
Graph

Ent
Version β, Release 1.1

NICHOLAS M GLYKOS,

GraphEnt, Version β, Release 1.1, NMG 1

Graphical MaxEnt is free software and you are encouraged to use, copy, modify, and distribute both the program and its
documentation.
Better safe than sorry :
The software is provided ‘as it is’ without warranty of any kind, either expressed or implied, including without limitation all
warranties of merchantability or fitness for a particular purpose. I shall not be liable to you for damages, including any general,
special, incidental or consequential damages arising out of the use or inability to use the program.
If any local or global legislation renders the ’No Warranty’ clause illegal or reduces the scope of its content and protection for
the author in any way, then this whole license shall be null and void, i.e. you may not copy or install any software provided
under this license, and any such action will be a breach of the author’s copyright.
If you ever need to reference this program in your publications (but note that you are not required to do so), please use
the following citation : Glykos, N.M. & Kokkinidis M. (2000), “GraphEnt : a maximum entropy program with graphics
capabilities.”, J. Appl. Cryst., 33, 982–985.

Please send comments, suggestions and bug reports to glykos@mbg.duth.gr

This document was prepared with LATEX2e. The graphs were prepared either with locally written programs (ps or Conv2D), or
with pluto and pltdev from the CCP4 suite of programs.

The latest version of the program is available from the following www address :
http://www.mbg.duth.gr/∼glykos/

GraphEnt, Version β, Release 1.1, NMG 2

“... Most of the current confusion is, in the writer’s opinion, the direct result of failure to define the
problem explicitly enough. Today, programming and running a computer is much easier than actu-
ally thinking about a problem, so one may program an algorithm appropriate to one kind of problem,
and then feed the data of an entirely different problem. If the result is unsatisfactory, there is an un-
derstandable tendency to blame the algorithm and the method that produced it, rather than the faulty
application.”

Edwin T. Jaynes
”On the Rationale of Maximum-Entropy
Methods”, Proceedings of the IEEE, 1982,
Vol.70, No.9, pages 939–952.

GraphEnt, Version β, Release 1.1, NMG 3

Contents

1 Recent additions 6

1.1 Version β, Release 1.1 . 6

1.2 Version β, Release 1.0 . 6

1.3 Version α, Release 0.9 . 6

1.4 Version α, Release 0.8 . 6

1.5 Version α, Releases 0.6, 0.7 . 7

1.6 Version α, Release 0.5 . 7

1.7 Version α, Release 0.4 . 7

1.8 Version α, Release 0.3 . 7

1.9 Version α, Release 0.2 . 8

2 Overview 9

3 A word of caution 10

4 A doer’s guide. 11

4.1 Scenario A : Non-centrosymmetric space group - CCP4 available. 11

4.2 Scenario B : Centrosymmetric space group - CCP4 available. 11

4.3 Scenario C : CCP4 not available . 11

5 Methods, algorithms and a few examples 12

5.1 The method . 12

5.2 Examples . 12

5.2.1 Positivity and improved resolution . 13

5.2.2 Insensitivity to missing data . 14

5.2.3 Sensitivity to the accuracy of the estimated standard deviations 14

5.2.4 Insensitivity to outliers . 15

5.2.5 Insensitivity to noise . 15

5.2.6 Insensitivity to series termination errors & noise. 15

5.2.7 Sensitivity to the value of the F000 term. 16

6 Using the program 17

6.1 Installation guide . 17

6.1.1 Using the pre-compiled executables . 17

6.1.2 Building from source . 17

6.1.3 Testing the executable . 18

6.2 Supported crystallographic calculations . 20

6.3 The .mtz wrapper . 20

6.4 The AUTO wrapper. 21

6.5 Program output . 21

6.6 Map formats . 22

6.7 The normal probability plot & how to use it. 23

GraphEnt, Version β, Release 1.1, NMG 4

6.8 Working with X-PLOR and CNS . 26

6.9 Words of FFTW’s wisdom . 29

7 The real thing : keyworded input. 30

7.1 CELL AND SYMMETRY RELATED KEYWORDS . 30

7.1.1 CELL a b c α β γ . 30

7.1.2 GRID nfast nmedium nslow . 30

7.1.3 PERMutation fastID mediumID slowID . 31

7.1.4 F000 f . 31

7.1.5 SPACegroup n . 31

7.2 GRAPHICS-RELATED KEYWORDS . 31

7.2.1 GRACycles n . 31

7.2.2 GRAGrayscale . 31

7.2.3 GRATwowindows . 31

7.2.4 GRAWait . 32

7.2.5 GRASection n . 32

7.2.6 GRANsections n . 32

7.2.7 GRAFirst f . 32

7.2.8 GRALevel f . 32

7.2.9 GRAMaxContours n . 32

7.2.10 VT125 . 32

7.2.11 ONEDimensional u v u0 v0 . 32

7.3 REFLECTION SELECTION AND MODIFICATION. 33

7.3.1 REJEct . 33

7.3.2 EXCLude diff f . 33

7.3.3 EXFOm f . 33

7.3.4 SQRT sigmas f . 33

7.3.5 AVERage sigma f . 33

7.3.6 KFOM . 33

7.3.7 MAXFom f . 33

7.3.8 MINFom f . 33

7.3.9 LIMIt f . 34

7.3.10 SCALe f . 34

7.4 CALCULUS AND LIMITS-RELATED KEYWORDS. 34

7.4.1 TARGet f . 34

7.4.2 PHASeless f . 34

7.4.3 SWITch f . 34

7.4.4 LAMBda f . 35

7.4.5 CONStant lambda . 35

7.4.6 REMOve origin peak . 35

7.4.7 CHILimit f . 35

7.5 MISCELLANEOUS KEYWORDS. 35

GraphEnt, Version β, Release 1.1, NMG 5

7.5.1 VERBose . 35

7.5.2 TIME n . 35

7.5.3 PSOUt . 35

7.5.4 TRANsforms . 35

7.5.5 SHOW . 36

7.6 MODE SELECTION AND OUTPUT FORMATS. 36

7.6.1 MAP format ASCII | CCP4 | NA4 . 36

7.6.2 PATTerson . 36

7.6.3 DIFF patterson . 36

7.6.4 FOM . 36

7.6.5 REFLections . 36

8 Of F000s, SCALes and TARGets 37

8.1 F000-related things . 37

8.2 Connection with the SCALe and TARGet keywords . 38

9 Pathology of GraphEnt calculations, and frequent problems 40

9.1 Slow convergence, or no convergence . 40

9.2 Wrong symmetry elements in the map . 40

9.3 When I plot the exported GraphEnt map, it looks different . 40

9.4 The GraphEnt map looks worringly sharp (and noisy) . 40

9.5 The GraphEnt map changes considerably during the calculation 41

9.6 All my anomalous Pattersons are “consistent with a uniform map” 42

9.7 My native Patterson function calculations will take two years of CPU time to complete. 42

9.8 My molecule disappeared from the GraphEnt EM projection map. 43

GraphEnt, Version β, Release 1.1, NMG 6

1 Recent additions

1.1 Version β, Release 1.1

• Graphical user interface added to allow selection of .mtz columns for the calculation (actually a wrapper for
CCP4’s sftools program).

• Added support for .mtz GLGL column-type combination.

• Support for threaded FFTW execution on parallel machines.

• Changed the way the FOM-weighted syntheses are calculated.

• Grid lines are drawn on the plot every 0.250 fractional units.

• Updated documenation (postscript and html and man).

1.2 Version β, Release 1.0

• When the calculation reaches convergence, GraphEnt will plot the final map using the mean and rmsd of the
whole map (and not of the given section as happens during normal operation). The implication is that you
may notice a significant change on the appearance of the GraphEnt map upon completion of the calculation.

• Keyword GRANsections added to allow plotting a projection of a stack of sections (projection calculated
using the maximum function and not the average).

1.3 Version α, Release 0.9

• The program detects instabilities in the calculation by monitoring the value of entropy and confirming that
it is monotonically decreasing. If not, diagnostic messages are written out.

• When the user issues a TSTP signal (CTRL-Z) from the terminal, the program will behave as if convergence
was achieved, write the current map and gracefully exit.

• When the program is called as ”graphent” (normally through a symbolic link to ”GraphEnt”), it enters a very
quiet mode in which only error and diagnostic messages are written out.

1.4 Version α, Release 0.8

• Limit on number of reflections expanded to 120000.

• Fix an out-of-bounds error in the calculation of the normal probability plot (which would gracefully dump
core if the total number of reflections for a difference Patterson function exceeded the maximum number of
reflections).

• For a Patterson function calculation without an explicit definition of the F000 term, the program will use
F000 = 2 max(F) [instead of the previously adopted F000 = max(F)].

• Year-2001 enhancements :

– At last : Support for ReGIS graphics added (keyword VT125). You can now undust this good-old
VT330+ console and put it back to work again. Thanks to PGPLOT.

– Support for 1D data added (keyword ONEDimensional). It is now possible to calculate this long-
sought [0v0] Patterson projection function for your 2 MDalton multi-(protein-nucleic-acid) complex.

• Updated documentation (postscript and html), added man page.

• Tidy-up in the hope that this will be a long-lived release.

GraphEnt, Version β, Release 1.1, NMG 7

1.5 Version α, Releases 0.6, 0.7

• Minor correction for .mtz file handling.

• Keyword GRAMaxContours added to allow an explicit definition of the maximum number of contour lines
that the program will draw (useful for avoiding wasting CPU time for drawing contours in the Patterson
origin peak).

1.6 Version α, Release 0.5

• Keyword PHASeless added to allow ‘free’ phase refinement of reflections with low FOM.

• Keyword SWITch added to allow switching of a fom-weighted calculation to the phase-less mode.

• Keyword PSOUt added. When this keyword is present (and GraphEnt was compiled with PGPLOT support),
the program will write out two postscript files (CONVENTIONAL.ps and GRAPHENT.ps) containing contour
diagrams of the conventional and GraphEnt map sections that were displayed during the run.

• Keyword SHOW added to show evolution of map entropy during calculation.

• New default for Patterson function calculation : LIMIT 0.5.

• The F000 is now squared internally for a Patterson function calculation.

• Unconvincing attempt to introduce an “informative” prior for Patterson function calculations (a map with an
origin peak, keyword PRIOr). Not very useful (and very broken for non-primitive lattices).

1.7 Version α, Release 0.4

• Keyword TIME added. This allows an explicit definition of how many minutes you are prepared to wait for
GraphEnt to finish the calculation. After the specified period elapses, GraphEnt will write out the current
map and will exit gracefully.

• Adjust frequency of writing out info during a calculation performed with the VERBose flag turned off (which
is the default).

• Keywords GRAFirst and GRALevel added to allow explicit definition of the contouring levels for the graph-
ics windows.

• The keyworded input files can now contain comment lines (whose first character must be !, # or *).

• More documentation written.

1.8 Version α, Release 0.3

• The TARGet keyword will now allow you to do the calculation even if the uniform prior is consistent with
your data. Useful for anomalous Patterson map calculation.

• Increase reflection limit.

• More documentation.

• Keep on adding comments to the code.

• VERBose is no longer the default.

GraphEnt, Version β, Release 1.1, NMG 8

1.9 Version α, Release 0.2

• Corrected error in the calculation of the standard deviation of isomorphous difference Patterson function
coefficients.

• KeywordLIMIt sigmas added to allow rejection of small isomorphous differences for the case isomorphous
difference Patterson calculations.

• Keyword F000 added to allow explicit definition of the F000.

• When the F000 is not given, instead of making it dependent on the number of grid points in the map, it is
explicitly approximated either through the volume of the unit cell (for phased syntheses), or through the
largest F observed (Patterson syntheses).

• Some additional information is written out before scaling and exporting the map files.

• Few minor corrections, mainly about the messages written out during execution.

• More documentation written.

• Started (slowly and painfully) adding comments to the code.

GraphEnt, Version β, Release 1.1, NMG 9

Graphical MaxEnt

A maximum entropy program with graphics capabilities.

2 Overview

GraphEnt is an attempt to provide an automatic way for calculating the maximum entropy map that corresponds
to a set of observations, while offering a useful graphical output of the current stage of the calculations. Here is a
screenshot from a SGI workstation running GraphEnt :

The automation is mainly directed towards the macromolecular crystallographic community, with direct sup-
port for CCP4 mtz reflection files. Doing the calculation is as simple as graphent 15 3.5 my file.mtz (for a
GUI-based selection of the type of synthesis you want to calculate), GraphEnt 15 4 my file.mtz (for a fully
automated run using all data between 15 and 4Å resolution), or GraphEnt h0l 10.0 3.5 my file.mtz (for
calculating the GraphEnt map corresponding to the [010] projection using only data between 10.0 and 3.5Å reso-
lution).

Having said that, it is still quite easy for the general crystallographic community to use the program. All is
needed is an ASCII file containing unit cell dimensions and a list of reflections expanded to P1 :

AUTO 30.40 42.10 81.40 90.00 90.00 90.00 20

-7 -5 1 559.200 8.700 138.578 0.4500

...

8 0 0 415.500 9.500 180.000 0.4000

GraphEnt, Version β, Release 1.1, NMG 10

Clearly, this black-box approach leads to loss of flexibility1. For this reason, GraphEnt also supports a more
detailed form of input files, like this one2 :

CELL 30.40 42.10 81.40 90.00 90.00 90.00

SPACEGROUP 20

GRID 128 64 64

PERM 3 1 2

FOM

VERBOSE

GRACYCLES 5

GRASECTION 14

GRAGRAYSCALE

LAMBDA 1.0

MAP_FORMAT ccp4

REFL

-7 -5 1 559.200 8.700 138.578 0.4500

-7 -5 2 276.600 11.400 220.410 0.3500

...

7 5 3 532.700 8.900 349.320 0.4400

8 0 0 415.500 9.500 180.000 0.4000

This document is organised as follows : Section 4 is for the impatient who just want to give it a try (and
hopefully not get what they deserve). Section 5 gives a quick overview of the algorithm and a pictorial introduction
to the advantages of the method. Section 6.1 discusses how to install and test the program. Sections 6.2, 6.3 and
6.4 present the supported modes of operation and the automated modes of execution. Section 6.5 presents the files
produced by GraphEnt, and section 6.7 discusses the use of the normal probability plot produced by the program.
Finally, section 7 contains the list of keywords recognised by GraphEnt.

3 A word of caution

I should warn you right from the beginning that the algorithm used in GraphEnt is neither the most stable nor
the most efficient of those published3 (but it is the one that is the easiest to code). Additionally, for those cases
where the calculation includes a known figure-of-merit for the phase angles, GraphEnt is performing additional
approximations which although I hope that are generally safe, they do not represent the best that can be achieved
with the data.

I should also warn you that the amount of time that the calculation may require depends on the input data
quality and there is no a priori guarantee that the given algorithm will converge even if given enough time. Having
said that, a 262,144 (=128x64x32) pixels GraphEnt mFo exp(iφbest) map corresponding to a reasonably accurate
data set could be calculated in less than 8 minutes of CPU time on a DEC Alpha 1200, a 524,288 (=128x128x32)
pixels GraphEnt difference Patterson map for a loosy derivative (which makes the calculation easy) took only 46
seconds on the same machine, and a 2Å (2mFo − DFc) exp(iφc) synthesis with 3,072,000 (=160x160x120) pixels
took ≈40min. Finally, a 2-0.8Å (2Fo − Fc) exp(iφc) synthesis with 9,437,184 (=192x256x192) pixels for a 4-α-
helical bundle protein took only ≈13 minutes on a Pentium 800MHz (but the data were, of course, rather weak at
this resolution range).

1For example, this input file with 7 columns of which the last one is always less or equal to 1.0, will be interpreted by GraphEnt as a request
for a phased figure-of-merit-weighted Fourier synthesis, and there is very little you can do to change this in the automatic mode.

2Actually, GraphEnt only understands this detailed form of input. The automatic modes are wrappers which prepare an input file that the
core program can interpret.

3See for example Maximum Entropy and Bayesian Methods in Inverse Problems (1985), edited by Smith, C.R. & Grandy, W.T., Jr., Dor-
drecht : Reidel.

GraphEnt, Version β, Release 1.1, NMG 11

4 A doer’s guide.

4.1 Scenario A : Non-centrosymmetric space group - CCP4 available.

If you have the CCP4 suite of programs up-and-running on your machine and if the space group of your crystals
is not centrosymmetric, all you need is a .mtz file containing your data. Then give something like : graphent

mydata.mtz (to use all data), or, graphent 15 3.5 mydata.mtz (to define resolution limits), or, graphent h0l
15 3.5 mydata.mtz (to use only the h0l terms), and you will be presented with a smallish window from which
you can choose the columns you wish to use for your intended synthesis. If the symbol graphent is not defined,
please read the installation section of this manual (6.1).

Now, the difficult bit. The order with which you click on the columns to select them is important : you must
select first the amplitude terms (with their standard deviation), followed (possibly) by phase angles, and finally
figure-of-merit. If you choose columns with the wrong order the program will not cooparate. To see what column
type combinations (and in what order) are supported by the program click on ”HELP” in the dialog window.

Please note that not all conceivable types of syntheses are supported by the program. If your intended synthesis
is not listed in the ”HELP” screen of the dialog, you will have to use sftools to reduce the synthesis you have in
mind to a recognisable (by GraphEnt) combination.

If all goes well, the dialog window will disapper (possibly after asking you to confirm a setting by just pressing
’y’ or ’n’), and then you should see a section from the conventional map, followed (after some time) by a window
showing the same section from the GraphEnt map. That second window will be updated as the calculation pro-
gresses, until convergence is achieved. When the calculation is over, a third window will appear containing a graph
of the contributions of the various reflections to the χ2 test. If you are calculating a difference Patterson synthesis,
the first window you will see is the normal probability plot for your data.

Hit <RETURN> in the unix shell (where you started the calculation from) to exit the program. The di-
rectory should contain (in-between other files) the basic output from the program, namely the GraphEnt map :
maxent.map.

4.2 Scenario B : Centrosymmetric space group - CCP4 available.

Unfortunately, the current version of the program sftools (from the CCP4) refuses to cooperate if the space group
is centrosymmetric. The result is that GraphEnt’s GUI will not work. The way to proceed is to use CAD to select
the columns you need for the calculation. Using the program in this mode is described in detail in section 6.3.

4.3 Scenario C : CCP4 not available

A detailed description of how to proceed is given in section 6.4. In summary, all you need is an ASCII file
containing your data expanded to P1. Unfortunately, GraphEnt can not at present do the expansion for you.

PLEASE NOTE THAT IRRESPECTIVELY OF HOW YOU STARTED THE CALCULATION, WHAT THE PROGRAM

REALLY READS AS INPUT IS A KEYWORDED ASCII FILE WITH THE NAME MAXENT AUTO.IN WHICH IS LEFT

BEHIND AFTER THE CALCULATION FINISHES.

IF YOU WANT TO MAKE USE OF ANY OF THE ADDITIONAL CAPABILITIES OF THE PROGRAM (AS DEFINED BY

THE VARIOUS KEYWORDS, SEE PAGE 30), YOU WILL HAVE TO EDIT THIS FILE, MAKE THE CHANGES YOU

WISH TO MAKE, AND RE-RUN GraphEnt WITH ’GraphEnt MAXENT AUTO.IN’ OR ’graphent
MAXENT AUTO.IN’

GraphEnt, Version β, Release 1.1, NMG 12

5 Methods, algorithms and a few examples

Ab initio determination of crystal structures based on a maximum entropy formalism has produced a wealth of
papers debating the utility of the method, but very few actual determinations. On the other hand, a maximum
entropy formalism aiming at the production of a “maximally non-committal” map is an almost standard method in
fields of science like radioastronomy, but a rare exception in both X-ray crystallography and electron microscopy
(or crystallography).

The calculation of a maximum entropy map when an atomic model can be built in a conventional Fo exp(iφc)
(or Fo exp(iφo)) synthesis, is probably a waste of CPU time. But when the map is the end product (low resolution
electron or potential density maps, Patterson functions, etc.), the calculation of the MAXENT map can be more
than useful (see section 5.2 for few examples).

5.1 The method

The question is : Given a set of incomplete and noisy data (say, Fo,h with its σ(Fh) and φh), which map (of a large
number of maps consistent with the observed data) is the one that will minimise the probability of misinterpreting
it ? Stating the same problem in a different way, we could ask (i) which map (of the set of admissible maps) will
only show features for which there is evidence in the data, or, (ii) which map makes the least assumptions about
the data (especially the missing data, but also the distribution of errors in the observed).

Clearly, the Fo,h exp(iφh) synthesis is not the map we want : Not only we assume that all missing data have
F = 0 (a rather improbable event), but also that Fh = Fo,h, ∀h. Gull, S.F. & Daniell, G.J.4, suggested that the map
we need is the one for which the configurational entropy −∑

j m j log m j, where m j is the density at the grid point
j of the map, reaches a maximum. It is easy to see that −

∑

j m j log m j reaches a maximum when m j = e−1, ∀ j,
that is, when the map has a uniform density, and thus, contain no information. Maximising − ∑

j m j log m j subject
to the constraint that the map is consistent with the observed data, gives the MAXENT map.

The consistency with the observed data is described in terms of the difference between the observed data and
those calculated from a trial map, weighted by the standard deviation of the measurement. If Fc,h is the calculated
value of the datum h, Fo,h its observed value and σ(Fh) the standard deviation of the observation, then the statistic

∑

h

| Fc,h − Fo,h |2
σ(Fh)2

possesses a χ2 distribution with an expected value equal to the number of data points. Maximising − ∑

j m j log m j

subject to the constraint
∑

h | Fc,h − Fo,h |2 /σ(Fh)2 = n, where n is the number of data points, gives the basic
iteration formula :

mj = exp{−1 + λ
∑

h

Fo,h − Fc,h

σ(Fh)2
exp(2πijh)}

Given Fo,h, σ(Fh) and an positive multiplier λ, this equation can determine the densities mj on a map. The
program GraphEnt applies this formula iteratively (starting from a uniform map) until convergence (as judged by
the value of χ2) is achieved. Although this algorithm is neither the most efficient nor the most stable, it is relatively
easy to code and it leads (at least in the case of Patterson functions), to the same results as other, more complex
algorithms5.

5.2 Examples

The following examples illustrate some of the properties of the GraphEnt maps that I thought it would be worth-
while mentioning explicitly6. To further emphasize the generality of the method, I have included examples ranging
from one-dimensional hypothetical structures giving 18 reflections in total, to a 0.8Å resolution synthesis for a
small protein (with approximately 50000 unique reflections).

4Gull, S.F. & Daniell, G.J., (), Nature, 272, 686–690.
5Skilling, J. & Bryan, R.K., (), Mon. Not. R. astr. Soc., 211, 111–124.
6I would have hoped that with so much literature on the subject of maximum entropy, it would not have been necessary to illustrate the

advantages of the method. Unfortunately, my experience is that maximum entropy maps are still being treated with some scepticism (if not
scorn) by the community. So, there you go.

GraphEnt, Version β, Release 1.1, NMG 13

5.2.1 Positivity and improved resolution

Given that the maximum entropy map is the most uniform map consistent with the data, it is surprising how much
more informative can be from the conventional Fourier synthesis, especially when accurate data are available. The
following figure illustrates this point by comparing a conventional 15Å low resolution projection map with the
corresponding GraphEnt map, and with two conventional maps calculated at higher (13 and 11Å) resolution7.

15A Conventional synthesis

13A Conventional synthesis 11A Conventional synthesis

15A MAXENT synthesis

There are several things to note in these maps : The first is that the GraphEnt map is always positive with
almost no detail in the background. This is clearly not the case with the Fourier syntheses, which have negative
regions (dashed lines) and fine detail in the background which arise not only from the absence of the F000 term, but
also from the series termination errors8. The second observation is that the peaks on the MAXENT map are better
resolved, even when compared with the 11Å Fourier synthesis. This is not too surprising given that the Fourier
transform of the maximum entropy map has non-zero amplitudes all the way to physical limits of the transform.

7The asymmetric unit of the pmg plane group consists of the projections of two lysozyme molecules related by a simple translation.
8In all maps shown, contours are plotted every 10% of the maximum density.

GraphEnt, Version β, Release 1.1, NMG 14

5.2.2 Insensitivity to missing data

The second example illustrates the behaviour of the method with respect to missing data. This example was
constructed as follows : one-dimensional data were calculated from a hypothetical (1D) structure containing two
Gaussians in the asymmetric unit of the ℘m cell (where ℘denotes the one-dimensional lattice). This hypothetical
structure is shown on the far left panel in the figure below, and the data calculated by Fourier transforming this
structure only included 18 strong reflections. The middle column of graphs shows the conventional and GraphEnt
syntheses that were obtained when all these 18 reflections were included in the calculation (and, of course, both
are essentially identical with the starting structure). When the calculation was repeated with 6 reflections missing
from the data set, the conventional map (top, right-hand corner graph) was far from ideal : a new peak appears at
x = 0.5, and the relative heights of the two Gaussians are no longer the same. In sharp contrast, the GraphEnt map
(lower, right-hand side graph) is almost identical with the synthesis calculated with all data (and with the correct
structure).

True structure

All data Missing data

C
onventional

G
raphE

nt

5.2.3 Sensitivity to the accuracy of the estimated standard deviations

This example is based on real (electron microscopy) data and shows the importance of having reasonably accurate
estimates of the errors present in the data. The left-hand-side panel on the figure that follows is the conventional
30Å projection of photosystem II (courtesy Dr Andreas Holzenburg). The other three panels show GraphEnt
maps which were calculated with standard deviations ranging from grossly overestimated (second from the left)
to seriously underestimated (right hand side panel). Clearly, overestimating the standard deviations is no harm :
although the final map will not be the best that can be done with the data, it will not be possible to misinterpret it.
Underestimating the standard deviations, on the other hand, can lead to serious problems : the MAXENT algorithm
will be “fitting” noise instead of real signal and the final map will contain fine structure not required by the data.
Misinterpreting such a GraphEnt map should present no problems.

Conventional
30A synthesis

MAXENT
Sigma(F)=10*IQ(F)

MAXENT
Sigma(F)=<F>/10

MAXENT
Sigma(F)=IQ(F)

GraphEnt, Version β, Release 1.1, NMG 15

It is worth mentioning on passing that most data processing programs will produce raw data with underes-
timated standard deviations (especially for weak reflections). The solution is, of course, to calculate a normal
probability plot of the form (Iobs− < I >)/σ(I) and confirm that it has mean 0 and variance 1. I should also
mention here that the greatest problem with incorrectly estimated standard deviations appears to come from the
electron microscopy field : the majority of the data sets that I have come across tend to have almost constant aver-
age values of F/σ(F) throughout the resolution range. An example of what GraphEnt would do in such cases is
presented in section 9.8.

5.2.4 Insensitivity to outliers

This example shows results from an anomalous Patterson function calculation using data collected from a horse
heart myoglobin crystal. The data were collected with CuKα radiation and the anomalous signal comes from the
iron atom of heme (with ∆ f ′′Fe,CuKα

= 3.2e−). To make the example more realistic we only used data between 20
and 3Å resolution, and we simulated the presence of outliers in the data by multiplying the amplitude (∆Fano) and
standard deviation (σ(∆Fano)) of three randomly chosen strong reflections by a factor of 3.0.

A comparison of the Harker sections (v = 1/2) from the conventional and GraphEnt maps (shown in the figure
that follows) is rather striking : The presence of outliers in the data has completely wiped-out the signal from the
conventional map (left-hand-side panel), leaving behind the only too familiar to macromolecular crystallographers
chequer-board appearance. In sharp contrast, the GraphEnt map resembles more a map calculated with hypothetical
error-free data than an anomalous Patterson function calculated with real data (both maps are contoured with the
dashed contour at the mean, and then every 0.5 rmsd of the whole map).

5.2.5 Insensitivity to noise

The following figure compares the conventional (left) and GraphEnt (right) map at the section v = 1/2 of the same
20–3Å anomalous Patterson function as for the previous example, but this time after the outliers have been removed
from the data set (but only for the calculation of the conventional synthesis, the GraphEnt map still includes the
outliers). As it is obvious, the GraphEnt map is rather insensitive to the presence of random (white) noise in the
data, but this is definitely not so for the conventional Fourier synthesis.

5.2.6 Insensitivity to series termination errors & noise.

The following two figures compare a 4.6Å thick stack of sections from a 4.0-0.8Å (2Fo − Fc) exp(iφc) GraphEnt
(top) and conventional (lower) maps for a 4-α-helical bundle protein at the final stage of its refinement (R = 0.102).

GraphEnt, Version β, Release 1.1, NMG 16

Both maps are contoured at 1.3σ above their respective mean densities.

As it is obvious, the conventional map suffers from quite appreciable series termination errors and contains a
number of peaks (and continuous features) that are not required by the data. If you think that this is understandable
(given that the low resolution cutoff was only 4Å), re-consider : the low resolution data that have been excluded
from the calculation are only 204 reflections out of a total of 48774 reflections (ie less than 0.4% of the total
number of reflections).

5.2.7 Sensitivity to the value of the F000 term.

This is a rather important subject (and the most common source of problems with the program). For this reason, a
separate section has been devoted to discussing the matter in detail (section 8.1, page 37).

GraphEnt, Version β, Release 1.1, NMG 17

6 Using the program

6.1 Installation guide

GraphEnt is distributed both as pre-build executables for SGI, Linux, Solaris & DEC Alpha OSF machines, and as
source code for the other machines.

6.1.1 Using the pre-compiled executables

If you have root previleges, you can simply find the correct (for your architecture) executable, move it to a di-
rectory in the users’ PATH and give the name GraphEnt. Do not forget to make a symbolic link with the name
graphent pointing to the same executable. If you do not have PGPLOT installed (obtainable from http://-

astro.caltech.edu/∼tjp/pgplot/), then the users should also define an environmental variable PGPLOT DIR

pointing to the directory that contains the two essential PGPLOT files that I also include (grfont.dat and
pgxwin server).

If you want to install the program in your area, then go to the GraphEnt/bin/my arch directory, uncompress
a suitable executable, make a symbolic link with ln -s ./myexecutable ./graphent and add something anal-
ogous to the following three lines in your .cshrc file (assuming that you unpacked GraphEnt in your top directory) :

alias GraphEnt /usr/people/<username>/GraphEnt/bin/my_arch/<my_uncompressed_executable>

alias graphent /usr/people/<username>/GraphEnt/bin/my_arch/graphent

setenv PGPLOT_DIR /usr/people/<username>/GraphEnt/bin/my_arch

6.1.2 Building from source

The minimum requirement for building GraphEnt is that you have a C compiler and the the FFTW libraries com-
piled in the single precision mode (FFTW can be obtained from http://www.fftw.org/). If you want .mtz
support you also need a fortran compiler and the CCP4 library, and for graphics support you need the PGPLOT
library (from http://astro.caltech.edu/∼tjp/pgplot/). To build an executable without CCP4 or graphics
support, the following should suffice (assuming you are in the GraphEnt/src/ directory) :

cc <my_optimisation_flags> -DNOCCP4 -DNOPGPLOT GraphEnt.c -o GraphEnt -lsrfftw -lsfftw -lm

which assumes that you had built FFTW with the --enable-float --enable-type-prefix options, and that
the libraries are in the ld’s search path (add a -L/my lib/dir/fftw/ flag to cc if they are not).

If you have the CCP4 and PGPLOT libraries, and these are located somewhere in ld’s search path, you can
build the GraphEnt executable by giving :

cc <my_optimisation_flags> -c GraphEnt.c

f77 <my_optimisation_flags> GraphEnt.o -lsrfftw -lsfftw -lccp4 -lcpgplot -lpgplot -lX11 -lm

mv a.out GraphEnt

where <my optimisation flags> correspond to the highest safe level of optimisation supported by your com-
pilers (you can always check that everything is OK by comparing the results from the test files included in the
examples directory). When you built PGPLOT do not forget to ’make cpg’ as well (this will build the C wrapper
library for PGPLOT).

For specific examples as to how the executables were built on the various supported machines, see the 0README
files in the various GraphEnt/bin subdirectories.

This way of linking GraphEnt (ie with separate calls to cc & f77) will not work on DEC (Compaq) machines.
The way to compile and link (in one step) is described in the file GraphEnt/bin/OSF/0README.

Building a useable executable on non-Unix machines is expected to be rather more challenging, with the first
challenge being to build the FFTW library. If you manage to build FFTW, then you might as well give it a try with
GraphEnt but I believe that you should aim for a “simple” executable (no CCP4 or PGPLOT). If you are getting
error messages during compilation, try adding a -DVMS flag in the cc step above. If the problems persist, please do
send me a mail message, but do not expect too much.

GraphEnt, Version β, Release 1.1, NMG 18

6.1.3 Testing the executable

Assuming that the executable is in your PATH, and that its name is GraphEnt, go to the /my dirs/GraphEnt/-

examples/ directory, make your window at least 125 characters wide, and type GraphEnt Myoglobin anom -

Patt.in. What you should see on your terminal should be similar to this :

#

#

######

#

#

#

#

#

###

Beta, Release 1.1

Gull, S.F. & Daniell, G.J. (1978), Nature, 272, 686-690

Collins, D.M. (1982), Nature, 298, 49-51

NMG

Keyword CELL : Cell dimensions set to 35.84 28.89 63.57 90.00 105.47 90.00

Keyword F000 : F000 known and set to 30.000000.

Keyword GRAFIRST : first contour at mean + 1.000000 rmsd.

Keyword GRALEVEL : contouring interval set to 1.000000 rmsd.

Keyword TARGET : target value for chi^2 set to 100.00

Keyword LAMBDA : initial value for lambda set to 40000.000000

Keyword VERBOSE : verbose mode set.

Keyword GRASECTION : Plot section 0.500000 (fractional coordinates).

Keyword LIMIT : exclude reflections with |F|/sig(|F|)<0.500000.

Keyword SPACEGROUP : space group number set to 1

Keyword MAP_FORMAT : CCP4 map file selected.

Keyword PATTERSON : Patterson map run [h k l F sig(F)].

Keyword PERMUTATION : Permutation set to 3 1 2

Keyword GRID : Grid set to 160 96 56

Keyword GRACYCLES : Plot every 5 cycles.

Keyword GRATWOWINDOWS : Will keep conventional map plot.

Keyword REFLECTIONS : start reading reflections.

2274 reflections rejected due to sigma cutoff (Keyword LIMIt)

Added reflection -2 +6 +0 +42.336 +40.730 -0.0

Added reflection -2 -6 +0 +42.336 +40.730 -0.0

Added reflection -3 +8 +0 +229.620 +406.417 -0.0

Added reflection -3 +7 +0 +23.072 +45.970 -0.0

Added reflection -3 -7 +0 +23.072 +45.970 -0.0

Added reflection -3 -8 +0 +229.620 +406.417 -0.0

Added reflection -4 +7 +0 +341.880 +424.920 -0.0

Added reflection -4 +6 +0 +152.727 +194.618 -0.0

Added reflection -4 -6 +0 +152.727 +194.618 -0.0

Added reflection -4 -7 +0 +341.880 +424.920 -0.0

Added reflection -5 +6 +0 +37.322 +72.535 -0.0

Added reflection -5 -6 +0 +37.322 +72.535 -0.0

Added reflection -8 +6 +0 +64.509 +93.693 -0.0

Added reflection -8 -6 +0 +64.509 +93.693 -0.0

Added reflection -10 +4 +0 +113.128 +167.607 -0.0

Added reflection -10 -4 +0 +113.128 +167.607 -0.0

- Square F000 for Patterson calculation, F000=900.000000.

- Initial lambda is 40000.000

- Verbose output requested.

- Lambda linearly depended on number of cycles.

- Grid (along fast, medium and slow) 160 96 56

- Axes permutation is fast-Z, medium-X, slow-Y

- Data structures require 19.9 MBytes of memory.

- About to allocate memory.

- FFTW is learning how to do FFTs ...

- FFTW learned how to do FFTs.

- Saving FFTW’s wisdom file ...

There are 636 observations with <F>= 140.28

- Loading data on arrays ...

- Do not panic yet ...

- About to calculate conventional Fourier transform of data

- Write out conventional Fourier transform (file conventional.map)

- Sum and average of densities are -19.0625 and -0.0000.

- Scale factor applied : 0.00574329.

- Map entropy is undefined (negative values are present).

(Q)QOPEN: file opened on unit 1 Status: UNKNOWN

Logical Name: conventional.map Filename: conventional.map

File name for output map file on unit 1 : conventional.map

logical name conventional.map

FORMATTED OLD file opened on unit 24

Logical name: SYMOP, Filename: /usr/local/ccp4/lib/data/symop.lib

Minimum density in map = -262.72626 Maximum density = 999.00000

Mean density = 0.00000

Rms deviation from mean = 58.00461

GraphEnt, Version β, Release 1.1, NMG 19

- MAXENT starts here

Chi**2 : 492.602 R : 1.0000 Lambda : 40000.00000 Nobs : 620

Chi**2 : 485.034 R : 0.9972 Lambda : 40000.00000 Nobs : 620

Chi**2 : 477.884 R : 0.9942 Lambda : 40800.00000 Nobs : 620

Chi**2 : 470.680 R : 0.9911 Lambda : 41616.00000 Nobs : 620

Chi**2 : 463.181 R : 0.9877 Lambda : 42448.32000 Nobs : 620

Chi**2 : 455.133 R : 0.9837 Lambda : 43297.28640 Nobs : 620

Chi**2 : 446.211 R : 0.9791 Lambda : 44163.23213 Nobs : 620

Chi**2 : 435.969 R : 0.9735 Lambda : 45046.49677 Nobs : 620

Chi**2 : 423.800 R : 0.9663 Lambda : 45947.42671 Nobs : 620

Chi**2 : 408.912 R : 0.9568 Lambda : 46866.37524 Nobs : 620

Chi**2 : 390.377 R : 0.9441 Lambda : 47803.70274 Nobs : 620

Chi**2 : 367.352 R : 0.9270 Lambda : 48759.77680 Nobs : 620

Chi**2 : 339.573 R : 0.9045 Lambda : 49734.97234 Nobs : 620

Chi**2 : 308.114 R : 0.8762 Lambda : 50729.67178 Nobs : 620

Chi**2 : 275.884 R : 0.8436 Lambda : 51744.26522 Nobs : 620

Chi**2 : 246.902 R : 0.8105 Lambda : 52779.15052 Nobs : 620

Chi**2 : 224.139 R : 0.7802 Lambda : 53834.73353 Nobs : 620

Chi**2 : 207.880 R : 0.7553 Lambda : 54911.42820 Nobs : 620

Chi**2 : 196.440 R : 0.7363 Lambda : 56009.65677 Nobs : 620

Chi**2 : 187.910 R : 0.7225 Lambda : 57129.84990 Nobs : 620

Chi**2 : 181.006 R : 0.7118 Lambda : 58272.44690 Nobs : 620

Chi**2 : 175.019 R : 0.7033 Lambda : 59437.89584 Nobs : 620

Chi**2 : 169.590 R : 0.6960 Lambda : 60626.65376 Nobs : 620

Chi**2 : 164.540 R : 0.6897 Lambda : 61839.18683 Nobs : 620

Chi**2 : 159.778 R : 0.6839 Lambda : 63075.97057 Nobs : 620

Chi**2 : 155.255 R : 0.6784 Lambda : 64337.48998 Nobs : 620

Chi**2 : 150.940 R : 0.6732 Lambda : 65624.23978 Nobs : 620

Chi**2 : 146.815 R : 0.6682 Lambda : 66936.72457 Nobs : 620

Chi**2 : 142.864 R : 0.6634 Lambda : 68275.45907 Nobs : 620

Chi**2 : 139.076 R : 0.6586 Lambda : 69640.96825 Nobs : 620

Chi**2 : 135.441 R : 0.6540 Lambda : 71033.78761 Nobs : 620

Chi**2 : 131.950 R : 0.6494 Lambda : 72454.46336 Nobs : 620

Chi**2 : 128.597 R : 0.6450 Lambda : 73903.55263 Nobs : 620

Chi**2 : 125.375 R : 0.6406 Lambda : 75381.62368 Nobs : 620

Chi**2 : 122.279 R : 0.6363 Lambda : 76889.25616 Nobs : 620

Chi**2 : 119.304 R : 0.6321 Lambda : 78427.04128 Nobs : 620

Chi**2 : 116.444 R : 0.6279 Lambda : 79995.58211 Nobs : 620

Chi**2 : 113.695 R : 0.6239 Lambda : 81595.49375 Nobs : 620

Chi**2 : 111.051 R : 0.6200 Lambda : 83227.40362 Nobs : 620

Chi**2 : 108.508 R : 0.6161 Lambda : 84891.95170 Nobs : 620

Chi**2 : 106.060 R : 0.6122 Lambda : 86589.79073 Nobs : 620

Chi**2 : 103.702 R : 0.6084 Lambda : 88321.58654 Nobs : 620

Chi**2 : 101.429 R : 0.6047 Lambda : 90088.01828 Nobs : 620

Chi**2 : 99.237 R : 0.6010 Lambda : 91889.77864 Nobs : 620

Chi**2 : 99.237 R : 0.6010 Lambda : 91889.77864 Nobs : 620

43 cycles in 36 seconds, giving an average of 0.837 seconds per cycle.

CONVERGENCE ACHIEVED.

The final R-factor between the observed

and calculated amplitudes is 0.6010417

- Write out maxent.map map file.

- Sum and average of densities are 1101.5133 and 0.0013.

- Scale factor applied : 173.43777466.

- Map entropy is 13.157804.

(Q)QOPEN status changed from NEW to UNKNOWN for maxent.map

(Q)QOPEN: file opened on unit 1 Status: UNKNOWN

Logical Name: maxent.map Filename: maxent.map

File name for output map file on unit 1 : maxent.map

logical name maxent.map

FORMATTED OLD file opened on unit 24

Logical name: SYMOP, Filename: /usr/local/ccp4/lib/data/symop.lib

Minimum density in map = 0.00242 Maximum density = 998.99994

Mean density = 0.22210

Rms deviation from mean = 2.12448

- Calculating table of largest contributions to chi**2

- Will write out all reflections contributing to chi^2 by more than 10.000000 times the rmsd of all contributions.

Normal termination ? (45 seconds)

At this point, and if you have graphics support, you should also have three graphics windows on your monitor,
one on top of the other (but you can move them of course). Hit <RETURN> in the terminal window to finish with
the run and close the graphics windows.

Note that the exect numerical results you are getting depend on your computer’s hardware and the compiler
flags used, and so, you should not be expecting to see exactly the numbers shown in the example above.

GraphEnt, Version β, Release 1.1, NMG 20

6.2 Supported crystallographic calculations

GraphEnt automatically recognises the following types of syntheses :

• F2 Patterson synthesis, defined by h, k, l, F, σ(F)

• ∆F2 difference Patterson synthesis, defined by h, k, l, F1, σ(F1), F2, σ(F2). The function calculated is the one
commonly used for isomorphous difference Patterson maps with an amplitude of F = (F1 − F2)

2 and a
standard deviation σ(F) = 2

√
F

√

σ(F1)2 + σ(F2)2 + σ(F1)
2 + σ(F2)

2.

• Phased Fourier synthesis without FOM, defined by h, k, l, F, σ(F), φ

• Phased Fourier synthesis with FOM, defined by h, k, l, F, σ(F), φ, FOM

All other types of syntheses that can be reduced to any of the above are also supported but the reduction step is
a user’s responsibility. For example, to calculate a (2Fo − Fc) exp(iφc) map you would have to prepare a column
containing the (2Fo−Fc) term by yourself, and give the program six columns of the type h, k, l, (2Fo−Fc), σ(2Fo−
Fc), φc. For CCP4 users this is easily (and interactively) achieved with the program sftools9.

6.3 The .mtz wrapper

GraphEnt offers limited capabilities for a completely automated run with only input the name of a .mtz file. The
major limitation is that you do not assign columns or chose a type of calculation. What happens is that GraphEnt
will open your .mtz file and read the list of column types. If it finds a recognisable set of column types it will simply
go ahead and do the calculation. If what GraphEnt decides to do is not what you wanted, simply use mtzutils or
sftools to select, or create the column types that GraphEnt expects for your type of calculation.

This is the list of column types (order is important) and corresponding calculation that GraphEnt will per-
form :

Column types Action performed

HHHFQPW Assumed to be h, k, l, F, σ(F), φ, FOM. Synthesis will be mF exp(iφ)
HHHFQP Assumed to be h, k, l, F, σ(F), φ. Synthesis will be F exp(iφ)
HHHFQFQDQ Assumed to be h, k, l, FP, σ(FP), FPH , σ(FPH), ∆Fano, σ(∆Fano) for a derivative. Syn-

thesis will be a (FP − FPH)2 isomorphous difference Patterson function. An input file
for the anomalous synthesis will also be prepared (which can be used as input for a
second run).

HHHFQFQ Same as the previous one, but no additional input file for the anomalous part is pre-
pared.

HHHDQ Assumed to be h, k, l, ∆Fano, σ(∆Fano). Synthesis will be an anomalous difference
Patterson function (∆F2

ano).
HHHFQ Assumed to be h, k, l, F, σ(F). Synthesis will be the Patterson function.

Please note that GraphEnt will only check the column types immediately after the indeces, and if a match
is found the rest of the columns will be ignored. Furthermore, the search is performed in the order shown in
the table and the calculation performed is the first matching. What this means is that if your column types are
HHHFQP, GraphEnt will go for a phased synthesis no matter what you may wanted to do. If your intention was
to calculate a Patterson function with Fs and σ(F)s, you will have to use mtzutils or sftools to remove the
column containing the phases.

If the column types of your .mtz file are in the right order, just give GraphEnt <my file.mtz> for a run that
will use all data present in the file, or GraphEnt 15.0 3.5 <my file.mtz> to use only data between 15 and
3.5Å resolution. If what you are calculating is isomorphous difference Patterson functions for a derivative, and
your space group has centric zones of the type h0l, hk0, 0kl, you may as well try something like GraphEnt h0l

15.0 3.5 <my file.mtz> to calculate the [010] Patterson projection. GraphEnt will also recognise and use all
zone selections recognised by mtzutils (ie H00, 0K0, 00L, HH0, -HH0, HHH, HK0, 0KL, H0L and HHL).

9I should add here that for some of the more complex syntheses, the most difficult part of setting-up the calculation appears to be the
propagation of errors, ie calculating correctly the standard deviation of the amplitude terms.

GraphEnt, Version β, Release 1.1, NMG 21

GraphEnt is always performing the calculation in space group P1. To avoid unnecessary repeti-
tion, the program calls CAD (and possibly MTZUTILS) from the CCP4 distribution to expand the
data to P1. This means that GraphEnt will fail if CCP4 is not correctly set-up or if the various
symbols are not defined (especially the CLIBD variable, you can check its presence with setenv

| grep ’CLIBD’).

NOTE WELL : Maximum entropy maps may well predict non-zero amplitudes for data beyond the high
resolution limit of your input data set (thus giving —for good data— a degree of “super-resolution”10). For this
reason the grid size that GraphEnt uses is significantly larger than that used by the conventional FFT (and even
this may not be large enough). The implication is that if you want to do a calculation using all your data to 2Å
resolution, you are better-off submitting a batch job for the night instead of trying to do it interactively. In addition,
and because GraphEnt is doing the calculation in P1, the higher the symmetry, the larger the grid, the slower
GraphEnt will be. As a last precaution, I should add that I have never performed a calculation with more than
9437184 (=192x256x192) pixels.

6.4 The AUTO wrapper.

This is a wrapper to minimise the amount of input to the program. You simply create an ASCII input file like this :

AUTO 94.14900 24.17000 64.31901 90.00000 130.36700 90.00000 1

-22 0 6 50.32293 2.43270 67.66310 2.33278

-22 0 7 148.78082 3.24875 139.47423 2.21939

-22 0 8 189.90724 3.95280 210.31883 2.26664

-22 0 9 104.71589 2.51189 130.89922 1.64204

-22 0 10 226.21014 4.65611 245.38899 2.75075

-22 0 11 72.67593 2.26654 82.38221 1.58337

-22 0 12 337.86499 6.89991 350.74295 3.45005

-22 0 13 19.86930 6.24350 48.52971 1.82860

-22 0 14 173.24773 3.65465 163.61771 2.30839

...

14 0 3 250.23837 4.61909 307.68475 4.29308

16 0 0 760.94031 15.55367 687.91992 8.57631

16 0 1 350.09189 6.37660 328.42670 3.76660

and you give GraphEnt <my file.in>. For this wrapper to work, the first line must begin with the keyword
AUTO followed by unit cell dimensions and space group number, and then a list of reflections. Depending on the
number of columns in the file, GraphEnt will perform one of the following calculations :

Columns Action performed

5 Assumed to be h, k, l, F, σ(F). Synthesis will be the Patterson function.
6 Assumed to be h, k, l, F, σ(F), φ. Synthesis will be F exp(iφ)
7 If all values of the the last column is less or equal to 1.0, it is assumed that the columns

are h, k, l, F, σ(F), φ, FOM. Synthesis will be mF exp(iφ)
7 If the last column contains values greater than 1.0, it is assumed that the columns

are h, k, l, FP, σ(FP), FPH , σ(FPH) for a derivative. Synthesis will be a (FP − FPH)2

isomorphous difference Patterson function.

NOTE (1) : The input file must contain your data expanded to P1. GraphEnt will not expand the data for you.

NOTE (2) : In the case of AUTO-labelled files you can not specify resolution limits or projections.

6.5 Program output

Depending on the type of calculation performed, GraphEnt can create up to four graphics windows and leave
behind (after the calculation is over) up to 10 files. The number of files created depends not only on the type of
calculation performed but also on the availability of PGPLOT with your executable11.

10Hopefully, and if the F000 and standard deviations of your data are correctly estimated, the maxent map should only show you the degree
of resolution that is required by your data. The fact that it may look sharper than the conventional map is not due to a “super-resolution” effect
arising from the maxent algorithm, but because the conventional transform is not optimal for your problem. To make this clear, if you had a
100% complete and noise-free data set extending to infinite resolution, then the conventional and maxent map would be identical. Actually, if
you start using maxent systematically, you will note that the conventional and maxent maps start looking quite similar under considerably less
stringent conditions.

11The reason is that with PGPLOT it is relatively easy to save the contents of a graphics window as a postscript file. GraphEnt is using this
facility to save postscript versions of the normal probability plot and of the graph showing the contributions of each reflection to χ2.

GraphEnt, Version β, Release 1.1, NMG 22

The four possible graphics windows are :

1. A window showing a section from the conventional Fourier syntesis (the section plotted can be selected with
the keyword GRASection, see page 32).

2. A window showing the same section from the MaxEnt map.

3. A normal probability plot of the input data (calculated only in the case of a difference Patterson calculation).

4. A scatter plot of the contribution of each reflection to the final value of χ2.

A directory devoted to running GraphEnt may contain all these files after the end of the calculation (assuming
that you started with just the file myfile.mtz) :

total 2440

-rw-r--r-- 1 glykos sys 68 Mar 27 18:19 CHIcontributions.dat

-rw-r--r-- 1 glykos sys 39223 Mar 27 18:19 CHIcontributions.ps

-rw-r--r-- 1 glykos sys 63767 Mar 27 18:14 CONVENTIONAL.ps

-rw-r--r-- 1 glykos sys 65022 Mar 27 18:18 GRAPHENT.ps

-rw-r--r-- 1 glykos sys 75097 Mar 27 18:14 MAXENT_AUTO.IN

-rw-r--r-- 1 glykos sys 73771 Mar 27 18:14 MAXENT_FROM_MTZ.in

-rw-r--r-- 1 glykos sys 38583 Mar 27 18:14 MAXENT_FROM_MTZ_ANOMALOUS.in

-rw-r--r-- 1 glykos sys 50092 Mar 27 18:14 MAXENT_SUM_PATT.in

-rw-r--r-- 1 glykos sys 16754 Mar 27 18:14 Normal_probability.ps

-rw-r--r-- 1 glykos sys 3740 Mar 27 18:14 Normplot_tails.dat

-rw-r--r-- 1 glykos sys 861264 Mar 27 18:14 conventional.map

-rw-r--r-- 1 glykos sys 861264 Mar 27 18:18 maxent.map

-rw-r--r-- 1 glykos sys 317920 Mar 27 18:14 myfile.mtz

The file myfile.mtz is where you started from, and the files conventional.map and maxent.map are the
conventional and maxent map files containing the syntheses corresponding to your data (see below for a description
of the supported map formats).

The files CONVENTIONAL.ps and GRAPHENT.ps are only produced if you have graphics support and contain
postscript images of the conventional and GraphEnt map sections that were plotted on your monitor.

The files Normal probability.ps and Normplot tails.dat are produced only when you are performing a
difference Patterson calculation. See page 23 for a more detailed discussion of the normal probability plot facility.

The file CHIcontributions.ps is only produced if you have graphics support and it contains the contribution
of each reflection to the final value of χ2. The ASCII file CHIcontributions.dat contains a list of reflections
whose contribution to χ2 is higher than 10σ above the mean contribution of all reflections. Depending on the case,
these reflections may also be flagged as “suspect” (the 10σ limit can be changed with the keyword CHILimit,
page 35). In conjunction with the keyword REJEct, some or all of these reflections can be excluded from a
subsequent calculation (page 33).

Finally, the files that start with MAXENT are intermediate files produced during the interpretation of the .mtz
file, or, in the case of MAXENT FROM MTZ ANOMALOUS.in and MAXENT SUM PATT.in, files that can be used as input
to GraphEnt for calculating an anomalous differences Patterson function, and a so-called “summed” difference
Patterson (based on FH ≈

√

∆F2
iso + ∆F2

ano). Please note that I have not used the MAXENT SUM PATT.in file
extensively, so there might as well be some bugs lurking in there.

6.6 Map formats

The basic program output consists of two maps : the conventional synthesis (file conventional.map) and the
MaxEnt synthesis (file maxent.map). The program can output maps in three formats : binary CCP4 map files,
ascii CCP4 map files (NA4) which can be converted to binary files with the CCP4 program maptona4, and simple
ASCII files for the non-CCP4 users. This last “format” is purposedly as structure-less as possible : the map is given
as successive sections separated by a blank line with individual values scaled to a maximum of 999.0. Hopefully,
this can be transported to numerous other programs with minimal user intervention.

GraphEnt, Version β, Release 1.1, NMG 23

-101.356 -93.902 -73.867 -45.791 -12.287 26.791 -12.532 -45.979 -73.995 -93.967

-95.929 -85.706 -59.859 -28.781 -0.416 24.285 -0.661 -28.970 -59.988 -85.771

-58.698 -48.410 -23.921 0.885 15.397 19.480 15.152 0.696 -24.049 -48.475

..

..

58.074 39.867 -5.397 -53.678 -77.325 -58.833 -77.571 -53.867 -5.526 39.803

-7.705 -15.480 -33.664 -48.621 -44.073 -9.892 -44.319 -48.810 -33.792 -15.545

-68.427 -67.131 -62.155 -49.809 -24.415 17.952 -24.661 -49.998 -62.283 -67.196

-103.449 -119.073 -102.959 -58.338 -2.439 11.988 -10.371 -21.613 -39.107 -69.976

-96.769 -118.809 -104.169 -59.655 -7.288 15.538 12.007 9.218 -11.334 -52.477

-59.809 -87.093 -77.942 -40.976 -0.372 10.221 30.511 44.319 30.797 -11.023

..

..

45.125 35.353 12.693 -4.512 -4.562 -102.067 -116.048 -80.695 -22.341 26.209

-16.466 -24.609 -27.901 -16.405 10.548 -46.626 -72.990 -62.263 -36.176 -17.877

-73.315 -83.683 -73.321 -39.784 7.460 -7.622 -37.973 -44.584 -45.890 -55.999

-121.906 -163.951 -138.990 -60.994 19.728 8.199 19.824 35.737 18.103 -44.381

-107.299 -166.345 -154.607 -83.936 -5.668 0.903 35.736 68.483 55.700 -14.293

-71.070 -141.078 -141.586 -81.543 -11.144 -21.129 39.113 93.862 94.527 27.649

..

Map format defaults : Please note the following about format availability : the ASCII and NA4 map formats
are always available (even if you compiled the program without the CCP4 library). The binary CCP4 map files are
only available for executables that were prepared with CCP4 support (ie linked with the CCP4 library).

If GraphEnt was compiled without the CCP4 library, then the default output map format is ASCII. The way
to produce a NA4 map file (which can then be converted to binary CCP4 map files), is to let GraphEnt start the
actual calculation, then stop it (with <CTRL-C>), edit the MAXENT AUTO.IN file and change the MAP keyword
from ASCII to NA4. Then run GraphEnt again by giving GraphEnt MAXENT AUTO.IN

If GraphEnt was compiled without the CCP4 library but CCP4 output is requested, the program will write out
a NA4 map file.

6.7 The normal probability plot & how to use it.

When an isomorphous difference Patterson is calculated, GraphEnt will plot the normal probability diagram of
the input data, together with a reference dotted line of gradient 1.0 and zero intercept12. The usage of the normal
probability plots for accessing the usefulness (or otherwise) of a putative derivative is well documented and will
not be discussed here (see Howell, P.L. & Smith, G.D. (1992), J. Appl. Cryst., 25, 81–86, and Abrahams, S.C.
& Keve, E.T. (1971), Acta Cryst., A27, 157–165). If you scaled your (macromolecular) data using the program
scaleit from the CCP4 suite, then although you have not seen the plot, you have seen the variation of its gradient
and intercept versus resolution (using the program xloggraph on the .log file written by scaleit). The reason
for repeating the calculation here, is that the normal probability plot can also be used to select suspect data that
do not fit an otherwise linear trend. The important thing is that the selection is not performed on the basis of just
the magnitude of the difference (ie ||FPH | − |FP||, as happens in scaleit), but on the basis of both the observed
amplitudes and their standard deviations. The normal probability plot together with the “large contributions to
χ2” table (files CHIcontributions.dat and CHIcontributions.ps), which is produced after the calculation
is over, should allow you to justifiably select outliers13.

This is achieved as follows : GraphEnt will write out an ASCII file (named Normplot tails.dat which
contains the hkl indeces for all reflections that comprise the tails of the plot. These points are shown in the
graphics window with a different colour. If some of these points deviate significantly from the rest of the plot,

12Plotting will be performed only if GraphEnt was compiled with graphics support (ie with PGPLOT, see section 6.1)). Even in the absence
of PGPLOT, the normal probability plot will still be calculated, and the numbers will be written to an ASCII file which can be used as input to
almost any plotting program (file MAXENT normal prob plot.dat).

13As I understand it, the choice to treat as suspect (or even to reject) all reflections that give values of ||FPH | − |FP|| more than something

times the rmsd of isomorphous differences, is due to the inability of the conventional Fourier synthesis to take into account the standard
deviations of the measurements. Let me give an example : suppose that for the 312 reflection, |FP312 | = 103, σ(|FP312 |) = 14, |FPH312 | = 183,
σ(|FPH312 |) = 120, and assume for the sake of argument that the rmsd of the observed differences is 20 e−. Then, we can ignore the fact that
the measurement of |FPH312 | is loosy, and reject this reflection as “highly improbable”. This is of course nonsense : the standard deviation of
the difference |FPH312 |− |FP312 | is 134 e−, which means that with the observed difference of 80 e− we can not even say at the 50% significance
level that the amplitudes |FP312 | and |FPH312 | are indeed different. The trouble is that if you include the reflection in your Fourier synthesis, it
will probably make a mess out of your map because in the case of the conventional synthesis you treat all differences as if having zero standard
deviation. Needless to say that the maxent map not only is insensitive to such differences, but that you should actually avoid rejecting anothing
until you are certain that for some reason the standard deviations are wrong.

GraphEnt, Version β, Release 1.1, NMG 24

then they are candidates for rejection (note that some deviation from linearity will always be present near the tails.
What you are looking for is an outstanding deviation.)

You can then match what you see in the plot with what is written in the Normplot tails.dat, decide which
reflections to exclude, write their indeces in an ASCII file with the name REJECT.HKL, and then re-run the pro-
gram using the MAXENT AUTO.IN file after adding the keyword REJECT (see page 33). Because this sounds quite
complicated, I will now give a detailed example to show how it works :

We start with just one .mtz file containing data for a putative derivative :

crystal2 ~/test

crystal2 ~/test d

total 260

-rw-r--r-- 1 glykos sys 262300 Dec 16 15:45 from_scaleit.mtz

crystal2 ~/test

crystal2 ~/test mtzdump hklin from_scaleit.mtz

##

##

##

CCP PROGRAM SUITE: MTZDUMP VERSION 3.5: 18/06/98##

##

...............

OVERALL FILE STATISTICS for resolution range 0.001 - 0.245

=======================

Col Sort Min Max Num % Mean Mean Resolution Type Column

num order Missing complete abs. Low High label

1 ASC -46 35 0 100.00 -11.3 18.0 35.81 2.02 H H

2 NONE 0 11 0 100.00 4.0 4.0 35.81 2.02 H K

3 NONE 0 31 0 100.00 12.3 12.3 35.81 2.02 H L

4 NONE 4.4 902.0 3 99.96 92.65 92.65 35.81 2.02 F FP

5 NONE 0.6 26.2 3 99.96 3.34 3.34 35.81 2.02 Q SIGFP

6 NONE 8.7 956.3 3500 51.49 137.07 137.07 18.78 2.50 F FPH

7 NONE 1.2 41.5 3500 51.49 7.95 7.95 18.78 2.50 Q SIGPH

8 NONE -73.2 72.3 3718 48.47 0.29 7.29 18.78 2.51 D DPH

9 NONE 0.0 66.8 3718 48.47 11.85 11.85 18.78 2.51 Q SIGDPH

No. of reflections used in FILE STATISTICS 7215

LIST OF REFLECTIONS

===================

...............

MTZDUMP: Normal termination of mtzdump

Times: User: 0.2s System: 0.1s Elapsed: 0:03

crystal2 ~/test

crystal2 ~/test

Then, we run GraphEnt on the centrosymmetric [010] projection :

crystal2 ~/test

crystal2 ~/test GraphEnt h0l 10 3 from_scaleit.mtz

#

#

######

#

#

#

#

#

###

Gull, S.F. & Daniell, G.J. (1978), Nature, 272, 686-690

Collins, D.M. (1982), Nature, 298, 49-51

NMG

- Assuming that input is a .mtz file. Interpreting ...

..

- Now trying lambda = 0.010000

...

- Initial value for lambda set to 1000.000000

- MAXENT starts here

Chi**2 : 1593.822 R : 1.0000 Lambda : 1000.00000 Nobs : 366

Chi**2 : 1588.187 R : 0.9992 Lambda : 1000.00000 Nobs : 366

..

Chi**2 : 365.790 R : 0.5621 Lambda : 945.19320 Nobs : 366

803 cycles in 74 seconds, giving an average of 0.092 seconds per cycle.

CONVERGENCE ACHIEVED.

The final R-factor between the observed

and calculated amplitudes is 0.5621040

..

Normal termination ? (100 seconds)

Now we have all these files :

GraphEnt, Version β, Release 1.1, NMG 25

crystal2 ~/test d

total 652

-rw-r--r-- 1 glykos sys 68 Dec 16 15:51 CHIcontributions.dat

-rw-r--r-- 1 glykos sys 37224 Dec 16 15:51 CHIcontributions.ps

-rw-r--r-- 1 glykos sys 31101 Dec 16 15:49 MAXENT_AUTO.IN

-rw-r--r-- 1 glykos sys 30595 Dec 16 15:48 MAXENT_FROM_MTZ.in

-rw-r--r-- 1 glykos sys 103 Dec 16 15:48 MAXENT_FROM_MTZ_ANOMALOUS.in

-rw-r--r-- 1 glykos sys 10365 Dec 16 15:48 Normal_probability.ps

-rw-r--r-- 1 glykos sys 825 Dec 16 15:48 Normplot_tails.dat

-rw-r--r-- 1 glykos sys 132176 Dec 16 15:50 conventional.map

-rw-r--r-- 1 glykos sys 262300 Dec 16 15:45 from_scaleit.mtz

-rw-r--r-- 1 glykos sys 132176 Dec 16 15:51 maxent.map

crystal2 ~/test

Both CHIcontributions.dat and Normplot tails.dat point to problems with reflections 0,0,11 and -12,0,8 :

crystal2 ~/test

crystal2 ~/test

crystal2 ~/test more CHIcontributions.dat

0 0 11 55.19882

-12 0 8 59.04416

crystal2 ~/test

crystal2 ~/test

crystal2 ~/test more Normplot_tails.dat

0 0 6 -2.99385 -30.69588

2 0 4 -2.64107 -28.07780

-12 0 8 -2.46310 -26.91301

0 0 11 -2.34000 -25.43124

-4 0 8 -2.24461 -22.29077

0 0 7 -2.16611 -21.85669

4 0 10 -2.09905 -18.73302

-16 0 5 +2.04028 +10.47118

8 0 6 +2.09905 +10.55087

4 0 4 +2.16611 +10.55754

-8 0 9 +2.24461 +11.08962

6 0 3 +2.34000 +11.90654

4 0 6 +2.46310 +12.23197

-16 0 10 +2.64107 +12.45890

2 0 6 +2.99385 +13.12762

crystal2 ~/test

crystal2 ~/test

The normal probability plot suggests that all seven reflections in the lower left-hand side corner are sus-
pect. Its somewhat sigmoidal shape suggests the presence of non-normally distributed (systematic) errors :

Let’s repeat the calculation but with these seven reflections excluded from the calculation. The first
step is to create a file with the name REJECT.HKL whose first three columns contain the indeces of the
reflections to be excluded :

crystal2 ~/test

crystal2 ~/test cp Normplot_tails.dat REJECT.HKL

crystal2 ~/test ed REJECT.HKL

crystal2 ~/test more REJECT.HKL

0 0 6 -2.99385 -30.69588

2 0 4 -2.64107 -28.07780

-12 0 8 -2.46310 -26.91301

0 0 11 -2.34000 -25.43124

-4 0 8 -2.24461 -22.29077

0 0 7 -2.16611 -21.85669

4 0 10 -2.09905 -18.73302

crystal2 ~/test

crystal2 ~/test

Then, we edit the file MAXENT AUTO.IN and we add the keyword REJECT :

GraphEnt, Version β, Release 1.1, NMG 26

crystal2 ~/test

crystal2 ~/test ed MAXENT_AUTO.IN

crystal2 ~/test more -20 MAXENT_AUTO.IN

REJECT

CELL 94.14900 24.17000 64.31901 90.00000 130.36700 90.00000

SPACEGROUP 1

MAP_FORMAT CCP4

DIFF_PATT

PERMUTATION 3 1 2

GRID 128 256 1

GRACYCLES 80

GRATWOWINDOWS

REFLECTIONS

-30 0 9 89.88602 3.43968 123.75751 12.84017

-30 0 10 126.17858 3.93975 110.84611 10.25688

-30 0 11 38.71215 5.14720 36.43570 15.66436

-30 0 12 165.68549 4.99690 154.67838 7.42726

-30 0 13 38.65771 4.30664 43.59790 16.74030

-30 0 14 158.72888 4.75254 159.23166 5.49528

-30 0 15 86.40644 3.25414 84.79811 15.51947

-30 0 16 150.11438 4.57498 146.66685 5.11194

-30 0 17 132.07582 4.08662 164.78131 5.11169

-30 0 18 21.89952 8.06613 23.18951 10.87039

...

crystal2 ~/test

crystal2 ~/test

... and we run it again, but this time giving as input the MAXENT AUTO.IN file :

crystal2 ~/test

crystal2 ~/test GraphEnt MAXENT_AUTO.IN

#

#

######

#

#

#

#

#

###

Gull, S.F. & Daniell, G.J. (1978), Nature, 272, 686-690

Collins, D.M. (1982), Nature, 298, 49-51

NMG

Keyword REJECT : 7 reflections specified in REJECT.HKL.

Keyword CELL : Cell dimensions set to 94.15 24.17 64.32 90.00 130.37 90.00

Keyword SPACEGROUP : space group number set to 1

Keyword MAP_FORMAT : CCP4 map file selected.

Keyword DIFF_PATT : Difference Patterson map run [h k l FP sig(FP) FPH sig(FPH)].

Keyword PERMUTATION : Permutation set to 3 1 2

Keyword GRID : Grid set to 128 256 1

Keyword GRACYCLES : Plot every 80 cycles.

Keyword GRATWOWINDOWS : Will keep conventional map plot.

Keyword REFLECTIONS : start reading reflections.

Reflection rejected : -12 0 8

Reflection rejected : -4 0 8

Reflection rejected : 0 0 6

Reflection rejected : 0 0 7

Reflection rejected : 0 0 11

Reflection rejected : 2 0 4

Reflection rejected : 4 0 10

...

Normal termination ? (32 seconds)

NOTE WELL : Because the normal probability plot is calculated with data expanded to P1,
each point on the plot may actually correspond to a superposition of several symmetry-equivalent
reflections. When you reject data, you MUST reject all symmetry equivalent reflections that are
present in your P1 data set. Failure to do so will show-up in your maps as absence of the
expected symmetry elements. Now : under normal circumstances the Normplot tails.dat

file will contain all symmetry equivalent reflections, except if these are near the assumed linear
part of the plot. In this case, I’m afraid that you will have to manually add the indeces of the
missing equivalents in the REJECT.HKL file (sorry).

6.8 Working with X-PLOR and CNS

I can see at least three possible basic strategies when it comes to interfacing X-PLOR and GraphEnt. The first is to
tell X-PLOR to (i) expand your reflections to P1, and (ii) to write them out in an ASCII X-PLOR reflection format.
Then (and assuming that your text editor can record macros), edit this ASCII file and convert it to the format that
GraphEnt expects. I wouldn’t suggest this method for any but the simplest cases.

GraphEnt, Version β, Release 1.1, NMG 27

A second possible way is to use xdlmapman to convert an X-PLOR reflection file to a .mtz file. This may not
work very well if your X-PLOR file contains weights and/or a figure-of-merit column.

A third, more reproducible way to do the trick, is to use f2mtz to convert the X-PLOR reflection file to .mtz,
and then use the .mtz wrapper of GraphEnt to do the calculation. I will illustrate this with an example based on
the nfo-mfc phicalc map.inp file distributed with X-PLOR 3.851, and assuming that you want to calculate a
σA-weighted 2mFo − DFc map.

The first step is to add the following bold lines in the X-PLOR script :

...........

...........

do (fcalc=$k2*fcalc) (all) { apply scaling to all reflections }

declare name=diff domain=reciprocal type=complex end

declare name=testamp domain=reciprocal type=complex end

if ($sigmaa_flag=true) then

{* Compute sigmaa weights. *}

declare name=eobs domain=reciprocal type=real end

.............

.............

do (diff = combine($nn * fom * ampl(fobs) - $mm * dd * ampl(fcalc), phase(fcalc)))

(acentric and sel=1)

do (diff = combine(fom * ampl(fobs), phase(fcalc))) (centric and sel=1)

do (testamp = combine($nn * ampl(fobs) - $mm * dd * ampl(fcalc) / fom, phase(fcalc)))

(acentric and sel=1)

do (testamp = combine(ampl(fobs), phase(fcalc))) (centric and sel=1)

undeclare name=eobs domain=reciprocal end

undeclare name=ecalc domain=reciprocal end

undeclare name=sigmaa domain=reciprocal end

undeclare name=dd domain=reciprocal end

else

{* Compute unweighted n fo-m fc difference. *}

do (diff = combine($nn * ampl(fobs) - $mm * ampl(fcalc), phase(fcalc))) (sel=1)

end if

do (SIGMA = $nn * SIGMA)(acentric and sel=1)

write reflection output=GraphEnt.hkl testamp SIGMA fom end

declare name=map1 domain=real end

do (map1=ft(diff)) (sel=1)

remarks ($nn fo- $mm fc, phicalc) map

write map

...............

...............

Please note that the assignment of standard deviation for the quantity $nn * ampl(fobs) - $mm * dd *

ampl(fcalc)/fom is wrong in this example. If you are fluent with error propagation and you have derived the
correct expression, please do mail it to me as well. When you execute the script, and in addition to the map file,
you should also get a reflection file with the name GraphEnt.hklwhich would look like this :

NREFlection= 7271

ANOMalous=FALSe { equiv. to HERMitian=TRUE}

DECLare NAME=TESTAMP DOMAin=RECIprocal TYPE=COMP END

DECLare NAME=SIGMA DOMAin=RECIprocal TYPE=REAL END

DECLare NAME=FOM DOMAin=RECIprocal TYPE=REAL END

INDE 2 0 0 TESTAMP= 37.700 360.000 SIGMA= 2.050

FOM= 0.878

INDE 4 0 0 TESTAMP= 43.500 0.000 SIGMA= 1.710

FOM= 0.099

..........................

You can now convert this to .mtz with f2mtz :

GraphEnt, Version β, Release 1.1, NMG 28

f2mtz hklin GraphEnt.hkl hklout GraphEnt.mtz << eof

TITLE 2fo-fc coefficients from X-plor

CELL 54.476 42.565 51.722 90.000 104.684 90.000

SYMMETRY 5

LABOUT H K L FP PHIB SIGFP FOM

CTYPOUT H H H F P Q W

SKIP 5

FORMAT ’(6X,3F5.0,9X,2F10.3,7X,1F10.3/23X,1F10.3)’

END

eof

Before running GraphEnt with this file, you need one additional step in order to put the columns in the order
that GraphEnt expects to find them. You can do this with CAD, or mtzutils, or interactively with sftools :

Origin ~/trm6/17

Origin ~/trm6/17 d *.mtz

-rw-r--r-- 1 glykos user 205508 Mar 3 17:12 GraphEnt.mtz

Origin ~/trm6/17

Origin ~/trm6/17 sftools

OPTIONS ARE:

ABSENT MODE CALC CHECKHKL COMPLETE CORREL

DELETE EXPAND FFT FOURPT HLCONV I2F

LIST MAP MAP2SF MAPIN MAPLIMIT MAPOUT

MAPSTAT MERGE OPTION1 PHASHFT PLOT PURGE

READ REDUCE REINDEX RFREE SELECT SET

SORT STOP WINDOW WRITE

>> give your option (or hit <return> to list options)

read GraphEnt.mtz

selected: READ

User: glykos Logical Name: GraphEnt.mtz

Status: READONLY Filename: GraphEnt.mtz

Reading file : GraphEnt.mtz

With format : MTZ

!!! WARNING, sort order improper !!!

Sort order will be set to 1 2 3

Use option SORT [h k l] later if needed

The following columns will be read:

TYPE LABEL

===========

F FP

P PHIB

Q SIGFP

W FOM

now sorting the reflections

now merging the reflections

7271 reflections read from file

0 reflections appended to existing data

7271 reflections newly created

7271 reflections now stored in memory

>> give your option (or hit <return> to list options)

write ready.mtz column 1 3 2 4

selected: WRITE

GraphEnt, Version β, Release 1.1, NMG 29

Writing file : ready.mtz

With format : MTZ

Columns used :

1 3 2 4

The following columns will be written :

TYPE LABEL

===========

F FP

Q SIGFP

P PHIB

W FOM

(Q)QOPEN allocated # 1

User: glykos Logical Name: ready.mtz

Status: UNKNOWN Filename: ready.mtz

>> give your option (or hit <return> to list options)

exit

selected: EXIT

Normal end program sftools

Origin ~/trm6/17

Origin ~/trm6/17

Origin ~/trm6/17 d *.mtz

-rw-r--r-- 1 glykos user 205508 Mar 3 17:12 GraphEnt.mtz

-rw-r--r-- 1 glykos user 205508 Mar 3 17:13 ready.mtz

6.9 Words of FFTW’s wisdom

FFTW (the library responsible for all of GraphEnt’s FFTs) has a mechanism for saving to disk information about
how best to perform the FFT for a given array. Because chances are that if you run GraphEnt once, you will prob-
ably run it again with the same grid, GraphEnt will save a file in your HOME directory containing this information.
The name of the file is .FFTW wisdom and I would suggest that you do not delete it after the end of each GraphEnt
run. There is just one thing that you shouldn’t do : do not copy the .FFTW wisdom file between different computers
(even of the same company). For more information why is that so, consult the FFTW manual.

GraphEnt, Version β, Release 1.1, NMG 30

7 The real thing : keyworded input.

The core of GraphEnt understands nothing of AUTO-labelled files, or even worse, .mtz files. What is really
happening, is that when a .mtz file is specified on input, a function is called which prepares an AUTO-labeled
ASCII file (with the name MAXENT FROM MTZ.in which is left behind after the program is finished). But, again,
the core of GraphEnt can not interprete the AUTO flag. So, another function is called which translates the AUTO-
labeled file to a keyworded format that GraphEnt can understand14, like this one :

CELL 94.14900 24.17000 64.31901 90.00000 130.36700 90.00000

SPACEGROUP 1

VERBOSE

GRACYCLES 20

GRATWOWINDOWS

MAP_FORMAT CCP4

DIFF_PATT

PERMUTATION 3 1 2

GRID 128 128 1

REFLECTIONS

-22 0 6 50.32293 2.43270 67.66310 2.33278

-22 0 7 148.78082 3.24875 139.47423 2.21939

-22 0 8 189.90724 3.95280 210.31883 2.26664

...

14 0 3 250.23837 4.61909 307.68475 4.29308

16 0 0 760.94031 15.55367 687.91992 8.57631

16 0 1 350.09189 6.37660 328.42670 3.76660

No matter what the name of your .mtz or AUTO-labelled file is, the input file for the GraphEnt calculation is
called MAXENT AUTO.IN and is left behind after the calculation is finished. Needless to say that you can prepare
or edit such a file and give it to GraphEnt by typing GraphEnt <my file.in> (but, again, you can not specify
resolution limits or projections if you run the program this way).

Although you will probably stick to using one or the other wrapper, there are situations where editing and using
the keyworded input file is neccessary. Examples include the following : increasing the grid size (because you are
getting splitted peaks for example), changing the axes permutation, excluding reflections from the calculation,
selecting which map section to plot, and whether or not to use a grayscale plus contour representation, reducing
the amount of output from the program, etc.

Comments can be incorporated in the file (but not after the REFLection keyword) by starting the comment line
with a !, # or an asterisk (*). Please also note that the keywords are recognised using only the first four characters.
A detailed description of the various keywords follows :

NOTE : The default (expected) reflection structure for GraphEnt is to read h, k, l, |F|, σ(|F |), φ
for each reflection record. This default is modified by the keywords PATT, DIFF and FOM. If none
of these keywords is present, then you are expected to define six (and only six) columns for the
reflection records containing h, k, l, |F |, σ(|F |) and φ, even if what you are calculating is not a
phased synthesis (to make it clear, if you are calculating a Patterson function, you would have to
have a last column containing zeros).

7.1 CELL AND SYMMETRY RELATED KEYWORDS

7.1.1 CELL a b c α β γ

This keyword defines the unit cell dimensions. Six floating point numbers are expected.

7.1.2 GRID nfast nmedium nslow

This keyword sets the number of (integer) divisions along the whole unit cell edges for the fast, medium and slow
axes. Which axis is fast, medium and slow is determined by the PERMutation keyword. To keep the FFT as fast
as possible, GraphEnt will only cooperate if the grid sizes are any of the following :

1, 2, 4, 6, 8, 10,

12, 14, 16, 20, 24, 28,

30, 32, 40, 42, 48, 56,

14In other words, .mtz files are going through two translation stages, and AUTO-labelled files through one.

GraphEnt, Version β, Release 1.1, NMG 31

60, 64, 70, 80, 84, 96,

112, 120, 128, 140, 160, 168,

192, 210, 224, 240, 256, 280,

320, 336, 384, 420, 448, 480,

512, 560, 640, 672, 768, 840,

896, 960, 1024

If you need more than 1024 grid points on any axis, then you are better off finding a program encoding for a more
efficient maximum entropy algorithm (because with GraphEnt you will probably never finish the calculation).

7.1.3 PERMutation fastID mediumID slowID

This keyword defines the axes permutations, ie which axis is the fastest changing, the medium, and the sectioning.
The various axes are identified with the following convention : x is 1, y is 2, z is 3. For example, to define a valid
permutation for a monoclinic space group with b unique, you give PERM 3 1 2. In this case the first argument of
GRID should be the number of divisions of the c axis, followed by the number of divisions along a and, finally, b.
NOTE WELL : Changing the axes permutation without careful thinking is a standard way to inverse the chirality
of your molecule. GraphEnt will NOT stop you from changing enantiomorph.

7.1.4 F000 f

This keyword sets the value for the F000 term. Although GraphEnt will chose a value by default, more often than
not this will not be ideal. The importance of this term for the calculation is discussed analytically in section 8.1
and will not be repeated here. I will just mention that a completely wrong value of F000 is the most common source
of problems with the program.

7.1.5 SPACegroup n

Where n is the spacegroup number of your crystals. Since GraphEnt is doing the calculation in P1, what you give
here is absolutely irrelevant with respect to the actual calculation performed. It is only used to have a correctly
formed map header in the case of the CCP4-related map files.

7.2 GRAPHICS-RELATED KEYWORDS

7.2.1 GRACycles n

The maxent plot will be updated every n iterations. Only applicable if your executable was compiled with graphics
support.

7.2.2 GRAGrayscale

The density will ploted using a combination of grayscale representation and contouring. Nice if you are looking
at protein maps at low resolution. Confusing for ‘peaky’ maps. Only applicable if your executable was compiled
with graphics support.

7.2.3 GRATwowindows

This tells PGPLOT to open a new window in which to plot the maxent map, while keeping the window containing
the conventional map (thus allowing you to compare the maps as you go along the calculation). I can see no reason
for not having two (or more) windows. Only applicable if your executable was compiled with graphics support.

GraphEnt, Version β, Release 1.1, NMG 32

7.2.4 GRAWait

If this keyword is specified, GraphEnt will prompt you to press ENTER every time that the maxent map must be
updated. I bet you will be bored pressing ENTER quite soon. Only applicable if your executable was compiled
with graphics support.

7.2.5 GRASection n

This keyword allows you to specify which section GraphEnt should plot during the calculation. The value defined
is the fractional coordinate (along the sectioning axis, see keyword PERM) of the required section. The default is
the zero level section. Only applicable if your executable was compiled with graphics support.

7.2.6 GRANsections n

This keyword allows you to plot not just one section, but a stack of successive sections, where n is the number
of sections to stack. Note that the program does not plot successive sections one on top of the other : instead,
for every grid point it will find the maximum density on any of the defined sections, and will plot the resulting
(maximum density) map. Only applicable if your executable was compiled with graphics support.

7.2.7 GRAFirst f

This keyword specifies the density level for plotting the first (dotted) contour line. This contour will be plotted
at ρ̄ + fσ(ρ), where ρ̄ is the mean density of the section that is being plotted, and σ(ρ) the corresponding rms
deviation (again, not of the whole map but only of given section). To the best of my knowledge, GraphEnt will
allow you to give f a negative value, thus allowing you to start contouring from below the mean density level
(although I bet that you could crash either GraphEnt or PGPLOT by giving random values to this parameter).
Default is 0.0 (ie, first contour at the mean density).

7.2.8 GRALevel f

This keyword defines the interval (in terms of number of rms deviations) for plotting the contours in the two
graphics windows. Following the first contour (defined by the GRAFirst keyword), contours will be plotted every
f times the rms deviation of the given map section. Default is 0.5 (ie, plot every 0.5 rmsd).

7.2.9 GRAMaxContours n

This keyword defines the maximum number of contour lines that can be drawn in the graphics windows. The
intension is to reduce the workload on the X server when a Patterson function is plotted and the rms deviation of
the current map section is so small that several hundred (or even thousand) contour lines must be drawn for the
origin peak.

7.2.10 VT125

This keyword switches-on PGPLOT’s support for ReGIS graphics, making it possible to see GraphEnt’s graphics
from a whole series of ReGIS-capable VT terminals (eg VT125, VT240, VT241, VT330, VT330+, VT340, ...). To
make things go faster (especially if you are calculating a Patterson function), consider adding a GRAMaxContours
keyword, and increasing the value of GRACycles. You may also want to define the GRAWait keyword. Enjoy (and
don’t let anyone touch your VTs).

7.2.11 ONEDimensional u v u0 v0

This keyword allows you do make 1D x-y plots (instead of 2D contour plots) of the distribution of density along a
specified line of the current section (ie plotting the distribution of density along an arbitrary direction in 3D is not

GraphEnt, Version β, Release 1.1, NMG 33

supported. The line must belong to the current map section). The first two parameters define the direction of the
axis [uv] whose density is to be plotted, where u is measured along the fast-changing axis of the current section,
and v along the medium axis (see keyword PERM, section 7.1.3). The two additional parameters define the starting
point (origin) for the 1D graph in the two-dimensional section (usually 0.0). u0 and v0 should be given in fractional
coordinates (in the crystallographic frame) along the fast- and medium-changing axes. When 1D data are given on
input (in the form of h00, 0k0 or 00l data), GraphEnt will automatically make the decisions for you.

When 1D data are plotted, the program will draw a horizontal dotted line at the mean density, and a series of
tick marks at n × σ(ρ) where σ(ρ) is the rms deviation of the 1D data. Please also note that the program will take
values (from the underlying 2D section) at regularly spaced intervals using a simple 4-point linear interpolation.

7.3 REFLECTION SELECTION AND MODIFICATION.

7.3.1 REJEct

When this keyword is present, GraphEnt will attempt to open a file named REJECT.HKL (case in important) from
the current directory, which contains in its first three columns the indeces of reflections that should be excluded
from the calculation. The following is a valid REJECT.HKL file :

0 0 6 -2.99385 -30.69588

2 0 4 -2.64107 -28.07780

-12 0 8

0 0 11 Everything after the first three numbers is ignored

-4 0 8

7.3.2 EXCLude diff f

When calculating a difference Patterson function, reflections for which the magnitude of the observed difference
is larger than f will be excluded from the calculation.

7.3.3 EXFOm f

Reflections with a figure-of-merit less than f will be excluded from the calculation (treated as if unobserved). This
is yet another of the unsuccessful ad hockeries tried for improving FOM-weighted phased syntheses.

7.3.4 SQRT sigmas f

For testing purposes only : the standard deviations are set to σ(F) = f
√

F .

7.3.5 AVERage sigma f

For testing purposes only : the standard deviations are set to σ(F) = f .

7.3.6 KFOM

For testing purposes only : the input FOMs will be multiplied by f .

7.3.7 MAXFom f

For testing purposes only : all input FOMs greater than f , are set to f .

7.3.8 MINFom f

For testing purposes only : all input FOMs less than f , are set to f .

GraphEnt, Version β, Release 1.1, NMG 34

7.3.9 LIMIt f

This keyword instructs GraphEnt to exclude all reflections with F/σ(F) < f from the calculation. The exclusion
takes place after all processing of the data is finished (ie, taking differences, squaring, etc). It would appear that the
presence of this keyword defeats the purpose of GraphEnt. This is correct with one exception : When calculating
a 3D isomorphous difference Patterson function, and because the phases of FH and FP are not correlated, a small
value for (FPH − FP) (for acentric reflections) will only contain valid information about FH for only half of the
cases. Excluding small differences from this type of calculation is not as harmful as it would be in other cases. My
experience is that giving a LIMIt 1.0 gives almost identical difference Patterson functions, but in a fraction of
the time that the proper (no exclusions) run would take. In some cases adding this keyword makes the difference
between achieving convergence and wasting CPU time.

7.3.10 SCALe f

When this keyword is present, the data (amplitude and its standard deviation) will be multiplied by the given con-
stant f . The multiplication takes place after all processing of the data is finished (ie, taking differences, squaring,
etc). Downscaling the data may be useful when the (extreme) sharpness of the MaxEnt map suggests that the
data may be way off the absolute scale (on the high side, ie they must be downscaled). I think that rescaling the
data at this stage is totaly unjustified. The only good excuse that I can think of, is in the case of an isomorphous
difference Patterson function calculation : if the derivative is non-isomorphous15, then there are good chances that
with increasing resolution, the mean fractional isomorphous difference will increase (instead of decreasing). This
could fool maxent into believing that there are good-strong data even at high resolution. This, of course is correct,
the only problem being that these “strong” high resolution data is noise from our point of view16.

7.4 CALCULUS AND LIMITS-RELATED KEYWORDS.

7.4.1 TARGet f

This keyword defines the value of the χ2 at which the calculation will stop. Normally this is equal to the number
of observations. If you want to stop earlier (a more uniform map), or later (a more peaky map), you can achieve
this either by changing the TARGet, or changing the standard deviations of your measurements. I should warn you,
however, that both procedures are probably wrong (and dangerous), unless you have reasons to believe that the
standard deviations of your measurements are incorrect.

7.4.2 PHASeless f

When this keyword is present and the calculation performed is a FOM-weighted synthesis, then all reflections with
a figure of merit less than f will enter the calculation with only amplitude restraints, but no phase restraints. Use
at your own risk. Note that the iteration is started using the phase angles given to the program (ie. it is not a
random-phase seeded calculation), and that the FOMs given are not ignored but are used to adjust how fast the
corresponding amplitudes will approach convergence.

7.4.3 SWITch f

This is yet another ad hockery closely related to the PHASeless keyword described above. The idea in this case,
is to start the calculation of a FOM-weighted synthesis in the usual way, but when the R-factor reaches the value
f , to switch to a PHASeless calculation for all reflections in the data set. Use at your own risk.

15Assuming that an isomorphous derivative ever existed ...
16These large differences arise from the non-isomorphism and not from the heavy atom structure.

GraphEnt, Version β, Release 1.1, NMG 35

7.4.4 LAMBda f

This sets the initial value of the Lagrange multiplier for the calculation to f . If this keyword is NOT given,
GraphEnt will determine a suitable starting value for it by performing a limited number of iterations at different
starting λ values. Better leave it to the automatic mode.

7.4.5 CONStant lambda

The normal way to perform the calculation is to gradually increase the value of the Lagrange multiplier λ till the
iteration starts diverging. Then the program switches to a constant λ mode, during which the value of the multiplier
can only be decreased (again when the iteration diverges). If you define the keyword CONST, then GraphEnt will
start directly from the constant λ mode.

7.4.6 REMOve origin peak

This keyword is intended for calculation of origin-removed Patterson functions. This is achieved by subtracting
the average F2 from all contributing observations. DO NOT USE THIS KEYWORD : the correct way to do
the calculation is to subtract the local (in thin resolution shells) average of the observations (and not the global
average). If you want an origin-removed Patterson function and you have CCP4 installed, use the program ecalc

to calculate the coefficients.

7.4.7 CHILimit f

All reflections that contribute to the final value of χ2 by more than f times the rmsd contribution of all reflec-
tions, will be written to the file CHIcontributions.dat. Outstandingly large contributions to χ2 may indicate a
problem with the measurement, or a significant underestimation of its standard deviation. The default is 10.

7.5 MISCELLANEOUS KEYWORDS.

7.5.1 VERBose

If this keyword is given, GraphEnt will be writing out quite a lot of info. From release 0.3 onwards, this is not the
default.

7.5.2 TIME n

n is the maximum number of minutes that GraphEnt may use for the calculation. When the time limit is reached,
GraphEnt will write out the current map and die peacefully. Please note that the time is given in minutes and is
absolute, ie it is the actual time passed since the calculation started, and not the CPU time consumed by GraphEnt.
When this keyword is not present, GraphEnt will just keep on going (hopefully not for ever).

7.5.3 PSOUt

When this keyword is present (and if the program was compiled with graphics support), two postscript files will
be produced containing a plot of the contents of the two graphics windows (conventional and GraphEnt map). The
section that will be plotted is the same as the one selected with the GRASection keyword.

7.5.4 TRANsforms

USEFUL ONLY FOR CREATING COVER PICTURES : When this keyword is specified, GraphEnt will produce
two additional ASCII files, with the names MAXENT TRANS.dat and START TRANS.dat. These files contain in-
formation about the coordinates (in reciprocal Å) and amplitudes of the reflections lying on the first section of

GraphEnt, Version β, Release 1.1, NMG 36

the reciprocal lattice, both before and after the calculation. The first section of the reciprocal lattice before the
calculation is simply a section of the input data (without phase and FOM information). The same section after the
calculation corresponds to a section from the modulus of the Fourier transform of the GraphEnt map. An example
of using these files for preparing a plot, was the cover image of the previous version of this document.

7.5.5 SHOW

If this keyword is given, GraphEnt will be writing out (when in VERBose mode) an additional column containing
the value of the entropy of the current map.

7.6 MODE SELECTION AND OUTPUT FORMATS.

7.6.1 MAP format ASCII | CCP4 | NA4

This keyword determines the map format that GraphEnt will use. These are discussed on page 22.

7.6.2 PATTerson

When this keyword is present, GraphEnt expects to read 5 (and only 5) columns for each reflection record, which
will be interpreted as h, k, l, |F|, σ(|F |) for a Patterson function calculation. The data will be squared, the standard
deviations corrected accordingly and the phases set to zero before the calculation is started.

7.6.3 DIFF patterson

When this keyword is present, GraphEnt expects to read 7 (and only 7) columns for each reflection record, which
will be interpreted as h, k, l, |F1|, σ(|F1|), |F2|, σ(|F2|) for a difference Patterson calculation. The difference and
its standard deviation will be calculated, the resulting data will be squared and the phases set to zero before the
calculation is started.

7.6.4 FOM

When this keyword is present, GraphEnt expects to read 7 (and only 7) columns for each reflection record, which
will be interpreted as h, k, l, |F |, σ(|F |), φ, FOM for a m|F| exp(iφ) synthesis.

7.6.5 REFLections

This must be the last keyword before the reflection records begin.

GraphEnt, Version β, Release 1.1, NMG 37

8 Of F000s, SCALes and TARGets

8.1 F000-related things

For the purposes of calculating a conventional Fourier synthesis, both the presence and the value of F000 can safely
be ignored. The reason is, of course, that for the conventional syntheses, F000 is simply a constant term that is
added to the electron density distribution. Changing its value will only change the mean electron density and
nothing more. Given that most macromolecular crystallographers prefer to contour their maps with first contour at
the mean electron density plus something×rmsd, it has become a macromolecular norm to actually prefer setting
the F000 to zero, so that the first contour of the maps is always at something×rmsd.

F000=0 is bound to fail with the maxent maps. Let me illustrate this with an example. The following graphs
show the distribution of density along a line containing the origin peak of a Patterson function projection17, both
for the conventional synthesis and a number of GraphEnt maps calculated with different values for the F000 term
(all scaled to 999.0). I’m probably taking the fun out of it, but I think it is worth mentioning that this is a Harker
line for a single-site platinum derivative : The signal is the major non-origin peak. The other peaks do not arise
from the heavy atom structure.

0 0.2 0.4 0.6 0.8 1

−200

0

200

400

600

800

1000
Conventional synthesis

0 0.2 0.4 0.6 0.8 1

400

600

800

1000
F000 = 38000 e

−

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
F000 = 5000 e

−

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
F000 = 1000 e

−

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
F000 = 100 e

−

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
F000 = 10 e

−

Taking the trends apparent from these graphs to their extreme, you could argue that as the value of F000 tends to
0.0 e−, the peaks in the map will tend towards δ functions. This line of reasoning immediately warns you that by
“adjusting” the value of F000, you can make your map look as sharp as you please although your data (meaning the
data that you have indeed measured) are the same. The point is of course that F000 is NOT an adjustable quantity :

17This is the line v = 0.5 from the example Patt projection.in included with the distribution of GraphEnt.

GraphEnt, Version β, Release 1.1, NMG 38

the sharpness of these maps is not required by the data that you measured, but by the value that you arbitrarily
decided to assign to the F000. What GraphEnt will give you is (or, better still, I hope it is) what is required by the
data (including the assignment of F000). If you tell the program that F000 = 10.0 e−, then GraphEnt will give you
peaks as sharp as needed for the sum of electron density on the unit cell to be 10.0 e−. The result will be that noise
will also appear as sharp peaks, and you are bound to mis-interprete your map18.

The one and only consistent way of doing the calculation is to give F000 its correct value. This sounds very nice,
but in real life things are not so straightforward : what should the F000 value be for an isomorphous difference Pat-
terson calculation using acentric terms (in which case even knowing from before-hand the number of substitution
sites doesn’t help because FPH −FP 6= FH) ? what should the F000 value be for a (2mFo −DFc) exp(iφc) difference
map phased from an incomplete poly-alanine model ? should the F000 include the number of electrons due to bulk
solvent although I only have data from 8Å (and some strong data are missing because they were overloaded) ? etc.
For these reasons, and in order to keep the procedure of running GraphEnt automatic (at least for the first time), I
have resorted to the following unjustified and arbitrary assumptions about your F000s :

• Phased syntheses : Assuming a that your crystals contain 50% 2M ammonium sulphate and 50% protein,
their mean electron density is expected to be around 0.40 e−/Å3. The assignment then is F000 = 0.40Vcell e−,
where Vcell is the volume of your unit cell in Å3. I sincerely hope that for the majority of macromolecular
problems this is an overstimate of the true value (which is no harm. The maps will not be as sharp as
they ought to, but it will not be possible to mis-interprete them). If on the other hand, you are calculating
a Fourier synthesis for the heavy atom structure (in which case the assumed F000 is much too high), you
are better off stoping the calculation after the MAXENT AUTO.IN file has been produced, edit it and add a
reasonable definition for F000.

• Patterson syntheses : In this case, and because I expect most Patterson calculations to involve macromolec-
ular isomorphous differences, I have resorted to F000 = [2max(F)]2, where max(F) is the largest amplitude
observed. This is a rather dubious choice which will almost certainly fail if you are calculating, for example,
a native Patterson function.

A pragmatist’s view : If your GraphEnt maps look unjustifiably sharp, increase F000. If
they look smooth, decrease F000 till the point where you can still “interprete” the features that
you see.

Please note : The value of the F000 is only used for the calculation of the initial uniform
map, but is not used to constrain the sum of densities in the GraphEnt maps that follow. In
other words, do not expect the F000 calculated from the GraphEnt map to be identical with
the value that you defined.

Quoting from Gull & Daniell, (), “... Exact fitting also implies the existence of numerous separate
constraints, resulting mathematically in an unwieldy proliferation of Lagrange multipliers and prevent-
ing calculation of the solution in all but the simplest cases”. In the case of F000 things may not be that
complex (I would think that one additional re-scaling step is all that is required), but given the diffi-
culties with estimating F000 in the case of Patterson and difference Fourier synthesis, I thought I would
better leave F000 unconstrained.

8.2 Connection with the SCALe and TARGet keywords

Continuing with the graphical approach, the following diagrams illustrate the effects of using the SCALe and
TARGet keywords as if they were adjustable parameters (which they should not).

18You can actually see one of the artifacts of having too small a value of F000 in the last two graphs. If you look carefully, you will see that
it is not only the major peak that is beginning to show line splitting, but also the origin peak. The splitting of the origin peak is only indirectly
due to the F000 being too small : as the peaks in the GraphEnt map tend towards δ functions, the amplitudes of the transform of the GraphEnt
map tend to a set of normalised E-values with |E|2 = 1 for all resulution shells. Now, because you are sampling data that go to the infinity
on a finite grid (ie, the grid of your map), the power of the transform that is outside the limits of your finite grid folds back into the limits of
your transform (this is usually called “aliasing”). The most notable result is that some of the phases of the Patterson function coefficients will
become negative, and the origin peak will start developing a hole in the middle.

GraphEnt, Version β, Release 1.1, NMG 39

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
SCALe = 1.0, TARGet = 141

0 0.2 0.4 0.6 0.8 1
400

600

800

1000
SCALe = 0.10, TARGet = 141

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
SCALe = 1.0, TARGet = 1000

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
SCALe = 1.0, TARGet = 20

Examination of these graphs shows that the effect of SCALe is rather similar to changing the F000. Actually,
their effects should be identical, ie giving a SCALe 2.0, F000 50000 should give identical results with SCALE

1.0, F000 25000. The reason for this behaviour is that GraphEnt will NOT apply the scale factor to the F000 term.

With the TARGet keyword things are different. The difference of the two maps above (in terms of their sharp-
ness) has nothing to do with scaling or the F000 term. The argument in this case is that reducing the target χ2 value
is to a good approximation equivalent to dividing the standard deviations of your measurements by a constant
c > 1.0. In that case, GraphEnt will fit your data closer, meaning that the high resolution data (which usually
have the lowest F/σ(F), will now be reproduced more accurately and will contribute more to your map. Having
said that, if the standard deviations were correctly estimated in the first place, you will be fitting noise. Increasing
the target χ2 value has the opposite effect : GraphEnt will now fit your data less closely, and the GraphEnt map
will be more uniform. See page 42 for an example of using the TARGet keyword in the case of macromolecular
anomalous Patterson function calculations.

Take home message : You need data on an absolute scale, with correctly estimated standard
deviations. If you have an estimate of a suitable —for your problem— value for the F000

term, use it (edit the MAXENT AUTO.IN, add a line with the F000 value, re-run with GraphEnt

MAXENT AUTO.IN).

GraphEnt, Version β, Release 1.1, NMG 40

9 Pathology of GraphEnt calculations, and frequent problems

9.1 Slow convergence, or no convergence

For most of the time, this is due to me being lazy (and mathematically unapt) and not coding a more efficient
maxent algorithm. In the rest of the cases, it is either your data, or that the decision made by the program about the
F000 value was completely wrong (see section 8.1). Now, if the problem is the value of F000 being too small, you
should be seeing an unjustifiably sharp map. If that is the case, stop the program, edit the MAXENT AUTO.IN file,
add a line with the F000 keyword (see 7.1.4), and re-run the program with GraphEnt MAXENT AUTO.IN.

If you are calculating a 3D isomorphous difference Patterson function you can improve the convergence prop-
erties (hopefully without loosing much of the signal) by giving LIMIT 1.0 or LIMIT 2.0 in the MAXENT AUTO.IN

file and re-running the program (see discussion in section 7.3.9).

If you are calculating a native Patterson function, see page 42.

You can get problems with slow convergence even when you calculate something as simple as a two-dimensional
projection. To my experience, slow convergence indicates the presence of some signal (to take the extreme view,
if your data are consistent with a uniform map, GraphEnt will stop immediately), but this is not necessarily the
signal you expect, or wish to have19. In other cases, it indicates the presence of outliers in your data (which makes
it difficult to find a solution that satisfies the constraints they impose). This last case is easily identified from the
contributions to χ2 table (and the normal probability plot in the case of difference Patterson functions).

9.2 Wrong symmetry elements in the map

This is probably a problem with the data expansion to P1 : GraphEnt knows nothing about your space group and
only checks for the presence of some axial reflections. If there are data missing from your P1 set, the expected
symmetry elements will not be there.

9.3 When I plot the exported GraphEnt map, it looks different

Maximum entropy maps are always positive, which means that their mean is not zero (as happens with conventional
syntheses in the absence of F000). GraphEnt plots the sections with the first (dashed) contour at the mean, and then
every 0.5 rmsd of the given map section (and not of the whole map).

9.4 The GraphEnt map looks worringly sharp (and noisy)

The most common reason for this is that GraphEnt chose a completely wrong value (on the low side, ie must be
increased) for the F000 term. You can correct this by editing the MAXENT AUTO.IN file, add a line with the F000

keyword (see 7.1.4), and re-executing the program with GraphEnt MAXENT AUTO.IN (see also discussion in 8.1).

Other possible reasons are : (i) Seriously underestimated standard deviations (see keyword TARGet, page 34),
(ii) Completely wrong scaling of data (on the high side, ie you must downscale them, see keyword SCALe, page 34),
(iii) Doing a low resolution run with strong data throughout the resolution range used for the calculation, and,
(iv) Calculating an isomorphous difference Patterson function for a markedly non-isomorphous derivative (see
also page 34).

Case (iii) is one of GraphEnt’s deficiencies : the program should adjust the size of grid depending on the data
quality, instead of using a fixed correspondence between the range of hkl indeces and the grid size that it will
chose. There is a solution however : if your GraphEnt map shows contours that are not smooth (and maybe you
also see peak-splitting), then, edit the MAXENT AUTO.IN file in your current directory, increase the grid size given
in the GRID keyword (see page 30), and re-run the program by giving GraphEnt MAXENT AUTO.IN.

19For example, you may have measured very good quality native and derivative data, but if they are not isomorphous, GraphEnt will be
fitting their (very accurately) measured differences, the only trouble being that the result will appear to be just noise to us.

GraphEnt, Version β, Release 1.1, NMG 41

9.5 The GraphEnt map changes considerably during the calculation

At the very beginning of the calculation (especially of a Patterson function), the GraphEnt map may show a great
deal of peaks, which later on disappear giving a map with essentially only the origin peak. Then new features
start to emerge slowly, which more often than not, remain till the end of the calculation. This is an artifact of how
the program contours the section that is plotted in the graphics window : GraphEnt will always plot with the first
(dashed) contour at the mean, and then every 0.5 rmsd of the given map section (and not of the whole map). At
the very beginning of the calculation, the GraphEnt map is almost uniform, but because the program contours the
plot from the mean and every 0.5 rmsd (however small this may be compared with the mean), the graphics window
will show peaks (which in reality are just slight modulations of an otherwise uniform map). As the calculation
progresses the major features start appearing (which in the case of Patterson functions is the origin peak), and then
as the data are being fitted more closely the finer detail starts building up. I will illustrate these events with a series
of intermediate GraphEnt maps produced during the calculation of a difference Patterson projection. To show
clearly the significance of the mean density, these graphs only show the density along a Harker line (v = 0.5). The
data used for this example have been discussed in section 8.1 :

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
Target = 5900

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
Target = 5000

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
Target = 4000

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
Target = 3000

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
Target = 1000

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
Target = 141

GraphEnt, Version β, Release 1.1, NMG 42

9.6 All my anomalous Pattersons are “consistent with a uniform map”

Why : Assume for a minute that all your reflections have the same F/σ(F) = C. Then, because for the initial
(uniform) map all Fourier coefficients are identically zero (with the exception of F000), the statistic χ2 is given by

χ2 =
∑

h

| Fc,h − Fo,h |2
σ(Fh)2

=
∑

h

| Fo,h |2
σ(Fh)2

=
∑

h

C2 = NC2

where N is the number of observed reflections. Now, the target value for χ2 during the calculation is χ2 = N. If
C < 1.0, ie F/σ(F) < 1.0, the uniform map will satisfy the χ2 constraint and GraphEnt will stop immediately.
Just because GraphEnt stops, does not necessarily mean that there is no signal in the data : for Gaussian noise,
χ2 ≈ N is the expected value of the distribution χ2 ≈ N ±

√

(2N). This means that depending on the data, the
target of the calculation could as well be significantly lower than the value aimed for by GraphEnt. I think it is
worth emphasising this with an example. The following figure compares the conventional (left) and GraphEnt
(right) map at the section v = 1/2 of the 20–3Å anomalous Patterson function for horse heart myoglobin crystals
(dashed contour at the mean, and then every 0.5 rmsd of the whole map). The data were collected with CuKα

radiation and the anomalous signal comes from the iron atom of heme (this is one of the examples distributed with
GraphEnt, file Myoglobin anom Patt no outliers.in).

A normal run of GraphEnt with the whole data set would immediately stop with the “uniformity” message.
Even after rejecting all reflections with F/σ(F) < 0.5, GraphEnt would still refuse to co-operate (for 615 reflec-
tions with F/σ(F) > 0.5, the initial χ2 —for the uniform map— was 502.8). The map shown above could only
be produced after explicitly setting the TARGet χ2-value to 100.0 (by editing the MAXENT AUTO.IN file). As you
see, it probably worth the effort20.

Getting around it : Start GraphEnt the usual way. When the program stops with the “uniformity” message,
edit the MAXENT AUTO.IN and add a line with a new TARGet value (which should be less than the starting χ2

value reported by the program if the VERBose flag is set on, see page 34). Depending on the circumstances, you
could also add a line with LIMIt 0.5 to exclude reflections with F/σ(F) < 0.5 (this should reduce the amount
of computation required for convergence).

9.7 My native Patterson function calculations will take two years of CPU time to com-
plete.

So are mine, I’m afraid. Actually, you may well find that the program will stop much earlier than the two years,
with an error message “Failed to reach convergence ...”. I do not think that there is a native-Patterson-specific bug
in GraphEnt. Rather, it is probably that the data for a native Patterson are usually complete and of high quality. The
higher the data quality, the longer GraphEnt will take to fit the constraints imposed by them (see also quotation on
page 38).

20I should add, however, that I am not convinced that changing the TARGet χ2 is the correct way around. To continue with the example,

even if we take the expected value of χ2 to be χ2 ≈ N − 3
√

(2N) = 509 (ie 3σ away from the mean), the uniform map is still consistent
with the data. The fact that there seems to be some signal in the data when we reduce the TARGet, probably points the way to over-estimated
standard deviations.

GraphEnt, Version β, Release 1.1, NMG 43

9.8 My molecule disappeared from the GraphEnt EM projection map.

Electron microscopy data quite often have a problem with the estimated standard deviations of the amplitudes.
Let me illustrate this with an example. The figure below compares the conventional and GraphEnt maps for a 8Å
potential density projection of a large complex.

It looks as if all low resolution information disappeared from the GraphEnt map, and this is more-or-less what
has indeed have happened. The reason is shown in the next figure. The two graphs show on the same scale the
distribution of log10(F/σ(F)) versus resolution for the EM data (left graph) and of a typical X-ray crystallographic
data set (right graph).

0.18 0.23 0.28 0.33
Reciprocal resolution

0.25

0.75

1.25

1.75

lo
g 10

(F
/s

ig
(F

))

0.3 0.4 0.5 0.6 0.7
0.25

0.75

1.25

1.75

Whereas the X-ray data have a dynamic range extending approximately over two orders of magnitude, the EM
data show a flat distribution with the (strong) low resolution terms having a value of F/σ(F) not much different
from the data in the highest resolution shell. Because I have seen this behaviour with almost all EM data sets that
I have come across, I suspect that the problem is with the data processing programs used by the EM community.

− 1 −

 Note added in proof
 (for CCP4−bound users only)

If you intend to use GraphEnt to calculate FOM−weighted protein density maps,
then it is strongly suggested to use σA coefficients for the calculation, as
follows :

 − Use SIGMAA to obtain the required coefficients. If you use REFMAC you
already have them in the .mtz file written by it.

 − Start the program with ’graphent <my file.mtz>’

 − For a (2Fo−Fc) map, chose (in this order) the columns :
 2FOFCWT, SIGFP, PH2FOFCWT where SIGFP is the standard deviation of
 your native structure factor amplitudes.

 − For a (Fo−Fc) map, chose (in this order) the columns :
 FOFCWT, SIGFP, PHFOFCWT

 − If your .mtz file comes directly from a SIGMAA run, the coefficients
will be : FWT, SIGFP, PHFWT and DELFWT, SIGFP, PHDELFWT.

Please note that depending on how high (or low) the figure of merit is, this
procedure may underestimate the standard deviations of the coefficients. The
result is that the maps may be somewhat sharper than they ought to.

