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“Science, my lad, is made up of mistakes, but they 
are mistakes which it is useful to make, because 

they lead little by little to the truth.” 

   
-Jules Verne, A Journey to the Center of the Earth
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Abstract

Abstract 
 The various secondary structure elements in proteins, are formed by amino acid 
residues that share similar backbone dihedral angle values. Each residue has a limited 
range of φ,ψ angles, due to steric hindrance of the side chain. We can easily depict the 
value range of φ,ψ angles of all residues in 2-dimensional space, as a Ramachandran 
distribution, and distinguish three major, highly-populated regions, that correspond to 
each of the known secondary structure elements. The typical assumption on protein 
structure, is that most of the secondary structure elements are characterised by a specific 
hydrogen bond pattern, and repeating φ,ψ angles.   
 Our research focuses on tracing and describing motifs in protein structure, which 
are formed of consecutive residues that do not have repeating φ,ψ angle values, but two 
distinct φ,ψ values alternating between any two residues. Viewing such motifs in a 
Ramachandran plot, we can see the residues occupying two different regions alternately. 
An example of a hypothetical model is five continuous transitions between the β-sheet and 
αL-helix regions.  
 In order to evaluate this hypothesis, we performed a series of in silico studies in a 
large dataset of protein molecules. We developed a probabilistic algorithm to cull and score 
structures that follow motifs like the one described above, using as data, X-ray solved 
protein structures from the Protein Data Bank. Furthermore, a UPGMA clustering 
algorithm was used to group the potential structures that follow the pattern, and 
characterise them. Our current results show that such motifs occur in proteins a significant 
extent.  
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Περίληψη

Περίληψη 
 Τα διάφορα στοιχεία δευτεροταγούς δοµής στις πρωτεΐνες, σχηµατίζονται από 
αµινοξικά κατάλοιπα µε παρόµοιες τιµές δίεδρων γωνιών (φ,ψ) στην κεντρική τους 
αλυσίδα. Κάθε κατάλοιπο µπορεί να λάβει τιµές γωνιών φ,ψ περιορισµένου εύρους, λόγω 
στερεοχηµικής παρεµπόδισης από την πλευρική αλυσίδα. Μπορούµε έυκολα να 
απεικονίσουµε το εύρος τιµών των γωνιών φ,ψ όλων των αµινοξέων, σε ένα δισδιάστατο 
επίπεδο, γνωστό και ως διάγραµµα Ramachandran. Διακρίνουµε τρεις περιοχές όπου 
εµφανίζονται αµινοξέα µε µεγάλη συχνότητα. Καθεµία από τις περιοχές αυτές αντιστοιχεί 
σε ένα µοτίβο δευτεροταγούς δοµής και αντικατοπτρίζει το επιτρεπτό εύρος τιµών των 
γωνιών φ,ψ. Η γενική θεώρηση επάνω στις δοµές πρωτεϊνών, περιγράφει ότι τα στοιχεία 
δευτεροταγούς δοµής χαρακτηρίζονται από ένα συγκεκριµένο µοτίβο δεσµών υδρογόνου, 
καθώς επίσης και από επαναλαµβανόµενες τιµές φ,ψ.  
 Η έρευνα µας επικεντρώνεται στον εντοπισµό και την περιγραφή δοµικών µοτίβων, 
τα οποία σχηµατίζονται από γειτονικά αµινοξικά κατάλοιπα τα οποία δεν έχουν 
επαναλαµβανόµενες τιµές φ,ψ, αλλά δύο διαφορετικά εύρη τιµών, εναλλασσόµενα, µεταξύ 
δύο οποιωνδήποτε καταλοίπων. Απεικονίζοντας τέτοια µοτίβα σε ένα διάγραµµα 
Ramachandran, βλέπουµε τα κατάλοιπα να καταλαµβάνουν εναλλάξ, δύο διαφορετικές 
περιοχές. Ένα παράδειγµα του υποθετικού µας µοντέλου, είναι ένα µοτίβο πέντε 
καταλοίπων, τα οποία µεταπίπτουν µεταξύ των περιοχών των β-πτυχωτών φύλλων και των 
αριστερόστροφων α-ελίκων.  
 Για την επαλήθευση της υπόθεσης µας, πραγµατοποιήσαµε µία σειρά in silico 
µελετών σε ένα µεγάλο δείγµα πρωτεϊνικών µορίων. Αναπτύξαµε έναν πιθανοτικό 
αλγόριθµο ο οποίος επιλέγει δοµές που πιθανόν ακολουθούν ένα µοτίβο όπως το 
προαναφερθέν, και τις βαθµολογεί ανάλογα µε την πιστοτητά τους σε αυτό. Ο αλγόριθµος 
χρησιµοποιεί ως δεδοµένα αληθινές δοµές, λυµένες µε κρυσταλλογραφία ακτίνων Χ, απο 
την βάση δεδοµένων PDB (Protein Data Bank). Επιπλέον, για την οµαδοποίηση και τον 
ευκολότερο χαρακτηρισµό των δοµών που βρέθηκαν, χρησιµοποιήθηκε ένας UPGMA 
αλγόριθµος οµαδοποίησης. Τα τρέχοντα αποτελέσµατα των υπολογισµών, δείχνουν ότι 
µοτίβα τέτοιου είδους απαντώνται σε πρωτεΐνες, σε σηµαντικό βαθµό. 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Section 1: Introduction

Section 1 
Introduction 
1.1 Proteins: A prologue 
 

 The nature of proteins as the building blocks of 
life has been a major concern to the scientific society, 
and aspects of them regarding structure and function 
are still being unraveled. Several breakthrough 
methods, such as X-ray crystallography and Nuclear 
Magnetic Resonance, have been developed in order to 
approach and reveal the structure of these molecules 
and consequently their functional roles. John 
Kendrew and his myoglobin model in 1958[1] (Figure 
1.1) kickstarted the era of structure solving, and of 
that time, nobody could predict the vast number of 
known structures that would have been available sixty 
years later. One could wonder why is protein structure 
of so much significance, and the answer is that 
structure and function are two interdependent 

characteristics. It is a matter of necessity to study and identify the principal components of 
which proteins are formed, in order to fully understand and interpret the various 
mechanisms carried on by them, such as enzymatic catalysis or cell structure formation. 
 Protein structure can be analysed into four major classes: primary structure or 
amino acid sequence; secondary structure; tertiary, and quaternary structure. Each level of 
this hierarchy is strictly dependent on its subordinate level, with the primary structure 
being the determinant for the final 3-dimensional structure, hence the native, functional 
conformation.  Structure and function are physically linked, and proteins must undergo a 
complex folding procedure, on which their conformation changes and goes through 
multiple transition states, until it reaches the native state. Among the significant number 
of unique solved protein structures, we can identify some common conformational 
patterns which can help us organise and comprehend the architecture of proteins.[2] These 
patterns, or secondary structure elements, can fold further and form the tertiary structure, 
which can be self-contained and functional. Finally, several folded polypeptide chains can 
be combined and form a quaternary structure, which is a multi-subunit protein (see 
Figure 1.2). 
 At the time of discovery of the myoglobin structure, Kendrew was disappointed 
from the complexity and lack of symmetry the molecule seemed to have, however, we now 
understand that this complexity is what makes proteins functional[3]. Despite the fact that 
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Figure 1.1: The 3D model of 
myoglobin as presented by J. Kendrew 
(adapted without permission from J.C. 
Kendrew et al., Nature, 1958)
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tertiary and quaternary structure might seem tangled, one could simplify it in a significant 
extent by observing the elements of lower hierarchy. By studying the secondary structure, 
patterns and periodical occurrences of specific residues can be found, and these 
periodicities are what drew our attention.  

1.2 Secondary structure elements 

 Peptide folding is carried through the packing of the hydrophobic side chains 
towards the centre of the protein molecule, creating a hydrophobic core and a hydrophilic 
outer surface. Something that should be indicated, is that the backbone is highly 
hydrophilic, due to the occurrence of imine groups (NH) and carbonyl groups (C’=O) in 
each peptide group (Figure 1.3), which act as proton donors and proton receptors 

respectively. These groups need to be neutralised by 
forming hydrogen bonds and maintain hydrophobicity 
in the core.  
 The consequence of this, is the formation of  
stable conformational patterns, known as secondary 
structure elements. The most abundant pattern is a 
helical configuration known as the α-helix which is 
characterised by the presence of 3,7 residues per turn, 
in right-handed direction[4]. The second most common 
element is the β-sheet, a pleated surface conformation. 
It is formed of β-strands, which are configurations of 3 
to 10 residues with extended backbone, and has a 
different hydrogen bond pattern than the α-helix[5]. 

These elements are kept stable inside the hydrophobic core and provide a scaffold to the 
molecule[6].  
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Primary QuaternaryTertiarySecondary

Figure 1.2: The hierarchy of protein structure (adapted without permission from Branden & 
Tooze, Introduction to Protein Structure)

Figure 1.3: A trans peptide group (the 
four atoms in the centre and Cσs on 
each side) and the normal distances 
between the atoms (adapted without 
permission from Stryer, Biochemistry)
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 Linus Pauling and Robert Corey first proposed the above-mentioned secondary 
structure elements in 1951, after collecting information about features, such as bond 
distances and angles, derived from the crystal structures of several small molecules. In 
Figure 1.4 we can see the crystal structure of the atoms that form the α-helix and the β-
sheet as well as the hydrogen bonds that keep the structures stable. 

 However, the two elements described above are not the only ones that can be found 
in protein structures. Many conformational patterns, that are either variations of the basic 
two motifs described above, or completely different from them, are parts of the secondary 
structure, and many of them may have significant functionality. Some examples are the  
αL-helix or left-handed α-helix, a rare type of helix; the 310-helix[7] (3 residues and 10 
atoms per turn) and π-helix[8] (4.1 residues per turn) that differ from the α-helix in the 
number of residues per turn; the β-turns, and the random coils. The latter are located 
mainly on the protein surface, they are mostly hydrophilic and often involved in the 
formation of the active site of enzymes and in other crucial functional roles. Although 
random coils seem to be of unsymmetrical and non-periodic structure on first sight, there 
are major insights of potential periodicity in the level of the primary structure. In the next 
sections, the periodical occurrences of residues in coils will be expanded, and described by 
a systematic research in the protein world. 

1.3 φ, ψ dihedral angles 

 In order to strictly define a secondary structure element, we need to comprehend 
the basic parameters that determine the conformation of a peptide. Assuming a dipeptide 
of residues n and n+1, the peptide group contains the Cα and C’=O group of the residue n, 
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Figure 1.4: The α-helix and β-sheet crystal structure (adapted without permission from Essential Cell 
Biology, 2004, Garland Science)

α-helix β-sheet
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as well as the NH group and the Ca atom of the residue n+1[6]. A peptide group is 
uncharged, and forms an inflexible plane, as the C’-N peptide bond cannot rotate, due to 
magnetic resonation with the C’=O bond[4]. Each amino acid residue backbone has two 
degrees of freedom that correspond to the torsion angles of the N-Cα and Cα-C’ bonds 
(Figure 1.5). These dihedral torsion angles are called φ and ψ respectively. Every residue 
has a specific range of φ and ψ angles that can take, due to stereochemical restriction of 
the side chains. The dihedral angles can span from -180o to 180o and we conventionally 
define φ=0ο and ψ=00 when the two bonds on each side of a Cα atom are on the same 
level[2]. The restriction of the angle values is very definitive for the formation of the 
secondary structure, and this explains the residue preferences on the various structure 
patterns. What we can conclude considering the above is that by knowing the two dihedral 
angles of the backbone, we can define the crystal structure of the backbone of a protein. 
Additionally, knowing the torsion angles of the bonds of the side chains (x1,x2...xi), we can 
completely define the structure of the whole molecule. 

1.4 The Ramachandran plot 

 As mentioned before, not all conformations         
of a residue backbone are energetically and 
stereochemically allowed, due to the short contacts 
between the atoms of adjacent residues[9]. In fact, the 
only amino acid that has a firmly broad range of 
allowed φ,ψ angles, is glycine, due to its symmetry as it 
has no side chain. The flexibility of glycine is very 
important, because this allows it to form plenty of 
different conformations. Other amino acids on the 
other hand, contain side chains that cause large steric 
hindrance, so their dihedral angle range is restricted. A 
good example is proline, which has a pyrrolidine side 
chain and this causes it to have a narrow range of 
allowed conformations.   
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Figure 1.5: The planar peptide groups. The φ and ψ dihedral angles are the torsion measure of the N-Cα and 
Cα-C’ bonds respectively (adapted without permission from Nelson & Cox, Lehningher Principles of 
Biochemistry)

β

αL

α

Figure 1.6: A typical Ramachandran 
plot with the favoured regions 
indicated (adapted without 
permission from Nelson & Cox, 
Lehninger Principles of Biochemistry)
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In 1965 G.N. Ramachandran specified all the possible stereochemical conformations of the 
amino acid residues and plotted each one as dots in a 2-dimensional diagram, now known 
as the Ramachandran plot[9, 10]. As seen in Figure 1.6, the Ramachandran plot contains 
distinct regions, that correspond to the allowed φ,ψ angle values of the residues that form 
the various secondary structure elements. The three major regions are the α-helix region in 
the lower left quadrant, the β-sheet region in the upper left quadrant, and the αL-helix 
region in the upper right quadrant. In more detailed Ramachandran plots, we can 
distinguish more secondary structure motifs and variations of the basic ones. For example, 
the broad β-sheet region contains distinct clusters, that correspond to the parallel and 
anti-parallel β-sheets.  
 An interesting exception that modifies the standard Ramachandran plot is the 
occurrence of glycine and proline in a polypeptide chain. These amino acids, as mentioned 
before, have a much different range of φ,ψ values than the other 18 amino acids, so they 
occupy different regions on the plot. 

 Examining a Ramachandran plot like the one in 
Figure 1.6, we cannot easily understand the 
population and the frequency of the secondary 
structure elements, due to the collision of the data 
points on the 2D space. Figure 1.7 shows a 3D 
Ramachandran plot created by S. Hollingsworth and 
P.A. Karplus using real protein X-ray crystallography 
data in resolution <1.2Å[11]. The plot clearly shows 
the high frequency of α-helices and β-sheets in 
proteins, as well as the scarcity of other secondary 
structure elements such as the αL-helix. 
  In this thesis we will use the Ramachandran plot 
as a powerful tool for our studies, and it will be 
analysed furthermore, as it can give useful 
information on protein structure. 

1.5 Linear groups 

 The conventional assumption on secondary structure, defines the secondary 
structure elements mainly by their hydrogen-bond patterns and the repetition of specific 
φ,ψ angle values on each residue. However, structural motifs formed of residues sharing 
similar φ,ψ angles and not following a regular pattern of hydrogen bonding, can be 
classified as secondary structure elements. A good example is the PII (poly-L-proline II) 
motif[12], which is part of the secondary structure, although is does not have a strict 
hydrogen bond pattern. 
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Figure 1.7: A 3D landscape 
Ramachandran plot showing the 
distribution of the secondary structure 
elements (adapted without permission 
from Hollingsworth & Karplus, Biom. 
Con., 2010)
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  To generalise issues on terminology, we could use the term linear groups to describe 
structural motifs characterised by a single φ,ψ-pair repetition[13, 14], not considering the 
hydrogen bonding. The common linear groups are shown in Figure 1.8.   

 Hollingsworth and Karplus in an interesting 
publication (2009) on linear groups, define the shortest 
length of a linear group as three consecutive residues 
with similar φ,ψ angles (±10o). Their survey is based on 
real structures, and they recognise as true linear groups 
conformational patterns residing in three regions on the 
Ramachandran plot: The α-helix region (that contains 
the 310-helix and the π-helix), the β-sheet region, and 
the PII region. The interesting fact is that the αL-helix is 
not classified as linear group, as it does not satisfy the 
requirements of at least three adjacent residues with 
similar φ,ψ pairs[14]. 
 Nevertheless, this introduction to linear groups 
was made in order to comprehend the non-linear 

conformations which is the subject of our research. For this reason, we will persist on the 
classic definition of linear groups, and consider them as conformations of repeating φ,ψ 
pairs. 
  

1.6 Non-linear conformations - (φ,ψ)2-motifs 

 Besides the standard, one-residue periodical conformations, there are structural 
motifs, in which two adjacent residues have distinct φ,ψ pairs. A representative example is 
the reverse turns, three-peptide group (four Cαs) conformations with a hydrogen bond 
between Oi and Ni+3[13]. According to Venkatachalam[15], there are three types of reverse 
turns, I, II and III, and their mirror conformations, I’, II’ and III’.  Figure 1.9 shows the 
conformation of reverse turns of type I and II and the NH…O hydrogen bond.  
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Figure 1.8: The nine common linear 
groups shown on the Ramachandran 
plot (adapted without permission 
from Hollingsworth & Karplus, Port 
Sc, 2009)

Figure 1.9: Conformation of type I (a) and II (b) reverse turns. Cα2 (residue i+1) and Cα3 (residue i+2) are 
the two central Cas. The two central residues have different φ,ψ pairs. (adapted without permission from 
Venkatachalam, Biopolymers, 1968)

(a) (b)



Section 1: Introduction

 Representing reverse turns on a Ramachandran 
plot (Figure 1.10), we see the transition of the residues 
i+1 and i+2 between two distinct regions. Although not 
a linear group, reverse turns are indeed secondary 
structure elements. They are characterised in fact by a      
(φ,ψ)2-motif and are very abundant in proteins. 
 (φ,ψ)2-motifs are conformations formed by two 
similar consecutive φ,ψ-pairs[16]. Hollingsworth et el. 
on a 2013 publication, used real, four-residue 
fragments of protein structures to search for (φ,ψ)2-
motifs, and grouped these motifs according to their 
abundance. A considerable number of motifs on which 
the residues i+1 and i+2 have distinct φ,ψ angle values 
were found, including the reverse turns. These 
conformations are non-linear and are much of 

significance in our research, as the main goal is the identification of structures adopting 
continuous and recurrent (φ,ψ)2-motifs. 

1.7 Our goal 

 Considering the reverse turns and the general broad group of (φ,ψ)2-motifs, we 
raised the question whether there is some type of extended conformation that is formed of 
consecutive repetitions of two or more φ,ψ pairs. In other words, a peptide fragment of 
certain length (e.g. five residues), with  the adjacent residues residing in distinct regions on 
the Ramachandran plot. Figure 1.11 shows a diagram of our hypothetical model. 
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Figure 1.10: The two central residues 
of reverse turns as shown on the 
Ramachandran plot. Type III turns 
reside in the same region which is the 
310-helix region (adapted without 
permission from Schulz, Principles of 
protein structure)

Figure 1.11: The hypothetical model of our research. The five central residues of the peptide fragment make 
continuous transitions between two distinct Ramachandran regions, in this case the β and αL regions.

φ

ψ
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 We algorithmically searched a large dataset of real protein structures, for peptide 
fragments that follow a pattern of transitions between two regions in the Ramachandran 
plot. For example, a peptide of which the first residue is in the β-sheet region, the second 
in the αL-region, the third back in the β-sheet and the pattern continues up to five or more 
residues. Although these two regions are referred as an example, our algorithm is able to 
search for all possible transitions between any two (or more) regions. 
 This structural computational research aims to identify some standard patterns in 
random conformations such as coils, that seem non-periodic in the level of one residue. 
Therefore, taking into account the periodicity found in reverse turns, we thought that two-
residue periodicities may also apply to random coils. The implementation was carried 
through the development of a probabilistic algorithm that uses as input real X-ray 
crystallography data from the Protein Data Bank[17]. The whole procedure and results will 
be thoroughly described in the following sections.  
 Something that must be mentioned, is that we searched for structures not 
containing glycine and proline residues. We did this in order to exclude structures such as 
reverse turns, which firmly contain glycine, and avoid any biased or false positive results. 
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Section 2 
Methods 
2.1 Programming languages 

2.1.1 The C programming language 

 The ANSI C language is a programming language developed by Dennis Ritchie in 
the late 60’s/early 70’s at Bell Labs. It is a general-purpose, medium level language, mainly 
used for structured and linear programming, supporting all the fundamental control-flow 
constructions such as decision making, looping and statement grouping[18]. It was 
originally designed for the development of the UNIX operating system (which is almost 
exclusively used in our research), so it provides a perfect integration with it, in terms of 
functions and commands. Moreover, programs written in C are easily portable in other 
operating systems, as the language itself is, in a large extent, architecture independent.  
 We used C for the implementation of the main algorithm developed for the 
purposes of this research, as it is a straightforward, robust and easy-to-use language, 
perfect for handling large datasets and mathematical procedures. The algorithm does not 
demand complex parallel operations or object-oriented programming, so we chose C as the 
ideal language for our project. 

2.1.2 The Perl programming language 

 Perl is a high-level, multi-purpose programming language developed by Larry Wall 
in 1987. It is interpreted, so it does not demand the use of a compiler, and highly portable. 
As Perl is truly open-source (under GPL licence), there is a vast variety of modules 
available for any purpose, such as BioPerl[19], which is package of great utility in 
bioinformatics.  The fact that Perl is interpreted, makes it rather slow in comparison with 
compiled languages such as C,  especially in mathematical calculations (~60 times slower). 
However, it is of great use in bioinformatics and computational biology, as it supports 
regular expressions.  
 The various ancillary scripts developed for processing our data and results, are all 
written in Perl and take advantage of its high-level built-in functions and regular 
expressions. We prefer to use Perl in our lab for various data processing needs, due to the 
high integration with our software and data, and for the flexibility and easiness of use. 
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2.1.3 The R statistical package 

 R is an open-source programming language and environment used for statistical 
computing and graphics[20]. It is highly capable of handling large datasets and has built-in 
functions for almost any statistical calculation and data mining. Like Perl, it is interpreted, 
and libraries available for free, expand its capabilities in many computational fields, such 
as artificial neural networks (ANNs). 
 We used R for creating and plotting various histograms needed in the research and 
for the clustering of the structures returned by our algorithm.  

2.1.4 Other languages used 

 We mainly work on UNIX systems so we take advantage of Bash scripting and 
languages such as AWK, for task automation and quick data and text processing 
respectively. The source code of all the programs or scripts used, can be found in the 
Appendix. 
   
2.2 Data Preparation 

2.2.1 The PDB and PISCES databases 

 The data used in our research, derive from protein structures solved by X-ray 
crystallography. We collected these structures from the Protein Data Bank or PDB[17], a 
database available online, that contains a large archive of protein structures solved by the 
scientific community. By the time this thesis was written, the PDB contained 128,783 
structures. A screenshot of the user interface of the PDB is shown in Figure 2.1 and an 
example of a PDB protein structure file in Figure 2.2. 
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Figure 2.1: The homepage of the Protein Data Bank. (Available from: http://www.rcsb.org/pdb/home/
home.do)

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
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 Α large and non-redundant sample of proteins needed to be obtained from the PDB 
via file transfer protocol (ftp). A non-redundant PDB dataset is a dataset not containing 
duplicate entries. PDB contains many identical entries with different IDs (four-character 

codes that correspond to each individual 
structure entry, e.g. 2DOV). We wanted to 
exclude these, in order to avoid false results and 
artefacts, such as finding a conformational 
pattern, which is in fact a recurring sequence in 
many identical molecules. In order to do this, a 
list of PDB IDs needed to be created. We created 
this list using the protein sequence culling server 
PISCES [21]. PISCES is a tool that is able to 
produce lists of non-redundant entries from the 
entire PDB according to some criteria defined by 
the user. The criteria used by PISCES are the 
structure quality and the mutual sequence 
identity among the molecules. A screenshot of the 
interface of PISCES is shown on Figure 2.3. The 
criteria we used were:  
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HEADER    EXTRACELLULAR MATRIX                    22-JAN-98   1A3I
TITLE     X-RAY CRYSTALLOGRAPHIC DETERMINATION OF A COLLAGEN-LIKE
TITLE    2 PEPTIDE WITH THE REPEATING SEQUENCE (PRO-PRO-GLY)
...
EXPDTA    X-RAY DIFFRACTION
AUTHOR    R.Z.KRAMER,L.VITAGLIANO,J.BELLA,R.BERISIO,L.MAZZARELLA,
AUTHOR   2 B.BRODSKY,A.ZAGARI,H.M.BERMAN
...
REMARK 350 BIOMOLECULE: 1
REMARK 350 APPLY THE FOLLOWING TO CHAINS: A, B, C
REMARK 350   BIOMT1   1  1.000000  0.000000  0.000000        0.00000
REMARK 350   BIOMT2   1  0.000000  1.000000  0.000000        0.00000
...
SEQRES   1 A    9  PRO PRO GLY PRO PRO GLY PRO PRO GLY
SEQRES   1 B    6  PRO PRO GLY PRO PRO GLY
SEQRES   1 C    6  PRO PRO GLY PRO PRO GLY
...
ATOM      1  N   PRO A   1       8.316  21.206  21.530  1.00 17.44           N
ATOM      2  CA  PRO A   1       7.608  20.729  20.336  1.00 17.44           C
ATOM      3  C   PRO A   1       8.487  20.707  19.092  1.00 17.44           C
ATOM      4  O   PRO A   1       9.466  21.457  19.005  1.00 17.44           O
ATOM      5  CB  PRO A   1       6.460  21.723  20.211  1.00 22.26           C
...
HETATM  130  C   ACY   401       3.682  22.541  11.236  1.00 21.19           C
HETATM  131  O   ACY   401       2.807  23.097  10.553  1.00 21.19           O
HETATM  132  OXT ACY   401       4.306  23.101  12.291  1.00 21.19           O
...

Figure 2.2: A sample from a PDB file (1A3I). (Available from: https://en.wikipedia.org/wiki/
Protein_Data_Bank_(file_format))

Figure 2.3: The PISCES interface 
(available at: http://dunbrack.fccc.edu/
Guoli/PISCES_ChooseInputPage.php)
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•   Resolution  ≤ 3.0Å  
•   80% identity cut-off 

The server returned a list of 29,211 PDB entries. 

2.2.2 ftp scripts 

 The list created by PISCES is a one-column text file containing PDB IDs in capitals.  
Script 1 (list_lowercase.pl) (source code in Appendix) modifies the list, converting in to 
lowercase, so it can be used as input to an ftp script. The modified list was used as input to 
Script 2 (pdb_ftp.pl) which downloads all the entries in the list from the PDB server 
(ftp.wwpdb.org/pub/pdb/data/structures/all/pdb). 27.300 compressed files (.tar.gz) 
were downloaded. The discrepancy of 1911 unique IDs between the PISCES list and the 
downloaded files, is due to the multiple IDs for each polypeptide chain in the list (e.g. 
2D0VA, 2D0VB etc.). 

2.2.3 Extraction of the dihedral angles - PROCHECK 

 In order to search for any structural motif in a dataset of atom coordinates files, we 
needed to calculate all the φ/ψ dihedral angle values of the residues in all the molecules. 
As described in Paragraph 1.3 and Figure 1.5, the φ angle measures the torsion of the 
N-Cα bond and the ψ angle measures the torsion of the Cα-C’ bond. So in order to define 
the φ dihedral angle of a residue in the 3-dimensional space, we need the atom coordinates 
of the carbonyl C’, the Cα, the amide N, and the next carbonyl C’. Respectively for the ψ 
angle, we need the coordinates of the amide N, the carbonyl C’, the Cα and the next amide 
N atoms.  
 All these x,y,z-coordinates are provided from the PDB files and the angles can be 
calculated using structural analysis software. In our case, we used the program 
PROCHECK[22], which is a suite of tools for analysing the stereochemical parameters of a 
given protein molecule. It uses as input a .pdb file and outputs a series of text and 
PostScript files that contain information such as Ramachandran plots, bond lengths and 
main-chain or side-chain properties. PROCHECK can be run in a UNIX terminal as shown 
below: 

 >$ procheck [pdbfile] [chain (blank if all chains)] [resolution]

For example: 

 >$ procheck 2d0v.pdb A 3.0 
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http://ftp.wwpdb.org/pub/pdb/data/structures/all/pdb/


Section 2: Methods

One of the output files has a .rin extension and contains, among others, a list of the all the 
main-chain and side-chain bond angles of all the residues of a specific protein. An example 
of a .rin angle file is shown in Figure 2.4 (φ and ψ columns are indicated): 

As mentioned above, two atoms on each side of a bond are needed to define the torsion 
angle of this bond (4 atoms in total). Thus, we cannot set a value for the φ and ψ angles on 
the residues of the -NH and -COOH termini respectively. PROCHECK assigns a 999.90 
value in the angles of terminal residues or chain breaks. For our calculations we needed to 
run PROCHECK for all the PDB files (all chains, resolution 3.0Å), and extract only the 
specific φ/ψ columns from the .rin output file. Script 3 (angles.pl) runs PROCHECK for a 
file using the same arguments as shown above, deletes all the output files except for 
the .rin file, extracts the φ/ψ angles and writes them in a new file. I.e. angles.pl uses as 
input a PDB file and outputs a φ/ψ angle file with a .ang extension (Figure 2.5). 

The script needed to be run for every PDB file, using Script 4 (run_angles.pl) for the 
automation of the process. The angle files produced were concatenated in one large file. 
The file however contained several occurrences of non-standard amino acid residues, so 
any residue not included in the 20 common, needed to be skipped. This process was 
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...
12AS   22GLU   A     25    -87.58  -40.52
12AS   23ARG   A     26    -75.45  -28.86
12AS   24LEU   A     27   -123.52   00.26
12AS   25GLY   A     28    999.90   44.28
12AS   26LEU   A     29   -104.16  137.59
12AS   27ILE   A     30   -102.19  152.92
12AS   28GLU   A     31    -76.58  134.05
12AS   29VAL   A     32   -124.31  155.11
12AS   30GLN   A     33    -73.82  129.10
12AS   31ALA   A     34    -86.98  137.64
...

PDB ID Residue 
number

ψφResidue 
ID

 Chain

Figure 2.5: Angle file (12AS.ang) for the molecule 12AS after processing the PDB file with angles.pl. 

  φ       ψ
 1ASN A   1 h 999.90 110.76-171.51-166.89 -75.83 999.90 999.90 ...
 2ASP A   2 H -71.15 -29.75 178.71 -68.38 -35.04 999.90 999.90 ...
 3LYS A   3 H -64.11 -40.44 171.36 -55.60-166.66-152.03 147.09 ...   
 4LEU A   4 H -58.99 -41.64 178.87 -79.41 174.72 999.90 999.90 ...
 5ILE A   5 H -56.02 -48.85 179.32 -53.96-157.02 999.90 999.90 ... 
 6GLU A   6 H -64.52 -49.33 176.49 179.63 149.46 -66.39 999.90 ...
 7LEU A   7 H -61.43 -36.35 176.18 -62.51 154.76 999.90 999.90 ...
 8SER A   8 H -61.76 -23.31 174.48  68.51 999.90 999.90 999.90 ...
 9ASN A   9 h -71.93  -4.70 178.60 -58.27 -32.92 999.90 999.90 ...
10SER A  10 t-104.78 126.64 172.67-179.74 999.90 999.90 999.90 ...
...

Figure 2.4: A part of pdb2d0v.rin file produced by PROCHECK. The first two floating point value 
columns contain the φ and ψ angles.
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carried on by Script 5 (unknown_omit.pl) which assigns a 999.90 φ-value in any residue 
with non-standard three letter code (e.g. UNK or SEC). The new dataset was named 
res3.0_noUnk.ang. Moreover, a second data set that excludes glycine and proline residues 
needed to be created. Script 6 (gp_omit.pl), which assigns a 999.90 φ-value in glycines 
and prolines, was used to do this. This dataset was named res3.0_nonUnkGP.ang. Finally, 
the two data sets were processed with Script 7 (input_correction.c) in order to refine 
them and edit some minor format issues (details shown in source code). 
 The dataset we used for the purposes of this thesis was the one not containing 
glycine and proline residues for the reasons explained in Paragraph 1.7. 

2.3 Definition of a Ramachandran cluster 

2.3.1 Fundamentals 

 The main point of the algorithm developed for the purposes of our research relies 
on the search of 5-residue fragments that follow three fundamental rules (see Figure 
1.11): 
  

I. Residues i, i+2, i+4 must reside on a specific Ramachandran region. 
II. Residues i+1, i+3 must reside on another Ramachandran region. 
III.  The two regions must be distinct. 

  
 The method we developed to search for the pattern described, is based on the 
calculation of euclidian distances between two protein residues on the 2-dimensional 
Ramachandran space. These distances are then used in order to figure out whether two 
residues are likely to reside in the same Ramachandran cluster, or in different ones (more 
details on the algorithm are given in the following paragraphs). To do this, we first needed 
to define a Ramachandran region or cluster.  
 A generally admitted definition of a Ramachandran cluster, is a highly populated 
region that contains residues of the same secondary structure (thus similar φ,ψ pairs). 
However, it is difficult to strictly define it, because it is not possible to set clear and binary 
limits of the cluster. However, by using statistics, we are able to interpret fuzzy, 
experimental biological data like X-ray solved structures, and make them human-
comprehensible. 
  Considering each residue as a dot in the 2-dimensional cartesian space, and 
smoothing the φ,ψ values in a reasonable range (e.g. 5o), we can easily notice that the 
residues which populate a certain Ramachandran cluster, tend to converge around a 
maximum value (Figure 1.7). Furthermore, the data scatter around the local maxima 
smoothly, forming a Gaussian-like distribution. A Gaussian or normal distribution is the 
most common type of data distribution and represents the symmetrical convergence of 
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observations around a maximum (mean) value. The  key parameters that define a Gaussian 
distribution of a sample N, are the mean (µ) which is the maximum value, and the 
standard deviation (σ) which measures the scatter of the observations around the around 
the mean.   

• The basic Gaussian function is:  

• The mean (µ) equation is: 

• The standard deviation (σ) equation is: 

Figure 2.6 shows a typical Gaussian distribution 
along with the probability percentage of the 
observations inside the bell curve. We see that the 
68.2% of observations scatter in a range of 1σ 
away from the mean, 27.2% scatter 2σ away from 
the mean and the rest are in a range >2σ away 
from the mean. These percentages correspond to 
the probability of a random observation to be 
within each value range, and we used this 
principle for our calculations.  
 The conclusion derived from the above 

insights, is that we can define a Ramachandran cluster as a Gaussian distribution, with a 
strictly defined mean (µ) and standard deviation (σ). However, our calculations use 
euclidian distances between residues as data, and we need the distribution of the distances 
instead of the residues themselves. Thus, the mean value of the distribution is set to 0,  
which is the minimum possible distance between two residues (the two φ,ψ pairs are 
identical, according to the smoothing rate). Also, only positive values, on the right side of 
the mean make sense. More details on the construction of the Gaussian curve are given in 
the following paragraphs.   
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Figure 2.6: The normal or Gaussian 
distribution, or bell curve, and the 
percentage of the observations in the 
interval

f (x) = 1
σ 2π

e
−(x−µ )2

2σ 2 Equation 2.1

µ =
x∑

N
Equation 2.2

σ =
(x − µ)2∑
Ν

Equation 2.3
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2.3.2 The problem of circular periodicity in dihedral angles 
 

  The process of euclidian distance 
calculation requires the φ,ψ coordinates of two 
residues, and although the procedure might seem 
straightforward, there is an issue that  must be 
considered. Some regions on the Ramachandran 
plot are not limited between the -180o and +180o 

range. For example, the β-sheet region stops at 
the top of the plot and continues on the bottom. 
Apparently, two residues of the same region, may 
seem distant on the typical Ramachandran plot, 
with one located at the top, and the other at the 
bottom. Figure 2.7 shows 9 copies of a 
Ramachandran plot in a grid order. We can 
clearly see the periodicity of the various regions, 
and this is explained by the circular range of the 
dihedral angles (e.g. an angle with 180o value is 
identical with -180o angle).  
 In order to calculate the distance between 
any two residues on the 2-dimensional space, we 
needed to eliminate the problem of periodicity. 
Figure 2.8 summarises the method of solving 
the issue. The euclidian distance d between        
two points a(x1 , y1) and b(x2 , y2) on the 2-
dimensional cartesian space is:  

Considering a grid of 9 Ramachandran plots, with 
one plot in the centre and 8 complementary 
around it, we need to calculate the euclidian 
distance between a residue A and a residue B. 
There are 9 possible distances, between the static 
residue A(φ0 , ψο) in the central plot, and the  
symmetric residues Bi(φi , ψi) in all the 9 plots.  

After calculating them, the minimum distance is the one that makes sense and will be used 
further as data for creating the distribution. Residue A φ,ψ coordinates are (φ0 , ψ0), 
residue B φ,ψ coordinates are (φ1 , ψ1), and knowing that the length of the Ramachandran 
square is 360, the coordinates of all the B symmetric residues will be:  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Figure 2.7: The periodicity of the 
Ramachandran plot regions. 9 identical 
plots shown as a grid.

d = (x2 − x1)
2 + (y2 − y1)

2 Equation 2.4

Figure 2.8: A diagram that summarises 
the method to solve the problem of 
periodicity in the Ramachandran plot. 9 
plots shown as a grid. Red lines represent 
the possible the difference vectors on the 
2D space. The one with the minimum 
measure is the true one.
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• B2(φ1 , ψ1+360) 
• B3(φ1+360 , ψ1+360) 
• B4(φ1+360 , ψ1) 

• B5(φ1+360 , ψ1-360) 
• B6(φ1 , ψ1-360) 
• B7(φ1-360 , ψ1-360) 

• B8(φ1 -360 , ψ1) 
• B9(φ1-360 , ψ1+360) 

Using the Equation 2.4 and replacing the x,y values with the φ,ψ coordinates, we 
calculate the following distances and find the minimum one: 

• d1 = AB1 

• d2 = AB2 
• d3 = AB3 

• d4  = AB4 
• d5 = AB5 
• d6 = AB6 

• d7 = AB7 
• d8 = AB8 
• d9 = AB9 

The method described was used not only for gathering the data to construct a histogram 
and define the Ramachandran cluster, but also on the main algorithm where there is also a 
distance calculation procedure.  

2.3.3 Histogram construction 

 In order to find the distribution that corresponds to the Ramachandran regions, we 
needed to construct a histogram of all the euclidian distances (i.e. difference vectors) 
between two residues i and i+2 (the ones that need to be in the same Ramachandran 
cluster, as defined by the rules of the pattern we search for). For this purpose we developed 
a program that uses as input φ,ψ dihedral angles (res3.0_noUnkGP.ang file in this case) 
and outputs a list of [i - i+2] distances. The program is written in C and the source code is 
available on the Appendix (histogram1-3.c). The algorithm used is based on the distance 
calculation method described in the previous paragraph. Figure 2.9 shows a short 
pipeline of the program: 
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No

BEGIN

Calculate all 
possible 

distances between 
residue i and i+2

Find minimum 
distance and 

write it 

Go to next 
residue

Did 
you reach 
the end?

END

Start with 
first residue 

i

Yes

Is input 
sane?

Yes

No

Figure 2.9: Flow chart of the program histogram1-3.c 
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The distances are written in a file named distances1-3_noUnkGP_hist.dat. A sample of the 
output is shown in Figure 2.10: 

 The next step was the construction of a histogram using as data the distances of the 
above file. The histogram was created using the R statistical package, and is shown in 
Figure 2.11: 

The distribution of the data, as shown on the histogram, is rather interesting, and gives us 
insights to define a Ramachandran cluster. The curve can be analysed, and described as 
the aggregate of three subordinate curves as shown in the circles in Figure 2.11. The curve 
on the left has a bell form and contains the most frequent distances. This fact leads us to 
conclude that this curve corresponds to the distances of residues found in the same 
Ramachandran region. The curve in the middle is the shoulder of the first bell curve and it 
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 12.902238
 11.915625
 25.765066
 32.565891
 25.221869
 37.106285
 15.809918
 12.218562
 13.582341
 15.192897
 19.437786
 22.414783
 28.101343
  8.660682
...

Figure 2.10: Sample of the file containing the residue pair euclidian distances on the 2D Ramachandran space

Figure 2.11: The distances (d) histogram. The circles indicate the three separate curves that form a larger one.
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probably corresponds to distances between residues of a broader Ramachandran cluster, 
most likely the β-sheet region, which contains two distinct sub-regions: the parallel and 
anti-parallel β-sheet. The third curve (in the circle on the right), is most likely to show the 
frequency of distances between residues of clearly distinct clusters as we can notice that is 
has a global maximum in ~180o. The conclusion of all the above is that we can use the 
curve on the left as the one that most accurately represents a cluster on the Ramachandran 
plot. The curve is of Gaussian form, an the next step was to find the Gaussian function that 
fits it. 

2.3.4 Non-linear regression fitting 

To estimate the parameters that best represent the Ramachandran cluster, we needed to fit 
the data in a function, specifically a Gaussian function. With a quick look on the curve of 
the data points in Figure 2.11, we can safely say that the data do not follow a linear 
model, but instead, it is a non-linear aggregate of three bell curves.  
 The method used to fit the mixture of the three distributions is the non-linear 
regression. The basic steps of this method are: 

a. Initialisation, by setting the function we want the data to fit in (chi-by-eye 
method). 

b. Definition of starting values for the parameters of the function. 
c. Alteration of the parameters until the Root Mean Square Error (RMSE) 

minimizes, thus the curve is most accurately fitted in the function.     

Non-linear regression requires many value alterations and computations until the 
standard error minimizes (brute-force method), something a human is not able to do 
quickly. Many computational tools can be used to efficiently carry on this process; we 
chose the R statistical language which has a built-in function (nls) specifically for non-
linear regression. The nls function requires the user to define the fitting function and the 
starting values of the function parameters. A key principle of nls, is that the user has to 
estimate the starting values as accurately as possible, by studying the data curve (large 
deviation of the starting values from the final values will cause the process to crash).  
 The first factor of the Gaussian function is the height of the curve (see Equation 
2.4), and can be simplified, so the function can be written as:  

where µ is the mean, and σ the standard deviation.  
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f (x) = ke
−1(x−µ )2

2σ 2 Equation 2.5
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The mixture of the three Gaussians is a function of the form: 

The mean of the first Gaussian (µ1) is set to 0 for the reasons described in Paragraph 
2.2.2. Studying the histogram we estimated the following starting parameters: 

• k = 100000 
• l = 30000 
• m = 15000 
• µ2 = 50 
• µ3 = 125 
• σ1 = 10 
• σ2 = 10 
• σ3 = 20 

The R script uses as input the histogram data, it fits them in the function using the nls 
function and outputs a summary of the parameters of the function calculated along with a 
plot of the histogram and the fitted function, in superposition. The source code of the R 
script can be found in the Appendix. To optimise the fit we removed the data points on 
the left side of the first peak. Figure 2.12 shows the summary of the parameters of the 
fitted function. The standard deviation (10.22) of the first Gaussian is highlighted. The 
script returned a negative sd because in the function it was squared, and could converge in 
+10.22 as well as -10.22. Standard deviation however is always positive, so we use its 
absolute value. 
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f (x) = ke
−(x−µ1 )

2

2σ1
2

+ le
−(x−µ2 )

2

2σ 2
2

+me
−(x−µ3 )

2

2σ 3
2 Equation 2.6

 Formula: y ~ k * exp(-(x - 0)^2/(2 * s1^2)) + l * exp(-(x - m2)^2/(2 * 
    s2^2)) + m * exp(-(x - m3)^2/(2 * s3^2))

Parameters:
     Estimate Std. Error t value Pr(>|t|)    
k   1.250e+05  7.594e+03  16.456  < 2e-16 ***
l   9.538e+04  1.475e+04   6.465 2.56e-10 ***
m   4.321e+04  3.911e+02 110.487  < 2e-16 ***
m2 -2.908e+01  1.376e+01  -2.113   0.0351 *  
m3  1.640e+02  2.637e-01 622.085  < 2e-16 ***
s1 -1.022e+01  4.165e-01 -24.534  < 2e-16 ***
s2  6.198e+01  4.774e+00  12.982  < 2e-16 ***
s3  2.235e+01  2.693e-01  83.015  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2707 on 466 degrees of freedom

Number of iterations to convergence: 12 
Achieved convergence tolerance: 9.151e-06

Figure 2.12: The summary output of the R script after fitting the histogram curve. The σ of the first 
Gaussian distribution is highlighted in yellow.
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Figure 2.13 shows the plot of the histogram and the fitted curve. 

2.3.5 Clustering parameters 

 The parameters returned by the non-linear regression script can be used to finally 
define the Ramachandran region in the terms of our research methods. We can safely say 
that a Ramachandran region follows a Gaussian distribution with mean=0 and standard 
deviation=10.22. The value of standard deviation is a fundamental part of the main 
algorithm, which is described in the following paragraph. The conclusion after considering 
the above insights, is that a Ramachandran region is a Gaussian distribution with the 
following function: (Equation 2.7): 

2.4 Main algorithm 

2.4.1 Principles  

 The algorithm we developed in the quest for the two-residue periodicity patterns in 
protein structures, relies again on distances on the 2-dimensional Ramachandran space. 
However, when using such tools like euclidian distances, that are not directly structure-
based, but geometry-based, it is difficult to classify the peptide fragments in a binary form. 
In other words, we cannot say that a structure found by this method strictly follows the 
pattern or not. Therefore, we needed to find a method to characterise our results in a    
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Figure 2.13: Plot of the histogram curve (green) and the fitted function curve (red)

Equation 2.6f (x) = 125,000e
− x2

208.8968
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probabilistic way. A widely used, fuzzy logic based method is the scoring of the results 
using the principles of probability theory.  
 Before we dwell into details on probabilities, we need to recall the three rules of the 
pattern we search for, stated in Paragraph 2.2.1. We can summarise these rules in a 
diagram, where the necessary distances are indicated: Δn are the distances between 
residues of the same Ramachandran cluster, and dn the distances between residues of 
distinct clusters (Figure 2.14). 

 Our program uses a simple algorithm to find the pattern. The basic steps of the 
algorithm are stated below:  

1. Calculation of the above mentioned distances in all the possible 5-residue 
fragments -while skipping the chain breaks.  

2. Conversion of the distances to probabilities, using the standard deviation that 
defines the Ramachandran cluster  

3. Calculation of the log-odds of every probability. 
4. Aggregation of the log-odds that correspond to every distance; the log-odds sum 

is the score of the peptide fragment 
5. Sorting of all the results by their score; high-scored fragments have a higher 

probability to match the hypothetical model. 

The second step, which is the conversion of the distances to probabilities, is the most 
important part of the algorithm, and the reason why we needed to define a Ramachandran 
cluster as a Gaussian distribution. We used the error function (erf)[23] for this procedure. 
The error function is the integral of a Gaussian distribution and expresses the probability 
of an observation x. It is defined as: 
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d4
d3

Δ4
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Δ3
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Figure 2.14: A diagram of the two-residue periodicity pattern in a peptide fragment which contains five 
central residues. The two gradient circles represent two different Ramachandran clusters. The continuous 
lines are the distances between the residues of distinct clusters (Δn distances) and the dotted lines are the 
distances between residues of the same cluster (dn distances).

erf (x) = 1
σ 2π

e
−(x−µ )2

2σ 2

−∞
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∫ dx Equation 2.7
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We can also calculate the reverse probability by using the complementary error function 
(erfc) which is defined as: 
  

Consequently, considering a Ramachandran cluster as a normal distribution of distances d, 
with σ=10.22 and µ=0, the error function can convert the distances into probabilities. We 
need to calculate two kinds of probabilities: 
  

• The probability PΔn of two residues to be in the same cluster (distances Δn). This 
means that when the distance between residues i and i+2 increases, the 
probability decreases (distance and probability are inversely proportional). We 
used the erf  for this:  

• The probability Pdn of two residues to be in different clusters. This means that 
when the distance between residues i and i+1 increases, the probability also 
increases (distance and probability are proportional). This is the reverse 
probability so we used erfc: 

 
   

For the 5-residue pattern, we calculated a total of 8 probabilities for each peptide 
fragment. Every probability contributes to the final score, so the higher the aggregate of 
the 8 probabilities, the higher the match to the hypothetical model. However, we found out 
that the aggregate of the probabilities themselves as a score for the results, is not very 
representative; some high scored peptides did not match the pattern, while peptides with 
lower score did. To solve this problem we used the aggregate of the log-odds ratio, instead 
of the probabilities themselves, and the scoring was significantly more representative. The 
log-odds ratio of a probability P, is given by the following equation: 

  

  
 Our program implements all the above principles in a systematic way, for every 
possible peptide fragment, using as input the file containing the dihedral angles. It should 
be noted that the calculation of the distances is carried on by the method described in 
Paragraph 2.2.2. 
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erfc(x) = 1− erf (x) Equation 2.8

PΔn = erf
Δn

2σ 2
⎛
⎝⎜

⎞
⎠⎟

Equation 2.9

Pdn = erfc
dn

2σ 2
⎛
⎝⎜

⎞
⎠⎟ Equation 2.10

logodds(P) = P
1− P

Equation 2.11
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2.4.2 Pipeline 

A schematic summary of the algorithm can be shown in the following pipeline (Figure 
2.14): 
 

The source code of the program (dif_vectors.c) can be found in the Appendix. 
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Figure 2.14: Flow chart of the program dif_vectors.c
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2.5 Structure clustering and overall procedure 

 The output of the program dif_vectors is a text file containing all the possible 5-
residue fragments, scored according to the match on our hypothetical model. Every line of 
the file corresponds to a certain fragment, and contains, beside the score, information such 
as the first and the last residue, the PDB ID of the molecule and the chain. A sample of the 
output file is shown in Figure 2.15: 

 The next step of the procedure is the culling of the high-scored peptide fragments 
and then the classification according to their structure similarity.  We are going to describe 
a protocol for extracting the peptides, and clustering them according to their structure 
similarity. The procedure combines programming, task automation and usage of structure 
analysis software such as Carma[24], Grcarma[25], PyMol[26] and VMD[27]: 

• Carma is a molecular dynamics trajectory analysis program; we used it to create 
artificial trajectories and for cartesian cluster analysis.  

• Grcarma is more user-friendly version of Carma, which supports graphical 
interface.  

• VMD and PyMol are molecular visualisation and graphics programs which we 
used to illustrate the structures we found. PyMol supports graphical rendering 
with Ray Tracing to produce high quality 3D models. 
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...
 -2.2269513468047 2D0S     70LYS  A   70     74TRP  A   74
 -2.4814835273328 2D0S     71ILE  A   71     75VAL  A   75
 -0.1424664302906 2D0S     72VAL  A   72     76LEU  A   76
 -5.4832997065578 2D0S     73ARG  A   73     77THR  A   77
-27.9728959773400 2D0S     74TRP  A   74     78LEU  A   78
 -3.4051897562880 2D0V      2ASP  A    2      6GLU  A    6
 -0.6846187450998 2D0V      3LYS  A    3      7LEU  A    7
 -3.0800667320617 2D0V      4LEU  A    4      8SER  A    8
 -7.3779921939430 2D0V      5ILE  A    5      9ASN  A    9
-51.5885065028282 2D0V      6GLU  A    6     10SER  A   10
 17.5482587940678 2D0V      7LEU  A    7     11ASN  A   11
 -1.7855995844273 2D0V      8SER  A    8     12GLU  A   12
-12.3305597026372 2D0V      9ASN  A    9     13ASN  A   13
-19.0835522155755 2D0V     10SER  A   10     14TRP  A   14
-40.3097017553709 2D0V     11ASN  A   11     15VAL  A   15
 -5.1063778528191 2D0V     12GLU  A   12     16MET  A   16
  7.0104079613309 2D0V     19LYS  A   19     23SER  A   23
  0.5462487411286 2D0V     20ASN  A   20     24ASN  A   24
 49.0366337270417 2D0V     21TYR  A   21     25ASN  A   25
 88.2788064456197 2D0V     22ASP  A   22     26TYR  A   26
  2.1951844095155 2D0V     23SER  A   23     27SER  A   27
...

Figure 2.15: Sample of the probabilities.dat file. The first column contains the log-odds sum score, the 
second is the PDB ID, the third and the sixth columns contain the first and the last residue IDs respectively. 
The fourth and seventh columns contain the chain, and the fifth and eighth columns contain the residue 
numbers respectively.
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 The protocol we used is stated below. All the UNIX commands are presented in 
distinct font: 

1. Reverse sorting of the score file using: 
 
sort -s -n -r -k probabilities.dat > probs_sorted.dat 

2. Production of PDB files for every high scored hit (in this case a threshold of 100 was 
set, so we needed the first 16.000 hits) by doing the following: 
 
head -16000 probs_sorted.dat > top16000.dat  

./pdb_extractor.pl -d -h top16000.dat  

 

pdb_extractor.pl is a Perl script used for culling the structures found by the program 
dif_vectors. It downloads the specific files from the PDB via ftp and extracts only the 
residues of the peptide fragments specified in the score file. The flag -d is for deleting 
the initial PDB files after extracting the fragments, and -h is for suppressing any 
duplicate entries of homopolymeric molecules. The source code can be found in the 
Appendix (Script 9) 

3. 8190 PDB files remained after excluding the duplicates. Some entries have duplicate 
atoms probably due to protein discrete disorder. To remove such entries we can filter 
the PDB files with two Bash scripts, that implement an AWK command: 

• For filtering the molecules that contain a sane number of Ca atoms, we used the 
ca_filter.sh Bash script (source code in the Appendix, Script 10). 

• For filtering the molecules that contain a sane number of backbone atoms (N, 
Ca, C, O) we used the backbone_filter.sh Bash script (source code in the 
Appendix, Script 11)  

      390 files were removed, and 7800 remained. 

4. Having a pure database of potential hits, the next step was to extract the Cαs or the 
backbone atoms from every molecule, to use them for creating an Root Mean Square 
Deviation matrix for clustering. The Root Mean Square Deviation (RMSD) is a way to 
measure the average distance of atomic positions of two peptides in superposition, and 
is defined as: 
R  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where n is the number of pairs of equivalent atoms and di the distance of the atoms of 
the ith pair[28]. The lower the RMSD between two peptides, the higher their structure 
similarity. The RMSD matrix contains the RMSD values between all the frames 
(pseudo-frames in our case) of a trajectory. The matrix can be analysed and the 
structures can be clustered by setting an RMSD cut-off. We chose this method because 
it is directly structure-based (it uses cartesian coordinates) and easy to implement 
using the R statistical package. The extraction of the atoms was carried on with the 
following commands: 
 
grep –no-filename ‘ CA’ * > all_CA.pdb   

 or 
awk ‘{$3==”CA” || $3==”C” || $3==”N” || $3==”O” {print}’ *.pdb 

>> all_backbone.pdb  

5. Validation of the sanity of the files: 
 
ls -l *.pdb | wc -l  

 

The two files are sane if the number returned is dividable by 5 for the Ca file, or by 20 
for the backbone file. Validation in every step is crucial, in order to avoid unexpected 
problems during the whole procedure. 

6. The method we chose for the clustering of the structures, required the construction of a 
fake molecular dynamics trajectory, which contains all the structures found by our 
program. In order to do this, an “END” had to be put in the end of every molecule in the 
global .pdb file (all_CA.pdb or all_backbone.pdb): 
 
awk  ‘{print};  NR%5==0  {print  “END”}’  all_CA.pdb  >  out  (for 
all_CA.pdb) 
or 
awk  ‘{print};  NR%20==0  {print  “END”}’  all_CA.pdb  >  out  (for 
all_backbone.pdb) 
 
There must be an “END” every 5 (or 20) lines, and in the last line. 

7. The large .pdb file looks like a trajectory and contains all the hits in alphabetical order. 
The filtered .pdb files were stored, and a numbered list of them was created. This list 
was used in the late stages of the procedure, in order to assign the structures of the 
trajectory to the initial files containing them. 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8. The trajectory .pdb file was used as input to VMD. The structures were not yet 
superimposed so they could not be visualised. VMD was used to produce a .dcd file for 
the cluster analysis. 

9. The cluster analysis was carried on by the program Carma. Carma requires a .dcd file 
and a .psf file (protein structure file). A pseudo .psf file was created with the program 
pdb2psf (Glykos NM, Script 12, source code in the Appendix) and the atom and 
residue numbers were modified to be 1,2,3 etc. 

10.  An RMSD matrix of the Cα atoms was created using Carma (The input files were 
all_backbone.dcd and all_backbone.psf. Although the above steps described how to 
create a Cα file as well, we used the backbone file in our calculations). For the 7800 
structures of the pseudo-trajectory, we created an 7800x7800 matrix with step of 1 
frame, using the following command: 
 
carma -verbose -cross -step -segid A all_backbone.dcd 

all_backbone.psf  

11. Construction of a hierarchical dendrogram of the structures, using the UPGMA 
algorithm. The clustering was done using R, with an RMSD threshold = 1Å (structures 
with RMSD ≤ 1Å are joined in the same cluster. An R script was used (Script 13, 
source code in the Appendix) as shown below: 
 
Rscript clustering.R | tee LOG  
 
LOG file contains a summary of the clustering procedure, all_clusters.list contains the 
list of clusters found, and a PostScript file contains the dendrogram (RMSD matrix and 
dendrogram can be found in Section 3: Results). 

12. The cluster list was then separated into distinct lists, each one containing one cluster. 
This was done by running lists.sh (Script 14, source code in the Appendix). Every list 
links the frames with the initial structures of the data set. The structures can be 
assigned to the initial pdb files according to the list created in step 7. 

13. The structures were reordered by running reorder.sh (Script 15, source code in the 
Appendix). The script runs Carma to sort the structures of the lists into new .dcd files. 

14. The .dcd file contains non-superimposed structures. To superimpose them we used 
superimpose.sh (Script 16, source code in the Appendix). The script fits the 
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structures using Carma. 

15. Production of .pdb files of superimposed structures for every cluster, using 
final_pdbs.sh (Script 17, source code in the Appendix). The script takes as input 
the .dcd files and runs Carma for every one of them to produce .pdb files. 

16. To create 3-dimensional visualisations of the clusters, we used PyMol, which is capable 
of rendering high-quality textures and 3D models.  

17.  The final step was to check the structures for residue conservation; we did this by 
creating a sequence logo for each cluster of aligned peptides[29]. Sequence logos are 
constructed by letters that correspond the residues of a protein (or nucleotides in a 
DNA/RNA chain). The letters are stacked in each position, and their relative size 
represents their frequency in the cluster. The total height of each stack measures the 
conservation of the residues in this position in bits. For proteins, the bits range 
between 0 and 4. The sequence logos were created using the online tool Weblogo[30]. 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Section 3  
Results 
 Our research returned a significant number of hopeful results, which are presented 
in this section. As stated previously, the clustering procedure included the construction of 
a 7800x7800 RMSD matrix for 7800 candidate 5-residue peptide fragments (RMSD of the 
Cα atoms). The scores of the fragments range from 206.9 (highest score) to 100 (cut-off). 
39 clusters were found by the UPGMA algorithm, using 1.0Å RMSD cut-off.  
 It is generally accepted from empirical observations, that superimposed structures 
with RMSD < 2.0Å have close structure similarity[31]. We chose the low RMSD threshold of 
1.0Å after studying the hierarchical dendrogram constructed by the UPGMA algorithm 
(Figure 3.2). The dendrogram shows a high increase in the number of clusters in RMSD 
values lower than 1.0Å, so we considered this threshold to be optimal for clustering 
peptides of high structure similarity. Before presenting the clusters, we are showing the 
RMSD matrix (Figure 3.1) as well as the hierarchical dendrogram (Figure 3.2). Also 
Table 3.1 summarises the members of all the clusters found: 
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Figure 3.1: The 7800x7800 RMSD matrix for the Cαs of 7800 potential hits returned by the scoring 
algorithm. The colours range from yellow (high RMSD value between two peptides) to blue (low RMSD).
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Figure 3.2: The hierarchical dendrogram of RMSD as created by the R clustering script (UPGMA 
algorithm). The red dotted line indicates the RMSD cut-off we set for the clustering (40 clusters at 1.5Å 
RMSD cut-off).

Peptide fragments

Table 3.1: The population of the clusters along with the percentage of clustered structures in the dataset of 
total 7800 structures. The most populated clusters (≥0,9%) are highlighted in yellow, and will be 
illustrated in the following pages.

Cluster Number of 
structures

% of all hits

21 12 0,15%
22 79 1,01%
23 15 0,19%
24 21 0,27%
25 13 0,17%
26 34 0,43%
27 6 0,08%
28 12 0,15%
29 15 0,19%
30 9 0,12%
31 6 0,08%
32 2 0,03%
33 1 0,01%
34 12 0,15%
35 3 0,04%
36 6 0,08%
37 1 0,01%
38 3 0,04%
39 2 0,03%

Cluster Number of 
structures % of all hits

1 1675 21,47%
2 137 1,75%
3 961 12,32%
4 606 7,76%
5 776 9,94%
6 1411 18,08%
7 1417 18,16%
8 38 0,48%
9 75 0,96%
10 13 0,17%
11 23 0,29%
12 3 0,04%
13 151 1,94%
14 17 0,22%
15 12 0,15%
16 6 0,08%
17 177 2,27%
18 18 0,23%
19 2 0,03%
20 30 0,38%
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 The following images show the 11 most populated clusters (highlighted in yellow in 
Table 3.1) in descending order. 100 backbone structures of each cluster (except 22 and 9) 
are shown as sticks (blue = N atom, red = O atom, grey = C atom), along with their 
Ramachandran plots and the sequence logos. The 3D models were created in PyMol[26]  
and the Ramachandran plots were constructed using the online tool Rampage[32]. The 
sequence logos were created in Weblogo[30]. 
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Cluster 1 (1675 structures)

Cluster 2 (137 structures)
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Cluster 3 (961 structures)

Cluster 4 (606 structures)

Cluster 5 (776 structures)
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Cluster 9 (75 structures)

Cluster 6 (1411 structures)

Cluster 7 (1417 structures)
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Cluster 17 (177 structures)

Cluster 22 (79 structures)

Cluster 13 (151 structures)
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Section 4  
Conclusions and Discussion 
 To conclude, we should review our initial hypothesis in contrast with the insights 
given by the results. Our goal was to search for a 5-residue-long, periodical motif in the 
known protein structures. We performed a series of in silico studies to scan a large sample 
of X-ray diffraction-solved protein molecules. The motif we searched for, is characterised 
by alternating φ,ψ-pairs, between two distinct ranges. We did not specify two strict φ,ψ 
ranges, but we let the clustering algorithm group the high-scored structures according to 
their geometric similarity in the 3-dimensional cartesian space. Therefore, the study was 
not sequence-specific, but secondary structure-specific. 
 These early results presented in the previous section, show the occurrence of 
recurrent two-residue periodical patterns in peptide fragments of five residues. 
Specifically, two dominant motifs are the most abundant (described as seen on a 
Ramachandran plot):  

1. Transitions between the α-helix region and β-sheet region (Figure 4.1) 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Figure 4.1: A representative example of a pattern of transitions between the α-helix and β-sheet regions. 
The image shows the Ramachandran plot and 3D structure of the residues Y444-447 of the molecule with 
PDB ID: 2ZF5. Two residues, one residue on each terminus of the fragment, were added in order to plot the 
5 central residues. The fragment belongs to cluster 7. The Ramachandran plot was created in Rampage and 
the 3D model in PyMol.
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2. Transitions between the αL-helix region and the β-sheet region (Figure 4.2) 

 Although a possible αL-helix - α-helix pattern may occur, this case has not been 
evaluated by our current studies. An clue that might support the existence of such pattern, 
is that residues of some clusters (e.g. 4, 17, 22) populate more than two Ramachandran 
regions. Therefore, the pattern is likely to exist, but to be not clearly distinguishable in the 
graphical representations. For the reason that the current studies do not prove the 
existence of this pattern, right now we consider this as noise, but our future intentions 
include the elimination of it. If we cluster the structures with a lower RMSD threshold, or 
use the backbone atoms instead of the Cαs, we will be able to group peptides of closer 
structure similarity, and reduce the noise in the Ramachandran plots. Another way to do 
this, is to modify the scoring algorithm so it is able to set limits to the φ,ψ ranges, and 
search for patterns between two specific Ramachandran regions (e.g. a program that 
searches only for an αL-α transition pattern). 
 As regards the sequence-specificity in the peptides found, we can study the 
sequence logos of the aligned structures in each cluster. As mentioned before, the 
conservation in a particular position is measured in bits, and the relative height of the 
letters in this position indicates the frequency of the corresponding residues. The standard 
scaling of bits (for proteins) is 0-4, however, the logos we made have a much narrower 
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Figure 4.2: A representative example of a pattern of transitions between the β-sheet and αL-helix regions. 
The image shows the Ramachandran plot and 3D structure of the residues A275-279 of the molecule with 
PDB ID: 2D0V. Two residues, one residue on each terminus of the fragment, were added in order to plot 
the 5 central residues. The fragment belongs to cluster 7. The Ramachandran plot was created in Rampage 
and the 3D model in PyMol.
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range (0-0.7 and 0-1) . Figure 4.3 shows the sequence logo of the first cluster, but with 
the normal scaling: 

We can notice that the height of the letter stacks in all the positions is low, when using 
normal bits scaling. This indicates that the residue conservation is rather insignificant, and 
none of the clusters seem to have a consensus sequence.  
 By studying the relative height of the letters in the logos, we can assess the 
preference of some particular residues in the peptide fragments. Some residues such as 
serine (S), threonine (T), glutamic acid (E), asparagine (N) and aspartic acid (D) seem to 
be preferred in the sequences, especially in the three central positions. This is expected, as  
these residues are common in loops. Nevertheless, we cannot assume that there is a strict 
residue preference, as there is a variety of different residues in all the five positions. The 
conclusion of the above observations is that the peptides which follow the 2-residue 
periodical pattern, do not seem to have a particular sequence specificity, although they are 
highly similar in the level of secondary structure. The question that is raised considering 
this statement, is whether this similarity of structure is translated into a specific functional 
role. To answer this, further research is needed, by studying the gene topology of the 
protein molecules that contain these peptide fragments, something that is indeed included 
in our future work. 
 These first steps we made in assessing the existence of some standard 
conformations in random coils, relying on the knowledge on (φ,ψ)2-motifs, can help us in 
future studies. Our plans (besides the improvement of the algorithm) are the 
characterisation of the 2-residue periodical patterns found, in terms of sequence and 
function. There are some clues that support the hypothesis that these patterns might play a 
functional role. For instance, some observations we made, show potential conservation in 
some structures in Cluster 6. If we add five extra residues on each terminus of the 
fragments, and then superimpose the five central residues, we can distinguish a rather 
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Figure 4.3: The sequence logo of Cluster 1, with the normal scaling of the bits (0-4). The logos of the rest 
of the clusters have a similar form.
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interesting conformation, recurring in the specific cluster: the five central residues that 
follow the αL-β transition pattern take an S shape, and the five C-terminal residues form an 
α-helix. Also, the five N-terminal residues seem to take a random coil conformation. 
Figure 4.4 shows five members of cluster 6 that seem to follow the above mentioned 
pattern:  

 It must be indicated that the above hypothesis is not a product of systematic 
research, but an early observation, carried on loosely. Nevertheless, transferring this 
hypothesis to a new project, on strictly characterising our results, can give us new leads on 
the quest for uncommon secondary structure motifs.  
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Figure 4.4: Cartoon visualisation of five selected members of cluster 6, in superposition (5-central 
residues shown in green colour). N-terminus added residues are shown in shades of blue and C-terminus 
added residues are shown in shades of red. The image was created in PyMol, and was made to show a 
potential structural conservation and functionality of the 2-residue periodical peptide fragment. 

“Science never solves a problem without 
creating ten more.” 

   
-George Bernard Shaw
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Appendix 
Source code 

Script 1: list_lowercase.pl

 1 #!/usr/bin/perl 
 2 
 3 use warnings;
 4 
 5 @ARGV == 1 || die "Usage: p1_scr2.pl [list_path]";
 6 
 7 open (INFILE, "$ARGV[0]") || die "Cannot open file for input: $!\n";
 8 open (OUTFILE, ">$ARGV[0].lst") || die "Cannot open file for output: 
$!\n";
 9 
10 while ($input = <INFILE>){
11 
12         if($input =~ m/^IDs*/){
13                 next;
14         }
15 
16         else{
17                 $pdb_code = lc substr("$input", 0, 4);
18                 print OUTFILE "$pdb_code\n";
19         }
20 }
21 
22 close INFILE;
23 close OUTFILE;
24 
25 exit(0);

Script 2: pdb_ftp.pl 

 1 #!/usr/bin/perl
 2 use warnings;
 3 
 4 use Net::FTP;
 5 
 6 @ARGV == 1 || die "Usage: p1_scr3.pl [list_path]";
 7 
 8 $ftp = Net::FTP->new("ftp.wwpdb.org", Debug => 0) || die "Cannot 
connect to ftp.wwpdb.org: $!\n";
 9 print "Connected!\n";
10 
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11 $ftp->login("john_ree", "randompasswd") || die "Cannot login to 
ftp.wwpdb.org: $!\n";
12 print "You're in mah dawg!\n";
13 
14 my $fetching_directory = "/pub/pdb/data/structures/all/pdb/";
15 
16 $ftp->cwd($fetching_directory);
17 
18 open (INFILE, "$ARGV[0]") || die "Cannot open file for input: $!\n";
19 
20 my $input;
21 my $file_to_transfer;
22 
23 while ($input = <INFILE>){
24 
25         chop $input;
26         $file_to_transfer = "pdb$input.ent.gz";
27         print "Getting file: $file_to_transfer\n";
28         $ftp->get($file_to_transfer) || warn "Couldn't get 
$file_to_transfer, skipped: $!\n";
29 }
30 
31 $ftp->quit;
32 close INFILE;
33 
34 exit(0);

Script 3: angles.pl 

 1 #!/usr/bin/perl 
 2 
 3 use warnings;
 4 
 5                 ## INPUT FILE SANITY CHECK ##
 6 
 7 if (@ARGV == 2){
 8 
 9         $pdbfile = $ARGV[0];
10         if ($pdbfile =~ m/(\d...)([.]...)/){
11                 $pdbcode = "$1";
12                 print "Now processing: $pdbcode\n";
13         }
14         else{
15                 die "Wrong input file: Must be a .pdb or .ent\n";
16         }
17 
18         $resolution = $ARGV[1];
19 }
20 
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21 elsif (@ARGV == 3){
22 
23         $pdbfile = $ARGV[0];
24         if ($pdbfile =~ m/(\d...)([.]...)/){
25                 $pdbcode = "$1";
26                 print "Now processing: $pdbcode\n";
27         }
28         else{
29                 die "Wrong input file: Must be a .pdb or .ent\n";
30         }
31 
32         $chain = $ARGV[1];
33         $resolution = $ARGV[2];
34 }
35 
36 else{
37         die "Usage: prog.pl [pdb_file_path] [chain (leave blank for 
all chains] [resolution]\n";
38 }
39                 ## RUN PROCHECK TO PRODUCE PHI/PSI DATA FILE ##
40 
41 if (@ARGV == 2){
42 
43         system('bash', '-i', '-c', "procheck $pdbfile $resolution >/
dev/null 2>&1");
44 }
45 
46 elsif (@ARGV == 3){
47 
48         system('bash', '-i', '-c', "procheck $pdbfile $chain 
$resolution >/dev/null 2>&1");
49 }
50 
51                 ## DELETE JUNK FILES ##
52 
53 #`mv $pdbcode.pdb a$pdbcode.pdb`;       
54 `mv *.rin temp1.dat`;
55 `rm *$pdbcode*`;
56 #`mv a$pdbcode.pdb $pdbcode.pdb`;
57 `rm fort.27`;
58 `rm *.log`;
59 `rm procheck.prm`;
60 
61                 ## MODIFY PHI/PSI ANGLE FILE ##
62 
63 open (INFILE1, "temp1.dat");
64 open (OUTFILE1, ">$pdbcode.ang");
65 
66 while ($line = <INFILE1>){
67 
68         if($line =~ m/(\d+\w\w\w)/){

- R -48



Appendix

69                 $residue = $&;
70                 $residue =~ s/ //;
71         }
72         else{
73                 next;
74         }
75         $resid = substr($line, 8, 5);
76         $phi = substr($line, 15, 7);
77         $phi =~ s/ //;
78         $psi = substr($line, 22, 7);
79         $psi =~ s/ //;
80 
81         printf OUTFILE1 ("%s\t%7s\t%7s\t%7s\t%7s\n", $pdbcode, 
$residue, $resid, $phi, $psi);
82 }
83 
84 close INFILE1;
85 close OUTFILE1;
86 
87 `rm temp1.dat`;
88 
89 exit(0);

Script 4: run_angles.pl

1 #!/usr/bin/perl 
2 use warnings;
3 
4 @files = <~/Desktop/test_pdb/*.ent>;
5 foreach $file (@files) {
6 
7         system("~/Desktop/ang_test/angles.pl $file 3.0”);
8 }
9 exit(0);

Script 5: unknown_omit.pl

 1 #!/usr/bin/perl -w
 2 
 3 open (INFILE, "$ARGV[0]");
 4 open (OUTFILE, ">no_unknown.ang");
 5 
 6 while ($line = <INFILE>){
 7 
 8                 if ($line !~ m/(\s\d+ALA|ARG|ASN|ASP|ASX|CYS|GLN|GLU|
GLY|GLX|HIS|ILE|LEU|LYS|MET|PHE|SER|THR|TRP|TYR|VAL|PRO)(.........)
(.......)/){
 9                         $substr1 = substr($line, 0, 21);
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10                         $substr2 = " 999.90";
11                         $substr3 = substr($line, 28);
12                         $line = $substr1.$substr2.$substr3;
13                         print OUTFILE  "$line";
14                 }
15                 else{
16                         print OUTFILE "$line";
17                 }
18 
19 }

Script 6: gp_omit.pl

 1 #!/usr/bin/perl -w
 2 
 3 open (INFILE, "$ARGV[0]");
 4 open (OUTFILE, ">no_gp.ang");
 5 
 6 while ($line = <INFILE>){
 7 
 8                 if ($line =~ m/(\s\d+GLY|PRO)(.........)(.......)/){
 9                         $line =~ s/$3/ 999.90/;
10                         print OUTFILE "$line";
11                 }
12                 else{
13                         print OUTFILE "$line";
14                 }
15 
16 }

Script 7: input_correction.c

 1 #include <stdio.h>
 2 #include <math.h>
 3 #include <string.h>
 4 #include <stdlib.h>
 5 
 6 int main(){
 7 
 8         char pdbid1[5], pdbid2[5];
 9         char resnum1[20], resnum2[20];
10         char chain1, chain2;
11         int resid1, resid2;
12         float phi1, psi1, phi2, psi2;
13 
14         scanf("%s %s %c %d %f %f", pdbid1, resnum1, &chain1, &resid1, 
&phi1, &psi1);
15         printf("%s %11s %c %4d %8.2f %8.2f\n", pdbid1, resnum1, 
chain1, resid1, phi1, psi1);
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16         while(scanf("%s %s %c %d %f %f", pdbid2, resnum2, &chain2, 
&resid2, &phi2, &psi2) == 6){
17                 if(strcmp(pdbid1, pdbid2) == 1 && resid2 != resid1+1)
{
18                         printf("%s %11s %c %4d 999.90 %8.2f\n", 
pdbid1, resnum1, chain1, resid1, psi1);
19                         printf("%s %13s %c %5d %10.2f 999.90\n", 
pdbid2, resnum2, chain2, resid2, phi2);
20                 }
21                 else{
22                         printf("%s %11s %c %4d %8.2f %8.2f\n", 
pdbid2, resnum2, chain2, resid2, phi2, psi2);
23                 }
24                 strcpy(pdbid1, pdbid2);
25                 strcpy(resnum1, resnum2);
26                 chain1 = chain2;
27                 resid1 = resid2;
28                 phi1 = phi2;
29                 psi1 = psi2;
30         }
31 }

Script 8: gauss_fit.R

 1 
 2 # Variable and function declarations
 3 
 4 
 5         input.data <- read.table("~/Dropbox/Lab/proj1/R/
distances1-3_noGP.histogram", header = TRUE, sep = "", dec = ".")
 6         x <- input.data$x
 7         y <- input.data$y
 8 
 9 
10         fit.data <- data.frame(x,y)
11 
12         gaussian.formula <- "y ~ 
13                                 k * exp(-(x-0)^2/(2*s1^2)) +
14                                 l * exp(-(x-m2)^2/(2*s2^2)) +
15                                 m * exp(-(x-m3)^2/(2*s3^2))"
16 
17 
18 # Fit
19 
20         fit <- nls(gaussian.formula, data = fit.data, start = 
list(k=100000, l=30000, m=15000, m1=10, m2=50, m3=125, s1=10, s2=10, 
s3=20), trace = FALSE)
21 
22         pdf(file="fit_plot.pdf")
23         plot(x, y, type="l", col="green")
24         lines(x, predict(fit), type="l", col="red")
25         summary(fit)
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Script 9: pdb_extractor.pl 

  1 #!/usr/bin/perl 
  2 
  3 use strict;
  4 use Net::FTP;
  5 
  6 @ARGV == 1 || @ARGV == 2 || @ARGV == 3 || @ARGV == 4 || die 
"\nUsage: pdb_extractor.pl [input_file] [options]\nOptions:\n-d : delete 
initial PDB files after the process\n-c : concatenate hits of the same 
molecule into one PDB file\-h : Skip homopolymer duplicates\n\n";
  7 
  8 my $i;
  9 my $delete = "NO";
 10 my $concatenate = "NO";
 11 my $no_homopolymer = "NO";
 12 my $file_exists;
 13 my $input_file = $ARGV[0];
 14 my $ftp;
 15 my $fetching_directory;
 16 my $line_1;
 17 my $line_2;
 18 my $pdb_id;
 19 my $chain;
 20 my $res1_id;
 21 my $res5_id;
 22 my $nameres1;
 23 my $nameres5;
 24 my $num_of_entries = 0;
 25 my $pdb_entry;
 26 my $dh;
 27 my $indir_name = "pdb_entries";
 28 my $outdir_name = "out_pdb";
 29 my $outfile_name;
 30 
 31 my @dir_contents;
 32 
 33                                 ##Arguments##
 34         for($i=1; $i<=3; $i++){
 35 
 36                 if($ARGV[$i] =~ m/-.*h.*/){
 37 
 38                         if($ARGV[$i] =~ m/c/){
 39 
 40                                 die "That's insane. Goodbye.\n";
 41                         }
 42                         else{
 43                                 $no_homopolymer = "YES";
 44                         }
 45                 }
 46         }
 47         if ($ARGV[1] eq "-d" || $ARGV[2] eq "-d"){
 48 
 49                 $delete = "YES";
 50         }
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 51         elsif ($ARGV[1] eq "-c" || $ARGV[2] eq "-c"){
 52 
 53                 $concatenate = "YES";
 54         }
 55         elsif ($ARGV[1] eq "-dc" || $ARGV[1] eq "-cd"){
 56 
 57                 $concatenate = "YES";
 58                 $delete = "YES";
 59         }
 60 
 61         elsif(@ARGV == 1){
 62         }
 63         else{
 64                 die "\nUsage: pdb_extractor.pl [input_file] 
[options]\nOptions:\n-d : delete initial PDB files after the process\n-c 
: concatenate hits of the same molecule into one PDB file\n\n";
 65         }
 66 
 67                                 ##Establish ftp connection##
 68 
 69         $ftp = Net::FTP->new("ftp.wwpdb.org", Debug => 0) || die 
"Cannot login to ftp server 'ftp.wwpdb.org': $!\n";
 70         print "\nConnection to PDB server succesful!\n";
 71 
 72         $ftp->login("john_ree", "randompasswd") || die "Cannot login 
to server: $!\n";
 73         print "You're in dawg!\n";
 74 
 75         $fetching_directory = "/pub/pdb/data/structures/all/pdb/";
 76 
 77         $ftp->cwd($fetching_directory);
 78 
 79                                 ##Open input file and check sanity##
 80 
 81         open (INFILE_1, "$input_file");
 82 
 83         while($line_1 = <INFILE_1>){
 84 
 85                 if($line_1 !~ m/(\S+)(\s)(\w\w\w\w)(\s+)(\w+)(\s+)
(\w)(\s+)([0-9]+)(\s+)(\w+)(\s+)(\w)(\s+)([0-9]+)/){
 86 
 87                         die "Input file not valid: Must contain 8 
columns. Cheers.\n";
 88                 }
 89 
 90                 else{
 91                         $num_of_entries++;
 92                 }
 93         }
 94         print "$num_of_entries hits will be processed.\n";
 95         seek (INFILE_1, 0, 0);
 96 
 97                                 ##Download and process every file 
listed##
 98 
 99         mkdir("./$indir_name");
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100         mkdir("./$outdir_name");
101 
102 MAIN_LOOP: while($line_1 = <INFILE_1>){
103 
104                 if($line_1 =~ m/(-*\S+)(\s)(\w\w\w\w)(\s+)(\w+)(\s+)
(\w)(\s+)(-*[0-9]+)(\s+)(\w+)(\s+)(\w)(\s+)(-*[0-9]+)/){
105 
106                         if($1 =~ m/inf|nan/){
107 
108                                 next;
109                         }
110 
111                         else{
112 
113                                 $file_exists = "NO";
114                                 $pdb_id = lc($3);
115 
116                                 opendir($dh, $indir_name);              
#check if pdb file exists#
117                                 @dir_contents = readdir($dh);
118                                 foreach $pdb_entry (@dir_contents){
119 
120                                         if ($pdb_entry eq 
"pdb$pdb_id.ent"){
121 
122                                                 $file_exists = 
"YES";
123                                                 last;
124                                         }
125                                 }
126 
127                                 $chain = $7;
128                                 $res1_id = $9;
129                                 $res5_id = $15;
130 
131                                 if ($file_exists eq "NO"){
132 
133                                         print "Downloading and 
processing file: pdb$pdb_id.ent.gz\n";
134 
135                                         $ftp->get 
("pdb$pdb_id.ent.gz") || warn "Couldn't get pdb$pdb_id.ent.gr, skipped: 
$!\n";
136                                         system ("gunzip 
pdb$pdb_id.ent.gz");
137                                         system ("mv 
pdb$pdb_id.ent ./$indir_name");
138                                         $nameres1 = $res1_id;
139                                         $nameres5 = $res5_id;
140                                         $outfile_name = 
"$pdb_id\_$chain$nameres1-$chain$nameres5.pdb";
141                                         open (OUTFILE, ">./
$outdir_name/$outfile_name");
142                                 }
143 
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144                                 elsif ($file_exists eq "YES" && 
$concatenate eq "YES"){         #to concatenate in single file#
145 
146                                         opendir($dh, $outdir_name);
147                                         @dir_contents = 
readdir($dh);
148                                         foreach $pdb_entry 
(@dir_contents){
149 
150                                                 if ($pdb_entry =~ m/
$pdb_id/){
151 
152                                                         close 
OUTFILE;
153                                                         open 
(OUTFILE, ">>$outdir_name/$pdb_entry");
154                                                         last;
155                                                 }
156                                         }
157                                 }
158                                 elsif ($file_exists eq "YES" && 
$concatenate eq "NO"){
159 
160                                         if($no_homopolymer eq "YES")
{
161 
162                                                 opendir($dh, 
$outdir_name);
163                                                 @dir_contents = 
readdir($dh);
164                                                 foreach $pdb_entry 
(@dir_contents){
165 
166                                                         if 
($pdb_entry =~ m/$pdb_id.+$res1_id/){
167                                                                 
$pdb_id = uc($pdb_id);
168                                                                 
print "Skipped homopolymer in entry $pdb_id\n";
169                                                                 next 
MAIN_LOOP;
170                                                         }
171                                                 }
172                                         }
173                                         $nameres1 = $res1_id;
174                                         $nameres5 = $res5_id;
175                                         $outfile_name = 
"$pdb_id\_$chain$nameres1-$chain$nameres5.pdb";
176                                         open (OUTFILE, ">./
$outdir_name/$outfile_name");
177                                 }
178 
179                                 open (INFILE_2, "./$indir_name/
pdb$pdb_id.ent");
180 
181                                 while ($line_2 = <INFILE_2>){
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182 
183 
184                                         if( $line_2 =~ m/(^ATOM)\s+
(\w+)\s+(\w+)\s+(\w+)\s+(\w)\s+([0-9]+)/ ){
185 
186                                                 if( $5 eq $chain && 
$6 >= $res1_id && $6 <= $res5_id ){
187 
188                                                         print 
OUTFILE "$line_2";
189                                                 }
190                                         }
191                                 }
192                                 close INFILE_2;
193                                 close OUTFILE;
194 
195                                 if( $file_exists eq "YES" && 
$concatenate eq "YES" ){
196 
197                                         system("mv ./$outdir_name/
$pdb_id* ./$outdir_name/temp");
198                                         system("sort -u ./
$outdir_name/temp > ./$outdir_name/$pdb_id\_all.pdb");
199                                         system("rm ./$outdir_name/
temp");
200                                 }
201                         }
202                 }
203         }
204         close INFILE_1;
205 
206         if ($delete eq "YES"){
207 
208                 system("rm -rf $indir_name");
209         }
210 exit();
 
Script 10: ca_filter.sh 

 1 #!/bin/bash
 2 
 3 for f in *.pdb
 4 do
 5 awk ‘BEGIN{a=0} if($3==”CA”){a++} END{if(a!=5) print 
FILENAME}’ $f > to_delete.list
 6 done
 7 
 8 for a in $(<to_delete.list)
 9 do
10 rm $a
11 done 
 

- R -56



Appendix

Script 11: backbone_filter.sh 

 1 #!/bin/bash
 2 
 3 for f in *.pdb
 4 do
 5 awk ‘BEGIN{a=0} if($3==”CA” || $3==”C” || $3==”N” || $3==”O”)
{a++} END if(a!=20){print FILENAME}’ $f >> to_delete.list
 6 
 7 done
 8  
 9 for a in $(<to_delete.list)
10 do
11 rm $a
12 done

Script 12: pdb2psf

 1 #!/usr/bin/perl -w
 2 
 3 #
 4 # Open input-output files
 5 #
 6 if ( @ARGV == 1 )
 7   {
 8     if ( $ARGV[0] =~ /(\w+)\.(p|P)(d|D)(b|B)/ )
 9       {
10         $outname = $1 . ".psf";
11         open( IN , $ARGV[0] ) or die "Can not open input file\n";
12         open( OUT, ">$outname" ) or die "Can not open output file\n";
13       }
14     else
15       {
16         print "Usage: pdb2psf in.pdb out.psf\n";
17         exit;
18       }
19   }
20 elsif ( @ARGV == 2 )
21   {
22         open( IN , $ARGV[0] ) or die "Can not open input file\n";
23         open( OUT, ">$ARGV[1]" ) or die "Can not open output file\n";
24   }
25 else
26   {
27     print "Usage: pdb2psf in.pdb out.psf\n";
28     exit;
29   }
30 
31 print OUT "PSF\n\n";
32 print OUT "       2 !NTITLE\n";
33 print OUT " REMARKS This is a _pseudo_ PSF file for sole use with the 
program carma.\n";
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34 print OUT " REMARKS It will not work with any other PSF-reading 
program.\n\n";
35 
36 $nof_atoms = 0;
37 while ( $line = <IN> )
38 {
39   if ( $line =~ /^ATOM\s*(\d*)\s*(\w*)\s*(\w*).(.)\s*(\d*)/ )
40     {
41       $nof_atoms++;
42     }
43   elsif ( $line =~ /^HETATM\s*(\d*)\s*(\w*)\s*(\w*).(.)\s*(\d*)/ )
44     {
45       $nof_atoms++;
46     }
47 }
48 
49 printf OUT "%8d !NATOM\n", $nof_atoms;
50 
51 print "Found $nof_atoms atoms. Writing ...\n";
52 
53 close( IN );
54 open( IN , $ARGV[0] );
55 
56 while ( $line = <IN> )
57 {
58   if ( $line =~ /^ATOM\s*(\d*)\s*(\w*)\s*(\w*).(.)\s*(\d*)/ )
59     {
60       printf OUT "%8d %1s%5d    %-5s%-5sDUMMY  0.000000        0.0000           
0\n", $1, $4, $5, $3, $2;
61     }
62   elsif ( $line =~ /^HETATM\s*(\d*)\s*(\w*)\s*(\w*).(.)\s*(\d*)/ )
63     {
64       printf OUT "%8d %1s%5d    %-5s%-5sDUMMY  0.000000        0.0000           
0\n", $1, $4, $5, $3, $2;
65     }
66 
67 }
68 

Script 13: clustering.R 
 1 A <- matrix(scan("all_backbone.RMSD.matrix", n=7800*7800), 7800, 
7800, byrow = TRUE)
 2 
 3 hc<-hclust( as.dist(A), method="average")
 4 postscript()
 5 plot(hc)
 6 dev.off()
 7 cutree(hc, h=1)
 8 
 9 clusters<-cutree(hc, h=1)
10 a<-as.data.frame(clusters)
11 names(a) <- NULL
12
13 write.table(a, file = "all_clusters.list", sep = " ", quote = FALSE)
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Script 14: lists.sh 

1 #!/bin/bash
2 
3 mkdir cluster_lists
4 
5 for i in `seq 1 39` #change me depending on the number of clusters
6 do
7         awk -v c="$i" '$2 == c {print $1}' all_clusters.list > 
cluster_lists/cluster$i.list
8 done

Script 15: reorder.sh 

 1 #!/bin/bash
 2 
 3 mkdir reordered_clusters
 4 for i in `seq 1 39` #change me depending on the number of clusters
 5 do
 6         IF1=cluster_lists/cluster$i.list
 7         OF1=reordered_clusters/cluster$i.dcd
 8         carma -sort $IF1 ../all_backbone.dcd
 9         mv carma.reordered.dcd $OF1
10 done

Script 16: superimpose.sh

 1 #!/bin/bash
 2 
 3 for i in `seq 1 39` #change me depending on the number of clusters
 4 do
 5         IF=./reordered_clusters/cluster$i.dcd
 6         OF=./reordered_clusters/cluster$i.fitted.dcd
 7         carma -v -fit -atmid ALLID $IF ../all_backbone.psf
 8         mv carma.fitted.dcd $OF
 9         rm $IF
10 done

Script 17: final_pdbs.sh
 1 #!/bin/bash
 2 
 3 mkdir final_pdbs
 4 for i in `seq 1 39` #change me depending on the number of clusters
 5 do
 6         IF_DCD=./reordered_clusters/cluster$i.fitted.dcd
 7         IF_PSF=./all_backbone.psf
 8 
 9         carma -v -pdb -atmid ALLID $IF_DCD $IF_PSF
10         cat cluster*fitted*.pdb > ./final_pdbs/cluster$i.pdb
11         rm cluster*fitted*.pdb
12 done
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Distances histogram construction program: histogram1-3.c
  
  1 /****Plot histogram.dat using NMG's 'plot' ('>$ plot -h < 
histogram.dat' or '>$ plot -hs < histogram.dat' to 
  2      produce data file along with image)****/
  3 
  4 #include <stdio.h>
  5 #include <math.h>
  6 #include <stdlib.h>
  7 
  8 int main(int argc, char *argv[])
  9 {
 10 
 11         FILE *fp;
 12         FILE *ofp;
 13 
 14         char line[200];
 15         char pdbid[4];
 16         char residue[10];
 17         char chain;
 18         int resid;
 19         float d[9];
 20         float dmin;
 21         float phi, psi;
 22         float phi1, phi2, phi3;
 23         float psi1, psi2, psi3;
 24         float x0, x1;
 25         float y0, y1;
 26         int i;
 27 
 28 
 29 
 30                 /******Argument sanity check******/
 31 
 32         if (argc != 2){
 33 
 34                 printf ("Usage: histogram [angle_file_name]\n");
 35                 exit(1);
 36         }
 37 
 38                 /******Open file and check if it is correct******/
 39 
 40         fp = fopen (argv[1], "r");
 41         puts ("\nChecking file...");
 42 
 43         while (fgets(line, sizeof(line), fp) != NULL){
 44 
 45                 if(sscanf(line, "%s %s %c %d %f %f", pdbid, residue, 
&chain, &resid, &phi, &psi) != 6){
 46 
 47                         puts("Error: Wrong input file format. It 
must contain four columns");
 48                         exit(1);

- R -60



Appendix

 49                 }
 50                 sscanf(line, "%s %s %c %d %f %f", pdbid, residue, 
&chain, &resid, &phi, &psi);
 51                 if(phi == 180.00 || psi == 180.00){
 52 
 53                         puts("Error: Angle value +180.00 found. 
Replace with -180.00 and re-run.");
 54                         exit(1);
 55                 }
 56         }
 57 
 58                 /******Calculating distances for histogram 
dataset******/
 59 
 60         puts ("Data is good! Passing dataset to calculate distances 
for histogram..");
 61         rewind(fp);
 62 
 63         ofp = fopen ("histogram1-3.dat", "w");
 64 
 65         fscanf(fp, "%s %s %c %d %f %f", pdbid, residue, &chain, 
&resid, &phi1, &psi1);
 66         if (phi1 > 180.0 || psi1 > 180.0){
 67                 fscanf(fp, "%s %s %c %d %f %f", pdbid, residue, 
&chain, &resid, &phi1, &psi1);
 68         }
 69         fscanf(fp, "%s %s %c %d %f %f", pdbid, residue, &chain, 
&resid, &phi2, &psi2);
 70 
 71         while(fscanf(fp, "%s %s %c %d %f %f", pdbid, residue, 
&chain, &resid, &phi3, &psi3) == 6){
 72 
 73                 if(phi1 > 180.00 || psi1 > 180.00 || phi2 > 180.00 
|| psi2 > 180.00 || phi3 > 180.00 || psi3 > 180.00){
 74 
 75                         phi1 = phi2;
 76                         psi1 = psi2;
 77 
 78                         phi2 = phi3;
 79                         psi2 = psi3;
 80                         continue;
 81                 }
 82 
 83                 else{
 84 
 85                         x0 = phi1;
 86                         y0 = psi1;
 87 
 88                         /* Calculate all possible distances between 
residue #1 and all symmetrics to residue #3*/
 89                         x1 = phi3;
 90                         y1 = psi3;
 91                                 d[0] = sqrt( pow((x1-x0), 2) + 
pow((y1-y0), 2));
 92 
 93                         x1 = phi3;
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 94                         y1 = psi3 + 360;
 95                                 d[1] = sqrt( pow((x1-x0), 2) + 
pow((y1-y0), 2));
 96 
 97                         x1 = phi3 + 360;
 98                         y1 = psi3 + 360;
 99                                 d[2] = sqrt( pow((x1-x0), 2) + 
pow((y1-y0), 2));
100 
101                         x1 = phi3 + 360;
102                         y1 = psi3;
103                                 d[3] = sqrt( pow((x1-x0), 2) + 
pow((y1-y0), 2));
104 
105                         x1 = phi3 + 360;
106                         y1 = psi3 - 360;
107                                 d[4] = sqrt( pow((x1-x0), 2) + 
pow((y1-y0), 2));
108 
109                         x1 = phi3;
110                         y1 = psi3 - 360;
111                                 d[5] = sqrt( pow((x1-x0), 2) + 
pow((y1-y0), 2));
112 
113                         x1 = phi3 - 360;
114                         y1 = psi3 - 360;
115                                 d[6] = sqrt( pow((x1-x0), 2) + 
pow((y1-y0), 2));
116 
117                         x1 = phi3 - 360;
118                         y1 = psi3;
119                                 d[7] = sqrt( pow((x1-x0), 2) + 
pow((y1-y0), 2));
120 
121                         x1 = phi3 - 360;
122                         y1 = psi3 + 360;
123                                 d[8] = sqrt( pow((x1-x0), 2) + 
pow((y1-y0), 2));
124 
125                         /*Find minimum distance in distance array*/
126 
127                         dmin = 9999;
128                         for(i=0; i<=8; i++){
129 
130                                 if(d[i] < dmin){
131                                         dmin = d[i];
132                                 }
133                         }
134 
135 
136                         fprintf(ofp, "%10.6f\n", dmin);
137 
138                         phi1 = phi2;
139                         psi1 = psi2;
140 
141                         phi2 = phi3;
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142                         psi2 = psi3;
143 
144                 }
145         }
146         fclose(ofp);
147         fclose(fp);
148 }

Main program: dif_vectors_5residues.c  
 
  1 #include <stdio.h>
  2 #include <math.h>
  3 #include <stdlib.h>
  4 #include <string.h>
  5 
  6 #define SD 10.22L
  7 #define LM_SQRT2 1.4142135623730950488016887242096981L
  8 
  9         /********************************/
 10         /*                              */
 11         /*      Variable Declarations   */
 12         /*                              */
 13         /********************************/
 14 
 15 double min_distance(float phi1, float psi1, float phi2, float psi2);
 16 long double probability(double i);
 17 
 18 int main(int argc, char *argv[])
 19 {
 20 
 21         FILE *fp;
 22         FILE *ofp;
 23 
 24         char line[200];
 25         char pdbcode[5];
 26         char chain;
 27         int resid, resid1, resid2, resid3, resid4, resid5;
 28         char residue[10], residue1[10], residue2[10], residue3[10], 
residue4[10], residue5[10];
 29         float phi, psi;
 30         float phi1, phi2, phi3, phi4, phi5;
 31         float psi1, psi2, psi3, psi4, psi5;
 32         double d1, d2, d3, d4;
 33         double s1, s2, s3, s4;
 34         //double global_min_distance = 999.0;
 35         long double prob_d1, prob_d2, prob_d3, prob_d4, prob_s1, 
prob_s2, prob_s3, prob_s4;
 36         long double logodd_d1, logodd_d2, logodd_d3, logodd_d4;
 37         long double logodd_s1, logodd_s2, logodd_s3, logodd_s4;
 38         long double logodd_sum;
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 39 
 40 
 41 
 42         /********************************/
 43         /*                              */
 44         /*      Argument sanity check   */
 45         /*                              */
 46         /********************************/
 47 
 48 
 49         if (argc != 2){
 50 
 51                 printf ("Usage: dif_vectors [angle_file_name]\n");
 52                 exit(1);
 53         }
 54 
 55 
 56         /********************************/
 57         /*                              */
 58         /*      Open file and check if  */
 59         /*      if it is correct        */
 60         /*                              */
 61         /********************************/
 62 
 63 
 64         fp = fopen (argv[1], "r");
 65         puts ("\nChecking file...");
 66 
 67         while (fgets(line, sizeof(line), fp) != NULL){
 68 
 69                 if(sscanf(line, "%s %s %c %d %f %f", pdbcode, 
residue, &chain, &resid, &phi, &psi) != 6){
 70 
 71                         puts("Error: Wrong input file format. It 
must contain six columns");
 72                         exit(1);
 73                 }
 74                 sscanf(line, "%s %s %c %d %f %f", pdbcode, residue, 
&chain, &resid, &phi, &psi);
 75                 if(phi == 180.00 || psi == 180.00){
 76 
 77                         puts("Error: Angle value +180.00 found. 
Replace with -180.00 and re-run.");
 78                         exit(1);
 79                 }
 80         }
 81 
 82 
 83         /********************************/
 84         /*                              */
 85         /*      Euclidian distance,     */
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 86         /*      probability, and        */
 87         /*      logodd calculation      */
 88         /*                              */
 89         /********************************/
 90 
 91         puts ("Data is good! Passing dataset to calculate distances 
and probabilities...");
 92         rewind(fp);
 93         ofp = fopen("probabilities.dat", "w");
 94 
 95         if(ofp == NULL) {
 96 
 97                 printf("Error: Cannot open output file\n");
 98                 exit(1);
 99         }
100 
101                 // Read phi, psi angle values for 5 consecutive 
residues at a time
102 
103         fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue1, &chain, 
&resid1, &phi1, &psi1);
104         if (phi1 > 180.0 || psi1 > 180.0){
105                 fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue1, 
&chain, &resid1, &phi1, &psi1);
106         }
107 
108         fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue2, &chain, 
&resid2, &phi2, &psi2);
109         fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue3, &chain, 
&resid3, &phi3, &psi3);
110         fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue4, &chain, 
&resid4, &phi4, &psi4);
111 
112         while(fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue5, 
&chain, &resid5, &phi5, &psi5) == 6){
113 
114                 // Skip terminal residues, and everything that has 
999.90 angle value
115 
116                 if(phi1 > 180.00 || psi1 > 180.00 || phi2 > 180.00 
|| psi2 > 180.00 || phi3 > 180.00 || psi3 > 180.00 || phi4 > 180.00 || 
psi4 > 180.00 || phi5 > 180.00 || psi5 > 180.00){
117                         phi1 = phi2;
118                         psi1 = psi2;
119 
120                         phi2 = phi3;
121                         psi2 = psi3;
122 
123                         phi3 = phi4;
124                         psi3 = psi4;
125 
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126                         phi4 = phi5;
127                         psi4 = psi5;
128 
129                         strcpy(residue1, residue2);
130                         strcpy(residue2, residue3);
131                         strcpy(residue3, residue4);
132                         strcpy(residue4, residue5);
133 
134                         resid1 = resid2;
135                         resid2 = resid3;
136                         resid3 = resid4;
137                         resid4 = resid5;
138 
139                         continue;
140                 }
141 
142                 else{
143 
144                         // Calculate i - i+1 euclidian distances in 
2D space
145 
146                         s1 = min_distance(phi1, psi1, phi2, psi2);              
//Calculate minimum distance using the min_distance() function
147                                 prob_s1 = probability(s1);                      
//Calculate erfc using the probability() funcion
148                                 logodd_s1 = log1pl(-prob_s1)-
logl(prob_s1);     //Calculate the reverse probability log-odds 
(probability of two consecutive residues to be in different regions of 
the Ramachandran distribution plot
149 
150                         s2 = min_distance(phi2, psi2, phi3, psi3);
151                                 prob_s2 = probability(s2);
152                                 logodd_s2 = log1pl(-prob_s2)-
logl(prob_s2);
153 
154                         s3 = min_distance(phi3, psi3, phi4, psi4);
155                                 prob_s3 = probability(s3);
156                                 logodd_s3 = log1pl(-prob_s3)-
logl(prob_s3);
157 
158                         s4 = min_distance(phi4, psi4, phi5, psi5);
159                                 prob_s4 = probability(s4);
160                                 logodd_s4 = log1pl(-prob_s4)-
logl(prob_s4);
161 
162 
163                         // Calculate i - i+2 euclidian distances in 
2D space
164 
165                         d1 = min_distance(phi1, psi1, phi3, psi3);
166                                 prob_d1 = probability(d1);
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167                                 logodd_d1 = logl(prob_d1)-log1pl(-
prob_d1);     //Log-odds of the probability of a residue i and a residue 
i+2 to be in the same region of the Ramachandran distribution plot
168 
169                         d2 = min_distance(phi2, psi2, phi4, psi4);
170                                 prob_d2 = probability(d2);
171                                 logodd_d2 = logl(prob_d2)-log1pl(-
prob_d2);
172 
173                         d3 = min_distance(phi3, psi3, phi5, psi5);
174                                 prob_d3 = probability(d3);
175                                 logodd_d3 = logl(prob_d3)-log1pl(-
prob_d3);
176 
177                         d4 = min_distance(phi1, psi1, phi5, psi5);
178                                 prob_d4 = probability(d4);
179                                 logodd_d4 = logl(prob_d4)-log1pl(-
prob_d4);
180 
181                         //Sum of log-odds
182 
183                         logodd_sum = 
logodd_s1+logodd_s2+logodd_s3+logodd_s4+logodd_d1+logodd_d2+logodd_d3+lo
godd_d4;
184 
185                         fprintf(ofp, "%17.13Lf %s\t%9s %2c %4d %9s 
%2c %4d\n", logodd_sum, pdbcode, residue1, chain, resid1, residue5, 
chain, resid5);
186 
187                         //Prepare to go to the next 5 redidues
188 
189                         phi1 = phi2;
190                         psi1 = psi2;
191 
192                         phi2 = phi3;
193                         psi2 = psi3;
194 
195                         phi3 = phi4;
196                         psi3 = psi4;
197 
198                         phi4 = phi5;
199                         psi4 = psi5;
200 
201                         strcpy(residue1, residue2);
202                         strcpy(residue2, residue3);
203                         strcpy(residue3, residue4);
204                         strcpy(residue4, residue5);
205 
206                         resid1 = resid2;
207                         resid2 = resid3;
208                         resid3 = resid4;
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209                         resid4 = resid5;
210 
211                 }
212         }
213         fclose(fp);
214         fclose(ofp);
215         return(0);
216 }
217 
218         // This function caclulates all the possible distances of 
the two given residues in the 2D space, and finds the one with the 
minimum value. This is for avoiding the periodicity of dihedral angles.
219 
220 double min_distance(float phi1, float psi1, float phi2, float psi2)
221 {
222         double d[10];
223         double dmin;
224         float x0, y0, x1, y1;
225         int i;
226 
227         x0 = phi1;
228         y0 = psi1;
229 
230         // Calculate all possible distances between residue #1 and 
all symmetrics to residue #2
231 
232         x1 = phi2;
233         y1 = psi2;
234                 d[0] = sqrt( pow((x1-x0), 2) + pow((y1-y0), 2));
235 
236         x1 = phi2;
237         y1 = psi2 + 360;
238                 d[1] = sqrt( pow((x1-x0), 2) + pow((y1-y0), 2));
239 
240         x1 = phi2 + 360;
241         y1 = psi2 + 360;
242                 d[2] = sqrt( pow((x1-x0), 2) + pow((y1-y0), 2));
243 
244         x1 = phi2 + 360;
245         y1 = psi2;
246                 d[3] = sqrt( pow((x1-x0), 2) + pow((y1-y0), 2));
247 
248         x1 = phi2 + 360;
249         y1 = psi2 - 360;
250                 d[4] = sqrt( pow((x1-x0), 2) + pow((y1-y0), 2));
251 
252         x1 = phi2;
253         y1 = psi2 - 360;
254                 d[5] = sqrt( pow((x1-x0), 2) + pow((y1-y0), 2));
255 
256         x1 = phi2 - 360;
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257         y1 = psi2 - 360;
258                 d[6] = sqrt( pow((x1-x0), 2) + pow((y1-y0), 2));
259 
260         x1 = phi2 - 360;
261         y1 = psi2;
262                 d[7] = sqrt( pow((x1-x0), 2) + pow((y1-y0), 2));
263 
264         x1 = phi2 - 360;
265         y1 = psi2 + 360;
266                 d[8] = sqrt( pow((x1-x0), 2) + pow((y1-y0), 2));
267 
268         /*Find minimum distance in distance array*/
269 
270         dmin = 9999;
271         for(i=0; i<=8; i++){
272 
273                 if(d[i] < dmin){
274                         dmin = d[i];
275                 }
276         }
277         return dmin;
278 }
279 
280         // Probability function using the complementary error 
function
281 
282 long double probability(double i){
283         long double prob;
284 
285         prob = erfcl(i/(2*SD*LM_SQRT2));         /*Complementary 
Error Function*/
286         return prob;
287 } 
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