
DEMOCRITUS UNIVERSITY OF THRACE  
SCHOOL OF HEALTH SCIENCES  

DEPT. OF MOLECULAR BIOLOGY AND GENETICS

Final Year Thesis

“Two residue periodicities in protein structures:
Results from a systematic search in 4-dimensional

Ramachandran space”

Author: 
Ioannis Riziotis

Advisor: 
Dr. Nicholas M. Glykos 
Assistant Professor of Structural
and Computational Biology  

Alexandroupolis
March 2017  

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ
ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΤΜΗΜΑ ΜΟΡΙΑΚΗΣ ΒΙΟΛΟΓΙΑΣ ΚΑΙ ΓΕΝΕΤΙΚΗΣ

Διπλωµατική Εργασία

“Περιοδικότητες δύο αµινοξικών καταλοίπων σε
πρωτεϊνικές δοµές: 

Αποτελέσµατα από µία συστηµατική έρευνα στον
τετραδιάστατο χώρο Ramachandran”

Ιωάννης Ριζιώτης
(Α.Ε.Μ.:1224)

Επιβλέπων Καθηγητής:
Δρ. Νικόλαος Γλυκός

Αλεξανδρούπολη
Μάρτιος 2017  

Acknowledgements
 While working in a science laboratory, no matter the field, one should be trained not
only in theory and technical matters, but also one should learn how to think and simplify
problems that occur in every level of the work. I would like to thank my supervisor Dr.
Nicholas Glykos for without his guidelines I would not have managed to meet up with
many challenges that I had to confront, and for the ways of teaching me how to think. A big
thanks also to my laboratory partners, the “NMG group” and my friends, for all the help
and encouragement that provided me, and for the long chats we had while procrastinating
in the lab. I would finally like to thank my family for all the moral support through the
academic years.

 

- R -1

“Science, my lad, is made up of mistakes, but they
are mistakes which it is useful to make, because

they lead little by little to the truth.”

-Jules Verne, A Journey to the Center of the Earth

http://www.goodreads.com/work/quotes/40041240
http://www.goodreads.com/work/quotes/40041240

Table of contents

Table of contents
Acknowledgements 1 ..
Table of contents 2 ...
Abstract 3 ...
Περίληψη 4 ..
Section 1 
Introduction 5 ..

1.1 Proteins: A prologue 5 ...
1.2 Secondary structure elements 6 ...
1.3 φ, ψ dihedral angles 7 ...
1.4 The Ramachandran plot 8 ..
1.5 Linear groups 9 ...
1.6 Non-linear conformations - (φ,ψ)2-motifs 10 ...
1.7 Our goal 11 ...

Section 2 
Methods 13 ...

2.1 Programming languages 13 ..
2.1.1 The C programming language 13 ..
2.1.2 The Perl programming language 13 ..
2.1.3 The R statistical package 14 ..
2.1.4 Other languages used 14 ...

2.2 Data Preparation 14 ...
2.2.1 The PDB and PISCES databases 14 ..
2.2.2 ftp scripts 16 ..
2.2.3 Extraction of the dihedral angles - PROCHECK 16 ...

2.3 Definition of a Ramachandran cluster 18 ..
2.3.1 Fundamentals 18 ...
2.3.2 The problem of circular periodicity in dihedral angles 20 ..
2.3.3 Histogram construction 21 ...
2.3.4 Non-linear regression fitting 23 ...
2.3.5 Clustering parameters 25 ...

2.4 Main algorithm 25 ..
2.4.1 Principles 25 ...
2.4.2 Pipeline 28 ..

2.5 Structure clustering and overall procedure 29 ..

Section 3  
Results 34 ..
Section 4  
Conclusions and Discussion 40 ..
References 44 ..
Appendix 46 ...

Source code 46...

- R -2

Abstract

Abstract
 The various secondary structure elements in proteins, are formed by amino acid
residues that share similar backbone dihedral angle values. Each residue has a limited
range of φ,ψ angles, due to steric hindrance of the side chain. We can easily depict the
value range of φ,ψ angles of all residues in 2-dimensional space, as a Ramachandran
distribution, and distinguish three major, highly-populated regions, that correspond to
each of the known secondary structure elements. The typical assumption on protein
structure, is that most of the secondary structure elements are characterised by a specific
hydrogen bond pattern, and repeating φ,ψ angles.
 Our research focuses on tracing and describing motifs in protein structure, which
are formed of consecutive residues that do not have repeating φ,ψ angle values, but two
distinct φ,ψ values alternating between any two residues. Viewing such motifs in a
Ramachandran plot, we can see the residues occupying two different regions alternately.
An example of a hypothetical model is five continuous transitions between the β-sheet and
αL-helix regions.
 In order to evaluate this hypothesis, we performed a series of in silico studies in a
large dataset of protein molecules. We developed a probabilistic algorithm to cull and score
structures that follow motifs like the one described above, using as data, X-ray solved
protein structures from the Protein Data Bank. Furthermore, a UPGMA clustering
algorithm was used to group the potential structures that follow the pattern, and
characterise them. Our current results show that such motifs occur in proteins a significant
extent.

- R -3

Περίληψη

Περίληψη
 Τα διάφορα στοιχεία δευτεροταγούς δοµής στις πρωτεΐνες, σχηµατίζονται από
αµινοξικά κατάλοιπα µε παρόµοιες τιµές δίεδρων γωνιών (φ,ψ) στην κεντρική τους
αλυσίδα. Κάθε κατάλοιπο µπορεί να λάβει τιµές γωνιών φ,ψ περιορισµένου εύρους, λόγω
στερεοχηµικής παρεµπόδισης από την πλευρική αλυσίδα. Μπορούµε έυκολα να
απεικονίσουµε το εύρος τιµών των γωνιών φ,ψ όλων των αµινοξέων, σε ένα δισδιάστατο
επίπεδο, γνωστό και ως διάγραµµα Ramachandran. Διακρίνουµε τρεις περιοχές όπου
εµφανίζονται αµινοξέα µε µεγάλη συχνότητα. Καθεµία από τις περιοχές αυτές αντιστοιχεί
σε ένα µοτίβο δευτεροταγούς δοµής και αντικατοπτρίζει το επιτρεπτό εύρος τιµών των
γωνιών φ,ψ. Η γενική θεώρηση επάνω στις δοµές πρωτεϊνών, περιγράφει ότι τα στοιχεία
δευτεροταγούς δοµής χαρακτηρίζονται από ένα συγκεκριµένο µοτίβο δεσµών υδρογόνου,
καθώς επίσης και από επαναλαµβανόµενες τιµές φ,ψ.
 Η έρευνα µας επικεντρώνεται στον εντοπισµό και την περιγραφή δοµικών µοτίβων,
τα οποία σχηµατίζονται από γειτονικά αµινοξικά κατάλοιπα τα οποία δεν έχουν
επαναλαµβανόµενες τιµές φ,ψ, αλλά δύο διαφορετικά εύρη τιµών, εναλλασσόµενα, µεταξύ
δύο οποιωνδήποτε καταλοίπων. Απεικονίζοντας τέτοια µοτίβα σε ένα διάγραµµα
Ramachandran, βλέπουµε τα κατάλοιπα να καταλαµβάνουν εναλλάξ, δύο διαφορετικές
περιοχές. Ένα παράδειγµα του υποθετικού µας µοντέλου, είναι ένα µοτίβο πέντε
καταλοίπων, τα οποία µεταπίπτουν µεταξύ των περιοχών των β-πτυχωτών φύλλων και των
αριστερόστροφων α-ελίκων.
 Για την επαλήθευση της υπόθεσης µας, πραγµατοποιήσαµε µία σειρά in silico
µελετών σε ένα µεγάλο δείγµα πρωτεϊνικών µορίων. Αναπτύξαµε έναν πιθανοτικό
αλγόριθµο ο οποίος επιλέγει δοµές που πιθανόν ακολουθούν ένα µοτίβο όπως το
προαναφερθέν, και τις βαθµολογεί ανάλογα µε την πιστοτητά τους σε αυτό. Ο αλγόριθµος
χρησιµοποιεί ως δεδοµένα αληθινές δοµές, λυµένες µε κρυσταλλογραφία ακτίνων Χ, απο
την βάση δεδοµένων PDB (Protein Data Bank). Επιπλέον, για την οµαδοποίηση και τον
ευκολότερο χαρακτηρισµό των δοµών που βρέθηκαν, χρησιµοποιήθηκε ένας UPGMA
αλγόριθµος οµαδοποίησης. Τα τρέχοντα αποτελέσµατα των υπολογισµών, δείχνουν ότι
µοτίβα τέτοιου είδους απαντώνται σε πρωτεΐνες, σε σηµαντικό βαθµό. 

- R -4

Section 1: Introduction

Section 1 
Introduction
1.1 Proteins: A prologue

 The nature of proteins as the building blocks of
life has been a major concern to the scientific society,
and aspects of them regarding structure and function
are still being unraveled. Several breakthrough
methods, such as X-ray crystallography and Nuclear
Magnetic Resonance, have been developed in order to
approach and reveal the structure of these molecules
and consequently their functional roles. John
Kendrew and his myoglobin model in 1958[1] (Figure
1.1) kickstarted the era of structure solving, and of
that time, nobody could predict the vast number of
known structures that would have been available sixty
years later. One could wonder why is protein structure
of so much significance, and the answer is that
structure and function are two interdependent

characteristics. It is a matter of necessity to study and identify the principal components of
which proteins are formed, in order to fully understand and interpret the various
mechanisms carried on by them, such as enzymatic catalysis or cell structure formation.
 Protein structure can be analysed into four major classes: primary structure or
amino acid sequence; secondary structure; tertiary, and quaternary structure. Each level of
this hierarchy is strictly dependent on its subordinate level, with the primary structure
being the determinant for the final 3-dimensional structure, hence the native, functional
conformation. Structure and function are physically linked, and proteins must undergo a
complex folding procedure, on which their conformation changes and goes through
multiple transition states, until it reaches the native state. Among the significant number
of unique solved protein structures, we can identify some common conformational
patterns which can help us organise and comprehend the architecture of proteins.[2] These
patterns, or secondary structure elements, can fold further and form the tertiary structure,
which can be self-contained and functional. Finally, several folded polypeptide chains can
be combined and form a quaternary structure, which is a multi-subunit protein (see
Figure 1.2).
 At the time of discovery of the myoglobin structure, Kendrew was disappointed
from the complexity and lack of symmetry the molecule seemed to have, however, we now
understand that this complexity is what makes proteins functional[3]. Despite the fact that

- R -5

Figure 1.1: The 3D model of
myoglobin as presented by J. Kendrew
(adapted without permission from J.C.
Kendrew et al., Nature, 1958)

Section 1: Introduction

tertiary and quaternary structure might seem tangled, one could simplify it in a significant
extent by observing the elements of lower hierarchy. By studying the secondary structure,
patterns and periodical occurrences of specific residues can be found, and these
periodicities are what drew our attention.

1.2 Secondary structure elements

 Peptide folding is carried through the packing of the hydrophobic side chains
towards the centre of the protein molecule, creating a hydrophobic core and a hydrophilic
outer surface. Something that should be indicated, is that the backbone is highly
hydrophilic, due to the occurrence of imine groups (NH) and carbonyl groups (C’=O) in
each peptide group (Figure 1.3), which act as proton donors and proton receptors

respectively. These groups need to be neutralised by
forming hydrogen bonds and maintain hydrophobicity
in the core.
 The consequence of this, is the formation of
stable conformational patterns, known as secondary
structure elements. The most abundant pattern is a
helical configuration known as the α-helix which is
characterised by the presence of 3,7 residues per turn,
in right-handed direction[4]. The second most common
element is the β-sheet, a pleated surface conformation.
It is formed of β-strands, which are configurations of 3
to 10 residues with extended backbone, and has a
different hydrogen bond pattern than the α-helix[5].

These elements are kept stable inside the hydrophobic core and provide a scaffold to the
molecule[6].

- R -6

Primary QuaternaryTertiarySecondary

Figure 1.2: The hierarchy of protein structure (adapted without permission from Branden &
Tooze, Introduction to Protein Structure)

Figure 1.3: A trans peptide group (the
four atoms in the centre and Cσs on
each side) and the normal distances
between the atoms (adapted without
permission from Stryer, Biochemistry)

Section 1: Introduction

 Linus Pauling and Robert Corey first proposed the above-mentioned secondary
structure elements in 1951, after collecting information about features, such as bond
distances and angles, derived from the crystal structures of several small molecules. In
Figure 1.4 we can see the crystal structure of the atoms that form the α-helix and the β-
sheet as well as the hydrogen bonds that keep the structures stable.

 However, the two elements described above are not the only ones that can be found
in protein structures. Many conformational patterns, that are either variations of the basic
two motifs described above, or completely different from them, are parts of the secondary
structure, and many of them may have significant functionality. Some examples are the
αL-helix or left-handed α-helix, a rare type of helix; the 310-helix[7] (3 residues and 10
atoms per turn) and π-helix[8] (4.1 residues per turn) that differ from the α-helix in the
number of residues per turn; the β-turns, and the random coils. The latter are located
mainly on the protein surface, they are mostly hydrophilic and often involved in the
formation of the active site of enzymes and in other crucial functional roles. Although
random coils seem to be of unsymmetrical and non-periodic structure on first sight, there
are major insights of potential periodicity in the level of the primary structure. In the next
sections, the periodical occurrences of residues in coils will be expanded, and described by
a systematic research in the protein world.

1.3 φ, ψ dihedral angles

 In order to strictly define a secondary structure element, we need to comprehend
the basic parameters that determine the conformation of a peptide. Assuming a dipeptide
of residues n and n+1, the peptide group contains the Cα and C’=O group of the residue n,

- R -7

Figure 1.4: The α-helix and β-sheet crystal structure (adapted without permission from Essential Cell
Biology, 2004, Garland Science)

α-helix β-sheet

Section 1: Introduction

as well as the NH group and the Ca atom of the residue n+1[6]. A peptide group is
uncharged, and forms an inflexible plane, as the C’-N peptide bond cannot rotate, due to
magnetic resonation with the C’=O bond[4]. Each amino acid residue backbone has two
degrees of freedom that correspond to the torsion angles of the N-Cα and Cα-C’ bonds
(Figure 1.5). These dihedral torsion angles are called φ and ψ respectively. Every residue
has a specific range of φ and ψ angles that can take, due to stereochemical restriction of
the side chains. The dihedral angles can span from -180o to 180o and we conventionally
define φ=0ο and ψ=00 when the two bonds on each side of a Cα atom are on the same
level[2]. The restriction of the angle values is very definitive for the formation of the
secondary structure, and this explains the residue preferences on the various structure
patterns. What we can conclude considering the above is that by knowing the two dihedral
angles of the backbone, we can define the crystal structure of the backbone of a protein.
Additionally, knowing the torsion angles of the bonds of the side chains (x1,x2...xi), we can
completely define the structure of the whole molecule.

1.4 The Ramachandran plot

 As mentioned before, not all conformations
of a residue backbone are energetically and
stereochemically allowed, due to the short contacts
between the atoms of adjacent residues[9]. In fact, the
only amino acid that has a firmly broad range of
allowed φ,ψ angles, is glycine, due to its symmetry as it
has no side chain. The flexibility of glycine is very
important, because this allows it to form plenty of
different conformations. Other amino acids on the
other hand, contain side chains that cause large steric
hindrance, so their dihedral angle range is restricted. A
good example is proline, which has a pyrrolidine side
chain and this causes it to have a narrow range of
allowed conformations.

- R -8

Figure 1.5: The planar peptide groups. The φ and ψ dihedral angles are the torsion measure of the N-Cα and
Cα-C’ bonds respectively (adapted without permission from Nelson & Cox, Lehningher Principles of
Biochemistry)

β

αL

α

Figure 1.6: A typical Ramachandran
plot with the favoured regions
indicated (adapted without
permission from Nelson & Cox,
Lehninger Principles of Biochemistry)

Section 1: Introduction

In 1965 G.N. Ramachandran specified all the possible stereochemical conformations of the
amino acid residues and plotted each one as dots in a 2-dimensional diagram, now known
as the Ramachandran plot[9, 10]. As seen in Figure 1.6, the Ramachandran plot contains
distinct regions, that correspond to the allowed φ,ψ angle values of the residues that form
the various secondary structure elements. The three major regions are the α-helix region in
the lower left quadrant, the β-sheet region in the upper left quadrant, and the αL-helix
region in the upper right quadrant. In more detailed Ramachandran plots, we can
distinguish more secondary structure motifs and variations of the basic ones. For example,
the broad β-sheet region contains distinct clusters, that correspond to the parallel and
anti-parallel β-sheets.
 An interesting exception that modifies the standard Ramachandran plot is the
occurrence of glycine and proline in a polypeptide chain. These amino acids, as mentioned
before, have a much different range of φ,ψ values than the other 18 amino acids, so they
occupy different regions on the plot.

 Examining a Ramachandran plot like the one in
Figure 1.6, we cannot easily understand the
population and the frequency of the secondary
structure elements, due to the collision of the data
points on the 2D space. Figure 1.7 shows a 3D
Ramachandran plot created by S. Hollingsworth and
P.A. Karplus using real protein X-ray crystallography
data in resolution <1.2Å[11]. The plot clearly shows
the high frequency of α-helices and β-sheets in
proteins, as well as the scarcity of other secondary
structure elements such as the αL-helix.
 In this thesis we will use the Ramachandran plot
as a powerful tool for our studies, and it will be
analysed furthermore, as it can give useful
information on protein structure.

1.5 Linear groups

 The conventional assumption on secondary structure, defines the secondary
structure elements mainly by their hydrogen-bond patterns and the repetition of specific
φ,ψ angle values on each residue. However, structural motifs formed of residues sharing
similar φ,ψ angles and not following a regular pattern of hydrogen bonding, can be
classified as secondary structure elements. A good example is the PII (poly-L-proline II)
motif[12], which is part of the secondary structure, although is does not have a strict
hydrogen bond pattern.

- R -9

Figure 1.7: A 3D landscape
Ramachandran plot showing the
distribution of the secondary structure
elements (adapted without permission
from Hollingsworth & Karplus, Biom.
Con., 2010)

Section 1: Introduction

 To generalise issues on terminology, we could use the term linear groups to describe
structural motifs characterised by a single φ,ψ-pair repetition[13, 14], not considering the
hydrogen bonding. The common linear groups are shown in Figure 1.8.

 Hollingsworth and Karplus in an interesting
publication (2009) on linear groups, define the shortest
length of a linear group as three consecutive residues
with similar φ,ψ angles (±10o). Their survey is based on
real structures, and they recognise as true linear groups
conformational patterns residing in three regions on the
Ramachandran plot: The α-helix region (that contains
the 310-helix and the π-helix), the β-sheet region, and
the PII region. The interesting fact is that the αL-helix is
not classified as linear group, as it does not satisfy the
requirements of at least three adjacent residues with
similar φ,ψ pairs[14].
 Nevertheless, this introduction to linear groups
was made in order to comprehend the non-linear

conformations which is the subject of our research. For this reason, we will persist on the
classic definition of linear groups, and consider them as conformations of repeating φ,ψ
pairs.

1.6 Non-linear conformations - (φ,ψ)2-motifs

 Besides the standard, one-residue periodical conformations, there are structural
motifs, in which two adjacent residues have distinct φ,ψ pairs. A representative example is
the reverse turns, three-peptide group (four Cαs) conformations with a hydrogen bond
between Oi and Ni+3[13]. According to Venkatachalam[15], there are three types of reverse
turns, I, II and III, and their mirror conformations, I’, II’ and III’. Figure 1.9 shows the
conformation of reverse turns of type I and II and the NH…O hydrogen bond.

- R -10

Figure 1.8: The nine common linear
groups shown on the Ramachandran
plot (adapted without permission
from Hollingsworth & Karplus, Port
Sc, 2009)

Figure 1.9: Conformation of type I (a) and II (b) reverse turns. Cα2 (residue i+1) and Cα3 (residue i+2) are
the two central Cas. The two central residues have different φ,ψ pairs. (adapted without permission from
Venkatachalam, Biopolymers, 1968)

(a) (b)

Section 1: Introduction

 Representing reverse turns on a Ramachandran
plot (Figure 1.10), we see the transition of the residues
i+1 and i+2 between two distinct regions. Although not
a linear group, reverse turns are indeed secondary
structure elements. They are characterised in fact by a
(φ,ψ)2-motif and are very abundant in proteins.
 (φ,ψ)2-motifs are conformations formed by two
similar consecutive φ,ψ-pairs[16]. Hollingsworth et el.
on a 2013 publication, used real, four-residue
fragments of protein structures to search for (φ,ψ)2-
motifs, and grouped these motifs according to their
abundance. A considerable number of motifs on which
the residues i+1 and i+2 have distinct φ,ψ angle values
were found, including the reverse turns. These
conformations are non-linear and are much of

significance in our research, as the main goal is the identification of structures adopting
continuous and recurrent (φ,ψ)2-motifs.

1.7 Our goal

 Considering the reverse turns and the general broad group of (φ,ψ)2-motifs, we
raised the question whether there is some type of extended conformation that is formed of
consecutive repetitions of two or more φ,ψ pairs. In other words, a peptide fragment of
certain length (e.g. five residues), with the adjacent residues residing in distinct regions on
the Ramachandran plot. Figure 1.11 shows a diagram of our hypothetical model.

- R -11

Figure 1.10: The two central residues
of reverse turns as shown on the
Ramachandran plot. Type III turns
reside in the same region which is the
310-helix region (adapted without
permission from Schulz, Principles of
protein structure)

Figure 1.11: The hypothetical model of our research. The five central residues of the peptide fragment make
continuous transitions between two distinct Ramachandran regions, in this case the β and αL regions.

φ

ψ

Section 1: Introduction

 We algorithmically searched a large dataset of real protein structures, for peptide
fragments that follow a pattern of transitions between two regions in the Ramachandran
plot. For example, a peptide of which the first residue is in the β-sheet region, the second
in the αL-region, the third back in the β-sheet and the pattern continues up to five or more
residues. Although these two regions are referred as an example, our algorithm is able to
search for all possible transitions between any two (or more) regions.
 This structural computational research aims to identify some standard patterns in
random conformations such as coils, that seem non-periodic in the level of one residue.
Therefore, taking into account the periodicity found in reverse turns, we thought that two-
residue periodicities may also apply to random coils. The implementation was carried
through the development of a probabilistic algorithm that uses as input real X-ray
crystallography data from the Protein Data Bank[17]. The whole procedure and results will
be thoroughly described in the following sections.
 Something that must be mentioned, is that we searched for structures not
containing glycine and proline residues. We did this in order to exclude structures such as
reverse turns, which firmly contain glycine, and avoid any biased or false positive results.

- R -12

Section 2: Methods

Section 2 
Methods
2.1 Programming languages

2.1.1 The C programming language

 The ANSI C language is a programming language developed by Dennis Ritchie in
the late 60’s/early 70’s at Bell Labs. It is a general-purpose, medium level language, mainly
used for structured and linear programming, supporting all the fundamental control-flow
constructions such as decision making, looping and statement grouping[18]. It was
originally designed for the development of the UNIX operating system (which is almost
exclusively used in our research), so it provides a perfect integration with it, in terms of
functions and commands. Moreover, programs written in C are easily portable in other
operating systems, as the language itself is, in a large extent, architecture independent.
 We used C for the implementation of the main algorithm developed for the
purposes of this research, as it is a straightforward, robust and easy-to-use language,
perfect for handling large datasets and mathematical procedures. The algorithm does not
demand complex parallel operations or object-oriented programming, so we chose C as the
ideal language for our project.

2.1.2 The Perl programming language

 Perl is a high-level, multi-purpose programming language developed by Larry Wall
in 1987. It is interpreted, so it does not demand the use of a compiler, and highly portable.
As Perl is truly open-source (under GPL licence), there is a vast variety of modules
available for any purpose, such as BioPerl[19], which is package of great utility in
bioinformatics. The fact that Perl is interpreted, makes it rather slow in comparison with
compiled languages such as C, especially in mathematical calculations (~60 times slower).
However, it is of great use in bioinformatics and computational biology, as it supports
regular expressions.
 The various ancillary scripts developed for processing our data and results, are all
written in Perl and take advantage of its high-level built-in functions and regular
expressions. We prefer to use Perl in our lab for various data processing needs, due to the
high integration with our software and data, and for the flexibility and easiness of use.

- R -13

Section 2: Methods

2.1.3 The R statistical package

 R is an open-source programming language and environment used for statistical
computing and graphics[20]. It is highly capable of handling large datasets and has built-in
functions for almost any statistical calculation and data mining. Like Perl, it is interpreted,
and libraries available for free, expand its capabilities in many computational fields, such
as artificial neural networks (ANNs).
 We used R for creating and plotting various histograms needed in the research and
for the clustering of the structures returned by our algorithm.

2.1.4 Other languages used

 We mainly work on UNIX systems so we take advantage of Bash scripting and
languages such as AWK, for task automation and quick data and text processing
respectively. The source code of all the programs or scripts used, can be found in the
Appendix.

2.2 Data Preparation

2.2.1 The PDB and PISCES databases

 The data used in our research, derive from protein structures solved by X-ray
crystallography. We collected these structures from the Protein Data Bank or PDB[17], a
database available online, that contains a large archive of protein structures solved by the
scientific community. By the time this thesis was written, the PDB contained 128,783
structures. A screenshot of the user interface of the PDB is shown in Figure 2.1 and an
example of a PDB protein structure file in Figure 2.2.

- R -14

Figure 2.1: The homepage of the Protein Data Bank. (Available from: http://www.rcsb.org/pdb/home/
home.do)

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do

Section 2: Methods

 Α large and non-redundant sample of proteins needed to be obtained from the PDB
via file transfer protocol (ftp). A non-redundant PDB dataset is a dataset not containing
duplicate entries. PDB contains many identical entries with different IDs (four-character

codes that correspond to each individual
structure entry, e.g. 2DOV). We wanted to
exclude these, in order to avoid false results and
artefacts, such as finding a conformational
pattern, which is in fact a recurring sequence in
many identical molecules. In order to do this, a
list of PDB IDs needed to be created. We created
this list using the protein sequence culling server
PISCES [21]. PISCES is a tool that is able to
produce lists of non-redundant entries from the
entire PDB according to some criteria defined by
the user. The criteria used by PISCES are the
structure quality and the mutual sequence
identity among the molecules. A screenshot of the
interface of PISCES is shown on Figure 2.3. The
criteria we used were:

- R -15

HEADER EXTRACELLULAR MATRIX 22-JAN-98 1A3I
TITLE X-RAY CRYSTALLOGRAPHIC DETERMINATION OF A COLLAGEN-LIKE
TITLE 2 PEPTIDE WITH THE REPEATING SEQUENCE (PRO-PRO-GLY)
...
EXPDTA X-RAY DIFFRACTION
AUTHOR R.Z.KRAMER,L.VITAGLIANO,J.BELLA,R.BERISIO,L.MAZZARELLA,
AUTHOR 2 B.BRODSKY,A.ZAGARI,H.M.BERMAN
...
REMARK 350 BIOMOLECULE: 1
REMARK 350 APPLY THE FOLLOWING TO CHAINS: A, B, C
REMARK 350 BIOMT1 1 1.000000 0.000000 0.000000 0.00000
REMARK 350 BIOMT2 1 0.000000 1.000000 0.000000 0.00000
...
SEQRES 1 A 9 PRO PRO GLY PRO PRO GLY PRO PRO GLY
SEQRES 1 B 6 PRO PRO GLY PRO PRO GLY
SEQRES 1 C 6 PRO PRO GLY PRO PRO GLY
...
ATOM 1 N PRO A 1 8.316 21.206 21.530 1.00 17.44 N
ATOM 2 CA PRO A 1 7.608 20.729 20.336 1.00 17.44 C
ATOM 3 C PRO A 1 8.487 20.707 19.092 1.00 17.44 C
ATOM 4 O PRO A 1 9.466 21.457 19.005 1.00 17.44 O
ATOM 5 CB PRO A 1 6.460 21.723 20.211 1.00 22.26 C
...
HETATM 130 C ACY 401 3.682 22.541 11.236 1.00 21.19 C
HETATM 131 O ACY 401 2.807 23.097 10.553 1.00 21.19 O
HETATM 132 OXT ACY 401 4.306 23.101 12.291 1.00 21.19 O
...

Figure 2.2: A sample from a PDB file (1A3I). (Available from: https://en.wikipedia.org/wiki/
Protein_Data_Bank_(file_format))

Figure 2.3: The PISCES interface
(available at: http://dunbrack.fccc.edu/
Guoli/PISCES_ChooseInputPage.php)

Section 2: Methods

• Resolution ≤ 3.0Å
• 80% identity cut-off

The server returned a list of 29,211 PDB entries.

2.2.2 ftp scripts

 The list created by PISCES is a one-column text file containing PDB IDs in capitals.
Script 1 (list_lowercase.pl) (source code in Appendix) modifies the list, converting in to
lowercase, so it can be used as input to an ftp script. The modified list was used as input to
Script 2 (pdb_ftp.pl) which downloads all the entries in the list from the PDB server
(ftp.wwpdb.org/pub/pdb/data/structures/all/pdb). 27.300 compressed files (.tar.gz)
were downloaded. The discrepancy of 1911 unique IDs between the PISCES list and the
downloaded files, is due to the multiple IDs for each polypeptide chain in the list (e.g.
2D0VA, 2D0VB etc.).

2.2.3 Extraction of the dihedral angles - PROCHECK

 In order to search for any structural motif in a dataset of atom coordinates files, we
needed to calculate all the φ/ψ dihedral angle values of the residues in all the molecules.
As described in Paragraph 1.3 and Figure 1.5, the φ angle measures the torsion of the
N-Cα bond and the ψ angle measures the torsion of the Cα-C’ bond. So in order to define
the φ dihedral angle of a residue in the 3-dimensional space, we need the atom coordinates
of the carbonyl C’, the Cα, the amide N, and the next carbonyl C’. Respectively for the ψ
angle, we need the coordinates of the amide N, the carbonyl C’, the Cα and the next amide
N atoms.
 All these x,y,z-coordinates are provided from the PDB files and the angles can be
calculated using structural analysis software. In our case, we used the program
PROCHECK[22], which is a suite of tools for analysing the stereochemical parameters of a
given protein molecule. It uses as input a .pdb file and outputs a series of text and
PostScript files that contain information such as Ramachandran plots, bond lengths and
main-chain or side-chain properties. PROCHECK can be run in a UNIX terminal as shown
below:

 >$ procheck [pdbfile] [chain (blank if all chains)] [resolution]

For example:

 >$ procheck 2d0v.pdb A 3.0

- R -16

http://ftp.wwpdb.org/pub/pdb/data/structures/all/pdb/

Section 2: Methods

One of the output files has a .rin extension and contains, among others, a list of the all the
main-chain and side-chain bond angles of all the residues of a specific protein. An example
of a .rin angle file is shown in Figure 2.4 (φ and ψ columns are indicated):

As mentioned above, two atoms on each side of a bond are needed to define the torsion
angle of this bond (4 atoms in total). Thus, we cannot set a value for the φ and ψ angles on
the residues of the -NH and -COOH termini respectively. PROCHECK assigns a 999.90
value in the angles of terminal residues or chain breaks. For our calculations we needed to
run PROCHECK for all the PDB files (all chains, resolution 3.0Å), and extract only the
specific φ/ψ columns from the .rin output file. Script 3 (angles.pl) runs PROCHECK for a
file using the same arguments as shown above, deletes all the output files except for
the .rin file, extracts the φ/ψ angles and writes them in a new file. I.e. angles.pl uses as
input a PDB file and outputs a φ/ψ angle file with a .ang extension (Figure 2.5).

The script needed to be run for every PDB file, using Script 4 (run_angles.pl) for the
automation of the process. The angle files produced were concatenated in one large file.
The file however contained several occurrences of non-standard amino acid residues, so
any residue not included in the 20 common, needed to be skipped. This process was

- R -17

...
12AS 22GLU A 25 -87.58 -40.52
12AS 23ARG A 26 -75.45 -28.86
12AS 24LEU A 27 -123.52 00.26
12AS 25GLY A 28 999.90 44.28
12AS 26LEU A 29 -104.16 137.59
12AS 27ILE A 30 -102.19 152.92
12AS 28GLU A 31 -76.58 134.05
12AS 29VAL A 32 -124.31 155.11
12AS 30GLN A 33 -73.82 129.10
12AS 31ALA A 34 -86.98 137.64
...

PDB ID Residue
number

ψφResidue
ID

 Chain

Figure 2.5: Angle file (12AS.ang) for the molecule 12AS after processing the PDB file with angles.pl.

 φ ψ
 1ASN A 1 h 999.90 110.76-171.51-166.89 -75.83 999.90 999.90 ...
 2ASP A 2 H -71.15 -29.75 178.71 -68.38 -35.04 999.90 999.90 ...
 3LYS A 3 H -64.11 -40.44 171.36 -55.60-166.66-152.03 147.09 ...
 4LEU A 4 H -58.99 -41.64 178.87 -79.41 174.72 999.90 999.90 ...
 5ILE A 5 H -56.02 -48.85 179.32 -53.96-157.02 999.90 999.90 ...
 6GLU A 6 H -64.52 -49.33 176.49 179.63 149.46 -66.39 999.90 ...
 7LEU A 7 H -61.43 -36.35 176.18 -62.51 154.76 999.90 999.90 ...
 8SER A 8 H -61.76 -23.31 174.48 68.51 999.90 999.90 999.90 ...
 9ASN A 9 h -71.93 -4.70 178.60 -58.27 -32.92 999.90 999.90 ...
10SER A 10 t-104.78 126.64 172.67-179.74 999.90 999.90 999.90 ...
...

Figure 2.4: A part of pdb2d0v.rin file produced by PROCHECK. The first two floating point value
columns contain the φ and ψ angles.

Section 2: Methods

carried on by Script 5 (unknown_omit.pl) which assigns a 999.90 φ-value in any residue
with non-standard three letter code (e.g. UNK or SEC). The new dataset was named
res3.0_noUnk.ang. Moreover, a second data set that excludes glycine and proline residues
needed to be created. Script 6 (gp_omit.pl), which assigns a 999.90 φ-value in glycines
and prolines, was used to do this. This dataset was named res3.0_nonUnkGP.ang. Finally,
the two data sets were processed with Script 7 (input_correction.c) in order to refine
them and edit some minor format issues (details shown in source code).
 The dataset we used for the purposes of this thesis was the one not containing
glycine and proline residues for the reasons explained in Paragraph 1.7.

2.3 Definition of a Ramachandran cluster

2.3.1 Fundamentals

 The main point of the algorithm developed for the purposes of our research relies
on the search of 5-residue fragments that follow three fundamental rules (see Figure
1.11):

I. Residues i, i+2, i+4 must reside on a specific Ramachandran region.
II. Residues i+1, i+3 must reside on another Ramachandran region.
III. The two regions must be distinct.

 The method we developed to search for the pattern described, is based on the
calculation of euclidian distances between two protein residues on the 2-dimensional
Ramachandran space. These distances are then used in order to figure out whether two
residues are likely to reside in the same Ramachandran cluster, or in different ones (more
details on the algorithm are given in the following paragraphs). To do this, we first needed
to define a Ramachandran region or cluster.
 A generally admitted definition of a Ramachandran cluster, is a highly populated
region that contains residues of the same secondary structure (thus similar φ,ψ pairs).
However, it is difficult to strictly define it, because it is not possible to set clear and binary
limits of the cluster. However, by using statistics, we are able to interpret fuzzy,
experimental biological data like X-ray solved structures, and make them human-
comprehensible.
 Considering each residue as a dot in the 2-dimensional cartesian space, and
smoothing the φ,ψ values in a reasonable range (e.g. 5o), we can easily notice that the
residues which populate a certain Ramachandran cluster, tend to converge around a
maximum value (Figure 1.7). Furthermore, the data scatter around the local maxima
smoothly, forming a Gaussian-like distribution. A Gaussian or normal distribution is the
most common type of data distribution and represents the symmetrical convergence of

- R -18

Section 2: Methods

observations around a maximum (mean) value. The key parameters that define a Gaussian
distribution of a sample N, are the mean (µ) which is the maximum value, and the
standard deviation (σ) which measures the scatter of the observations around the around
the mean.

• The basic Gaussian function is:

• The mean (µ) equation is:

• The standard deviation (σ) equation is:

Figure 2.6 shows a typical Gaussian distribution
along with the probability percentage of the
observations inside the bell curve. We see that the
68.2% of observations scatter in a range of 1σ
away from the mean, 27.2% scatter 2σ away from
the mean and the rest are in a range >2σ away
from the mean. These percentages correspond to
the probability of a random observation to be
within each value range, and we used this
principle for our calculations.
 The conclusion derived from the above

insights, is that we can define a Ramachandran cluster as a Gaussian distribution, with a
strictly defined mean (µ) and standard deviation (σ). However, our calculations use
euclidian distances between residues as data, and we need the distribution of the distances
instead of the residues themselves. Thus, the mean value of the distribution is set to 0,
which is the minimum possible distance between two residues (the two φ,ψ pairs are
identical, according to the smoothing rate). Also, only positive values, on the right side of
the mean make sense. More details on the construction of the Gaussian curve are given in
the following paragraphs.

- R -19

Figure 2.6: The normal or Gaussian
distribution, or bell curve, and the
percentage of the observations in the
interval

f (x) = 1
σ 2π

e
−(x−µ)2

2σ 2 Equation 2.1

µ =
x∑

N
Equation 2.2

σ =
(x − µ)2∑
Ν

Equation 2.3

Section 2: Methods

2.3.2 The problem of circular periodicity in dihedral angles

 The process of euclidian distance
calculation requires the φ,ψ coordinates of two
residues, and although the procedure might seem
straightforward, there is an issue that must be
considered. Some regions on the Ramachandran
plot are not limited between the -180o and +180o

range. For example, the β-sheet region stops at
the top of the plot and continues on the bottom.
Apparently, two residues of the same region, may
seem distant on the typical Ramachandran plot,
with one located at the top, and the other at the
bottom. Figure 2.7 shows 9 copies of a
Ramachandran plot in a grid order. We can
clearly see the periodicity of the various regions,
and this is explained by the circular range of the
dihedral angles (e.g. an angle with 180o value is
identical with -180o angle).
 In order to calculate the distance between
any two residues on the 2-dimensional space, we
needed to eliminate the problem of periodicity.
Figure 2.8 summarises the method of solving
the issue. The euclidian distance d between
two points a(x1 , y1) and b(x2 , y2) on the 2-
dimensional cartesian space is:

Considering a grid of 9 Ramachandran plots, with
one plot in the centre and 8 complementary
around it, we need to calculate the euclidian
distance between a residue A and a residue B.
There are 9 possible distances, between the static
residue A(φ0 , ψο) in the central plot, and the
symmetric residues Bi(φi , ψi) in all the 9 plots.

After calculating them, the minimum distance is the one that makes sense and will be used
further as data for creating the distribution. Residue A φ,ψ coordinates are (φ0 , ψ0),
residue B φ,ψ coordinates are (φ1 , ψ1), and knowing that the length of the Ramachandran
square is 360, the coordinates of all the B symmetric residues will be:  

- R -20

Figure 2.7: The periodicity of the
Ramachandran plot regions. 9 identical
plots shown as a grid.

d = (x2 − x1)
2 + (y2 − y1)

2 Equation 2.4

Figure 2.8: A diagram that summarises
the method to solve the problem of
periodicity in the Ramachandran plot. 9
plots shown as a grid. Red lines represent
the possible the difference vectors on the
2D space. The one with the minimum
measure is the true one.

Section 2: Methods

• B2(φ1 , ψ1+360)
• B3(φ1+360 , ψ1+360)
• B4(φ1+360 , ψ1)

• B5(φ1+360 , ψ1-360)
• B6(φ1 , ψ1-360)
• B7(φ1-360 , ψ1-360)

• B8(φ1 -360 , ψ1)
• B9(φ1-360 , ψ1+360) 

Using the Equation 2.4 and replacing the x,y values with the φ,ψ coordinates, we
calculate the following distances and find the minimum one:

• d1 = AB1

• d2 = AB2
• d3 = AB3

• d4 = AB4
• d5 = AB5
• d6 = AB6

• d7 = AB7
• d8 = AB8
• d9 = AB9 

The method described was used not only for gathering the data to construct a histogram
and define the Ramachandran cluster, but also on the main algorithm where there is also a
distance calculation procedure.

2.3.3 Histogram construction

 In order to find the distribution that corresponds to the Ramachandran regions, we
needed to construct a histogram of all the euclidian distances (i.e. difference vectors)
between two residues i and i+2 (the ones that need to be in the same Ramachandran
cluster, as defined by the rules of the pattern we search for). For this purpose we developed
a program that uses as input φ,ψ dihedral angles (res3.0_noUnkGP.ang file in this case)
and outputs a list of [i - i+2] distances. The program is written in C and the source code is
available on the Appendix (histogram1-3.c). The algorithm used is based on the distance
calculation method described in the previous paragraph. Figure 2.9 shows a short
pipeline of the program:

- R -21

No

BEGIN

Calculate all
possible

distances between
residue i and i+2

Find minimum
distance and

write it

Go to next
residue

Did
you reach
the end?

END

Start with
first residue

i

Yes

Is input
sane?

Yes

No

Figure 2.9: Flow chart of the program histogram1-3.c

Section 2: Methods

The distances are written in a file named distances1-3_noUnkGP_hist.dat. A sample of the
output is shown in Figure 2.10:

 The next step was the construction of a histogram using as data the distances of the
above file. The histogram was created using the R statistical package, and is shown in
Figure 2.11:

The distribution of the data, as shown on the histogram, is rather interesting, and gives us
insights to define a Ramachandran cluster. The curve can be analysed, and described as
the aggregate of three subordinate curves as shown in the circles in Figure 2.11. The curve
on the left has a bell form and contains the most frequent distances. This fact leads us to
conclude that this curve corresponds to the distances of residues found in the same
Ramachandran region. The curve in the middle is the shoulder of the first bell curve and it

- R -22

 12.902238
 11.915625
 25.765066
 32.565891
 25.221869
 37.106285
 15.809918
 12.218562
 13.582341
 15.192897
 19.437786
 22.414783
 28.101343
 8.660682
...

Figure 2.10: Sample of the file containing the residue pair euclidian distances on the 2D Ramachandran space

Figure 2.11: The distances (d) histogram. The circles indicate the three separate curves that form a larger one.

Section 2: Methods

probably corresponds to distances between residues of a broader Ramachandran cluster,
most likely the β-sheet region, which contains two distinct sub-regions: the parallel and
anti-parallel β-sheet. The third curve (in the circle on the right), is most likely to show the
frequency of distances between residues of clearly distinct clusters as we can notice that is
has a global maximum in ~180o. The conclusion of all the above is that we can use the
curve on the left as the one that most accurately represents a cluster on the Ramachandran
plot. The curve is of Gaussian form, an the next step was to find the Gaussian function that
fits it.

2.3.4 Non-linear regression fitting

To estimate the parameters that best represent the Ramachandran cluster, we needed to fit
the data in a function, specifically a Gaussian function. With a quick look on the curve of
the data points in Figure 2.11, we can safely say that the data do not follow a linear
model, but instead, it is a non-linear aggregate of three bell curves.
 The method used to fit the mixture of the three distributions is the non-linear
regression. The basic steps of this method are:

a. Initialisation, by setting the function we want the data to fit in (chi-by-eye
method).

b. Definition of starting values for the parameters of the function.
c. Alteration of the parameters until the Root Mean Square Error (RMSE)

minimizes, thus the curve is most accurately fitted in the function.

Non-linear regression requires many value alterations and computations until the
standard error minimizes (brute-force method), something a human is not able to do
quickly. Many computational tools can be used to efficiently carry on this process; we
chose the R statistical language which has a built-in function (nls) specifically for non-
linear regression. The nls function requires the user to define the fitting function and the
starting values of the function parameters. A key principle of nls, is that the user has to
estimate the starting values as accurately as possible, by studying the data curve (large
deviation of the starting values from the final values will cause the process to crash).
 The first factor of the Gaussian function is the height of the curve (see Equation
2.4), and can be simplified, so the function can be written as:

where µ is the mean, and σ the standard deviation.

- R -23

f (x) = ke
−1(x−µ)2

2σ 2 Equation 2.5

Section 2: Methods

The mixture of the three Gaussians is a function of the form:

The mean of the first Gaussian (µ1) is set to 0 for the reasons described in Paragraph
2.2.2. Studying the histogram we estimated the following starting parameters:

• k = 100000
• l = 30000
• m = 15000
• µ2 = 50
• µ3 = 125
• σ1 = 10
• σ2 = 10
• σ3 = 20

The R script uses as input the histogram data, it fits them in the function using the nls
function and outputs a summary of the parameters of the function calculated along with a
plot of the histogram and the fitted function, in superposition. The source code of the R
script can be found in the Appendix. To optimise the fit we removed the data points on
the left side of the first peak. Figure 2.12 shows the summary of the parameters of the
fitted function. The standard deviation (10.22) of the first Gaussian is highlighted. The
script returned a negative sd because in the function it was squared, and could converge in
+10.22 as well as -10.22. Standard deviation however is always positive, so we use its
absolute value.

- R -24

f (x) = ke
−(x−µ1)

2

2σ1
2

+ le
−(x−µ2)

2

2σ 2
2

+me
−(x−µ3)

2

2σ 3
2 Equation 2.6

 Formula: y ~ k * exp(-(x - 0)^2/(2 * s1^2)) + l * exp(-(x - m2)^2/(2 *
 s2^2)) + m * exp(-(x - m3)^2/(2 * s3^2))

Parameters:
 Estimate Std. Error t value Pr(>|t|)
k 1.250e+05 7.594e+03 16.456 < 2e-16 ***
l 9.538e+04 1.475e+04 6.465 2.56e-10 ***
m 4.321e+04 3.911e+02 110.487 < 2e-16 ***
m2 -2.908e+01 1.376e+01 -2.113 0.0351 *
m3 1.640e+02 2.637e-01 622.085 < 2e-16 ***
s1 -1.022e+01 4.165e-01 -24.534 < 2e-16 ***
s2 6.198e+01 4.774e+00 12.982 < 2e-16 ***
s3 2.235e+01 2.693e-01 83.015 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2707 on 466 degrees of freedom

Number of iterations to convergence: 12
Achieved convergence tolerance: 9.151e-06

Figure 2.12: The summary output of the R script after fitting the histogram curve. The σ of the first
Gaussian distribution is highlighted in yellow.

Section 2: Methods

Figure 2.13 shows the plot of the histogram and the fitted curve.

2.3.5 Clustering parameters

 The parameters returned by the non-linear regression script can be used to finally
define the Ramachandran region in the terms of our research methods. We can safely say
that a Ramachandran region follows a Gaussian distribution with mean=0 and standard
deviation=10.22. The value of standard deviation is a fundamental part of the main
algorithm, which is described in the following paragraph. The conclusion after considering
the above insights, is that a Ramachandran region is a Gaussian distribution with the
following function: (Equation 2.7):

2.4 Main algorithm

2.4.1 Principles

 The algorithm we developed in the quest for the two-residue periodicity patterns in
protein structures, relies again on distances on the 2-dimensional Ramachandran space.
However, when using such tools like euclidian distances, that are not directly structure-
based, but geometry-based, it is difficult to classify the peptide fragments in a binary form.
In other words, we cannot say that a structure found by this method strictly follows the
pattern or not. Therefore, we needed to find a method to characterise our results in a

- R -25

Figure 2.13: Plot of the histogram curve (green) and the fitted function curve (red)

Equation 2.6f (x) = 125,000e
− x2

208.8968

Section 2: Methods

probabilistic way. A widely used, fuzzy logic based method is the scoring of the results
using the principles of probability theory.
 Before we dwell into details on probabilities, we need to recall the three rules of the
pattern we search for, stated in Paragraph 2.2.1. We can summarise these rules in a
diagram, where the necessary distances are indicated: Δn are the distances between
residues of the same Ramachandran cluster, and dn the distances between residues of
distinct clusters (Figure 2.14).

 Our program uses a simple algorithm to find the pattern. The basic steps of the
algorithm are stated below:

1. Calculation of the above mentioned distances in all the possible 5-residue
fragments -while skipping the chain breaks.

2. Conversion of the distances to probabilities, using the standard deviation that
defines the Ramachandran cluster

3. Calculation of the log-odds of every probability.
4. Aggregation of the log-odds that correspond to every distance; the log-odds sum

is the score of the peptide fragment
5. Sorting of all the results by their score; high-scored fragments have a higher

probability to match the hypothetical model.

The second step, which is the conversion of the distances to probabilities, is the most
important part of the algorithm, and the reason why we needed to define a Ramachandran
cluster as a Gaussian distribution. We used the error function (erf)[23] for this procedure.
The error function is the integral of a Gaussian distribution and expresses the probability
of an observation x. It is defined as:

- R -26

d4
d3

Δ4
Δ1

Δ3
d

bd1

d2

Δ2

a

c

e

Figure 2.14: A diagram of the two-residue periodicity pattern in a peptide fragment which contains five
central residues. The two gradient circles represent two different Ramachandran clusters. The continuous
lines are the distances between the residues of distinct clusters (Δn distances) and the dotted lines are the
distances between residues of the same cluster (dn distances).

erf (x) = 1
σ 2π

e
−(x−µ)2

2σ 2

−∞

x

∫ dx Equation 2.7

Section 2: Methods

We can also calculate the reverse probability by using the complementary error function
(erfc) which is defined as:

Consequently, considering a Ramachandran cluster as a normal distribution of distances d,
with σ=10.22 and µ=0, the error function can convert the distances into probabilities. We
need to calculate two kinds of probabilities:

• The probability PΔn of two residues to be in the same cluster (distances Δn). This
means that when the distance between residues i and i+2 increases, the
probability decreases (distance and probability are inversely proportional). We
used the erf for this:

• The probability Pdn of two residues to be in different clusters. This means that
when the distance between residues i and i+1 increases, the probability also
increases (distance and probability are proportional). This is the reverse
probability so we used erfc:

For the 5-residue pattern, we calculated a total of 8 probabilities for each peptide
fragment. Every probability contributes to the final score, so the higher the aggregate of
the 8 probabilities, the higher the match to the hypothetical model. However, we found out
that the aggregate of the probabilities themselves as a score for the results, is not very
representative; some high scored peptides did not match the pattern, while peptides with
lower score did. To solve this problem we used the aggregate of the log-odds ratio, instead
of the probabilities themselves, and the scoring was significantly more representative. The
log-odds ratio of a probability P, is given by the following equation:

 Our program implements all the above principles in a systematic way, for every
possible peptide fragment, using as input the file containing the dihedral angles. It should
be noted that the calculation of the distances is carried on by the method described in
Paragraph 2.2.2.

- R -27

erfc(x) = 1− erf (x) Equation 2.8

PΔn = erf
Δn

2σ 2
⎛
⎝⎜

⎞
⎠⎟

Equation 2.9

Pdn = erfc
dn

2σ 2
⎛
⎝⎜

⎞
⎠⎟ Equation 2.10

logodds(P) = P
1− P

Equation 2.11

Section 2: Methods

2.4.2 Pipeline

A schematic summary of the algorithm can be shown in the following pipeline (Figure
2.14):

The source code of the program (dif_vectors.c) can be found in the Appendix.

- R -28

No

No

Yes

Figure 2.14: Flow chart of the program dif_vectors.c

END

Start with
first residue iBEGIN

Read phi, psi
angles for

residues i to
i+5

Convert distances
to probabilities
using the error

function

Calculate log-
odds for every
probability

Sum the log-odds

Write the log-odd
sum for the
specific 5-

residue fragment

Is
some of

these residues
terminal?

Go to next
residue and set

it as i

Did
you reach
the end?

Calculate the
distances

needed for the
pattern

Is input
sane?

No

Yes

Yes

Section 2: Methods

2.5 Structure clustering and overall procedure

 The output of the program dif_vectors is a text file containing all the possible 5-
residue fragments, scored according to the match on our hypothetical model. Every line of
the file corresponds to a certain fragment, and contains, beside the score, information such
as the first and the last residue, the PDB ID of the molecule and the chain. A sample of the
output file is shown in Figure 2.15:

 The next step of the procedure is the culling of the high-scored peptide fragments
and then the classification according to their structure similarity. We are going to describe
a protocol for extracting the peptides, and clustering them according to their structure
similarity. The procedure combines programming, task automation and usage of structure
analysis software such as Carma[24], Grcarma[25], PyMol[26] and VMD[27]:

• Carma is a molecular dynamics trajectory analysis program; we used it to create
artificial trajectories and for cartesian cluster analysis.

• Grcarma is more user-friendly version of Carma, which supports graphical
interface.

• VMD and PyMol are molecular visualisation and graphics programs which we
used to illustrate the structures we found. PyMol supports graphical rendering
with Ray Tracing to produce high quality 3D models.

- R -29

...
 -2.2269513468047 2D0S 70LYS A 70 74TRP A 74
 -2.4814835273328 2D0S 71ILE A 71 75VAL A 75
 -0.1424664302906 2D0S 72VAL A 72 76LEU A 76
 -5.4832997065578 2D0S 73ARG A 73 77THR A 77
-27.9728959773400 2D0S 74TRP A 74 78LEU A 78
 -3.4051897562880 2D0V 2ASP A 2 6GLU A 6
 -0.6846187450998 2D0V 3LYS A 3 7LEU A 7
 -3.0800667320617 2D0V 4LEU A 4 8SER A 8
 -7.3779921939430 2D0V 5ILE A 5 9ASN A 9
-51.5885065028282 2D0V 6GLU A 6 10SER A 10
 17.5482587940678 2D0V 7LEU A 7 11ASN A 11
 -1.7855995844273 2D0V 8SER A 8 12GLU A 12
-12.3305597026372 2D0V 9ASN A 9 13ASN A 13
-19.0835522155755 2D0V 10SER A 10 14TRP A 14
-40.3097017553709 2D0V 11ASN A 11 15VAL A 15
 -5.1063778528191 2D0V 12GLU A 12 16MET A 16
 7.0104079613309 2D0V 19LYS A 19 23SER A 23
 0.5462487411286 2D0V 20ASN A 20 24ASN A 24
 49.0366337270417 2D0V 21TYR A 21 25ASN A 25
 88.2788064456197 2D0V 22ASP A 22 26TYR A 26
 2.1951844095155 2D0V 23SER A 23 27SER A 27
...

Figure 2.15: Sample of the probabilities.dat file. The first column contains the log-odds sum score, the
second is the PDB ID, the third and the sixth columns contain the first and the last residue IDs respectively.
The fourth and seventh columns contain the chain, and the fifth and eighth columns contain the residue
numbers respectively.

Section 2: Methods

 The protocol we used is stated below. All the UNIX commands are presented in
distinct font:

1. Reverse sorting of the score file using: 
 
sort -s -n -r -k probabilities.dat > probs_sorted.dat 

2. Production of PDB files for every high scored hit (in this case a threshold of 100 was
set, so we needed the first 16.000 hits) by doing the following: 
 
head -16000 probs_sorted.dat > top16000.dat  

./pdb_extractor.pl -d -h top16000.dat  

 

pdb_extractor.pl is a Perl script used for culling the structures found by the program
dif_vectors. It downloads the specific files from the PDB via ftp and extracts only the
residues of the peptide fragments specified in the score file. The flag -d is for deleting
the initial PDB files after extracting the fragments, and -h is for suppressing any
duplicate entries of homopolymeric molecules. The source code can be found in the
Appendix (Script 9) 

3. 8190 PDB files remained after excluding the duplicates. Some entries have duplicate
atoms probably due to protein discrete disorder. To remove such entries we can filter
the PDB files with two Bash scripts, that implement an AWK command: 

• For filtering the molecules that contain a sane number of Ca atoms, we used the
ca_filter.sh Bash script (source code in the Appendix, Script 10).

• For filtering the molecules that contain a sane number of backbone atoms (N,
Ca, C, O) we used the backbone_filter.sh Bash script (source code in the
Appendix, Script 11)

 390 files were removed, and 7800 remained. 

4. Having a pure database of potential hits, the next step was to extract the Cαs or the
backbone atoms from every molecule, to use them for creating an Root Mean Square
Deviation matrix for clustering. The Root Mean Square Deviation (RMSD) is a way to
measure the average distance of atomic positions of two peptides in superposition, and
is defined as: 
R  
 
 

- R -30

RMSD = 1
n

di
2

i=1

n

∑

Section 2: Methods

where n is the number of pairs of equivalent atoms and di the distance of the atoms of
the ith pair[28]. The lower the RMSD between two peptides, the higher their structure
similarity. The RMSD matrix contains the RMSD values between all the frames
(pseudo-frames in our case) of a trajectory. The matrix can be analysed and the
structures can be clustered by setting an RMSD cut-off. We chose this method because
it is directly structure-based (it uses cartesian coordinates) and easy to implement
using the R statistical package. The extraction of the atoms was carried on with the
following commands: 
 
grep –no-filename ‘ CA’ * > all_CA.pdb  

 or 
awk ‘{$3==”CA” || $3==”C” || $3==”N” || $3==”O” {print}’ *.pdb

>> all_backbone.pdb  

5. Validation of the sanity of the files: 
 
ls -l *.pdb | wc -l  

 

The two files are sane if the number returned is dividable by 5 for the Ca file, or by 20
for the backbone file. Validation in every step is crucial, in order to avoid unexpected
problems during the whole procedure. 

6. The method we chose for the clustering of the structures, required the construction of a
fake molecular dynamics trajectory, which contains all the structures found by our
program. In order to do this, an “END” had to be put in the end of every molecule in the
global .pdb file (all_CA.pdb or all_backbone.pdb): 
 
awk ‘{print}; NR%5==0 {print “END”}’ all_CA.pdb > out (for
all_CA.pdb) 
or 
awk ‘{print}; NR%20==0 {print “END”}’ all_CA.pdb > out (for
all_backbone.pdb) 
 
There must be an “END” every 5 (or 20) lines, and in the last line. 

7. The large .pdb file looks like a trajectory and contains all the hits in alphabetical order.
The filtered .pdb files were stored, and a numbered list of them was created. This list
was used in the late stages of the procedure, in order to assign the structures of the
trajectory to the initial files containing them. 

- R -31

Section 2: Methods

8. The trajectory .pdb file was used as input to VMD. The structures were not yet
superimposed so they could not be visualised. VMD was used to produce a .dcd file for
the cluster analysis. 

9. The cluster analysis was carried on by the program Carma. Carma requires a .dcd file
and a .psf file (protein structure file). A pseudo .psf file was created with the program
pdb2psf (Glykos NM, Script 12, source code in the Appendix) and the atom and
residue numbers were modified to be 1,2,3 etc. 

10. An RMSD matrix of the Cα atoms was created using Carma (The input files were
all_backbone.dcd and all_backbone.psf. Although the above steps described how to
create a Cα file as well, we used the backbone file in our calculations). For the 7800
structures of the pseudo-trajectory, we created an 7800x7800 matrix with step of 1
frame, using the following command: 
 
carma -verbose -cross -step -segid A all_backbone.dcd

all_backbone.psf  

11. Construction of a hierarchical dendrogram of the structures, using the UPGMA
algorithm. The clustering was done using R, with an RMSD threshold = 1Å (structures
with RMSD ≤ 1Å are joined in the same cluster. An R script was used (Script 13,
source code in the Appendix) as shown below: 
 
Rscript clustering.R | tee LOG  
 
LOG file contains a summary of the clustering procedure, all_clusters.list contains the
list of clusters found, and a PostScript file contains the dendrogram (RMSD matrix and
dendrogram can be found in Section 3: Results). 

12. The cluster list was then separated into distinct lists, each one containing one cluster.
This was done by running lists.sh (Script 14, source code in the Appendix). Every list
links the frames with the initial structures of the data set. The structures can be
assigned to the initial pdb files according to the list created in step 7. 

13. The structures were reordered by running reorder.sh (Script 15, source code in the
Appendix). The script runs Carma to sort the structures of the lists into new .dcd files. 

14. The .dcd file contains non-superimposed structures. To superimpose them we used
superimpose.sh (Script 16, source code in the Appendix). The script fits the

- R -32

Section 2: Methods

structures using Carma. 

15. Production of .pdb files of superimposed structures for every cluster, using
final_pdbs.sh (Script 17, source code in the Appendix). The script takes as input
the .dcd files and runs Carma for every one of them to produce .pdb files.

16. To create 3-dimensional visualisations of the clusters, we used PyMol, which is capable
of rendering high-quality textures and 3D models.  

17. The final step was to check the structures for residue conservation; we did this by
creating a sequence logo for each cluster of aligned peptides[29]. Sequence logos are
constructed by letters that correspond the residues of a protein (or nucleotides in a
DNA/RNA chain). The letters are stacked in each position, and their relative size
represents their frequency in the cluster. The total height of each stack measures the
conservation of the residues in this position in bits. For proteins, the bits range
between 0 and 4. The sequence logos were created using the online tool Weblogo[30]. 

- R -33

Section 3: Results

Section 3  
Results
 Our research returned a significant number of hopeful results, which are presented
in this section. As stated previously, the clustering procedure included the construction of
a 7800x7800 RMSD matrix for 7800 candidate 5-residue peptide fragments (RMSD of the
Cα atoms). The scores of the fragments range from 206.9 (highest score) to 100 (cut-off).
39 clusters were found by the UPGMA algorithm, using 1.0Å RMSD cut-off.
 It is generally accepted from empirical observations, that superimposed structures
with RMSD < 2.0Å have close structure similarity[31]. We chose the low RMSD threshold of
1.0Å after studying the hierarchical dendrogram constructed by the UPGMA algorithm
(Figure 3.2). The dendrogram shows a high increase in the number of clusters in RMSD
values lower than 1.0Å, so we considered this threshold to be optimal for clustering
peptides of high structure similarity. Before presenting the clusters, we are showing the
RMSD matrix (Figure 3.1) as well as the hierarchical dendrogram (Figure 3.2). Also
Table 3.1 summarises the members of all the clusters found:

- R -34

Figure 3.1: The 7800x7800 RMSD matrix for the Cαs of 7800 potential hits returned by the scoring
algorithm. The colours range from yellow (high RMSD value between two peptides) to blue (low RMSD).

1
78003900

3900

1

7800

Section 3: Results

- R -35

R
M

SD

Figure 3.2: The hierarchical dendrogram of RMSD as created by the R clustering script (UPGMA
algorithm). The red dotted line indicates the RMSD cut-off we set for the clustering (40 clusters at 1.5Å
RMSD cut-off).

Peptide fragments

Table 3.1: The population of the clusters along with the percentage of clustered structures in the dataset of
total 7800 structures. The most populated clusters (≥0,9%) are highlighted in yellow, and will be
illustrated in the following pages.

Cluster Number of
structures

% of all hits

21 12 0,15%
22 79 1,01%
23 15 0,19%
24 21 0,27%
25 13 0,17%
26 34 0,43%
27 6 0,08%
28 12 0,15%
29 15 0,19%
30 9 0,12%
31 6 0,08%
32 2 0,03%
33 1 0,01%
34 12 0,15%
35 3 0,04%
36 6 0,08%
37 1 0,01%
38 3 0,04%
39 2 0,03%

Cluster Number of
structures % of all hits

1 1675 21,47%
2 137 1,75%
3 961 12,32%
4 606 7,76%
5 776 9,94%
6 1411 18,08%
7 1417 18,16%
8 38 0,48%
9 75 0,96%
10 13 0,17%
11 23 0,29%
12 3 0,04%
13 151 1,94%
14 17 0,22%
15 12 0,15%
16 6 0,08%
17 177 2,27%
18 18 0,23%
19 2 0,03%
20 30 0,38%

Section 3: Results

 The following images show the 11 most populated clusters (highlighted in yellow in
Table 3.1) in descending order. 100 backbone structures of each cluster (except 22 and 9)
are shown as sticks (blue = N atom, red = O atom, grey = C atom), along with their
Ramachandran plots and the sequence logos. The 3D models were created in PyMol[26]
and the Ramachandran plots were constructed using the online tool Rampage[32]. The
sequence logos were created in Weblogo[30].

- R -36

Cluster 1 (1675 structures)

Cluster 2 (137 structures)

Section 3: Results

- R -37

Cluster 3 (961 structures)

Cluster 4 (606 structures)

Cluster 5 (776 structures)

Section 3: Results

- R -38

Cluster 9 (75 structures)

Cluster 6 (1411 structures)

Cluster 7 (1417 structures)

Section 3: Results

- R -39

Cluster 17 (177 structures)

Cluster 22 (79 structures)

Cluster 13 (151 structures)

Section 4: Conclusions and Discussion

Section 4  
Conclusions and Discussion
 To conclude, we should review our initial hypothesis in contrast with the insights
given by the results. Our goal was to search for a 5-residue-long, periodical motif in the
known protein structures. We performed a series of in silico studies to scan a large sample
of X-ray diffraction-solved protein molecules. The motif we searched for, is characterised
by alternating φ,ψ-pairs, between two distinct ranges. We did not specify two strict φ,ψ
ranges, but we let the clustering algorithm group the high-scored structures according to
their geometric similarity in the 3-dimensional cartesian space. Therefore, the study was
not sequence-specific, but secondary structure-specific.
 These early results presented in the previous section, show the occurrence of
recurrent two-residue periodical patterns in peptide fragments of five residues.
Specifically, two dominant motifs are the most abundant (described as seen on a
Ramachandran plot):  

1. Transitions between the α-helix region and β-sheet region (Figure 4.1) 

- R -40

ψ

φ

Figure 4.1: A representative example of a pattern of transitions between the α-helix and β-sheet regions.
The image shows the Ramachandran plot and 3D structure of the residues Y444-447 of the molecule with
PDB ID: 2ZF5. Two residues, one residue on each terminus of the fragment, were added in order to plot the
5 central residues. The fragment belongs to cluster 7. The Ramachandran plot was created in Rampage and
the 3D model in PyMol.

Section 4: Conclusions and Discussion

2. Transitions between the αL-helix region and the β-sheet region (Figure 4.2)

 Although a possible αL-helix - α-helix pattern may occur, this case has not been
evaluated by our current studies. An clue that might support the existence of such pattern,
is that residues of some clusters (e.g. 4, 17, 22) populate more than two Ramachandran
regions. Therefore, the pattern is likely to exist, but to be not clearly distinguishable in the
graphical representations. For the reason that the current studies do not prove the
existence of this pattern, right now we consider this as noise, but our future intentions
include the elimination of it. If we cluster the structures with a lower RMSD threshold, or
use the backbone atoms instead of the Cαs, we will be able to group peptides of closer
structure similarity, and reduce the noise in the Ramachandran plots. Another way to do
this, is to modify the scoring algorithm so it is able to set limits to the φ,ψ ranges, and
search for patterns between two specific Ramachandran regions (e.g. a program that
searches only for an αL-α transition pattern).
 As regards the sequence-specificity in the peptides found, we can study the
sequence logos of the aligned structures in each cluster. As mentioned before, the
conservation in a particular position is measured in bits, and the relative height of the
letters in this position indicates the frequency of the corresponding residues. The standard
scaling of bits (for proteins) is 0-4, however, the logos we made have a much narrower

- R -41

ψ

φ

Figure 4.2: A representative example of a pattern of transitions between the β-sheet and αL-helix regions.
The image shows the Ramachandran plot and 3D structure of the residues A275-279 of the molecule with
PDB ID: 2D0V. Two residues, one residue on each terminus of the fragment, were added in order to plot
the 5 central residues. The fragment belongs to cluster 7. The Ramachandran plot was created in Rampage
and the 3D model in PyMol.

Section 4: Conclusions and Discussion

range (0-0.7 and 0-1) . Figure 4.3 shows the sequence logo of the first cluster, but with
the normal scaling:

We can notice that the height of the letter stacks in all the positions is low, when using
normal bits scaling. This indicates that the residue conservation is rather insignificant, and
none of the clusters seem to have a consensus sequence.
 By studying the relative height of the letters in the logos, we can assess the
preference of some particular residues in the peptide fragments. Some residues such as
serine (S), threonine (T), glutamic acid (E), asparagine (N) and aspartic acid (D) seem to
be preferred in the sequences, especially in the three central positions. This is expected, as
these residues are common in loops. Nevertheless, we cannot assume that there is a strict
residue preference, as there is a variety of different residues in all the five positions. The
conclusion of the above observations is that the peptides which follow the 2-residue
periodical pattern, do not seem to have a particular sequence specificity, although they are
highly similar in the level of secondary structure. The question that is raised considering
this statement, is whether this similarity of structure is translated into a specific functional
role. To answer this, further research is needed, by studying the gene topology of the
protein molecules that contain these peptide fragments, something that is indeed included
in our future work.
 These first steps we made in assessing the existence of some standard
conformations in random coils, relying on the knowledge on (φ,ψ)2-motifs, can help us in
future studies. Our plans (besides the improvement of the algorithm) are the
characterisation of the 2-residue periodical patterns found, in terms of sequence and
function. There are some clues that support the hypothesis that these patterns might play a
functional role. For instance, some observations we made, show potential conservation in
some structures in Cluster 6. If we add five extra residues on each terminus of the
fragments, and then superimpose the five central residues, we can distinguish a rather

- R -42

Figure 4.3: The sequence logo of Cluster 1, with the normal scaling of the bits (0-4). The logos of the rest
of the clusters have a similar form.

Section 4: Conclusions and Discussion

interesting conformation, recurring in the specific cluster: the five central residues that
follow the αL-β transition pattern take an S shape, and the five C-terminal residues form an
α-helix. Also, the five N-terminal residues seem to take a random coil conformation.
Figure 4.4 shows five members of cluster 6 that seem to follow the above mentioned
pattern:  

 It must be indicated that the above hypothesis is not a product of systematic
research, but an early observation, carried on loosely. Nevertheless, transferring this
hypothesis to a new project, on strictly characterising our results, can give us new leads on
the quest for uncommon secondary structure motifs.

 

- R -43

Figure 4.4: Cartoon visualisation of five selected members of cluster 6, in superposition (5-central
residues shown in green colour). N-terminus added residues are shown in shades of blue and C-terminus
added residues are shown in shades of red. The image was created in PyMol, and was made to show a
potential structural conservation and functionality of the 2-residue periodical peptide fragment.

“Science never solves a problem without
creating ten more.”

-George Bernard Shaw

References

References
1. Kendrew, J.C., et al., A three-dimensional model of the myoglobin molecule
obtained by x-ray analysis. Nature, 1958. 181(4610): p. 662-6.
2. Lehninger, A.L., D.L. Nelson, and M.M. Cox, Lehninger principles of biochemistry.
2013, W.H. Freeman: New York. p. 151-3.
3. Kuriyan, J., B. Konforti, and D. Wemmer, The molecules of life : physical and
chemical principles. xxii, 1008 pages.
4. Pauling, L., R.B. Corey, and H.R. Branson, The structure of proteins; two hydrogen-
bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A, 1951.
37(4): p. 205-11.
5. Pauling, L. and R.B. Corey, The pleated sheet, a new layer configuration of
polypeptide chains. Proc Natl Acad Sci U S A, 1951. 37(5): p. 251-6.
6. Brändén, C.-I. and J. Tooze, Introduction to protein structure. 1999, Garland Pub.:
New York. p. 15-7.
7. Toniolo, C. and E. Benedetti, The polypeptide 310-helix. Trends Biochem Sci, 1991.
16(9): p. 350-3.
8. Low, B.W. and R.B. Baybutt, The pi-helix -a hydrogen bonded configuration of
polypeptide chains. J Am Chem Soc, 1952. 74(22): p. 5806-5807.
9. Ramachandran, G.N., C. Ramakrishnan, and V. Sasisekharan, Stereochemistry of
polypeptide chain configurations. J Mol Biol, 1963. 7: p. 95-9.
10. Ramakrishnan, C. and G.N. Ramachandran, Stereochemical criteria for polypeptide
and protein chain conformations. II. Allowed conformations for a pair of peptide units.
Biophys J, 1965. 5(6): p. 909-33.
11. Hollingsworth, S.A. and P.A. Karplus, A fresh look at the Ramachandran plot and
the occurrence of standard structures in proteins. Biomol Concepts, 2010. 1(3-4): p.
271-283.
12. Arnott, S. and S.D. Dover, The structure of poly-L-proline II. Acta Crystallogr B,
1968. 24(4): p. 599-601.
13. Schulz, G.E. and R.H. Schirmer, Principles of protein structure. Springer advanced
texts in chemistry. 1979, New York: Springer-Verlag. x, 314 p.
14. Hollingsworth, S.A., D.S. Berkholz, and P.A. Karplus, On the occurrence of linear
groups in proteins. Protein Sci, 2009. 18(6): p. 1321-5.
15. Venkatachalam, C.M., Stereochemical criteria for polypeptides and proteins. V.
Conformation of a system of three linked peptide units. Biopolymers, 1968. 6(10): p.
1425-36.
16. Hollingsworth, S.A., et al., (phi,psi)(2) motifs: a purely conformation-based fine-
grained enumeration of protein parts at the two-residue level. J Mol Biol, 2012. 416(1): p.
78-93.

- R -44

References

17. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p.
235-42.
18. Kernighan, B.W. and D.M. Ritchie, The C programming language. 2nd ed. 1988,
Englewood Cliffs, N.J.: Prentice Hall. xii, 272 p.
19. Stajich, J.E., et al., The Bioperl toolkit: Perl modules for the life sciences. Genome
Res, 2002. 12(10): p. 1611-8.
20. Introduction to R. [cited 2017 March]; Available from: https://www.r-project.org/
about.html.
21. Wang, G. and R.L. Dunbrack, Jr., PISCES: a protein sequence culling server.
Bioinformatics, 2003. 19(12): p. 1589-91.
22. Laskowski, R.A., et al., PROCHECK - a program to check the stereochemical quality
of protein structures. J App Cryst, 1993. 26: p. 283-291.
23. Weisstein, E.W. "Erf.". MathWorld--A Wolfram Web Resource.; Available from:
http://mathworld.wolfram.com/Erf.html.
24. Glykos, N.M., Carma: a molecular dynamics analysis program. J Comput Chem,
2006. 27(14): p. 1765-8.
25. Koukos, P.I. and N.M. Glykos, Grcarma: A fully automated task-oriented interface
for the analysis of molecular dynamics trajectories. J Comput Chem, 2013. 34(26): p.
2310-2.
26. Schrodinger, LLC, The PyMOL Molecular Graphics System, Version 1.8. 2015.
27. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. J Mol
Graph, 1996. 14(1): p. 33-8, 27-8.
28. Kufareva, I. and R. Abagyan, Methods of protein structure comparison. Methods
Mol Biol, 2012. 857: p. 231-57.
29. Schneider, T.D. and R.M. Stephens, Sequence logos: a new way to display consensus
sequences. Nucleic Acids Res, 1990. 18(20): p. 6097-100.
30. Crooks, G.E., et al., WebLogo: a sequence logo generator. Genome Res, 2004. 14(6):
p. 1188-90.
31. Krissinel, E., On the relationship between sequence and structure similarities in
proteomics. Bioinformatics, 2007. 23(6): p. 717-23.
32. Lovell, S.C., et al., Structure validation by Calpha geometry: phi,psi and Cbeta
deviation. Proteins, 2003. 50(3): p. 437-50.

- R -45

Appendix

Appendix
Source code

Script 1: list_lowercase.pl

 1 #!/usr/bin/perl
 2
 3 use warnings;
 4
 5 @ARGV == 1 || die "Usage: p1_scr2.pl [list_path]";
 6
 7 open (INFILE, "$ARGV[0]") || die "Cannot open file for input: $!\n";
 8 open (OUTFILE, ">$ARGV[0].lst") || die "Cannot open file for output:
$!\n";
 9
10 while ($input = <INFILE>){
11
12 if($input =~ m/^IDs*/){
13 next;
14 }
15
16 else{
17 $pdb_code = lc substr("$input", 0, 4);
18 print OUTFILE "$pdb_code\n";
19 }
20 }
21
22 close INFILE;
23 close OUTFILE;
24
25 exit(0);

Script 2: pdb_ftp.pl

 1 #!/usr/bin/perl
 2 use warnings;
 3
 4 use Net::FTP;
 5
 6 @ARGV == 1 || die "Usage: p1_scr3.pl [list_path]";
 7
 8 $ftp = Net::FTP->new("ftp.wwpdb.org", Debug => 0) || die "Cannot
connect to ftp.wwpdb.org: $!\n";
 9 print "Connected!\n";
10

- R -46

Appendix

11 $ftp->login("john_ree", "randompasswd") || die "Cannot login to
ftp.wwpdb.org: $!\n";
12 print "You're in mah dawg!\n";
13
14 my $fetching_directory = "/pub/pdb/data/structures/all/pdb/";
15
16 $ftp->cwd($fetching_directory);
17
18 open (INFILE, "$ARGV[0]") || die "Cannot open file for input: $!\n";
19
20 my $input;
21 my $file_to_transfer;
22
23 while ($input = <INFILE>){
24
25 chop $input;
26 $file_to_transfer = "pdb$input.ent.gz";
27 print "Getting file: $file_to_transfer\n";
28 $ftp->get($file_to_transfer) || warn "Couldn't get
$file_to_transfer, skipped: $!\n";
29 }
30
31 $ftp->quit;
32 close INFILE;
33
34 exit(0);

Script 3: angles.pl

 1 #!/usr/bin/perl
 2
 3 use warnings;
 4
 5 ## INPUT FILE SANITY CHECK ##
 6
 7 if (@ARGV == 2){
 8
 9 $pdbfile = $ARGV[0];
10 if ($pdbfile =~ m/(\d...)([.]...)/){
11 $pdbcode = "$1";
12 print "Now processing: $pdbcode\n";
13 }
14 else{
15 die "Wrong input file: Must be a .pdb or .ent\n";
16 }
17
18 $resolution = $ARGV[1];
19 }
20

- R -47

Appendix

21 elsif (@ARGV == 3){
22
23 $pdbfile = $ARGV[0];
24 if ($pdbfile =~ m/(\d...)([.]...)/){
25 $pdbcode = "$1";
26 print "Now processing: $pdbcode\n";
27 }
28 else{
29 die "Wrong input file: Must be a .pdb or .ent\n";
30 }
31
32 $chain = $ARGV[1];
33 $resolution = $ARGV[2];
34 }
35
36 else{
37 die "Usage: prog.pl [pdb_file_path] [chain (leave blank for
all chains] [resolution]\n";
38 }
39 ## RUN PROCHECK TO PRODUCE PHI/PSI DATA FILE ##
40
41 if (@ARGV == 2){
42
43 system('bash', '-i', '-c', "procheck $pdbfile $resolution >/
dev/null 2>&1");
44 }
45
46 elsif (@ARGV == 3){
47
48 system('bash', '-i', '-c', "procheck $pdbfile $chain
$resolution >/dev/null 2>&1");
49 }
50
51 ## DELETE JUNK FILES ##
52
53 #`mv $pdbcode.pdb a$pdbcode.pdb`;
54 `mv *.rin temp1.dat`;
55 `rm *$pdbcode*`;
56 #`mv a$pdbcode.pdb $pdbcode.pdb`;
57 `rm fort.27`;
58 `rm *.log`;
59 `rm procheck.prm`;
60
61 ## MODIFY PHI/PSI ANGLE FILE ##
62
63 open (INFILE1, "temp1.dat");
64 open (OUTFILE1, ">$pdbcode.ang");
65
66 while ($line = <INFILE1>){
67
68 if($line =~ m/(\d+\w\w\w)/){

- R -48

Appendix

69 $residue = $&;
70 $residue =~ s/ //;
71 }
72 else{
73 next;
74 }
75 $resid = substr($line, 8, 5);
76 $phi = substr($line, 15, 7);
77 $phi =~ s/ //;
78 $psi = substr($line, 22, 7);
79 $psi =~ s/ //;
80
81 printf OUTFILE1 ("%s\t%7s\t%7s\t%7s\t%7s\n", $pdbcode,
$residue, $resid, $phi, $psi);
82 }
83
84 close INFILE1;
85 close OUTFILE1;
86
87 `rm temp1.dat`;
88
89 exit(0);

Script 4: run_angles.pl

1 #!/usr/bin/perl
2 use warnings;
3
4 @files = <~/Desktop/test_pdb/*.ent>;
5 foreach $file (@files) {
6
7 system("~/Desktop/ang_test/angles.pl $file 3.0”);
8 }
9 exit(0);

Script 5: unknown_omit.pl

 1 #!/usr/bin/perl -w
 2
 3 open (INFILE, "$ARGV[0]");
 4 open (OUTFILE, ">no_unknown.ang");
 5
 6 while ($line = <INFILE>){
 7
 8 if ($line !~ m/(\s\d+ALA|ARG|ASN|ASP|ASX|CYS|GLN|GLU|
GLY|GLX|HIS|ILE|LEU|LYS|MET|PHE|SER|THR|TRP|TYR|VAL|PRO)(.........)
(.......)/){
 9 $substr1 = substr($line, 0, 21);

- R -49

Appendix

10 $substr2 = " 999.90";
11 $substr3 = substr($line, 28);
12 $line = $substr1.$substr2.$substr3;
13 print OUTFILE "$line";
14 }
15 else{
16 print OUTFILE "$line";
17 }
18
19 }

Script 6: gp_omit.pl

 1 #!/usr/bin/perl -w
 2
 3 open (INFILE, "$ARGV[0]");
 4 open (OUTFILE, ">no_gp.ang");
 5
 6 while ($line = <INFILE>){
 7
 8 if ($line =~ m/(\s\d+GLY|PRO)(.........)(.......)/){
 9 $line =~ s/$3/ 999.90/;
10 print OUTFILE "$line";
11 }
12 else{
13 print OUTFILE "$line";
14 }
15
16 }

Script 7: input_correction.c

 1 #include <stdio.h>
 2 #include <math.h>
 3 #include <string.h>
 4 #include <stdlib.h>
 5
 6 int main(){
 7
 8 char pdbid1[5], pdbid2[5];
 9 char resnum1[20], resnum2[20];
10 char chain1, chain2;
11 int resid1, resid2;
12 float phi1, psi1, phi2, psi2;
13
14 scanf("%s %s %c %d %f %f", pdbid1, resnum1, &chain1, &resid1,
&phi1, &psi1);
15 printf("%s %11s %c %4d %8.2f %8.2f\n", pdbid1, resnum1,
chain1, resid1, phi1, psi1);

- R -50

Appendix

16 while(scanf("%s %s %c %d %f %f", pdbid2, resnum2, &chain2,
&resid2, &phi2, &psi2) == 6){
17 if(strcmp(pdbid1, pdbid2) == 1 && resid2 != resid1+1)
{
18 printf("%s %11s %c %4d 999.90 %8.2f\n",
pdbid1, resnum1, chain1, resid1, psi1);
19 printf("%s %13s %c %5d %10.2f 999.90\n",
pdbid2, resnum2, chain2, resid2, phi2);
20 }
21 else{
22 printf("%s %11s %c %4d %8.2f %8.2f\n",
pdbid2, resnum2, chain2, resid2, phi2, psi2);
23 }
24 strcpy(pdbid1, pdbid2);
25 strcpy(resnum1, resnum2);
26 chain1 = chain2;
27 resid1 = resid2;
28 phi1 = phi2;
29 psi1 = psi2;
30 }
31 }

Script 8: gauss_fit.R

 1
 2 # Variable and function declarations
 3
 4
 5 input.data <- read.table("~/Dropbox/Lab/proj1/R/
distances1-3_noGP.histogram", header = TRUE, sep = "", dec = ".")
 6 x <- input.data$x
 7 y <- input.data$y
 8
 9
10 fit.data <- data.frame(x,y)
11
12 gaussian.formula <- "y ~
13 k * exp(-(x-0)^2/(2*s1^2)) +
14 l * exp(-(x-m2)^2/(2*s2^2)) +
15 m * exp(-(x-m3)^2/(2*s3^2))"
16
17
18 # Fit
19
20 fit <- nls(gaussian.formula, data = fit.data, start =
list(k=100000, l=30000, m=15000, m1=10, m2=50, m3=125, s1=10, s2=10,
s3=20), trace = FALSE)
21
22 pdf(file="fit_plot.pdf")
23 plot(x, y, type="l", col="green")
24 lines(x, predict(fit), type="l", col="red")
25 summary(fit)

- R -51

Appendix

Script 9: pdb_extractor.pl

 1 #!/usr/bin/perl
 2
 3 use strict;
 4 use Net::FTP;
 5
 6 @ARGV == 1 || @ARGV == 2 || @ARGV == 3 || @ARGV == 4 || die
"\nUsage: pdb_extractor.pl [input_file] [options]\nOptions:\n-d : delete
initial PDB files after the process\n-c : concatenate hits of the same
molecule into one PDB file\-h : Skip homopolymer duplicates\n\n";
 7
 8 my $i;
 9 my $delete = "NO";
 10 my $concatenate = "NO";
 11 my $no_homopolymer = "NO";
 12 my $file_exists;
 13 my $input_file = $ARGV[0];
 14 my $ftp;
 15 my $fetching_directory;
 16 my $line_1;
 17 my $line_2;
 18 my $pdb_id;
 19 my $chain;
 20 my $res1_id;
 21 my $res5_id;
 22 my $nameres1;
 23 my $nameres5;
 24 my $num_of_entries = 0;
 25 my $pdb_entry;
 26 my $dh;
 27 my $indir_name = "pdb_entries";
 28 my $outdir_name = "out_pdb";
 29 my $outfile_name;
 30
 31 my @dir_contents;
 32
 33 ##Arguments##
 34 for($i=1; $i<=3; $i++){
 35
 36 if($ARGV[$i] =~ m/-.*h.*/){
 37
 38 if($ARGV[$i] =~ m/c/){
 39
 40 die "That's insane. Goodbye.\n";
 41 }
 42 else{
 43 $no_homopolymer = "YES";
 44 }
 45 }
 46 }
 47 if ($ARGV[1] eq "-d" || $ARGV[2] eq "-d"){
 48
 49 $delete = "YES";
 50 }

- R -52

Appendix

 51 elsif ($ARGV[1] eq "-c" || $ARGV[2] eq "-c"){
 52
 53 $concatenate = "YES";
 54 }
 55 elsif ($ARGV[1] eq "-dc" || $ARGV[1] eq "-cd"){
 56
 57 $concatenate = "YES";
 58 $delete = "YES";
 59 }
 60
 61 elsif(@ARGV == 1){
 62 }
 63 else{
 64 die "\nUsage: pdb_extractor.pl [input_file]
[options]\nOptions:\n-d : delete initial PDB files after the process\n-c
: concatenate hits of the same molecule into one PDB file\n\n";
 65 }
 66
 67 ##Establish ftp connection##
 68
 69 $ftp = Net::FTP->new("ftp.wwpdb.org", Debug => 0) || die
"Cannot login to ftp server 'ftp.wwpdb.org': $!\n";
 70 print "\nConnection to PDB server succesful!\n";
 71
 72 $ftp->login("john_ree", "randompasswd") || die "Cannot login
to server: $!\n";
 73 print "You're in dawg!\n";
 74
 75 $fetching_directory = "/pub/pdb/data/structures/all/pdb/";
 76
 77 $ftp->cwd($fetching_directory);
 78
 79 ##Open input file and check sanity##
 80
 81 open (INFILE_1, "$input_file");
 82
 83 while($line_1 = <INFILE_1>){
 84
 85 if($line_1 !~ m/(\S+)(\s)(\w\w\w\w)(\s+)(\w+)(\s+)
(\w)(\s+)([0-9]+)(\s+)(\w+)(\s+)(\w)(\s+)([0-9]+)/){
 86
 87 die "Input file not valid: Must contain 8
columns. Cheers.\n";
 88 }
 89
 90 else{
 91 $num_of_entries++;
 92 }
 93 }
 94 print "$num_of_entries hits will be processed.\n";
 95 seek (INFILE_1, 0, 0);
 96
 97 ##Download and process every file
listed##
 98
 99 mkdir("./$indir_name");

- R -53

Appendix

100 mkdir("./$outdir_name");
101
102 MAIN_LOOP: while($line_1 = <INFILE_1>){
103
104 if($line_1 =~ m/(-*\S+)(\s)(\w\w\w\w)(\s+)(\w+)(\s+)
(\w)(\s+)(-*[0-9]+)(\s+)(\w+)(\s+)(\w)(\s+)(-*[0-9]+)/){
105
106 if($1 =~ m/inf|nan/){
107
108 next;
109 }
110
111 else{
112
113 $file_exists = "NO";
114 $pdb_id = lc($3);
115
116 opendir($dh, $indir_name);
#check if pdb file exists#
117 @dir_contents = readdir($dh);
118 foreach $pdb_entry (@dir_contents){
119
120 if ($pdb_entry eq
"pdb$pdb_id.ent"){
121
122 $file_exists =
"YES";
123 last;
124 }
125 }
126
127 $chain = $7;
128 $res1_id = $9;
129 $res5_id = $15;
130
131 if ($file_exists eq "NO"){
132
133 print "Downloading and
processing file: pdb$pdb_id.ent.gz\n";
134
135 $ftp->get
("pdb$pdb_id.ent.gz") || warn "Couldn't get pdb$pdb_id.ent.gr, skipped:
$!\n";
136 system ("gunzip
pdb$pdb_id.ent.gz");
137 system ("mv
pdb$pdb_id.ent ./$indir_name");
138 $nameres1 = $res1_id;
139 $nameres5 = $res5_id;
140 $outfile_name =
"$pdb_id_$chain$nameres1-$chain$nameres5.pdb";
141 open (OUTFILE, ">./
$outdir_name/$outfile_name");
142 }
143

- R -54

Appendix

144 elsif ($file_exists eq "YES" &&
$concatenate eq "YES"){ #to concatenate in single file#
145
146 opendir($dh, $outdir_name);
147 @dir_contents =
readdir($dh);
148 foreach $pdb_entry
(@dir_contents){
149
150 if ($pdb_entry =~ m/
$pdb_id/){
151
152 close
OUTFILE;
153 open
(OUTFILE, ">>$outdir_name/$pdb_entry");
154 last;
155 }
156 }
157 }
158 elsif ($file_exists eq "YES" &&
$concatenate eq "NO"){
159
160 if($no_homopolymer eq "YES")
{
161
162 opendir($dh,
$outdir_name);
163 @dir_contents =
readdir($dh);
164 foreach $pdb_entry
(@dir_contents){
165
166 if
($pdb_entry =~ m/$pdb_id.+$res1_id/){
167
$pdb_id = uc($pdb_id);
168
print "Skipped homopolymer in entry $pdb_id\n";
169 next
MAIN_LOOP;
170 }
171 }
172 }
173 $nameres1 = $res1_id;
174 $nameres5 = $res5_id;
175 $outfile_name =
"$pdb_id_$chain$nameres1-$chain$nameres5.pdb";
176 open (OUTFILE, ">./
$outdir_name/$outfile_name");
177 }
178
179 open (INFILE_2, "./$indir_name/
pdb$pdb_id.ent");
180
181 while ($line_2 = <INFILE_2>){

- R -55

Appendix

182
183
184 if($line_2 =~ m/(^ATOM)\s+
(\w+)\s+(\w+)\s+(\w+)\s+(\w)\s+([0-9]+)/){
185
186 if($5 eq $chain &&
$6 >= $res1_id && $6 <= $res5_id){
187
188 print
OUTFILE "$line_2";
189 }
190 }
191 }
192 close INFILE_2;
193 close OUTFILE;
194
195 if($file_exists eq "YES" &&
$concatenate eq "YES"){
196
197 system("mv ./$outdir_name/
$pdb_id* ./$outdir_name/temp");
198 system("sort -u ./
$outdir_name/temp > ./$outdir_name/$pdb_id_all.pdb");
199 system("rm ./$outdir_name/
temp");
200 }
201 }
202 }
203 }
204 close INFILE_1;
205
206 if ($delete eq "YES"){
207
208 system("rm -rf $indir_name");
209 }
210 exit();

Script 10: ca_filter.sh

 1 #!/bin/bash
 2
 3 for f in *.pdb
 4 do
 5 awk ‘BEGIN{a=0} if($3==”CA”){a++} END{if(a!=5) print
FILENAME}’ $f > to_delete.list
 6 done
 7
 8 for a in $(<to_delete.list)
 9 do
10 rm $a
11 done 
 

- R -56

Appendix

Script 11: backbone_filter.sh

 1 #!/bin/bash
 2
 3 for f in *.pdb
 4 do
 5 awk ‘BEGIN{a=0} if($3==”CA” || $3==”C” || $3==”N” || $3==”O”)
{a++} END if(a!=20){print FILENAME}’ $f >> to_delete.list
 6
 7 done
 8  
 9 for a in $(<to_delete.list)
10 do
11 rm $a
12 done

Script 12: pdb2psf

 1 #!/usr/bin/perl -w
 2
 3 #
 4 # Open input-output files
 5 #
 6 if (@ARGV == 1)
 7 {
 8 if ($ARGV[0] =~ /(\w+)\.(p|P)(d|D)(b|B)/)
 9 {
10 $outname = $1 . ".psf";
11 open(IN , $ARGV[0]) or die "Can not open input file\n";
12 open(OUT, ">$outname") or die "Can not open output file\n";
13 }
14 else
15 {
16 print "Usage: pdb2psf in.pdb out.psf\n";
17 exit;
18 }
19 }
20 elsif (@ARGV == 2)
21 {
22 open(IN , $ARGV[0]) or die "Can not open input file\n";
23 open(OUT, ">$ARGV[1]") or die "Can not open output file\n";
24 }
25 else
26 {
27 print "Usage: pdb2psf in.pdb out.psf\n";
28 exit;
29 }
30
31 print OUT "PSF\n\n";
32 print OUT " 2 !NTITLE\n";
33 print OUT " REMARKS This is a _pseudo_ PSF file for sole use with the
program carma.\n";

- R -57

Appendix

34 print OUT " REMARKS It will not work with any other PSF-reading
program.\n\n";
35
36 $nof_atoms = 0;
37 while ($line = <IN>)
38 {
39 if ($line =~ /^ATOM\s*(\d*)\s*(\w*)\s*(\w*).(.)\s*(\d*)/)
40 {
41 $nof_atoms++;
42 }
43 elsif ($line =~ /^HETATM\s*(\d*)\s*(\w*)\s*(\w*).(.)\s*(\d*)/)
44 {
45 $nof_atoms++;
46 }
47 }
48
49 printf OUT "%8d !NATOM\n", $nof_atoms;
50
51 print "Found $nof_atoms atoms. Writing ...\n";
52
53 close(IN);
54 open(IN , $ARGV[0]);
55
56 while ($line = <IN>)
57 {
58 if ($line =~ /^ATOM\s*(\d*)\s*(\w*)\s*(\w*).(.)\s*(\d*)/)
59 {
60 printf OUT "%8d %1s%5d %-5s%-5sDUMMY 0.000000 0.0000
0\n", $1, $4, $5, $3, $2;
61 }
62 elsif ($line =~ /^HETATM\s*(\d*)\s*(\w*)\s*(\w*).(.)\s*(\d*)/)
63 {
64 printf OUT "%8d %1s%5d %-5s%-5sDUMMY 0.000000 0.0000
0\n", $1, $4, $5, $3, $2;
65 }
66
67 }
68

Script 13: clustering.R
 1 A <- matrix(scan("all_backbone.RMSD.matrix", n=7800*7800), 7800,
7800, byrow = TRUE)
 2
 3 hc<-hclust(as.dist(A), method="average")
 4 postscript()
 5 plot(hc)
 6 dev.off()
 7 cutree(hc, h=1)
 8
 9 clusters<-cutree(hc, h=1)
10 a<-as.data.frame(clusters)
11 names(a) <- NULL
12
13 write.table(a, file = "all_clusters.list", sep = " ", quote = FALSE)

- R -58

Appendix

Script 14: lists.sh

1 #!/bin/bash
2
3 mkdir cluster_lists
4
5 for i in `seq 1 39` #change me depending on the number of clusters
6 do
7 awk -v c="$i" '$2 == c {print $1}' all_clusters.list >
cluster_lists/cluster$i.list
8 done

Script 15: reorder.sh

 1 #!/bin/bash
 2
 3 mkdir reordered_clusters
 4 for i in `seq 1 39` #change me depending on the number of clusters
 5 do
 6 IF1=cluster_lists/cluster$i.list
 7 OF1=reordered_clusters/cluster$i.dcd
 8 carma -sort $IF1 ../all_backbone.dcd
 9 mv carma.reordered.dcd $OF1
10 done

Script 16: superimpose.sh

 1 #!/bin/bash
 2
 3 for i in `seq 1 39` #change me depending on the number of clusters
 4 do
 5 IF=./reordered_clusters/cluster$i.dcd
 6 OF=./reordered_clusters/cluster$i.fitted.dcd
 7 carma -v -fit -atmid ALLID $IF ../all_backbone.psf
 8 mv carma.fitted.dcd $OF
 9 rm $IF
10 done

Script 17: final_pdbs.sh
 1 #!/bin/bash
 2
 3 mkdir final_pdbs
 4 for i in `seq 1 39` #change me depending on the number of clusters
 5 do
 6 IF_DCD=./reordered_clusters/cluster$i.fitted.dcd
 7 IF_PSF=./all_backbone.psf
 8
 9 carma -v -pdb -atmid ALLID $IF_DCD $IF_PSF
10 cat cluster*fitted*.pdb > ./final_pdbs/cluster$i.pdb
11 rm cluster*fitted*.pdb
12 done

- R -59

Appendix

Distances histogram construction program: histogram1-3.c

 1 /****Plot histogram.dat using NMG's 'plot' ('>$ plot -h <
histogram.dat' or '>$ plot -hs < histogram.dat' to
 2 produce data file along with image)****/
 3
 4 #include <stdio.h>
 5 #include <math.h>
 6 #include <stdlib.h>
 7
 8 int main(int argc, char *argv[])
 9 {
 10
 11 FILE *fp;
 12 FILE *ofp;
 13
 14 char line[200];
 15 char pdbid[4];
 16 char residue[10];
 17 char chain;
 18 int resid;
 19 float d[9];
 20 float dmin;
 21 float phi, psi;
 22 float phi1, phi2, phi3;
 23 float psi1, psi2, psi3;
 24 float x0, x1;
 25 float y0, y1;
 26 int i;
 27
 28
 29
 30 /******Argument sanity check******/
 31
 32 if (argc != 2){
 33
 34 printf ("Usage: histogram [angle_file_name]\n");
 35 exit(1);
 36 }
 37
 38 /******Open file and check if it is correct******/
 39
 40 fp = fopen (argv[1], "r");
 41 puts ("\nChecking file...");
 42
 43 while (fgets(line, sizeof(line), fp) != NULL){
 44
 45 if(sscanf(line, "%s %s %c %d %f %f", pdbid, residue,
&chain, &resid, &phi, &psi) != 6){
 46
 47 puts("Error: Wrong input file format. It
must contain four columns");
 48 exit(1);

- R -60

Appendix

 49 }
 50 sscanf(line, "%s %s %c %d %f %f", pdbid, residue,
&chain, &resid, &phi, &psi);
 51 if(phi == 180.00 || psi == 180.00){
 52
 53 puts("Error: Angle value +180.00 found.
Replace with -180.00 and re-run.");
 54 exit(1);
 55 }
 56 }
 57
 58 /******Calculating distances for histogram
dataset******/
 59
 60 puts ("Data is good! Passing dataset to calculate distances
for histogram..");
 61 rewind(fp);
 62
 63 ofp = fopen ("histogram1-3.dat", "w");
 64
 65 fscanf(fp, "%s %s %c %d %f %f", pdbid, residue, &chain,
&resid, &phi1, &psi1);
 66 if (phi1 > 180.0 || psi1 > 180.0){
 67 fscanf(fp, "%s %s %c %d %f %f", pdbid, residue,
&chain, &resid, &phi1, &psi1);
 68 }
 69 fscanf(fp, "%s %s %c %d %f %f", pdbid, residue, &chain,
&resid, &phi2, &psi2);
 70
 71 while(fscanf(fp, "%s %s %c %d %f %f", pdbid, residue,
&chain, &resid, &phi3, &psi3) == 6){
 72
 73 if(phi1 > 180.00 || psi1 > 180.00 || phi2 > 180.00
|| psi2 > 180.00 || phi3 > 180.00 || psi3 > 180.00){
 74
 75 phi1 = phi2;
 76 psi1 = psi2;
 77
 78 phi2 = phi3;
 79 psi2 = psi3;
 80 continue;
 81 }
 82
 83 else{
 84
 85 x0 = phi1;
 86 y0 = psi1;
 87
 88 /* Calculate all possible distances between
residue #1 and all symmetrics to residue #3*/
 89 x1 = phi3;
 90 y1 = psi3;
 91 d[0] = sqrt(pow((x1-x0), 2) +
pow((y1-y0), 2));
 92
 93 x1 = phi3;

- R -61

Appendix

 94 y1 = psi3 + 360;
 95 d[1] = sqrt(pow((x1-x0), 2) +
pow((y1-y0), 2));
 96
 97 x1 = phi3 + 360;
 98 y1 = psi3 + 360;
 99 d[2] = sqrt(pow((x1-x0), 2) +
pow((y1-y0), 2));
100
101 x1 = phi3 + 360;
102 y1 = psi3;
103 d[3] = sqrt(pow((x1-x0), 2) +
pow((y1-y0), 2));
104
105 x1 = phi3 + 360;
106 y1 = psi3 - 360;
107 d[4] = sqrt(pow((x1-x0), 2) +
pow((y1-y0), 2));
108
109 x1 = phi3;
110 y1 = psi3 - 360;
111 d[5] = sqrt(pow((x1-x0), 2) +
pow((y1-y0), 2));
112
113 x1 = phi3 - 360;
114 y1 = psi3 - 360;
115 d[6] = sqrt(pow((x1-x0), 2) +
pow((y1-y0), 2));
116
117 x1 = phi3 - 360;
118 y1 = psi3;
119 d[7] = sqrt(pow((x1-x0), 2) +
pow((y1-y0), 2));
120
121 x1 = phi3 - 360;
122 y1 = psi3 + 360;
123 d[8] = sqrt(pow((x1-x0), 2) +
pow((y1-y0), 2));
124
125 /*Find minimum distance in distance array*/
126
127 dmin = 9999;
128 for(i=0; i<=8; i++){
129
130 if(d[i] < dmin){
131 dmin = d[i];
132 }
133 }
134
135
136 fprintf(ofp, "%10.6f\n", dmin);
137
138 phi1 = phi2;
139 psi1 = psi2;
140
141 phi2 = phi3;

- R -62

Appendix

142 psi2 = psi3;
143
144 }
145 }
146 fclose(ofp);
147 fclose(fp);
148 }

Main program: dif_vectors_5residues.c

 1 #include <stdio.h>
 2 #include <math.h>
 3 #include <stdlib.h>
 4 #include <string.h>
 5
 6 #define SD 10.22L
 7 #define LM_SQRT2 1.4142135623730950488016887242096981L
 8
 9 /********************************/
 10 /* */
 11 /* Variable Declarations */
 12 /* */
 13 /********************************/
 14
 15 double min_distance(float phi1, float psi1, float phi2, float psi2);
 16 long double probability(double i);
 17
 18 int main(int argc, char *argv[])
 19 {
 20
 21 FILE *fp;
 22 FILE *ofp;
 23
 24 char line[200];
 25 char pdbcode[5];
 26 char chain;
 27 int resid, resid1, resid2, resid3, resid4, resid5;
 28 char residue[10], residue1[10], residue2[10], residue3[10],
residue4[10], residue5[10];
 29 float phi, psi;
 30 float phi1, phi2, phi3, phi4, phi5;
 31 float psi1, psi2, psi3, psi4, psi5;
 32 double d1, d2, d3, d4;
 33 double s1, s2, s3, s4;
 34 //double global_min_distance = 999.0;
 35 long double prob_d1, prob_d2, prob_d3, prob_d4, prob_s1,
prob_s2, prob_s3, prob_s4;
 36 long double logodd_d1, logodd_d2, logodd_d3, logodd_d4;
 37 long double logodd_s1, logodd_s2, logodd_s3, logodd_s4;
 38 long double logodd_sum;

- R -63

Appendix

 39
 40
 41
 42 /********************************/
 43 /* */
 44 /* Argument sanity check */
 45 /* */
 46 /********************************/
 47
 48
 49 if (argc != 2){
 50
 51 printf ("Usage: dif_vectors [angle_file_name]\n");
 52 exit(1);
 53 }
 54
 55
 56 /********************************/
 57 /* */
 58 /* Open file and check if */
 59 /* if it is correct */
 60 /* */
 61 /********************************/
 62
 63
 64 fp = fopen (argv[1], "r");
 65 puts ("\nChecking file...");
 66
 67 while (fgets(line, sizeof(line), fp) != NULL){
 68
 69 if(sscanf(line, "%s %s %c %d %f %f", pdbcode,
residue, &chain, &resid, &phi, &psi) != 6){
 70
 71 puts("Error: Wrong input file format. It
must contain six columns");
 72 exit(1);
 73 }
 74 sscanf(line, "%s %s %c %d %f %f", pdbcode, residue,
&chain, &resid, &phi, &psi);
 75 if(phi == 180.00 || psi == 180.00){
 76
 77 puts("Error: Angle value +180.00 found.
Replace with -180.00 and re-run.");
 78 exit(1);
 79 }
 80 }
 81
 82
 83 /********************************/
 84 /* */
 85 /* Euclidian distance, */

- R -64

Appendix

 86 /* probability, and */
 87 /* logodd calculation */
 88 /* */
 89 /********************************/
 90
 91 puts ("Data is good! Passing dataset to calculate distances
and probabilities...");
 92 rewind(fp);
 93 ofp = fopen("probabilities.dat", "w");
 94
 95 if(ofp == NULL) {
 96
 97 printf("Error: Cannot open output file\n");
 98 exit(1);
 99 }
100
101 // Read phi, psi angle values for 5 consecutive
residues at a time
102
103 fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue1, &chain,
&resid1, &phi1, &psi1);
104 if (phi1 > 180.0 || psi1 > 180.0){
105 fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue1,
&chain, &resid1, &phi1, &psi1);
106 }
107
108 fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue2, &chain,
&resid2, &phi2, &psi2);
109 fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue3, &chain,
&resid3, &phi3, &psi3);
110 fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue4, &chain,
&resid4, &phi4, &psi4);
111
112 while(fscanf(fp, "%s %s %c %d %f %f", pdbcode, residue5,
&chain, &resid5, &phi5, &psi5) == 6){
113
114 // Skip terminal residues, and everything that has
999.90 angle value
115
116 if(phi1 > 180.00 || psi1 > 180.00 || phi2 > 180.00
|| psi2 > 180.00 || phi3 > 180.00 || psi3 > 180.00 || phi4 > 180.00 ||
psi4 > 180.00 || phi5 > 180.00 || psi5 > 180.00){
117 phi1 = phi2;
118 psi1 = psi2;
119
120 phi2 = phi3;
121 psi2 = psi3;
122
123 phi3 = phi4;
124 psi3 = psi4;
125

- R -65

Appendix

126 phi4 = phi5;
127 psi4 = psi5;
128
129 strcpy(residue1, residue2);
130 strcpy(residue2, residue3);
131 strcpy(residue3, residue4);
132 strcpy(residue4, residue5);
133
134 resid1 = resid2;
135 resid2 = resid3;
136 resid3 = resid4;
137 resid4 = resid5;
138
139 continue;
140 }
141
142 else{
143
144 // Calculate i - i+1 euclidian distances in
2D space
145
146 s1 = min_distance(phi1, psi1, phi2, psi2);
//Calculate minimum distance using the min_distance() function
147 prob_s1 = probability(s1);
//Calculate erfc using the probability() funcion
148 logodd_s1 = log1pl(-prob_s1)-
logl(prob_s1); //Calculate the reverse probability log-odds
(probability of two consecutive residues to be in different regions of
the Ramachandran distribution plot
149
150 s2 = min_distance(phi2, psi2, phi3, psi3);
151 prob_s2 = probability(s2);
152 logodd_s2 = log1pl(-prob_s2)-
logl(prob_s2);
153
154 s3 = min_distance(phi3, psi3, phi4, psi4);
155 prob_s3 = probability(s3);
156 logodd_s3 = log1pl(-prob_s3)-
logl(prob_s3);
157
158 s4 = min_distance(phi4, psi4, phi5, psi5);
159 prob_s4 = probability(s4);
160 logodd_s4 = log1pl(-prob_s4)-
logl(prob_s4);
161
162
163 // Calculate i - i+2 euclidian distances in
2D space
164
165 d1 = min_distance(phi1, psi1, phi3, psi3);
166 prob_d1 = probability(d1);

- R -66

Appendix

167 logodd_d1 = logl(prob_d1)-log1pl(-
prob_d1); //Log-odds of the probability of a residue i and a residue
i+2 to be in the same region of the Ramachandran distribution plot
168
169 d2 = min_distance(phi2, psi2, phi4, psi4);
170 prob_d2 = probability(d2);
171 logodd_d2 = logl(prob_d2)-log1pl(-
prob_d2);
172
173 d3 = min_distance(phi3, psi3, phi5, psi5);
174 prob_d3 = probability(d3);
175 logodd_d3 = logl(prob_d3)-log1pl(-
prob_d3);
176
177 d4 = min_distance(phi1, psi1, phi5, psi5);
178 prob_d4 = probability(d4);
179 logodd_d4 = logl(prob_d4)-log1pl(-
prob_d4);
180
181 //Sum of log-odds
182
183 logodd_sum =
logodd_s1+logodd_s2+logodd_s3+logodd_s4+logodd_d1+logodd_d2+logodd_d3+lo
godd_d4;
184
185 fprintf(ofp, "%17.13Lf %s\t%9s %2c %4d %9s
%2c %4d\n", logodd_sum, pdbcode, residue1, chain, resid1, residue5,
chain, resid5);
186
187 //Prepare to go to the next 5 redidues
188
189 phi1 = phi2;
190 psi1 = psi2;
191
192 phi2 = phi3;
193 psi2 = psi3;
194
195 phi3 = phi4;
196 psi3 = psi4;
197
198 phi4 = phi5;
199 psi4 = psi5;
200
201 strcpy(residue1, residue2);
202 strcpy(residue2, residue3);
203 strcpy(residue3, residue4);
204 strcpy(residue4, residue5);
205
206 resid1 = resid2;
207 resid2 = resid3;
208 resid3 = resid4;

- R -67

Appendix

209 resid4 = resid5;
210
211 }
212 }
213 fclose(fp);
214 fclose(ofp);
215 return(0);
216 }
217
218 // This function caclulates all the possible distances of
the two given residues in the 2D space, and finds the one with the
minimum value. This is for avoiding the periodicity of dihedral angles.
219
220 double min_distance(float phi1, float psi1, float phi2, float psi2)
221 {
222 double d[10];
223 double dmin;
224 float x0, y0, x1, y1;
225 int i;
226
227 x0 = phi1;
228 y0 = psi1;
229
230 // Calculate all possible distances between residue #1 and
all symmetrics to residue #2
231
232 x1 = phi2;
233 y1 = psi2;
234 d[0] = sqrt(pow((x1-x0), 2) + pow((y1-y0), 2));
235
236 x1 = phi2;
237 y1 = psi2 + 360;
238 d[1] = sqrt(pow((x1-x0), 2) + pow((y1-y0), 2));
239
240 x1 = phi2 + 360;
241 y1 = psi2 + 360;
242 d[2] = sqrt(pow((x1-x0), 2) + pow((y1-y0), 2));
243
244 x1 = phi2 + 360;
245 y1 = psi2;
246 d[3] = sqrt(pow((x1-x0), 2) + pow((y1-y0), 2));
247
248 x1 = phi2 + 360;
249 y1 = psi2 - 360;
250 d[4] = sqrt(pow((x1-x0), 2) + pow((y1-y0), 2));
251
252 x1 = phi2;
253 y1 = psi2 - 360;
254 d[5] = sqrt(pow((x1-x0), 2) + pow((y1-y0), 2));
255
256 x1 = phi2 - 360;

- R -68

Appendix

257 y1 = psi2 - 360;
258 d[6] = sqrt(pow((x1-x0), 2) + pow((y1-y0), 2));
259
260 x1 = phi2 - 360;
261 y1 = psi2;
262 d[7] = sqrt(pow((x1-x0), 2) + pow((y1-y0), 2));
263
264 x1 = phi2 - 360;
265 y1 = psi2 + 360;
266 d[8] = sqrt(pow((x1-x0), 2) + pow((y1-y0), 2));
267
268 /*Find minimum distance in distance array*/
269
270 dmin = 9999;
271 for(i=0; i<=8; i++){
272
273 if(d[i] < dmin){
274 dmin = d[i];
275 }
276 }
277 return dmin;
278 }
279
280 // Probability function using the complementary error
function
281
282 long double probability(double i){
283 long double prob;
284
285 prob = erfcl(i/(2*SD*LM_SQRT2)); /*Complementary
Error Function*/
286 return prob;
287 }

- R -69

