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ABSTRACT: Quantifying convergence and sufficient sam-
pling of macromolecular molecular dynamics simulations is
more often than not a source of controversy (and of various ad
hoc solutions) in the field. Clearly, the only reasonable,
consistent, and satisfying way to infer convergence (or
otherwise) of a molecular dynamics trajectory must be based
on probability theory. Ideally, the question we would wish to
answer is the following: “What is the probability that a
molecular configuration important for the analysis in hand has
not yet been observed ?”. Here we propose a method for
answering a variant of this question by using the Good-Turing formalism for frequency estimation of unobserved species in a
sample. Although several approaches may be followed in order to deal with the problem of discretizing the configurational space,
for this work we use the classical RMSD matrix as a means to answering the following question: “What is the probability that a
molecular configuration with an RMSD (from all other already observed configurations) higher than a given threshold has not
actually been observed ?”. We apply the proposed method to several different trajectories and show that the procedure appears to
be both computationally stable and internally consistent. A free, open-source program implementing these ideas is immediately
available for download via public repositories.

1. INTRODUCTION
Even a cursory examination of recent molecular dynamics
literature shows that the treatment of convergence (or sufficient
sampling) of the corresponding simulations can follow either of
two distinct paths. The first is to ignore the subject altogether
in the hope that the quoted simulation times will appear to be
so long that no further evidence of convergence will be
required. The second is to select one (or more) of the various
methods currently available such as eigenspace overlap or
cosine content (see the work of Grossfield and Zuckerman1 for
an excellent review) and apply them in the hope that the
outcome (for example, an eigenspace overlap of 0.85 between
two independent halves of the trajectory using the top three
principal components) will appear to be so overwhelmingly
convincing that no further quantification of convergence will be
necessary. Although several of these methods can and do serve
their purpose, i.e. they can meaningfully quantify the extent of
sampling of the corresponding trajectories, we do feel that a
proper probabilistic measure of convergence is the only
consistent and satisfying method of inference for something
as inherently probabilistic as is the (necessarily limited)
sampling of a molecular dynamics trajectory.
However, stating that a probabilistic treatment is the only

natural solution to a problem does little to aid its solution.
Naturally, the first question that must be answered is how to
define the problem of convergence in probabilistic terms. We
are convinced that the only reasonable answer to this question
must be pragmatic, i.e. directly related to the sought analysis of
the simulations’ data. We believe that what we should like to
calculate is the probability that a molecular configuration

important for a given analysis has not yet been observed.
Defining, however, what is “important for the analysis in hand”
is more difficult. For this work, we have decided to quantify
structural distance (and, thus, importance) using the possibly
most popular measure of structural similarity, the root-mean-
square deviation (RMSD). This choice greatly simplifies both
the treatment of the problem and its implementation as follows.
In the first step an RMSD matrix is constructed from the
trajectory, possibly using only selected substructures depending
on the analysis performed (if, for example, the aim of the
analysis concerns only the dynamics of an enzyme’s active site
residues, then only these residues would be used for
constructing the matrix). In the second step, the RMSD matrix
is being treated as a distance matrix and a dendrogram is
constructed using established hierarchical clustering methods.2

In the third step the dendrogram is used to produce clusters at
various RMSD cutoffs together with their frequencies. In the
final step, the Good-Turing formalism3,4 is applied to these sets
of frequencies to obtain an estimate of the probability of
unobserved species. The result of the proposed method is a
table of the form “RMSD threshold vs Probability unobserved”
which allows a direct and immediate representation of the
answer to the question “what is the probability that structures
with RMSDs higher than a given threshold have not yet been
observed in the simulation ?”. The expression “structures with
RMSDs higher than a given threshold” will be used throughout
this communication, and to avoid confusion we should define
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explicitly which “RMSD” we refer to the following: the quoted
RMSD should be understood to be the smallest of all RMSDs
between a new (previously unobserved) structure and the set of
structures already observed in the trajectory that is being
analyzed. To make this even more definite: if for an RMSD
threshold of 1.0 Å the probability of unobserved species is, say,
0.40, then this should be understood to mean that if we were to
continue the simulation, then we would expect 40% of the new
(previously unobserved) structures to differ by at least 1.0 Å
(RMSD) from all already observed trajectory structures (or,
equivalently, that 60% are expected to differ by less than 1.0 Å
RMSD).
In the following paragraphs we describe in more detail the

principal ideas behind the method and the actual algorithm
encoded in the computer program that we distribute. This is
followed by an extensive discussion of results obtained from the
application of the program to several different biomolecular
trajectories. We close by discussing the practical limitations
arising from the usage of RMSD matrices, and other possible
approaches to the problem.

2. METHODS, ALGORITHMS, AND IMPLEMENTATION

2.1. Outline of the Method and Algorithms. The
essence of our method is the following. We treat the molecular
dynamics trajectory as a finite sample of “molecular species”
(clusters of similar structures) taken from an underlying
distribution containing an unknown number of such molecular
species. The observed frequencies of molecular species in the
sample are calculated, and the Good-Turing formalism is
applied to these frequencies allowing us to estimate the total
probability of unseen (i.e., as yet unobserved) species.
The implementation of this method through the application

of RMSD matrices appears to be straightforward: given a
molecular dynamics trajectory, construct the frame-to-frame
RMSD matrix, treat the RMSD matrix as a distance matrix to
construct a dendrogram, use the dendrogram to obtain
frequencies of clusters for various RMSD cutoffs, treat these
frequencies as frequencies of “observed molecular species” for
the given RMSD cutoff, and in the final step, employ the Good-
Turing formalism to estimate the probability of unobserved
species for the given RMSD cutoff. The result would be the
sought distribution of the (probability of unobserved species vs
RMSD). However, closer examination of the procedure
described above shows that such a simple-minded application
of the algorithm is bound to fail: The application of Good-
Turing statistics assumes that the structures used for
constructing the RMSD matrix are sufficiently distant in time,
so distant that they can be treated as independent “objects” of a
sample. In other words, it is assumed that successive entries in
the matrix (and the corresponding structures) are not
mechanistically correlated due to the very short time interval
used for recording structures from the trajectory. The
implication is that a direct application of the algorithm as
described above would lead to results that are dependent on
how fine is the (otherwise arbitrary) sampling of the trajectory.
This is clearly both highly unsatisfactory and erroneous. The
important addition to the algorithm, then, is to note that it is
possibleusing the RMSD matrix alone and no other source of
informationto correct for this dependency on the sampling
interval of the original molecular dynamics trajectory using a
procedure similar to the one described by Flyvbjerg and
Petersen5 and Lyman and Zuckerman.6 Because this is an

important aspect of the method, a detailed description of this
correction follows.
The crucial observation is that if the sampling of the

trajectory is such that successive structures are not time-
correlated, then the distribution of the maximum of the RMSDs
observed between any two successive (in the matrix) structures
should be independent of the sampling, and would, thus, be
approximately the same even if instead of using the original N
× N matrix, we used an [(N/2) × (N/2)] matrix (obtained by
taking every second row and column of the original matrix, we
will refer to this as a “sampling factor of 2”), an [(N/3)×(N/
3)] matrix (obtained by taking every third row and column of
the original matrix, sampling factor of 3), or [(N/4) × (N/4)],
etc. Note that the application of the maximum (and, not for
example, the average) of the RMSDs observed between
successive structures is also intuitively correct: any two
successive structures can be very much alike simply because
the given molecular conformation is stable. It is the maximum
of the observed RMSDs between successive frames that can tell
us whether two structures are similar because they are stable, or
whether all neighboring structures are similar because there was
not enough simulation time for them to differentiate. With so
much of an introduction, the actual numerical application of
this criterion is straightforward:

1. Take the original (N × N) matrix and find the maximum
of all RMSDs present in the matrix’s superdiagonal (the
superdiagonal is the first diagonal immediately adjacent
to the principal diagonal. Because the RMSD matrices
are symmetric, this is identical with the subdiagonal).
This maximum RMSD is the highest RMSD observed
between successive structures in the original (N × N)
sampling of the trajectory (sampling factor of 1).

2. Construct a submatrix of size [(N/2) × (N/2)] from the
original matrix by taking every second row and column.
Determine the maximum of all RMSDs present on the
superdiagonal of this new matrix. This maximum RMSD
is the highest RMSD observed between successive
structures with a sampling factor of 2 (with respect to
the original). Because there are two choices of origin for
constructing the [(N/2) × (N/2)] matrix, we can
calculate an average value of this maximum RMSD plus
its estimated standard deviation.

3. Repeat the above to obtain maximal RMSDs (plus their
estimated standard deviations) for increasing values of
the sampling factor.

Figure 1a illustrates the application and results obtained from
this procedure. The upper (black) curve in this panel shows the
distribution of (maximum RMSDs vs sampling factors) for the
whole of a 4.4 μs-long folding simulation of a 40-residue three-
helix bundle. The dimensions of the corresponding RMSD
matrix were 9220 × 9220 data points (note that for all
calculations reported in this communication we have only used
the proteins’ Cα atoms for constructing the corresponding
RMSD matrices). Clearly, the distribution of [max(RMSD) vs
sampling] converges very quickly to a stable maximum RMSD
of approximately 20 Å with a corresponding sampling factor
upon convergence of ∼2. The lower (red) curve shows the
same distribution from the same trajectory, but using only the
first 0.8 μs of the simulation and with a matrix of comparable
size (10 000 × 10 000). The result is that the molecular
dynamics trajectory corresponding to the lower (red) curve has
been sampled so much more finely (than the one
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corresponding to the upper curve), that successive structures
are highly time-correlated. The resulting graph (red curve in
Figure 1a) brings this forward and clearly indicates that for
small values of the sampling factor the corresponding structures
are not independent, and thus can not be used in Good-Turing
statistics, with convergence being reached only much later, for
values of the sampling factor of ∼30.
Having obtained the distribution of (maximum RMSDs vs

sampling factors) as shown in Figure 1a, the question arises
how to accurately determine for which value of the sampling
factor convergence of the maximal RMSDs is reached
(corresponding to the plateau of the graphs). Once this value
is known, the method is essentially complete: if, for example,
we could determine that the optimal sampling factor is, say, 4,
then we would construct the four submatrices of dimensions
[(N/4) × (N/4)], and for each submatrix calculate the
corresponding dendrogram, determine the (probability of

unobserved species vs RMSD), and in the final step, calculate
the averages (of the four repetitions) plus their estimated
standard deviations. We have chosen to tackle the problem of
determining the convergence value of the sampling factor by
performing a weighted nonlinear least-squares fitting of the data
(see Figure 1b) using a function borrowed from electronics
(this is a modified form of a limiting diode’s equation):

= + + +
−⎛

⎝
⎜⎜

⎞
⎠
⎟⎟s s c

s c
a

RMSD( ) ( ) 1
( ) b b(1/ )

where (s) is the sampling factor, RMSD(s) is the corresponding
value of maximal RMSD, and (a, b, c) are the parameters whose
values are to be determined through the nonlinear least-squares
fitting procedure. This function was selected because it
correctly reproduces both the exponential and the linear
phase of the observed distributions even when convergence is
achieved extremely fast (see for example the black curve in
Figure 1a). The function chosen is especially useful because the
value of the parameter (a) is directly related with the problem
in hand and equals the expected value of max(RMSD) upon
convergence. The use of the expression “expected value” in the
previous sentence is important: if the trajectory is nowhere near
convergence, then the [max(RMSD) vs sampling] distribution
will not reach convergence and the value of the parameter (a)
will be higher than all observedfrom the matrixmax-
(RMSD) values. This canand isbeing used as a criterion of
insufficient sampling in the program we distribute. As is
obvious from Figure 1b, the limiting diode equation fits
exceedingly well both the cases of almost immediate
convergence (black and cyan curves in Figure 1b), as well as
the cases of slower convergence (red and green curves in Figure
1b). Once the value of the parameter (a) from the equation
above is available [i.e., once we know the expected max-
(RMSD) upon convergence], an optimal value for the sampling
factor can easily be determined by locating the smallest
sampling factor which gives a max(RMSD) that is within 1σ (or
higher) from this expected max(RMSD).
Once the proper sampling factor (soptimal) is known, the

proposed method proceeds to completion smoothly: (1)
Construct the (soptimal) different submatrices corresponding to
the different choices of origin of the original matrix. (2) Use
each of these submatrices with a hierarchical clustering method
to calculate the corresponding dendrograms. (3) Use the
dendrograms to calculate observed frequencies of “molecular
species” as a function of RMSD cutoff. (4) Apply Good-Turing
statistics to determine the corresponding values of (probability
of unobserved species vs RMSD). (5) In the final step, average
these (soptimal) different estimates of (probability of unobserved
species vs RMSD) and emit the final averages together with
their estimated standard deviations.
Note that the method as described above is directly

applicable to cases where instead of one long trajectory, several
independent shorter runs were performed: As long as the initial
configuration relaxes quickly (or, better still, is excluded from
the calculations), the independent runs can be concatenated
and the procedure described above applied without changes.
Given the relatively coarse sampling of the trajectories needed
by this method, the errors arising from the presence of time-
dependent discontinuities at the connecting points should be
negligible.

Figure 1. Determination of the sampling factor: the two curves in the
upper panel compare the behavior of the [max(RMSD) vs sampling
factor] distribution (see text for details) for a reasonably sampled
trajectory (upper black curve) and for a trajectory sampled so finely
that successive structures are highly correlated (lower red curve). For
the upper curve, the original RMSD matrix would have to be
subsampled with a sampling factor of 2, whereas for the lower (red)
curve a much higher sampling factor of ∼30 would be necessary. Panel
(b) illustrates how well the limiting diode equation (see text for
details) can fit the data. The underlying data are the same with panel a,
and the two curves (cyan and green) are the corresponding least-
squares fits.
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We should also note that although we have based the
presentation of this communication on the RMSD-based
distance matrices, our method (and corresponding program)
is also directly applicable using any other meaningful (for the
problem in hand) formulation of distance. For example, it is
possible to move away from Cartesian-space-based distances by
using, for example, the principal components obtained from
dihedral-PCA. In this approach, the elements of the distance
matrix would be the Euclidean distances between the dPCA-
derived principal components of the respective structures. Or,
for another example, the distance matrix could be populated
with the distances between sets of chemical shifts calculated
from the respective structures. The basic problem with such
approachesand the reason for using the RMSD for this
presentationis, of course, that the resulting units of distance
will not have an immediate and easily visualized physical
meaning.
Although the main product of our method is a graph of

(punobserved vs RMSD), we have devised a much more
economical (and easily quoted) probabilistic measure of
convergence. This measure is an estimate of what is to be
expected if the length of the simulation is doubled. In more
detail, we calculate the answer to the following question: “What
would be the value of the expected maximal RMSD (compared
with the already recorded structures) if the simulation time is to
be doubled ?”. To say the same thing in other words, we want
to estimate how much different would be the most different
structure that we would observe if we doubled the simulation
time. We will hereafter denote this estimate as 2T-RMSD. The
value of 2T-RMSD is easily calculable from the (punobserved vs
RMSD) distribution: what we want to calculate is the expected
RMSD for the single structure that would differ the most (from
those already observed) if we were to double the simulation
time. Clearly, if we have observed a total of N samples
(corresponding to a N × N matrix), the sought RMSD is the
one corresponding to a value of punobserved = 1/N which can
easily be computed directly from the RMSD matrix. To
summarize, we believe that the value of 2T-RMSD is useful not
only because it is easily quoted, but also because it successfully
estimates the answer to a very pragmatic question: do the
expected gainsfor the sought analysisworth the cost of
doubling our computational effort ? (noting also how this is the
inverse of the usual approach which is based on comparing the
two halves of a trajectory to concludeupon “convergence”
that you could, after all, have used half of the computational
effort already expended).
2.2. Implementation Details. The method described

above has been implemented in a fully automated program
written using the R programming language of the R package for
statistical computing.7 See section 5 for program availability.
Here we will only mention briefly the major R functions and
packages used for implementing our method. The weighted
nonlinear least-squares fitting of the limiting diode equation is
performed with the function nlsLM() from the min-
pack.lm package.8 The hierarchical clustering is performed
with the function hclust() from the fastcluster
package,9 using the complete linkage method2 (other clustering
methods and parameters have been examined and found to give
essentially identical results). The clusters at various RMSD
cutoffs are produced through the cutree() function.
Givenfor a specific RMSD cutoffa number of clusters
together with the number of their members (for each cluster),
the probability of unobserved species is calculated3,4 as p0 = N1/

N where N1 is the number of clusters with only one member
and N is the dimension of the respective matrix. All other
calculations are performed with established functions provided
by the R package.
The program we distribute differentiates between two

distinct scenarios and can emit either of two different types
of output. The first scenario concerns the possibility that the
distribution of [max(RMSD) vs sampling] as shown in Figure 1
has not reached convergence. This implies that for the given
trajectory convergence can not be quantified. In this case no
graph of (punobserved vs RMSD) is produced, and the program
emits a text message reading:

The maximal RMSDs between the observed trajectory
structures have not converged. This implies that the length of
the given trajectory does not suffice for meaningfully
quantifying convergence. The only comment that can safely
be made is that upon doubling the simulation time you
should expect to observe structures that differ from those
already observed by more than approximately XXX
Angstrom.

where the value of ’XXX Ångström’ is estimated from the value
of 2T-RMSD (see previous section for definitions). The
expression “by more than” in the program output shown above
must be taken literally: if the [max(RMSD) vs sampling]
distribution has not converged, it is only possible to estimate a
lower limit of the RMS deviation, not an upper. In the second
scenario, the value of (soptimal) can be determined, a graph (plus
a table) of (punobserved vs RMSD) is produced, and the program
emits a text message containing the estimated value of 2T-
RMSD:

The maximal RMSDs of the trajectory converged with a
subsampling factor of YY. The analysis suggests that the most
different structure you should expect to observe if you double
the simulation time will differ by no more than
approximately XXX +− ZZZ Angstrom (RMSD) from
those already observed.

where the value of “XXX ± ZZZ Ångström” above is estimated
from the value of 2T-RMSD (see previous section for
definitions).

3. RESULTS
We have tested our method with an extensive set of molecular
dynamics trajectories available to us. These trajectories (all in
explicit solvent and with full PME-based electrostatics,
performed with the program NAMD10) range from 5 μs-long
folding simulations of the CLN02511 and LytA-derived
peptides,12 to 2 μs-long simulations of an α-Lactalbumin-
derived peptide,13,14 to a 100 ns-long simulation of stable 4-α-
helical bundle,15 and to a 50 ns-long simulation of a 1386-
residue homohexameric protein.16 The trajectories we tested
cover the whole range from almost complete disorder (for
example hepta-alanine17), to extreme stability (for example a
variant of the Rop protein18). Clearly, the details of how the
simulations were performed are irrelevant for the analysis
reported here. What matters is the agreement (for a given
trajectory) between this method and other methods of
quantifying convergence, and, of course, its internal consistency
and computational stability.

3.1. Method is Internally Consistent. The general
appearance of the (punobserved vs RMSD) distributions produced
by this method is shown in Figure 2a in the form of two
independent curves (black and magenta) corresponding to the
results obtained from two different peptide folding simulations
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[CLN025 (lower black curve) and a LytA-derived peptide
(upper magenta curve), see next section for comparison and
discussion of the differences]. Both curves show the general
characteristics that we would reasonably expect from the
proposed method: At low values of RMSD, the probability
values are high which signifies the fact that it is quite probable
for the simulation to visit structures that although different in
detail, are nevertheless quite similar to some of the structures
already observed. As the RMSD increases, the probability
monotonically decreases approaching asymptotically zero. The
rate and the exact form with which the probability approaches
zero depends on the properties of the trajectory (and the
corresponding matrix) and not on the size of the protein. For
example, results from the simulation of a very stable ∼210
residue-long protein (a variant of the Rop protein) in its folded
state showed that extremely small values of punobserved were
reached at an RMSD of only ∼1 Å, much faster than the curves
shown in Figure 2a which were derived from folding
simulations of a 10-mer (CLN025) and a 14-mer (LytA)
peptide.
In Figure 2b, we examine what is possibly the most

important criterion of internal consistency, namely, the
expected dependence of the (punobserved vs RMSD) distributions
on the extent of sampling. For this calculation, we used the
same CLN025 trajectory as in Figure 2a, but we limited the
calculation to (a) only 40 ns of simulation time (green curve in
Figure 2b), (b) 400 ns of simulation time (red curve), and
finally, (c) the whole 5 μs trajectory (black curve, identical with
the curve shown in Figure 2a). In agreement with our
expectations, 40 ns is too short a simulation time even for
such a stable and fast folder as the CLN025 peptide. The result
is a (punobserved vs RMSD) distribution with high values of
punobserved, showing clearly that the sampling is not sufficient and
that significantly different structures must be expected if the
simulation is to be continued [the value of 2T-RMSD (see
section 2) was estimated to be 2.7 ± 0.3 Å]. In contrast with
the 40 ns simulation (and in agreement with the known folding
behavior and folding time scale of the CLN025 peptide), the
400 and 5000 ns trajectories demonstrate significantly lower
values of punobserved and are quite similar. Their major differences
are located at the high RMSD part of the diagram where the
longer trajectory (black curve) gives noticeably lower values of
punobserved [the value of 2T-RMSD for the 5000 ns trajectory was
2.3 ± 0.2 Å]. Having noted the rather small differences between
the 400 and 5000 ns curves in Figure 2b, we shall not resist the
temptation of noting just how clearly and quantitatively this
method demonstrates how difficult it is to faithfully and
accurately sample the folding landscape of proteins and
peptides: increasing the computational effort by more than an
order of magnitude hardly made a pronounced difference in the
probabilistic estimates of punobserved. Seen in this light, the
proposed method appears to be dependable and its estimates
robust. Note, however, that due to the fact that CLN025 is a
fast and stable folder (see section 3.2), the small differences
between the 400 and 5000 ns curves are also a strong indication
that all major conformations of the peptide (for the given force
field and simulation protocol) have been sampled.
Given that this is a proper probabilistic method, we have the

opportunity to perform an acid test on the validity of the
derived (punobserved vs RMSD) distributions. The principal idea
is that you make a prediction using only the first half of a
trajectory and, then, compare the prediction with the actual
results obtained from the second half (in other words, you

Figure 2. General form of the results, dependence on the extent of
sampling, and internal consistency: (a) general form of the
distributions (punobserved vs RMSD) obtained by this method using
two independent 5 μs-long folding simulations of the CLN025 peptide
(black curve) and the LytA-derived peptide (magenta curve, see text
for details); (b) how the estimated probabilities change as the length
of the simulation of the CLN025 peptide increases from 40 ns (green
curve), to 400 ns (red curve), to 5000 ns (black curve); (c)
comparison of the expected and observed forms of the (punobserved vs
RMSD) distribution as obtained from two trajectories. The two lower
(black and orange) curves are based on the CLN025 trajectory and
compare the expected distribution as calculated using only the first half
of the trajectory (black curve), with the actual frequencies observed in
the second half (orange curve). The upper set of (three) curves are
based on the LytA trajectory (see text for details) and compare the
following: (i) the expected distribution (colored magenta) as
calculated from this method using only the first 0−1.3 μs part of
the trajectory, (ii) the distribution actually observed in the 1.3−2.6 μs
part of the trajectory (blue curve), and (iii) the distribution actually
observed in the 1.3−5.0 μs part of the trajectory (gray curve).
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estimate probabilities from the first half, and then compare
them with the observed frequencies from the second half). The
two lower curves in Figure 2c compare the predicted
distribution (black curve) with the observed frequencies
(orange curve) using the two halves of the CLN025 trajectory.
The agreement between these two distributions is so
outstandingly good that their comparison may create the
wrong impression that this is the level of accuracy to be
expected by this method irrespectively of the specific properties
of the trajectory being examined. This is definitely not so.
Because the CLN025 peptide is a fast and stable folder, 2.5 μs
of simulation time was possibly adequate for meaningfully
sampling its folding landscape, thus increasing the accuracy of
the Good-Turing estimation. But for a trajectory that is far from
being adequately sampled, the observed frequencies canand,
indeed, should be expected todeviate very significantly from
the prediction. To make sure that this point is not missed, in
the same figure we also compare three graphs obtained from
the LytA peptide (which is a very slow and erratic folder; see
section 3.2). The magenta curve in Figure 2c is the (punobserved
vs RMSD) distribution as calculated by this method using the
segment 0.0−1.3 μs of the LytA trajectory. The blue curve
shows the actual frequencies observed in the 1.3−2.6 μs
segment, and the gray curve are the actual frequencies observed
in the 1.3−5.0 μs segment of the trajectory. Clearly, and in
good agreement with common sense, predictions can only be as
good as the data available. We will close this paragraph with
what we consider to be an important side note: the excellent
agreement between the observed and the expected (Good-
Turing-derived) distributions for the case of a well-sampled
trajectory, serves, we believe, as a direct and convincing
validation of the choice to apply Good-Turing statistics to
molecular dynamics simulations.
One last internal consistency check concerns the evolution

and accuracy of the 2T-RMSD values as a function of
simulation time. In the first calculation, and using again the
CLN025 trajectory, we calculated the values of 2T-RMSD for
simulation lengths of 80, 400, 800, 2400, and 5000 ns. Ignoring
estimated standard errors, the corresponding values of 2T-
RMSD were found to be 2.76, 2.62, 2.66, 2.39, and 2.25 Å, in
good agreement with the expected reduction of the 2T-RMSD
values as sampling improves. Note, however, how the estimate
increased (instead of monotonically decreasing) as we moved
from the 400 to the 800 ns simulation. This is a healthy (and
expected) behavior for a method whose predictions are based
solely on the evidence available in hand and arises from the
incorporation of new information (previously unobserved
peptide conformations) in the segment of the trajectory from
400 to 800 ns. A similar behavior can be seen in Figure 2b at
values of RMSD of ∼0.6 Å where the values of punobserved for the
400 ns (red) curve are slightly lower than those obtained from
the 5000 ns (black) curve. This behavior is discussed in more
detail in section 4. In a second calculation, aiming to evaluate
the accuracy of the 2T-RMSD values, we estimated the 2T-
RMSD value using only the first half of the CLN025 trajectory,
and then, compared the prediction with the actual values
observed in the second half of the trajectory. Using the first 2.5
μs of the trajectory, the value of 2T-RMSD was estimated to be
2.42 ± 0.08 Å. The most different structure observed in the
second half of the trajectory (2.5−5 μs) had an RMSD of 2.49
Å, in excellent agreement with the predicted value.
3.2. Method is Consistent with Other Established

Algorithms. To demonstrate the consistency of this method

with other established methods, we shall discuss in more detail
the specifics of the simulations that were used to prepare the
two graphs shown in Figure 2a. The lower black curve was
obtained from a 5 μs-long folding simulation of the CLN025
peptide.11 CLN025 is known to be a fast and stable β-hairpin
folder,19 and in agreement with these studies, our trajectory
contains more than ∼50 folding/unfolding events (data not
shown). On the other hand, the LytaA-derived peptide (upper
magenta curve in Figure 2a) is a very slow and erratic folder,
possibly due to the presence of significant energetic frustration
in its folding landscape.12 Indeed, our 5 μs trajectory of LytA
contains only two relatively short folding/unfolding events, of
which the second event is only partially correct (the alignment
of the β-strands was offset by one residue, data not shown).
Even at this level of analysis, Figure 2a clearly and correctly
demonstrates the differences between the behavior of the two
peptides: the punobserved values for the CLN025 trajectory are
throughout the RMSD range several times lower than those
obtained from the LytA trajectory, signifying the better
sampling (for the same amount of simulation time) of the
much faster and stable folder. The 2T-RMSD values further
underline and quantify the differences between the two
trajectories, with CLN025 giving an estimate of 2.25 Å,
significantly lower than the value of 3.06 Å obtained from LytA.
Not unexpectedly, the indications obtained by analyzing

these same trajectories with other rigorous methods for
quantifying convergence are in very good agreement with our
results. To put this in numbers, we have calculated a rather
strict (and unrelated with our method) measure of con-
vergence, the dihedral-PCA-based eigenspace overlap1 between
the two halves of the trajectories (the dPCA analysis was
performed with the programs carma20 and grcarma21). For the
CLN025 trajectory the overlaps between the one-, two-, three-,
and four-dimensional spaces defined by the respective principal
components (of the two halves of the trajectory) were the
following: 1D = 0.96, 2D = 0.70, 3D = 0.90, and, 4D = 0.96
indicating an excellent agreement between the information
contained in the two halves, a fact which is usually taken to
imply convergence. For the LytA trajectory the results from the
same calculation were: 1D = 0.66, 2D = 0.45, 3D = 0.36, and,
4D = 0.59, demonstrating again the rather incomplete sampling
for the slow folder. We will note here how much more
complete and satisfying is the probabilistic treatment of Figure
2a compared with the simple enumeration of eigenspace
overlaps that beg for additional (possibly arbitrary) interpre-
tations (for example, is the overlap of 0.59 between the two
halves of the trajectory an indication that the full trajectory is
adequately sampled ? And what does “adequately” mean, and
how is it to be quantified, etc.). Since we are on this subject,
and in the form of a side note, we show below how badly a
popular measure of convergence, the cosine content, performs
for this problem. The values of the cosine content for the first
four dPCA-derived principal components of the LytA trajectory
were 0.0333, 0.0040, 0.0291, and 0.0032, falsely indicating
according to popular interpretationsthat convergence has
been achieved. To make matters worse, the results from the
cosine content analysis of LytA are practically indistinguishable
from the values obtained from the CLN025 trajectory which
were 0.0049, 0.0279, 0.0002, and 0.0001, respectively.
We close this section with an example which we believe

demonstrates the dependability of our method. Figure 3 shows
a series of graphs of the type [RMSD from the starting (crystal)
structure vs simulation time] for the simulation of a large
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protein in the folded state.16 Such graphs are very common in
the literature and their appearance (mainly flatness of the
distributions) is being advertisedand usedas an indication
of convergence of sampling. This approach is clearly
questionable since the RMSD from a given reference structure
does not contain information about the actual extent of
sampling of the configurational space available to the
macromolecule being simulated. The example we selected
brings this forward. The red curve in the upper panel of Figure
3 shows the evolution of the (RMSD vs crystal structure) for all
Cα atoms of BcZBP, a large 1386 residue-long homohexameric
protein. The lower black curve in this same panel shows again a
graph of the type (RMSD vs crystal structure), but this time
after excluding from the calculation ∼30 residues (from each
monomer) belonging to hyper-mobile surface-exposed loops.
The lower panel in Figure 3 shows results from the same set of
calculations, but this time using only one monomer (monomer
C), instead of the whole hexamer. Risking a prediction, we
believe that these graphs would be accepted as implying that
(a) the whole hexamer and the whole monomer show no sign
of convergence, (b) the hexamer without the flexible loops is
possibly approaching convergence, and, finally, (c) the
dynamics of the monomer without the flexible loops have
converged. The results from our method come as something of
an anticlimax: for none of these trajectories did the method
even reach the stage of estimating (punobserved vs RMSD). All
trajectories, including the monomeric-no-loops trajectory
(black curve in the lower panel of Figure 3), failed to even
pass the criterion of convergence of the (max(RMSD) vs
sampling) distribution. Clearly, a method that justifiably defies
common misconceptions is probably a dependable (though
possibly unpopular) tool.
3.3. Method is Robust and Insensitive to Sampling

Choices. The computer memory requirements for this method
are so demanding that only matrices of the order of few

thousand can be examined, with matrices of approximately 20
000 × 20 000 being the upper limit for the current generation
of workstations (requiring approximately 8 GB of physical
memory), and matrices of approximately 10 000 × 10 000 the
norm (requiring approximately 2 GB of physical memory).
This poses the question of how sensitive is the proposed
method to the arbitrary choices that can be made during the
sampling of the trajectory. There are two aspects of the
problem. The first is the sensitivity of the results on the “step
size” with which the trajectory was sampled. The second aspect
is the dependence (for a given step size) of the results on the
choice of the frame that was selected to be the first frame of the
matrix (i.e., the frame offset). Here we examine both of these
questions using a 100 ns simulation of a 216-residue-long 4-α-
helical bundle protein (a homotetrameric variant of the Rop
protein15). The complete trajectory contained 250 000 frames
and for the calculations reported here we only used the
protein’s Cα atoms (similar results have been obtained from
other trajectories examined).
The first set of calculations concerns the sensitivity of the

(punobserved vs RMSD) distributions on the step size used for
sampling the original trajectory. To establish how robust (or
otherwise) the estimates are, we have chosen to also use some
unreasonably large sampling factors. In this spirit we tested all
step sizes ranging from 20 frames per step (giving a 12 500 ×
12 500 matrix), all the way to a step size of 100 (giving a matrix
of only 2500 × 2500), with an interval of 10 frames for the
values in between. Figure 4a shows a superposition of the
(punobserved vs RMSD) distributions obtained from these nine
step sizes (note that the scaling of the horizontal axis has been
changed to magnify the differences). In general the agreement
between the distributions obtained from the various step sizes is
excellent. What is even more reassuring, however, is the
behavior of the method as the sampling of the trajectory
becomes artificially coarse: The curves that appear to deviate
significantly from the bulk (gray and cyan curves in Figure 4a)
are those that correspond to these artificially coarse samplings,
and for these distributions the punobserved probabilities are
noticeably overestimated. The implication is clear: the proposed
method is safe and robustin the sense that the derived
probabilities are bounded from beloweven in the cases where
the sampling of the original trajectory is unreasonable.
The second set of calculations examines (for a fixed value of

step size) the sensitivity of the (punobserved vs RMSD)
distributions on the offset used to select the first frame that
will enter the RMSD matrix. For this calculation, we used a
fixed step size of 70 (giving a matrix of 3571 × 3571), a fixed
value for the sampling factor of 2, and tested all combinations
of first frame ranging from 1 to 66 with a step of 5, giving a
total of 14 combinations. Because in the limit of an infinite
trajectory the choice of the first frame would have no effect on
the derived curve, the variability that is observed in these graphs
is a fair representation of the statistical noise present in the
procedure. The resulting graphs are shown in Figure 4b, and as
expected, the effect of frame offset is negligible for a constant
value of the sampling factor. It should be noted, however, that
due to the presence of statistical noise, the algorithm that
selects the value of the sampling factor (s) as described in
section 2.1 may select a slightly different sampling factor
depending on the value of the frame offset which, in turn,
would lead to a slightly different (punobserved vs RMSD) curve.
This, again, is safe in the sense that the probabilities are

Figure 3. Comparison with other methods. The two panels show the
evolution of (RMSD vs crystal structure) as a function of simulation
time for either the whole hexamer of the BcZBP protein (upper
panel), or only one monomer (monomer C, lower panel); see text for
details. In each panel, the upper (red) curves were calculated using all
Cα atoms, the lower (black) curves after excluding residues belonging
to hyper-mobile surface-exposed loops. For all four cases shown, the
method described in this communication returned the “insufficient
sampling” message as described in section 2.2.
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bounded from below, and any deviations always lead to
overestimating the punobserved probabilities.

4. DISCUSSION
We have shown that quantifying convergence of molecular
dynamics trajectories in probabilistic terms not only is feasible,
but also that its application resulted in the development of a
method that appears to be consistent, robust, and dependable.
We have also shown that the expected major deficiency of the
algorithm, that is, the very limited number of structures that can
be used for the analysis, appears to be a nonexistent problem in
the sense that for the time scales of present day simulations we
usually have to subsample even further the original RMSD
matrices.
What would appear to be the most basic problem with the

proposed method is the fundamental idea that clusters of
structures (at a given RMSD level) can be treated as multiple
observations of the same “object” taken from the discrete
distribution. The excellent agreement between the observed
and the expected (Good-Turing-derived) distributions shown
in Figure 2c for a well-sampled trajectory clearly indicates that
this is a valid approximation, but it could still be argued that

what is needed in this case is a formalism similar to Good-
Turing, but for the continuous distribution casewhich to our
knowledge is not available. On the other hand, even if such a
continuous-case treatment did exist, we would then face the
opposite problem, which is that the recording of structures in
our trajectories is indeed discrete (and not continuous).
Additionally, this view of macromolecular conformations as
(possibly numerous) groups of distinct clusters may be relevant
biologically and is (at least metaphorically) consistent with the
idea of the existence of local roughness in the energy landscape
of proteins.
Turning our attention to practical aspects of the day-to-day

application of the method, we should probably start from a
semiphilosophical cliche:́ The probabilistic treatment described
above, although consistent and satisfying, is not a panacea. The
probabilities calculated by this method are based solely on the
evidence in hand, and there is no way for this method (or any
other method) to “guess”, for example, that if a given
simulation was continued for, say, another 50 ns we would
then observe several new stable conformations that would force
us to revise (upward) the punobserved estimates. Similarly, there is
no way for the method to guess, for example, that a stable
conformation that lasted for more than 90% of the time of a 20
ns trajectory (and led to very low values of punobserved) would
turn-out to be statistically insignificant if the simulation were to
be extended to 2000 ns. Having said that, in none of our tests
with tens of different trajectories have we observed a systematic
flawin the form of unjustifiable predictionsmade by this
method.
The second most important issue with the practical

application of the method concerns cases where the
biomolecular structures per se are not directly and immediately
related with the sought analysis. For an example from our own
work,17 consider a case where the aim of the analysis is to
compare the experimentally observed (NMR-derived) J-
couplings with those obtained from a simulation. Although
the J-couplings are indeed derivable from the structures, this
does not change the fact that the Cartesian-space-based RMSD
would not be a suitable distance metric for the sought analysis.
A much better choice for the given problem would be to
construct a distance matrix based on, say, the Euclidean
distances between the sets of J-couplings obtained from the
various structures observed in the trajectory. The resulting
(punobserved vs Distance) curve would provide a direct and
immediate answer to the question “What is the probability of
observing a set of J-couplings that are different by more than a
given threshold from all other (already observed) sets of J-
couplings ?”.
A third issue concerning the practical application of the

method has more to do with how we perceive the results from
the method and less with the method as it stands. An example
will clarify this issue. The (punobserved vs RMSD) distribution
shown in Figure 2a for the CLN025 peptide was calculated
using RMSDs from all structures and from the whole of the
folding trajectory, i.e. including both folded and unfolded
structures. The implication is that the answer we get does
notand can notdifferentiate between folded and unfolded
states, chiefly because this information was never part of the
data we provided and, thus, was never part of the question we
asked. To make this more definite: The (punobserved vs RMSD)
distribution we obtained is the answer to the question defined
by the data we provided and in this case is the answer to how
much different structures we expect to see irrespective of whether

Figure 4. Insensitivity to Trajectory Sampling Choices: (a) Depend-
ence of the (punobserved vs RMSD) distributions on the step size used for
sampling the original 100 ns-long trajectory of a stable 4-α-helical
bundle protein. The superposition of nine curves (corresponding to
step sizes ranging from every 20 to every 100 frames, with an interval
of 10 frames) are shown. The gray and cyan curves (to the left)
correspond to the (unreasonably) large step sizes. (b) Superposition of
(punobserved vs RMSD) curves which were obtained by keeping the step
size constant and varying the trajectory frame which was taken to be
the first (i.e., the frame offset).

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci4005817 | J. Chem. Inf. Model. 2014, 54, 209−217216



these structures are stable or unstable, folded or unfolded (noting,
however, that the extent of the unfolded configurational space
almost guarantees that the vast majority of these structures will
be unfolded). Suppose now that this folding simulation was
performed using adaptive tempering (as it did) and that, thus,
we can discriminate between stable conformations (low
temperatures) and unstable, mostly unfolded conformations
(high temperatures). It is then possible (through the
application of a temperature cutoff) to select only stable
conformations for inclusion in the RMSD matrix and ask the
followingcompletely differentquestion: “What is the
probability that we will observe a stable conformation that
differs by more than ’X’ Angstrom from all stable conformations
already observed ?”. In summary, the method we described will
always answer the question defined by the data given to it. It is
our responsibility to ask the right question by providing a
distance matrix that can indeed answer the envisioned question.
The last thing that we should like to note concerning the

practical application of the method has more to do with the
human factor, and almost nothing with the method per se. What
we refer to is, of course, that it is very tempting to prefer to
look at a graph like the one shown in Figure 3 (black curve in
the lower panel) and to conclude that “convergence has been
achieved”, instead of applying a probabilistic method that
returns a message in the spirit of “insufficient sampling, double
the simulation time, and try again”. This is exacerbated by the
apparent “honesty” of the method, whose predictions appear
some times to be disheartening with respect to the amount of
computational effort they imply that is required to improve
sampling (compare, for example, the red and black curves in
Figure 2b corresponding to 400 vs 5000 ns of simulation time).
Clearly, and as with any new tool, only accumulated practical
experience with the method will show what probability level is
to be considered significant for a given problem.
We close this section with an aphorism. We believe that what

this method clearly demonstrated is that there is no such thing
as a positive declaration of “convergence” or “sufficient
sampling”. In full agreement with common sense, our method
showed that all that is happening as simulation time increases is
that the probability of encountering newthus far unob-
servedconformations asymptotically decreases (and that,
thus, the trust we place upon the conclusions drawn from the
trajectory must increase). Not unexpectedly, treating an
inherently probabilistic problem probabilistically leads to
predictions that are in excellent agreement with common sense.

5. PROGRAM AVAILABILITY

A free and open source program, published under a Simplified
BSD License, which implements the method described in this
communication is immediately available for download via the
github repository at https://github.com/pkoukos/
GoodTuringMD.
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