviation of the helix geometry 

from an ideal helix (in degrees)[75]. The table below (Table III) shows the frequency of each 

helix type for every possible combination of sequential amino acid residues.  

Residues          I          II     VIII        I’         II’         IV 

1 A  2 S  3 T  4 T 11.86% 0.19% 1% 0.17%     0.02% 7.17% 

2 S  3 T  4 T  5 T 14.83% 0.2% 0.9% 0.37%     0.02% 12.01% 

3  T  4 T  5 T  6 N 11.27% - 0.51% -     0.03% 11.81% 

4  T  5 T  6 N  7 Y 5.93% 0.0001% 0.97% -    0.005% 6.7% 

5  T  6 N  7 Y  8 T 4.41% 0.12% 0.68% 0.05%     0.03% 5.72% 
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310-helix 

 
α-helix 

 
π helix 

 
1  A  3 

 
- 

 
- 

 
- 

 
2  A  4 

 
3.44% 

 
- 

 
- 

 
3  A  5 

 
3.34% 

 
- 

 
- 

 
4  A  6 

 
5.84% 

 
- 

 
- 

 
5  A  7 

 
1.19% 

 
- 

 
- 

 
6  A  8 

 
- 

 
- 

 
- 

 
1  A  4 

 
- 

 
- 

 
- 

 
2  A  5 

 
1.19% 

 
3.11% 

 
- 

 
3  A  6 

 
1.5% 

 
1.64% 

 
- 

 
4  A  7 

 
1.04% 

 
3.52% 

 
- 

 
5  A  8 

 
- 

 
- 

 
- 

 
1  A  5 

 
- 

 
- 

 
- 

 
2  A  6 

 
1.09% 

 
0.59% 

 
0.01% 

 
3  A  7 

 
0.37% 

 
0.64% 

 
0.01% 

 
4  A  8 

 
- 

 
- 

 
- 

 
1  A  6 

 
- 

 
- 

 
- 

 
2  A  7 

 
0.32% 

 
0.51% 

 
0.0002% 

 
3  A  8  

 
- 

 
- 

 
- 

 
1  A  7  

 
- 

 
- 

 
- 

 
2  A  8  

 
- 

 
- 

 
- 

 
1  A  8  

 
- 

 
- 

 
- 

 

Table III: The percentages for each type of helix for every possible combination of sequential amino acid residues. 
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According to the results presented in Table III, the most preferred type of helix is 310-

helix, followed by α-helix, while π-helix is extremely rare with low percentages. A 

comparison between the results obtained from tables II and III clearly shows a preference 

for β-turns rather than helices. This result is in agreement with our previous results obtained 

from the secondary structure analysis, which are presented in Figure 4.1. Also, it is important 

to mention that according to our calculations, the most preferred conformation for the amino 

acid sequence 5-Thr-6-Asn-7-Tyr-8-Thr is a β-turn type IV (5.72%), followed by a β-turn 

type I (4.41%), while no helical conformations were observed for this combination and the 

4-8 one. This observation agrees with the experimental conclusions, where it is stated that 

the most prominent conformation is a 5-8 β-turn rather than a 4-8 helical segment[49]. But 

unlike our calculations, the experimental results state that the most likely cyclic structure is 

a type I β-turn[49] rather than a type IV. 

 

 

4.4 Principal Component Analysis and Clustering 
 

Secondary structure analyses enabled us to recognize the basic characteristics of the 

simulation. In this part of the project, we intend to place our observations in a more 

structurally oriented framework, by identifying the most prominent peptide conformations. 

     Biomolecular processes such as molecular recognition, protein folding, and 

aggregation can be explained in terms of the molecule’s free energy 

 

ΔG(r) = − kBT[ln P(r) − ln Pmax]                                                 (4.1) 

 

where P is the probability distribution of the molecular system along some, usually 

multidimensional, coordinate r and Pmax denotes its maximum, which is subtracted to ensure 

that ΔG=0 for the lowest free energy minimum. The resulting free energy landscape is vital 

for gaining an understanding of protein folding[84]. 

Principal Component Analysis (PCA), also known as quasiharmonic analysis or 

essential dynamics method, is a way to systematically reduce the dimensionality of a 

complex system. The approach is based on the covariance matrix, which provides 

information related to the two-point correlations of the system. PCA represents a linear 

transformation that diagonalizes the covariance matrix, therefore removes the 

instantaneous linear correlations among the variables[84][85].  

Dihedral angle Principal Component Analysis (dPCA) is based on the dihedral angles 

(φn, ψn) of the peptide backbone. In order to eliminate problems arising from the circularity 

of these variables, a transformation from the space of dihedral angles to a linear metric 

coordinate space (i.e., a vector space with a well-defined distance between any two points) 

using the trigonometric functions sin φn and cos φn is essential. The dPCA method is 
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attractive because other internal coordinates such as bond lengths and bond angles usually 

do not experience changes of large amplitudes. As a result, the analysis starts with the 

relevant part of the dynamics, preventing unnecessary noise. Moreover, since dPCA is based 

on the backbone dihedral angles, it can easily distinguish between the kinetically well 

separated main conformational states of the peptide, such as the αR helical and the β 

extended conformations[84][86]. 

Molecular dynamics simulation methods produce trajectories of atomic positions 

(and optionally velocities and energies) as a function of time and demonstrate the sampling 

of a molecule's energetically accessible conformational ensemble[87]. Due to the advances in 

computer speed and algorithm efficiency, MD simulations are sampling larger amounts of 

molecular and biomolecular conformations. Being able to sift these conformations 

qualitatively and quantitatively into groups is a demanding and important task[88]. Data-

mining methods, like clustering, provide a way to group and understand the information in 

the trajectory[87].  

  Cluster analysis is a term applied to several techniques that aim to divide a set of 

objects into different groups, also called clusters so that objects within the same group have 

more similarities with each other than objects that are part of different groups. Cluster 

analysis is utilized when the dimensionality of the data prevents detailed visual examination. 

Multidimensional scaling techniques such as principal component analysis, principal 

coordinates analysis, or non-linear mapping can be used for visual examination of the data. 

Both principal component analysis and principal coordinates analysis can be utilized to 

reduce the dimensionality of the data, for instance when the number of variables surpasses 

the number of objects or when there are linear relationships among the variables. It is also 

important to note that cluster analysis can be applied to a subset of the largest principal 

components[89]. 

The free energy landscapes of the trajectory were constructed using GRCARMA and 

the dPCA method (Figures 4.2, 4.3). Initially, we considered the dihedral angles of the entire 

peptide (Figure 4.2), and afterward, we decided to limit the dPCA analysis to residues 5-8. 

Figure 4.2 and the top row of Figure 4.3 show the free energy (in kcal/mol) as a function of 

the first three principal components. High-density peaks, which are illustrated dark blue 

correspond to clusters of structures with similar principal component values, and as a result 

similar dihedral angles and backbone structures. The second row of representations in 

Figure 4.3 is a color-coding cluster representation made by the plot program and Table IV 

contains the populations of each cluster produced by this analysis. 
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Figure 4.3: Two-dimensional representations of the free energy landscapes obtained by the dPCA method taking into 
consideration the torsion angles of residues 5-8 of peptide T. Top row: ΔG plots along the first three principal 
components of the trajectory (blue corresponds to high density). Second row: Color-coding panels depicting the 
conformational clusters obtained by the dPCA analysis of residues 5-8. 

Figure 4.2: Two-dimensional representations of the free energy landscapes obtained by the dPCA method taking 
into consideration the torsion angles of the entire peptide.  
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As demonstrated above, the energy landscapes in Figure 4.2 are rugged, while in 

Figure 4.3 we can observe that there is a limited number of peaks, this is indicative of a well-

defined system with few free energy minima, that correspond to distinct conformational 

structures. The low number of prominent structures suggests that this segment of peptide T 

adopts more stable conformations, which correspond to distinct secondary structures with 

specific torsion angles and hydrogen bond patterns. These results are in agreement with the 

experimental conclusions, that residues 5-8 of peptide T adopt a stable conformation. 

The table below (Table IV) displays the populations of each cluster obtained by the 

second dPCA analysis. 

 

 

 
Cluster 

 
Frames 

(out of 5056000) 
 

 
Percentages 

 
 

 
1 

 
829017 

 
16.4% 

 
2 

 
627294 

 
12.41% 

 
3 

 
360755 

 
7.14% 

 
4 

 
456049 

 
9.02% 

 
5 

 
310782 

 
6.15% 

 
6 

 
144079 

 
2.85% 

 
7 

 
128426 

 
2.54% 

 
8 
 

 
37878 

 
0.75% 

   

Table IV: The populations of the eight clusters produced by dPCA along with the percentage of clustered structures. 

 

In total 2894280 out of 5056000 (57.24%) were included in clusters. The three main 

clusters are cluster 1 with 829017 frames out of 5056000 (16.4%), cluster 2 with 627294 

configurations out of 5056000 (12.41%), and cluster 4 with 456049 frames out of 5056000 

(9.02%). 

Having acquired the distribution of the principal components from the previous 

analysis, it is feasible to relate high-density peaks with distinct peptide conformations. 

Average structures for each cluster were calculated and in order to identify the 
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representative structures we selected the frame from the trajectory which had the lowest 

Root Mean Square Deviation (RMSD) from the corresponding average structure. RMSD is the 

most widely used quantitative measure of the similarity between two superimposed atomic 

coordinates[90]. The RMSD values are presented in Å and can be calculated using the 

following equation 

                                                 

 

where N is the number of atoms, i the current atom, 𝑟𝑥 the target structure, and 𝑟𝑦the 

reference structure[91]. The lower the RMSD value is, the more similar the two structures. 

When there are no structural differences, the RMSD value is 0.0 Å. Generally, two structures 

share sufficient similarities when the RMSD value is less than 2.0 Å. 

 Intending to visualize more precisely the structural flexibility that is present in our 

system, we followed this process not only for the single most populated motif but for the five 

most populated motifs that were closer to the average structure. Figure 4.4 shows schematic 

(cartoon) diagrams of these representative structures corresponding to the eight clusters of 

the trajectory. The color coding is blue for 310-helices, cyan for turns, and white for random 

coil.  In the center of this figure is the log density projection of the trajectory on the first two 

principal components derived from dPCA. The marked peaks (1 to 8) are in a one-to-one 

correspondence with the structural diagrams at the periphery of the diagram. The numbers 

below each schematic structure representation are the relative percentages of each cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑(𝑟𝑖

𝑥 − 𝑟𝑖
𝑦

)
2

𝑁

𝑖=1

 

 

(4.2) 
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Figure 4.4:  Clusters and their relative frequencies. The diagram in the center is the log density projection 
of the trajectory on the first two principal components. The clusters are marked with numbers 1-8. The 
structure schematics in the periphery are superpositions of the five representative structures that are closer 
to an average structure. The colour coding is blue for 310-helices, cyan for turns and white for random coil. 
In all diagrams, the N-terminus is toward the upper part, while the C-terminus toward the lower part of the 
figure. The percentages below the structures are the relative populations of the corresponding clusters. The 
structures have been placed so that the most populated clusters are presented at the top of the figure. 
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Overall, the main structural characteristics are turns and helices, as mentioned 

already in our previous analyses. Due to the increased kinetic frustration of the system, the 

representative structures differ between the clusters, while we can observe many coil 

conformations as well. The table below (Table V) presents the per residue SRIDE-derived 

secondary structure assignments of the five most populated motifs for each cluster. The 

symbols used correspond to 310-helices (G), turns (T), random coils (C), and β-bridge (B). 

 

 

 

Table V: Per residue SRIDE-derived secondary structure assignments of the five most populated motifs for each cluster. 

 

It is important to mention that the structure diagrams in Figure 4.4 are simplified 

representations and thus, do not sufficiently depict the actual amount of structural 

variability that is present in the clusters, nor the precise folding path that the peptide 

backbone follows. In order to represent more realistically the structural variability present 

in our system, we created the superposition figures presented in Figure 4.5. Figure 4.5 is an 

image from the superposition of 500 structures that belong to each cluster derived from the 

dPCA analysis. The backbone structures are shown as sticks and the color coding is cyan for 

Most 

populated 

motifs 

    

Clusters 

    

  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

1st 

 

CCCGGGCC 

 

CCCCCCCC 

 

CTTTTTTCC 

 

CCCCCCCC 

 

CCTTTTTC 

 

CCCCCCCC 

 

CCCCCCCC 

 

CCCCCCCC 

 

2nd 

 

CCTTTTTC 

 

CTTTTTCC 

 

CCCCCCCC 

 

TTTTTCCC 

 

TTTTTTTC 

 

TTTTTCCC 

 

CTTTTCCC 

 

CTTTTCCC 

 

3rd 

 

TTTTTTTC 

 

CCTTTTCC 

 

CCTTTTCC 

 

CTTTTCCC 

 

CCCGGGCC 

 

CTTTTCCC 

 

TTTTTCCC 

 

TTTTCCCC 

 

4th 

 

CCCTTTTC 

 

TTTTTTCC 

 

TTTTCCCC 

 

TTTTCCCC 

 

CTTTTTTC 

 

TTTTCCCC 

 

TTTTCCCC 

 

TTTTTCCC 

 

5th 

 

TTTGGGCC 

 

CGGGCCCC 

 

TTTTTTCC 

 

CGGGCCCC 

 

CCGGGCCC 

 

CGGGCCCC 

 

CBTTBCCC 

 

CCTTTTCC 
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C atoms, blue for N atoms, and red for O atoms. Next to each superposition figure, there is a 

WebLogo diagram specific for each cluster. The 3D models were created in VMD and the 

sequence logos were created using WebLogo. The superpositions are complex and noisy and 

as a result, it is difficult to understand the structural content that is present in the clusters. 

Nevertheless, it is clear that the C-terminus forms more compact structures than the N-

terminus.   
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Cluster 7 

Cluster 8 

Figure 4.5: Superposition of 500 structures (left) that belong to each cluster derived from the dPCA analysis. The 
color coding is cyan for C atoms, blue for N atoms and red for O atoms. WebLogo diagrams (right) of the per residue 
STRIDE-derived secondary structure assignments. 
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4.5 Extent of Sampling and Statistical Significance 
 

 According to our findings, peptide T is highly flexible, suggesting that a folding 

molecular dynamics simulation must visit a vast conformational space associated with the 

disordered state. Although we applied the adaptive tempering method, intending to increase 

the sampling competence of the simulation, it is highly unlikely to obtain a statistically 

significant sample. To ascertain whether our simulation was efficiently sampled we applied 

Good-Turing statistics. This method estimates the probability of unidentified conformations 

as a function of the RMSD from the conformations that have already been identified in the 

simulation[83]. We applied this method to our trajectory and our results are presented in the 

figure below (Figure 4.6). The black upper curve is the estimate obtained using the Cα atoms 

of all residues of the peptide and the blue curve is the estimate obtained using only residues 

5-8. 

 

 

 

 

Figure 4.6: Extent of sampling and statistical significance. The black upper curve is the estimate obtained using the Cα 
atoms of all residues of the peptide and the blue curve is the estimate obtained using only residues 5-8. 
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 We can observe that at low RMSDs, both these curves have high probability values 

and for gradually increasing RMSDs, the curves asymptotically approach low probability 

values. The results from the analysis performed using all residues, suggest that the most 

different structure we should expect to observe if we doubled the simulation time would 

differ by no more than approximately 2.0 +- 0.1 Angstrom (RMSD) from those already 

observed. For example (black curve in Figure 4.6), we would expect that on average one out 

of 25 previously unobserved structures (Punobserved = 0.04) would differ by an RMSD value of 

at least 1.8 Angstrom from the already observed structures. 

 The results from the analysis performed using only residues 5-8 (blue curve in Figure 

4.6) suggest that the most different structure we should expect to observe if we doubled the 

simulation time would differ by no more than approximately 0.5 +- 0.07 Angstrom (RMSD) 

from those already observed. It can be seen that by limiting the residue selection to the 

amino acids comprising the C-terminal part of the peptide, the curve approaches low 

probability values faster, demonstrating better sampling. These results are in agreement 

with our previous results discussed in 4.4, that residues 5-8 correspond to more stable 

peptide conformers. 

  

 

4.6 Chemical shifts 
 
 In this part of the project, we are going to make quantitative comparisons between 

the experimental results and the simulation-derived results. More specifically, we compared 

the experimentally determined chemical and secondary chemical shifts with those derived 

from the simulation via the application of the SPARTA+[80] program. 

 In organic chemistry, NMR chemical shifts have been used to recognize and define the 

covalent structure of small organic compounds for over 60 years[92][93]. Nuclear chemical 

shifts are powerful indicators of the structural types that biopolymers can adopt. The main 

goal of NMR experiments is the amplification of the resolution and sensitivity with which the 

chemical shift of a nucleus can be calculated[94]. Nowadays, it is feasible to use protein 

chemical shift data to distinguish protein secondary and super-secondary structure, to 

calculate backbone and side-chain torsion angles, to define residue-specific surface areas, to 

measure protein flexibility, to produce protein structure models, and to accurately predict 

protein structures[92]. Moreover, chemical shifts offer comprehensive information about the 

nature of hydrogen exchange dynamics, ionization and oxidation states, the ring current 

influence of aromatic residues, and hydrogen bonding interactions[94]. 

 Each of the three types of secondary structure elements in proteins (α-helices, β-

sheets, and random coils) corresponds to representative chemical shifts, for every atom in 

these 20 amino acids. The specific chemical shifts for amino acid residues in random coils or 

short unstructured polypeptides are formally known as ‘‘random coil” chemical shifts. 



46 
 

Random coil chemical shifts are possibly the most important ‘‘reference” shifts in protein 

NMR as they are crucial for the determination of secondary chemical shifts (Δδ shifts)[93]. 

Secondary shifts, also known as conformation-dependent shifts[95], are defined as the 

difference between the observed amino acid chemical shift (δobs) and the corresponding 

random coil (δrc) value: 

 

Δδ = δobs - δrc.                                                                                                       (4.3) 

 

Secondary shifts are predominantly influenced by non-covalent interactions and contain the 

most dynamic information about proteins[95][93]. 

 Protein chemical shifts have been found to follow certain nucleus-specific and 

residue-specific standards. More precisely, 1Hα chemical shifts tend to range from 3.5 to 5.5 

ppm, while 1HN chemical shifts range from 6.5 to 10.0 ppm. Except for glycine, when any of 

the remaining 19 amino acid residues are in helices, their 1Hα shifts are shifted upfield 

concerning their random coil values by an average of 0.30 ppm., while in β-sheets the 1Hα 

chemical shift values are shifted downfield by an average of 0.46 ppm. In terms of the 1HN 

shifts, these seem to be much more sensitive to their environment than 1Hα shifts[93]. 

 When performing an NMR experiment, it is important to consider the effects of the 

solvent of resonant nuclei on their resonance spectra[96]. Additionally, the understanding of 

medium effects may provide new tools for the determination of molecular structure. Solvent 

effects are described as the result of intermolecular forces. The significance of solvent effects 

to NMR derives from the relatively high concentrations needed, in comparison with other 

spectroscopic methods[97]. Regarding proton NMR, the majority of H chemical shifts are of 

protons bound to carbon atoms. Protons bound to other atoms tend to exhibit chemical shift 

alterations with solvent resulting from hydrogen bonding interactions[98]. The dependence 

of H chemical shifts on solvent has been thoroughly studied since the beginning of high-

resolution proton NMR[99]. Buckingham et al.[100] described four interactions responsible for 

solvent effects, namely: hydrogen bonding, the anisotropy of the solvent molecules, polar 

and van der Waals effects  

 

                                                                        Δδ = δΗΒ + δΑ + δΕ +δW                                                  (4.4) 

 

The impact of each one of these contributions can vary significantly. A major interaction with 

solvent effects of up to 5 ppm occurs when hydrogen bonds form with protic solutes[99]. Some 

molecules exhibit anisotropy in their molecular susceptibilities because they behave as 

magnetic dipoles when subject to an external magnetic field and produce secondary fields at 

other molecules[96]. Solvent effects caused by the electric field of the polar solute molecule, 

have been analyzed using variations of the Onsager reaction field model. Finally, van der 

Waals forces are significant in gas-to-solvent shifts even for non-polar molecules in non-

polar solvents[99]. 
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 Intending to obtain the experimental secondary chemical shifts, we used the 

experimental chemical shifts from the Picone et al. publication[49] and the 1H random coil 

chemical shifts for peptides of sequence GGXAGG (where X is any of the 20 naturally 

occurring amino acids or the modified amino acid 4-hydroxyproline) measured in DMSO 

from the Tremblay and Banks publication[101]. For the calculation of the simulation-derived 

secondary chemical shifts, we first calculated the simulation-derived chemical shifts using 

the programs CARMA[71] and SPARTA+[80] through a perl script (Appendix, A3), taking into 

account all 5056000 frames of our trajectory and the random coil chemical shifts from the 

Tremblay and Banks publication[101]. This perl script produces pdb files for each frame of the 

trajectory, the pdb files are read by SPARTA+ and then the chemical shifts, as well as the 

mean and the standard deviation values are calculated. Our results are presented in the 

tables below (Table VI and Table VII). SPARTA+ is a chemical shift prediction program that 

is based on artificial neural networking. The neural network is well-trained to create 

quantitative relations between chemical shifts and protein structures, including backbone 

and side-chain conformation, H-bonding, electric fields, and ring-current effects[80]. To our 

knowledge, there is no tested protein structure prediction package that accurately estimates 

H chemical shifts in organic solvents. Ideally, we would like to use a program that could be 

extended to provide a satisfactory prediction of the chemical shifts in DMSO.  

 Table VI shows the experimental and the simulation derived 1Hα and HN chemical 

shifts, along with the “reference”, or random coil chemical shifts, and the standard deviation 

value (σ), which indicates the amount of dispersion of the values from the mean of the set of 

values. Table VII shows the experimental and simulation-derived 1Hα and HN secondary 

chemical shifts, which are denoted as Δδ experimental and Δδ simulation, respectively. To 

allow better visualization of our data, we used the R statistical package and created the bar 

charts shown in Figures 4.7a-4.7d, where it is easier to make residue-by-residue 

comparisons between the experimentally determined and simulation-derived secondary 

chemical shifts. Figure 4.7a shows the experimental HA secondary shifts and Figure 4.7b 

the HA secondary chemical shifts, which were derived from the molecular dynamics 

simulation. Figures 4.7c and 4.7d show the experimentally determined and the simulation-

derived HN secondary chemical shifts, respectively. The source code of the R scripts can be 

found in the Appendix (Appendix, Script 1, Script 2, Script 3, Script 4). 
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Table VI: Experimental and simulation-derived HA and HN chemical shifts, along with the random coil and standard 

deviation values. 

 

 

Residue 
number 

 
Residue 

 
Atom 

 

Experimental 
chemical shift 

 

 

Simulation 
chemical 

shift 

 

Random coil 
chemical 

shift 

 

σ 

 
1 

 
A 

 
ΗΑ 

 
3.81 

 
4.3184 

 
4.47 

 
0.0564 

 
2 

 
S 

 
HA 

 
4.42 

 
4.4790 

 
4.50 

 
0.2247 

 
2 

 
S 

 
HN 

 
8.69 

 
8.4032 

 
8.37 

 
0.2750 

 
3 

 
T 

 
HA 

 
4.31 

 
4.4231 

 
4.41 

 
0.1811 

 
3 

 
T 

 
HN 

 
7.90 

 
8.1580 

 
8.00 

 
0.3477 

 
4 

 
T 

 
HA 

 
4.30 

 
4.3827 

 
4.41 

 
0.2593 

 
4 

 
T 

 
HN 

 
7.85 

 
8.1835 

 
8.00 

 
0.3099 

 
5 

 
T 

 
HA 

 
4.25 

 
4.4052 

 
4.41 

 
0.1881 

 
5 

 
T 

 
HN 

 
7.69 

 
8.1068 

 
8.00 

 
0.3016 

 
6 

 
N 

 
HA 

 
4.51 

 
4.7351 

 
4.74 

 
0.1830 

 
6 

 
N 

 
HN 

 
8.02 

 
8.2170 

 
8.40 

 
0.3514 

 
7 

 
Y 

 
HA 

 
4.37 

 
4.6196 

 
4.60 

 
0.1891 

 
7 

 
Y 

 
HN 

 
8.00 

 
8.1916 

 
8.38 

 
0.4360 

 
8 

 
T 

 
HA 

 
3.96 

 
4.3220 

 
4.41 

 
0.1010 

 
8 

 
T 

 
HN 

 
7.54 

 
8.1998 

 
8.00 

 
0.3078 
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Residue number 

 

Residue 

 

Atom 

 

Δδ 
experimental 

 

Δδ 
simulation 

 
1 

 
Α 

 
HA 

 
-0.66 

 
-0.1516 

 
2 

 
S 

 
HA 

 
-0.08 

 
-0.0210 

 
2 

 
S 

 
HN 

 
0.32 

 
0.0332 

 
3 

 
T 

 
HA 

 
-0.1 

 
0.0131 

 
3 

 
T 

 
HN 

 
-0.1 

 
0.1580 

 
4 

 
T 

 
HA 

 
-0.11 

 
-0.0273 

 
4 

 
T 

 
HN 

 
-0.15 

 
0.1835 

 
5 

 
T 

 
HA 

 
-0.16 

 
-0.0048 

 
5 

 
T 

 
HN 

 
-0.31 

 
0.1068 

 
6 

 
N 

 
HA 

 
-0.23 

 
-0.0049 

 
6 

 
N 

 
HN 

 
-0.38 

 
-0.1830 

 
7 

 
Y 

 
HA 

 
-0.23 

 
0.0196 

 
7 

 
Y 

 
HN 

 
-0.38 

 
-0.1884 

 
8 

 
T 

 
HA 

 
-0.45 

 
-0.0880 

 
8 
 

 
T 

 
HN 

 
-0.46 

 
0.1998 

 

Table VII: Experimental and simulation-derived HA and HN secondary chemical shifts. 
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Figure 4.7: Per-residue comparisons between the experimental and simulation-derived secondary shifts. (a) Experimental 
HA secondary shifts. (b) Simulation-derived HA secondary shifts. (c) Experimental HN secondary shifts. (d) Simulation-
derived HN secondary shifts. 

Experiment Simulation 

a b 

c d 
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At this point, in order to be able to evaluate our results and make quantitative 

comparisons between the experimentally determined and the simulation-derived chemical 

shifts, we used two statistical analyses: the reduced x2 and the linear correlation coefficient. 

Both these analyses are used to define the relationship between two sets of data.   

The reduced x2 value can be calculated using the following formula:    

 

                                                    𝑥𝑟ⅇ𝑑
2 =

  𝑥2

𝑣
=

1

𝑣
∑

(𝑂−𝐸)2

𝜎2
                                           (4.5) 

 

where Σ is the sum, O is the observed value which corresponds to the simulation derived 

chemical and secondary chemical shifts, E is the expected value which corresponds to the 

experimentally determined chemical and secondary chemical shifts, σ2 is the error variance 

of the observed values and 𝑣 are the degrees of freedom. In general when: 
 

• 𝑥𝑟ⅇ𝑑
2  = 1, then the observed and expected values are in agreement with the 

distribution and there is a high degree of correlation. 
 

• 𝑥𝑟ⅇ𝑑
2  > 1, then either we do not have a complete correlation between the data, or the 

distribution values have been underrated.   
 

• 𝑥𝑟ⅇ𝑑
2  < 1, then the model is “over-fitting” the data: either the model is improperly 

fitting noise, or the error variance has been overestimated[102]. 
 

 The correlation coefficient r, or Pearson product correlation coefficient values can be 

calculated using the following formula: 

 

                                        𝑟 = 𝑟𝑥𝑦 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

                                                   (4.6) 

 

where Σ is the sum, 𝑥𝑖  is the value of the first set of data for position 𝑖, 𝑦𝑖 is the value of the 

second set of data for position 𝑖, �̅� is the mean of x values and �̅� the mean of y values. The 

correlation coefficient is used when we want to identify whether the variations in the 

observed values of one quantity y are correlated with the variations in the measured values 

of another quantity x. The value of r is such that -1 ≤ r ≤ 1. The positive and negative values 

correspond to positive and negative linear correlations, respectively. In general when: 
 

➢ r ≅ +1, then x and y have a strong positive linear correlation, an r value of exactly +1 

indicates a perfect positive fit. 
 

➢ r ≅ -1, then x and y have a strong negative linear correlation, an r value of exactly -1 

indicates a perfect negative fit. 
 

➢ r ≅ 0, then there is a random, nonlinear relationship between the two variables. 
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The reduced x2 and correlation coefficient values were calculated using two perl scripts 

(Appendix, Script 5, Script 6). We performed these two statical analyses for all secondary 

chemical shifts, for HA secondary shifts, HN secondary shifts, HA chemical shifts, and HN 

chemical shifts. Our results are presented in the table below (Table VIII). 

 
 

 

Table VIII: Reduced x2 and correlation coefficient values. 

 

 

 As mentioned previously, protein chemical shifts differ significantly depending on the 

solvent in which they are measured[93], since there was not a way to incorporate the effect of 

DMSO on the prediction of chemical shifts, our calculation may present certain limitations. 

According to the results obtained, it can be seen that the reduced x2 values for HA and ΔδΗΑ 

chemical shifts are significantly higher as opposed to HN and ΔδHN shifts, due to the 

remarkably lower σ values for the HA chemical shifts compared to the σ values for the ΗΝ 

chemical shifts. Therefore, the dispersion values may have been underrated. This seems to 

be particularly true for the σ value of the HA chemical shift of residue 1, which is extremely 

lower relative to the other σ values. 

 The values of the linear correlation coefficient for the HA and HN chemical shifts were 

found to be 0.7798 and 0.8765 respectively, verifying a reasonable agreement between the 

experimental and the simulation-derived data. In Figure 4.7 it is clearly indicated that the 

experimental and simulation-derived HA secondary chemical shifts are quite similar. This is 

especially true for residues 2, 3, 4, for which, as it can be seen in Table VII, the experimental 

values are: -0.08, -0.1 and -0.11 and the simulation-derived values are: -0.021, 0.0131, and -

0.0273. While for the ΔδΗΑ values, there are certain similarities present between the 

simulation and the experiment, the ΔδΗΝ experimental and simulation-derived values differ 

considerably. These differentiations can also be confirmed by the linear correlation 

coefficient value (Table VIII) of 0.1803, whereas for the ΔδΗΑ chemical shifts, the linear 

correlation coefficient has a value of 0.8892. The low correlation coefficient value for the 

ΔδΗΝ chemical shifts does not indicate a random relationship between the two variables, 

but rather, it is the consequence of the greater differences between the values of the 

simulation-derived HN chemical shifts and the random coil HN chemical shifts, compared to 

the differences between the simulation-derived HA chemical shifts and the random coil HA 

chemical shifts. 

 Δδ 
 

ΗΑ ΗΝ ΔδΗΑ ΔδΗΝ 

 
x2 

 
7.7434 

 
14.0855 

 
1.6348 

 
14.0855 

 
1.6348 

 
 r 

 
0.3428 

 

 
0.7798 

 
0.8765 

 
0.8892 

 
0.1803 
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5. Conclusions and Discussion 

 

The prime objective of this project was the evaluation of the validity of Molecular 

Dynamics simulations to predict the structure, folding process, and dynamics of peptide T, 

in comparison with experimental approaches, and more specifically, NMR spectroscopy. We 

used physics-based methods and aimed to compare our results with the results from the 

NMR experiment that Picone et. al. had conducted[49].  

The synthetic octapeptide fragment with the sequence: ASTTTNYT, is known as 

peptide T due to its high threonine content and it was proven to function as a viral entry 

inhibitor. Peptide T is the fragment corresponding to the region 185-192 of the gp120 HIV 

coat protein[38][39][40]. Picone et al. studied peptide T as a zwitterion in DMSO solution by 

means of NMR spectroscopy at 500 MHz. Their results suggested that a type I β-turn 

including the four C-terminal residues, T5, N6, Y7, and T8 was the most prominent structure. 

However, they also noted that this conformation was not the only one present in solution 

and seemed to be the only one detectable due to the non-linear dependence of NOE on 

interatomic distances[49]. 

Secondary structure analysis using the programs STRIDE[74] and Weblogo[78] implied 

that peptide T is highly flexible and that it comprises a dynamic system. The majority of 

residues were assigned to turn or coil states, while assignments to helical structures were 

very rare. Both WebLogo diagrams indicated that the first and last residues are quite flexible 

and correspond to coil states. Residues 3-5 tend to form mostly turns, while some minor 

occurrences of coil, 310-helical, and even α-helical structures were also identified. The above-

mentioned main structural characteristics were also observed by Picone and her 

colleagues[49], but unlike their findings, our results suggested a significant degree of 

flexibility in the system.  

The structural analysis of turns and helices performed using the promotif[75] program 

helped us gain a more detailed view of the specific types of turns and helices that peptide T 

could adopt. According to our results, the most preferred β-turn types were types I and IV, 

while β-turns type II, VIII, I’ and II’ were not so frequent.  In more detail, the most prominent 

β-turn type for the amino acid sequences: 1-Ala-2-Ser-3-Thr-4-Thr and 2-Ser-3-Thr-4-Thr-

5-Thr was a type I β-turn, while the second most preferred β-turn type was type IV. For the 

sequences 4-Thr-5-Thr-6-Asn-7-Tyr and 5-Thr-6-Asn-7-Tyr-8-Thr, the most preferred β-

turn type was type IV, followed by type I. Regarding the helices, the most preferred type of 

helix was 310-helix, followed by α-helix, while π-helix was extremely rare. Overall, our 

calculations clearly showed a preference for β-turns rather than helices. Also, according to 

our calculations, the most preferred conformation for the amino acid sequence 5-Thr-6-Asn-

7-Tyr-8-Thr was a β-turn type IV, followed by a β-turn type I, while no helical conformations 

were observed for this combination and the 4-8 one. This observation is in agreement with 

the experimental conclusions, where it is stated that the most prominent conformation is a 

5-8 β-turn rather than a 4-8 helical segment[49]. But unlike our findings, the experimental 

results state that the most likely cyclic structure is a type I β-turn rather than a type IV. 
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The two dPCA analyses suggested that the 5-8 amino acid residue segment of peptide 

T adopts more stable conformations, which correspond to distinct secondary structures with 

specific torsion angles and hydrogen bond patterns. These results are in agreement with the 

experimental conclusions. The association of high-density peaks with distinct peptide 

conformers demonstrated once again that the main structural characteristics were turns and 

helices. Due to the increased kinetic frustration of the system, the representative structures 

differed between the clusters, while many coil conformations were apparent as well. In 

terms of the superposition diagrams, these were complex and noisy and as a result, it was 

difficult to understand the structural content that was present in the clusters. Nevertheless, 

it was clear that the C-terminus tended to adopt more compact structures compared to the 

N-terminus.  

To ascertain whether our simulation was efficiently sampled we could have applied 

Good-Turing statistics[83]. We applied this method using the Cα atoms of all residues of the 

peptide and then we limited the residue selection to residues 5-8. Our results clearly indicate 

that the structural variability of this part of the peptide has been sufficiently sampled, 

confirming that the C-terminal part of the peptide corresponds to more stable 

conformations. 

In the last part of the project, we made quantitative comparisons between the 

experimental results and the simulation-derived results. More specifically, we compared the 

experimentally determined chemical and secondary chemical shifts with those derived from 

the simulation. The values of the linear correlation coefficient for the HA and HN chemical 

shifts were close to 1, verifying a reasonable agreement between the experimental and the 

simulation-derived data. 

Overall, the MD simulation managed to predict with sufficient accuracy the structural 

characteristics of peptide T, as have been identified in the experiment. Protein chemical 

shifts differ significantly depending on the solvent in which they are measured[93], since there 

was not a way to incorporate the effect of DMSO on the prediction of chemical shifts, our 

calculation may present certain limitations. Moreover, conformational studies are more 

accurate when NOEs between pairs of α-CH and NH protons of adjacent residues are also 

identified[49]. The calculation of NOEs can detect the proximity of pairs of atoms and the 

information that they provide is often considered more specific than the measurement of 

chemical shift values[19]. In our project, it was not feasible to make quantitative comparisons 

of the simulation-derived and the experimentally-determined NOEs, due to the lack of 

experimental numerical values of NOEs. Our findings could be further supported when these 

values become available.  
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Appendix 
 

A1: Energy minimization and heating up script (heat.namd) 

 
# 

# Input files 

# 

amber                   on 

readexclusions          yes 

parmfile                Tpept.prmtop 

coordinates             Tpept.pdb 

 

# 

# Output files & writing frequency for DCD 

# and restart files 

# 

outputname              output/heat_out 

binaryoutput            off 

restartname             output/restart 

restartfreq             1000 

binaryrestart           yes 

dcdFile                 output/heat_out.dcd 

dcdFreq                 400 

 

# 

# Frequencies for logs and the xst file 

# 

outputEnergies          400 

outputTiming           1600 

xstFreq                 400 

 

# 

# Timestep & friends 

# 

timestep                2.0 

stepsPerCycle           20 

nonBondedFreq           1 

fullElectFrequency      2 

 
# 

# Simulation space partitioning 

# 

switching               on 

switchDist              7 

cutoff                  8 

pairlistdist            9 

 

# 

# Basic dynamics 

# 
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temperature             0 

COMmotion               no 

dielectric              1.0 

exclude                 scaled1-4 

1-4scaling              0.833333 

rigidbonds              all 

 

# 

# Particle Mesh Ewald parameters.  

# 

Pme                     on 

PmeGridsizeX            32                      # <===== CHANGE ME 

PmeGridsizeY            32                      # <===== CHANGE ME 

PmeGridsizeZ            32                      # <===== CHANGE ME 

 

 

# 

# Periodic boundary things 

# 

wrapWater               on 

wrapNearest             on 

wrapAll                 on 

 

 

cellBasisVector1        32.00    0.00    0.00   # <===== CHANGE ME 

cellBasisVector2         0.00   32.00    0.00   # <===== CHANGE ME 

cellBasisVector3         0.00    0.00   32.00   # <===== CHANGE ME 

cellOrigin               0.00    0.00    0.00   # <===== CHANGE ME 

 

# 

# Langevin dynamics parameters 

# 

langevin                on 

langevinDamping         10 

langevinTemp            320                     # <===== Check me 

langevinHydrogen        off 

 

langevinPiston          on 

langevinPistonTarget    1.01325 

langevinPistonPeriod    200 

langevinPistonDecay     100 

langevinPistonTemp      320                     # <===== Check me 

 

useGroupPressure        yes 

 

 

 

# 

# run one step to get into scripting mode 

# 

minimize                0 
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langevinPiston          off 

 

# 

# minimize nonbackbone atoms 

# 

minimize                2000                     ;# <===== CHANGE ME 

output                  output/min_fix 

 

# 

# heat with CAs restrained 

# 

set temp 20; 

while { $temp < 321 } {                         ;# <===== Check me 

langevinTemp            $temp 

run                     1000                     ;# <===== CHANGE ME 

output                  output/heat_ca 

set temp [expr $temp + 20] 

} 

 

# 

# equilibrate volume with CAs restrained 

# 

langevinPiston          on 

run                     500000                     ;# <===== CHANGE ME 

output                  output/equil_ca 
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A2: Equilibration script (equi.namd) 
 

# 

# Input files 

# 

amber                   on 

readexclusions          yes 

parmfile                Tpept.prmtop 

coordinates             heat_out.coor 

bincoordinates          restart.coor 

binvelocities           restart.vel 

extendedSystem          restart.xsc 

 

# 

# Adaptive ... 

# 

adaptTempMD             on 

adaptTempTmin           280 

adaptTempTmax           380 

adaptTempBins           1000 

adaptTempRestartFile    output/restart.tempering 

adaptTempRestartFreq    100000 

adaptTempLangevin       on 

adaptTempRescaling      off 

adaptTempOutFreq        400 

# adaptTempDt             0.0000500 

adaptTempCgamma         0 

 

 

# 

# Output files & writing frequency for DCD 

# and restart files 

# 

outputname              output/equi_out 

binaryoutput            off 

restartname             output/restart 

restartfreq             100000 

binaryrestart           yes 

dcdFile                 output/equi_out.dcd 

dcdFreq                 400 

DCDunitcell             yes 

 

 

# 

# Frequencies for logs and the xst file 

# 

outputEnergies          400 

outputTiming            1600 

xstFreq                 400 

 

# 
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# Timestep & friends 

# 

timestep                2.5 

stepsPerCycle           20 

nonBondedFreq           1 

fullElectFrequency      2 

 

# 

# Simulation space partitioning 

# 

switching               on 

switchDist              7 

cutoff                  8 

pairlistdist            9 

twoAwayX                yes 

margin              1.0 

 

# 

# Basic dynamics 

# 

COMmotion               no 

dielectric              1.0 

exclude                 scaled1-4 

1-4scaling              0.833333 

rigidbonds              all 

 

# 

# Particle Mesh Ewald parameters. 

# 

Pme                     on 

PmeGridsizeX            32                      # <===== CHANGE ME 

PmeGridsizeY            32                      # <===== CHANGE ME 

PmeGridsizeZ            32                      # <===== CHANGE ME 

 

usePMECUDA            no 

 

 

 

# 

# Periodic boundary things 

# 

wrapWater               on 

wrapNearest             on 

wrapAll                 on 

 

 

 

# 

# Langevin dynamics parameters 

# 

langevin                on 
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langevinDamping         1 

langevinTemp            320                     # <===== Check me 

langevinHydrogen        off 

 

langevinPiston          on 

langevinPistonTarget    1.01325 

langevinPistonPeriod    400 

langevinPistonDecay     200 

langevinPistonTemp      320                     # <===== Check me 

 

useGroupPressure        yes 

 

firsttimestep           522500000 

run                     500000000              ;# <===== CHANGE ME 
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A3: calc_shifts.pl 

 
#!/usr/bin/perl -w 

 

(@ARGV == 2) or die "Usage: calc_shifts <dcd> <psf>\n"; 

 

# 

# How many shifts we will be collecting ? 

# 

 

(`carmanox -atmid ALLID -pdb -first 1 -last 1 $ARGV[0] $ARGV[1]` eq "" ) or die "Carma 

made a boo-boo. Too bad ...\n"; 

`sparta+ -in $ARGV[0].*.pdb >& /dev/null`; 

`/bin/rm -rf $ARGV[0].*.pdb $ARGV[1].*.pdb`; 

 

open ( IN, "pred.tab" ) or die "Can not open pred.tab. Usage: calc_shifts <dcd> <psf>\n"; 

while ( $line = <IN> ) 

  { 

    if ( $line =~ /^FORMAT/ ) 

      { 

        last; 

      } 

  } 

 

$line = <IN>; 

$tot = 0; 

while ( $line = <IN> ) 

  { 

    $ids[ $tot ] = substr( $line, 0, 14 ); 

    $tot++; 

  } 

 

close( IN ); 

 

`/bin/rm -rf *.tab`; 

 

if ( $tot < 1 ) 

  { 

    print "Too few atoms for calculating shifts. Something is wrong. Bye.\n"; 

    exit; 

  } 

 

 

print "Will be collecting data for $tot atoms. Starting ...\n"; 

 

# 

# Will do it in sets of 800 structures ... 

# 

 

`mkdir tmp1`; 
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`mkdir tmp2`; 

`mkdir tmp3`; 

`mkdir tmp4`; 

`mkdir tmp5`; 

`mkdir tmp6`; 

`mkdir tmp7`; 

`mkdir tmp8`; 

 

$first = 1; 

 

print "Now processing set starting at frame          "; 

while( 1 ) 

{ 

 

%8d", $first ); 

 

$last = $first + 99; 

`cd tmp1 ; carmanox -atmid ALLID -pdb -first $first -last $last ../$ARGV[0] ../$ARGV[1]`; 

`cd tmp1 ; sparta+ -in $ARGV[0].*.pdb >& /dev/null &`; 

 

$first += 100; 

$last = $first + 99; 

`cd tmp2 ; carmanox -atmid ALLID -pdb -first $first -last $last ../$ARGV[0] ../$ARGV[1]`; 

`cd tmp2 ; sparta+ -in $ARGV[0].*.pdb >& /dev/null &`; 

 

$first += 100; 

$last = $first + 99; 

`cd tmp3 ; carmanox -atmid ALLID -pdb -first $first -last $last ../$ARGV[0] ../$ARGV[1]`; 

`cd tmp3 ; sparta+ -in $ARGV[0].*.pdb >& /dev/null &`; 

 

$first += 100; 

$last = $first + 99; 

`cd tmp4 ; carmanox -atmid ALLID -pdb -first $first -last $last ../$ARGV[0] ../$ARGV[1]`; 

`cd tmp4 ; sparta+ -in $ARGV[0].*.pdb >& /dev/null &`; 

 

$first += 100; 

$last = $first + 99; 

`cd tmp5 ; carmanox -atmid ALLID -pdb -first $first -last $last ../$ARGV[0] ../$ARGV[1]`; 

`cd tmp5 ; sparta+ -in $ARGV[0].*.pdb >& /dev/null &`; 

 

$first += 100; 

$last = $first + 99; 

`cd tmp6 ; carmanox -atmid ALLID -pdb -first $first -last $last ../$ARGV[0] ../$ARGV[1]`; 

`cd tmp6 ; sparta+ -in $ARGV[0].*.pdb >& /dev/null &`; 

 

$first += 100; 

$last = $first + 99; 

`cd tmp7 ; carmanox -atmid ALLID -pdb -first $first -last $last ../$ARGV[0] ../$ARGV[1]`; 

`cd tmp7 ; sparta+ -in $ARGV[0].*.pdb >& /dev/null &`; 

 

$first += 100; 
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$last = $first + 99; 

`cd tmp8 ; carmanox -atmid ALLID -pdb -first $first -last $last ../$ARGV[0] ../$ARGV[1]`; 

`cd tmp8 ; sparta+ -in $ARGV[0].*.pdb >& /dev/null &`; 

 

 

$first += 100; 

 

$procs = `ps -aef | grep 'sparta+' | wc -l`; 

while( $procs > 2 ) 

  { 

    sleep(1); 

    $procs = `ps -aef | grep 'sparta+' | wc -l`; 

  } 

 

`cd tmp1 ; /bin/rm -rf $ARGV[0].*.pdb $ARGV[1].*.pdb *_struct.tab ; mv * ../ >& 

/dev/null`; 

`cd tmp2 ; /bin/rm -rf $ARGV[0].*.pdb $ARGV[1].*.pdb *_struct.tab ; mv * ../ >& 

/dev/null`; 

`cd tmp3 ; /bin/rm -rf $ARGV[0].*.pdb $ARGV[1].*.pdb *_struct.tab ; mv * ../ >& 

/dev/null`; 

`cd tmp4 ; /bin/rm -rf $ARGV[0].*.pdb $ARGV[1].*.pdb *_struct.tab ; mv * ../ >& 

/dev/null`; 

`cd tmp5 ; /bin/rm -rf $ARGV[0].*.pdb $ARGV[1].*.pdb *_struct.tab ; mv * ../ >& 

/dev/null`; 

`cd tmp6 ; /bin/rm -rf $ARGV[0].*.pdb $ARGV[1].*.pdb *_struct.tab ; mv * ../ >& 

/dev/null`; 

`cd tmp7 ; /bin/rm -rf $ARGV[0].*.pdb $ARGV[1].*.pdb *_struct.tab ; mv * ../ >& 

/dev/null`; 

`cd tmp8 ; /bin/rm -rf $ARGV[0].*.pdb $ARGV[1].*.pdb *_struct.tab ; mv * ../ >& 

/dev/null`; 

 

 

@files = glob("$ARGV[0]*.tab"); 

 

if ( @files == 0 ) 

  { 

    last; 

  } 

 

foreach $file ( @files ) 

{ 

 

`tail -$tot $file | awk '{printf "%8.3f ", \$5}' >> SHIFTS`; 

`echo >> SHIFTS`; 

} 

 

`/bin/rm -rf $ARGV[0]*.tab`; 

 

 

} 
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`rmdir tmp1 tmp2 tmp3 tmp4 tmp5 tmp6 tmp7 tmp8`; 

print "\n\n"; 

 

# 

# Calculate means + sigmas 

# 

open ( IN, "SHIFTS" ) or die "Can not open SHIFTS ??? How did this happen ???\n"; 

 

for ( $i=0 ; $i < $tot ; $i++ ) 

{ 

 $mean= 0.0; 

 $nof_lines = 0; 

 $std = 0.0; 

 while ( $line = <IN> ) 

   { 

     @data = split( ' ', $line ); 

      

     $nof_lines++; 

     $delta = $data[ $i ] - $mean; 

     $mean += $delta / $nof_lines; 

     $std += $delta * ($data[ $i ] - $mean); 

   } 

 

        printf "%s    %8.4f %8.4f\n", $ids[ $i ], $mean, sqrt( $std / ($nof_lines -1)); 

        seek( IN, 0, 0 );         

} 

 

close( IN ); 

     

print "\nAll done.\n\n"; 
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Script 1: ΔδΗΑ_experimental.R 

 
HAexperimental <- c(-0.66, -0.08, -0.1, -0.11, -0.16, -0.23, -0.45) 

residues <- c("A", "S" "T" "T" "T" "N"  "Y"  "T") 

png (file= "barchart1.png") 

barplot (HAexperimental, names.arg= residues, xlab= "Residues", ylab= "ΔδΗΑ", ylim= c(-

1,+1), border= "black") 

dev.off() 

 

 

Script 2: ΔδΗΑ_simulation.R 

 
HAsimulation <- c(-0.1516, -0.0210, 0.0131, -0.0273, -0.0049, 0.0196, -0.0880) 

residues <- c("A", "S" "T" "T" "T" "N"  "Y"  "T") 

png (file= "barchart2.png") 

barplot (HAsimulation, names.arg= residues, xlab= "Residues", ylab= "ΔδΗΑ", ylim= c(-

1,+1), border= "black") 

dev.off() 

 

 

Script 3: ΔδΗN_experimental.R 

 
HNexperimental <- c(0.32, -0.1, -0.15, -0.31, -0.38, -0.38, -0.46) 

residues <- c("S" "T" "T" "T" "N"  "Y"  "T") 

png (file= "barchart3.png") 

barplot (HNexperimental, names.arg= residues, xlab= "Residues", ylab= "ΔδΗN", ylim= c(-

1,+1), border= "black") 

dev.off() 

 

 

Script 4: ΔδΗN_simulation.R 

 
HNsimulation <- c(0.0332, 0.1580, 0.1835, 0.1068, -0.1830, -0.1884, 0.1998) 

residues <- c("S" "T" "T" "T" "N"  "Y"  "T") 

png (file= "barchart4.png") 

barplot (HNsimulation, names.arg= residues, xlab= "Residues", ylab= "ΔδΗN", ylim= c(-

1,+1), border= "black") 

dev.off() 
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Script 5: calc_chi-square.pl 

 
!/usr/bin/perl -w 

open ( IN , "$ARGV[0]") or die "Usage: calc_chi-square <input_file>\n"; 

$sum = 0; 

$num_of_lines= 0; 

while ( $line = <IN> ) 

{ 

 @data = split (' ', $line); 

   $col_num = @data; 

    if ( $col_num == 3 ) 

     { 

       $num_of_lines++; 

       $subtract = $data[0] - $data[2]; 

       $val = $subtract * $subtract / ($data[1] * $data[1]); 

       $sum += $val; 

     } 

    else 

     { 

       die "Not 3 columns in input file\n"; 

     } 

} 

 

close (IN); 

print"The reduced chi-square value is\t", $sum / ($num_of_lines - 1), "\n"; 

 

 

Script 6: calc_correlation-coefficient.pl 

 
#!/usr/bin/perl -w 

(@ARGV == 2) or die "Usage: calc_corr <file1> <file2>\n"; 

open (IN_1, "$ARGV[0]") or die "Cannot open <file1>\n"; 

open (IN_2, "$ARGV[1]") or die "Cannot open <file2>\n"; 

 

@file1 = <IN_1>; 

@file2 = <IN_2>; 

 

close (IN_1); 

close (IN_2); 

 

$N = @file1; 

$sum1 = 0; 

$sum2 = 0; 

 

for ( $i = 0; $i < $N; $i++) 

{ 

 $sum1 += $file1[$i]; 

 $sum2 += $file2[$i]; 

} 
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$mean1 = $sum1 / $N; 

$mean2 = $sum2 / $N; 

 

$sum_xy = 0; 

$sum_x_square = 0; 

$sum_y_square = 0; 

for ( $i = 0; $i < $N; $i++) 

{ 

  $x = $file1[$i] - $mean1; 

  $y = $file2[$i] - $mean2; 

  $xy = $x * $y; 

  $sum_xy += $xy; 

  $sum_x_square += $x * $x; 

  $sum_y_square += $y * $y; 

} 

print "corr =\t", $sum_xy / sqrt($sum_x_square * $sum_y_square), "\n"; 

 

 

 

 


