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Abstract

In recent years, there has been significant progress in the field of Molecular Dynamics Simulations,

providing us with the ability to understand the behavior and dynamics of molecular systems at the

atomic  level.  The  challenges  and  failures  encountered  by  researchers  in  their  efforts  to  create

effective force fields have been insightful. In this thesis, we explore these possibilities using the

well-studied β-sheet fold of the Fip mutant, which constitutes the WW domain of the Pin1 protein.

Understanding the folding process of a β-sheet, which is a dominant secondary structure, is of great

importance. Our objective is to analyze and confirm whether the applied force fields and parameters

are capable of successfully  simulating the folding process of our protein.  Two separate  folding

attempts  of  the  Fip  protein  were  conducted  in  our  laboratory  using  MD simulations,  with  the

peptide chain initially unfolded. The first attempt involved using the Amber ff99SB-ILDN force

field for a 10 μs simulation and the second attempt used the Amber ff99SB*-ILDN force field for a

15 μs simulation. We  attempt to analyze these two trajectories. For our analyses, we extensively

utilized the user-friendly (GUI) Grcarma, which is based on the Carma program. Both tools have

been developed by our laboratory with the purpose of analyzing trajectories generated from MD

simulations. Remarkably, the ff99SB*-ILDN force field, in contrast to the ff99SB-ILDN force field,

successfully folded our protein in approximately half the total simulation time (around 7.2 μs). In

conclusion,  our  study  highlights  the  importance  of  Molecular  Dynamics  Simulations  in

understanding the folding of the β-sheet structure in protein Fip. By using advanced force fields and

tools like Grcarma, we gained valuable insights into the dynamics of the Pin1’s WW domain.
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Περίληψη

Τα τελευταία χρόνια,  έχει παρατηρηθεί  σπουδαία εξέλιξη στον τομέα του Molecular Dynamics

Simulations, παρέχοντάς μας την ικανότητα να κατανοούμε σε ατομικό επίπεδο τη συμπεριφορά

και τη δυναμική των μοριακών συστημάτων. Οι δυσκολίες και οι αποτυχίες που συνάντησαν οι

ερευνητές στην προσπάθειά τους να δημιουργήσουν ικανά force field ήταν  καθοριστικές.  Στην

παρούσα  πτυχιακή,  εξερευνούμε  αυτές  τις  δυνατότητες  κάνοντας  χρήση  του  πολύ  καλά

μελετημένου β-πτυχωτού φύλλου του μεταλλάγματος Fip, το οποίο αποτελεί το WW domain της

πρωτεΐνης Pin1. Το να μπορέσουμε να κατανοήσουμε τη διαδικασία αναδίπλωσης ενός β-πτυχωτού

φύλλου,  όπου  είναι  μία  δευτεροταγής  δομή  η  οποία  είναι  παρούσα  παντού  στη  φύση,  είναι

εξέχουσας σημασίας. Στόχος μας είναι να αναλύσουμε και να επιβεβαιώσουμε εάν τα force fields

και κατ' επέκταση οι παράμετροι που έχουν εφαρμοστεί, είναι ικανά να προσομοιώσουν επιτυχώς

τη διαδικασία αναδίπλωσης της πρωτεΐνης μας. Από το εργαστήριό μας έχουν γίνει δύο ξεχωριστές

προσπάθειες αναδίπλωσης της πρωτεΐνης Fip, μέσω MD simulations, έχοντας αρχικά την πεπτιδική

αλυσίδα ξεδιπλωμένη. Τη μία φορά με τη χρήση του Amber ff99SB-ILDN force field επιδιώξαν την

αναδίπλωση της  πρωτεινης  σε συνολική διάρκεια  10μs και  τη δεύτερη φορά με τη χρήση του

Amber ff99SB*-ILDN force field σε συνολική διάρκεια 15 μs. Τα δύο τροχιακά που παραχθήκαν

είναι  αυτά  που  θα  εξετάσουμε.  Για  τις  αναλύσεις  μας,  χρησιμοποιήσαμε  κατά  κόρον  το  GUI

Grcarma το οποίο έχει βασιστεί στο πρόγραμμα Carma. Και τα δύο έχουν δημιουργηθεί από το

εργαστήριό  μας  με  σκοπό  τις  αναλύσεις  τροχιακών  παραγόμενων  από  MD  simulations.  Το

ff99SB*-ILDN force field, εν αντιθέση με το ff99SB-ILDN force field, κατάφερε να αναδιπλώσει

επιτυχώς την πρωτεΐνη μας στον μισό περίπου χρόνο της συνολικής διάρκειας της προσομοίωσης,

(περίπου στα 7.2 μs).  Εν κατακλείδι, η έρευνά μας τονίζει τη σημασία των Molecular Dynamics

Simulations στην κατανοήση της  διαδικασίας αναδίπλωσης του β-πτυχωτού φύλλου της πρωτεΐνης

Fip.  Χρησιμοποιώντας  προηγμένα  force  fields  και  εργαλεία  όπως  το  Grcarma,  αποκτήσαμε

πολύτιμες γνώσεις για τη δυναμική του WW domain της πρωτεΐνης Pin1.
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1. Introduction

1.1 The significance of the N-terminal WW domain in Pin1 protein, structure,

function and implications

Protein  Pin1  is  a  highly  conserved  enzyme with  a  spherical  structure  and  it  is  known for  its

important role in the cell’s transition from G2 phase to M phase. It basically acts as a regulator of

mitosis and it has been found to be involved in interactions with cell cycle regulatory kinase NIMA.

The whole protein consists of 163 amino acids but we will not study the whole protein, instead we

are turning our focus on a very specific part of it, the N-terminal 39-residue WW domain. Among

the reasons for selecting this particular protein, the N-terminal 39-residue WW domain stands out as

a well-studied domain. The WW domain of the Pin1 protein, in its wild-type form, typically features

two highly conserved tryptophan residues, which are responsible for its distinctive terminology.

Acting as an intermediate for protein-protein interactions, the WW domain binds  to short proline-

rich sequences present in other proteins.  [1][2] Additionally, it is worth noting that homologous

family members containing the WW domain can be found in the yeast and some fungi, emphasizing

its significance in these organisms.[3] Notably, the WW domain is characterized by its fairly fast

folding process (approximately 100 μs) [4], [5], small size, high solubility and ability to fold into a

twisted  three-strand  antiparallel  β-sheet  secondary  structure.[6] This  domain  has  served  as  an

invaluable model for investigating the folding process of β-sheet secondary structure. Furthermore,

even  when  isolated,  the  WW  domain  maintains  its  expected  secondary  structure,  folded

conformation and functional properties. [3]

1.2 Characterization of mutant forms of Pin1 Protein’s WW domain and their 

role in folding and stability

In our study, we focused on a mutant variant of the Pin1 protein called Fip, which carries significant

point mutations. The folding kinetics and stability of Pin1 heavily rely on its amino acid sequence.

The rate of the folding process is determined by the formation of loop 1, which connects β-strand Ι

and  β-strand ΙΙ,  while the interactions between the hydrophobic core of the protein and loop 2,

connecting β-strand ΙΙ and β-strand ΙΙΙ, contribute to its overall stability. [7] Mutations in loop 1 can

impact the folding kinetics. [7]–[9]
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The wild-type Pin1’s WW domain sequence, as represented in the Protein Data Bank (PDB) entry

1PIN, is as follows:

MADEEKLPPGWEKRMSRSSGRVYYFNHITNASQWERPSG                          

The Fip mutant’s WW domain sequence, represented in the PDB entry 2F21, is:

MADEEKLPPGWEKRMSADGRVYYFNHITNASQWERPSG                           

In our study, we further modified the Fip sequence to create two additional mutants: 

(1) GSKLPPGWEKRMSRDGRVYYFNHITNASQFERPSG (referred to as Fip35)

(2) SKLPPGWEKRMSRDGRVYYFNHITNASQFERPSG (referred to as Fip34)

The Fip35 mutant consists of 35 amino acids and served as the reference sequence for molecular

dynamics simulations using the Amber ff99SB-ILDN force field.  On the other hand, the Fip34

mutant  consists  of  34 amino acids  and was employed as  the reference sequence for molecular

dynamics simulations using the Amber ff99SB*-ILDN force field.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

M A D E E K L P P G W E K R M S R S S G R V Y Y F N H I T N A S Q W E R P S G

- - - G S K L P P G W E K R M S R D - G R V Y Y F N H I T N A S Q F E R P S G

- - - - S K L P P G W E K R M S R D - G R V Y Y F N H I T N A S Q F E R P S G

Figure 1| Comparison of Pin1 WW domain and mutant variants. 

In this figure, we present an alignment of the three sequences: the wild-type Pin1 WW domain,

mutant 1 (Fip35) and mutant 2 (Fip34). The red color represents the mutations (deletions and

substitutions), the blue color represents the three β-strands and all the other residues are black.

Starting from the N-terminal, we made specific modifications to the sequence. In both mutants, the

first five residues (M, A, D, E, E) were deleted and in mutant 1, residues G and S were added, while

in mutant 2, only residue S was added. Within loop 1, we introduced a substitution at residue 18,

Ser18Asp and deleted Serine at position 19 in both mutants. Furthermore, a substitution was made

at residue 34, Trp34Phe, which was observed in both mutants (Figure 1). These modifications have

significantly reduced the protein’s folding time from around 100 μs to approximately 12 μs, making

it perfectly suitable for our needs. [4], [5], [10]
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1.3  Exploring  the  folding  landscape  of  the  WW  domain,  lessons  from  past

molecular dynamics simulations

This section delves into the extensive efforts made over the years to achieve successful folding of

the WW domain using molecular dynamics simulations. We highlight the significant insights gained

through these attempts, including force field’s empirical parameters and techniques that have been

discovered.

In  recent  years,  significant  progress  has  been  made  in  utilizing  force  fields  with  empirical

parameters, improving their accuracy in reproducing the folding events and folded structures of the

WW domain.  This  has  enabled  more  realistic  simulations  and  enhanced  our  understanding  in

molecular interactions.

However,  the  limited  processing  power  of  conventional  computational  resources  creates  a

significant  barrier  to fully  exploring the complex protein folding process.  Supercomputers  with

massive  parallel  processing  capabilities  have  been  developed  to  overcome  this  challenge  and

achieve the necessary timescale sampling, but their availability remains limited.
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1.3.1 CHARMM22 force field with CMAP corrections fails to fold the Fip35 protein

In  this  experiment,  scientists  used  Fip35 mutant  variant  of  the  human Pin1 WW domain.  The

simulation parameters included the use of the CHARMM22 force field with CMAP corrections,

explicit  water  model  (TIP3P)  with  30  mM NaCl  and  a  custom version  of  NAMD 2.6  as  the

simulation software. The simulation was performed at a temperature of 337K on the abe cluster at

the  National  Center  for  Supercomputing  Applications.[10] The  CMAP  corrections  in  the

CHARMM22 force field improved how the peptide backbone is represented. They used quantum

mechanical  calculations  and crystallographic  data  to  fix  deviations  in  φ and  ψ values,  making

protein folding and conformational dynamics simulations more accurate.[11]

The stability of Fip35's native state was confirmed through a 200 ns simulation, with Ca root mean-

square deviation consistently below 1.4 Å, showing a stable structure. During folding, Fip35 first

collapsed to  a  molten  globule  state  with  a  hydrophobic  core  in  500 ns.  Subsequently,  specific

residues  formed  α-helices  and  the  trajectory  switched  between  states  with  helices  and

sheet/disordered  coil  regions.  Surprisingly,  the  simulation  consistently  showed  α-helical

conformations throughout the 10 μs trajectory, deviating from the expected folding pathway. [10]
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formed after 500 ns and the first four 

representative structures from clustering 

analysis. (reproduced without 

permission from Freddolino et al., 

Biophysical Journal, 2008)



1.3.2 Investigating structural heterogeneity, inability in accurately folding Fip35 protein using

AMBER96 and distributed computing, Folding@home

The researchers conducted an experiment to investigate the folding mechanism of the Fip35 WW

domain protein. They employed molecular dynamics simulations using the AMBER96 force field

and the  Folding@home distributed computing platform.  Thousands of  folding  trajectories  were

generated, revealing structural heterogeneity in the folding process. 

By analyzing the root mean-square deviation (RMSD) and using DSSP analysis to determine the

conformational  state,  the  researchers  observed  the  formation  of  three-stranded  β-sheet

conformations in some of the folding trajectories. However, only one trajectory closely matched the

reference structure. This suggests difficulties in achieving accurate protein folding.

The simulations gave us important insights into how Fip35 folds. They showed us that considering

multiple trajectories and the diverse folding pathways is crucial. The study emphasized the power of

distributed computing and GPU technology for exploring the complex process of protein folding.

Figure 3 illustrates four folding trajectories with different folding patterns. In Figure 3a, the first

hairpin forms early, followed by strand I and II adopting β-sheet conformations, leading to complete

folding.  Figure  3b shows a quick initial collapse, leading to simultaneous fulfillment of  β-sheet

criteria.  Figure  3c demonstrates  a  fast  collapse  with  all  three  strands  acquiring  β-sheet

conformations  simultaneously.  Figure  3d exhibits  the  formation  of  the  second  hairpin  first,

followed by strand II and III adopting β-sheet conformations before strand I. [12]
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(a) T300- γ91, (b) T300-γ1, (c), and (d) 

T330-γ1(reproduced without permission 

from Ensign et al., Biophysical Journal, 

2009)



1.3.3 Revealing transferability, β-sheet Pin1 WW domain folding with enhanced Amber ff03*

force field via simple backbone correction

In the following experiment, replica exchange molecular dynamics (REMD) was used to investigate

the folding behavior of the Pin1 WW domain. Utilizing the Amber ff03* force field and the TIP3P

water model, the simulations were performed with GROMACS 4.0.5. The simulations started from

unfolded configurations at 800 K and used a Langevin integrator for the dynamics. Every 10 ps,

exchanges between neighboring replicas were attempted among a total  of 32 replicas,  covering

temperatures from 300 to 457 K.

During the REMD simulations, the Pin1 WW domain variant took longer to fold. However, after

about 1.25 μs, it successfully folded close to the experimental structure within 2.0 Å. It's important

to note that the folding simulation did not match the accuracy of the simulation started from the

folded state, possibly due to a misalignment in the strand 2:3 interaction, which might be caused by

limited sampling.

Despite this variation, the improvements in the force field showcased in this study are significant

and represent a step forward in achieving more accurate and predictive protein folding simulations.

[13]
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Figure 4 | Protein folding trajectories of 

Pin1 WW domain (A) On the right side, the 

blue traces depict the backbone root mean 

square deviation (RMSD) of a 0.2-μs 

simulation initiated from the folded state of 

the protein. The simulation shows both the 

initial and folded structures, with a focus on 

highlighting the trajectory of each domain. 

The RMSD analysis considered only the 

structured region from residues 7 to 30 (B) 

The folded structures obtained from the 

simulations (in green) have been 

superimposed with the experimental 

structures (in silver) for the Pin1 WW 

domain, allowing for a comparison between 

the two sets of data. (reproduced without 

permission from Mittal et al., Biophysical 

Journal, 2010)



1.3.4  Reversible folding and unfolding events of Fip35 protein and its  GTT mutant,  using

Amber  ff99SB-ILDN  force  field  and  supercomputer  Anton,  increased  folding  rate  and

stability in GTT mutant

Scientists conducted various experiments on Fip35 protein and on GTT protein which is a Fip35’s

mutant, containing three specific consecutive mutations on loop’s 2 residues 26, 27 and 28. The new

substitutions are glycine, threonine and threonine for 26, 27 and 28 residues respectively, hence its

name. [14]

The two proteins were initially in an unfolded state and placed inside a cubic box of about 50 Å side

length, surrounded by approximately 4000 TIP3P water molecules. The simulations were conducted

at a temperature of 337 K, which corresponds to the predicted melting temperature for Fip35. The

researchers selected the Amber ff99SB-ILDN force field,  with recently improved side chain,  to

avoid excessive stabilization of β-sheet conformations. [15], [16] They managed to perform a total

of 1197 μs of molecular dynamics (MD) simulations for both proteins. For GTT, they conducted

four simulations with lengths of 83 μs,  118 μs, 124 μs and 272 μs,  [14] while for Fip35, they

performed  four  100-μs  simulations  [14] and  two  additional  100-μs  simulations  from previous

publication  [17].  To  carry  out  these  extensive  simulations,  the  researchers  utilized  the  Anton

supercomputer, known for generating trajectories up to 1 ms in length. [18]

Due to the modifications on GTT protein,  they achieved their  initial  goal,  i.e.,  to  enhance and

stabilize the formation of loop 2. For Fip35, the population of the folded state was 62% and for

GTT was 74%. Compare to Fip35, GTT’s stability and melting temperature increased by 0.5 kcal

mol-1 and 7 K respectively. [14] 

Using Amber ff99SB-ILDN force field, Fip35 was able to undergo various folding and unfolding

occurrences under equilibrium conditions. The folding time for Fip35 was approximately 10 ± 3 μs,

which closely matches the experimental folding time. These large-scale simulations [17], provided

scientists with extensive data, leading to significant findings. They discovered that the roughness of

the energy landscape plays a crucial role in determining the rates of conformational transitions in

biological molecules. Moreover, the simulations confirmed the accuracy of the known force fields

in representing the structure and dynamics of proteins, demonstrating their reliability. [17]

The  duration  of  these  simulations  provided  researchers  with  a  unique  opportunity  to  witness

numerous occurrences of both folding and unfolding transitions taking place at the protein's melting

temperature (Figure 5). [14]
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1.3.5 Evaluation of various MD force fields and development of an advanced one suited for

both folded and disordered proteins, various proteins tested, including protein GTT, a Fip35

mutant of the WW domain

Scientists conducted an experiment to find a force field that can accurately describe both folded and

disordered proteins. However,  they discovered that none of the tested force fields were able to

achieve this. Specifically, the force fields couldn't accurately represent folded protein structures, the

dimensions  of  disordered  proteins  and  the  tendencies  of  disordered  proteins  to  adopt  specific

secondary structures. [19]

The researchers tested six advanced force fields from CHARMM and Amber families. To assess

their performance, they created a benchmark set containing 21 well-known proteins and peptides

with diverse characteristics. This set included folded proteins with defined structures, fast-folding

proteins,  weakly structured peptides  and disordered proteins with varying degrees of secondary

structure. All data in the benchmark set were obtained from experimental techniques like X-ray

crystallography and NMR spectroscopy. [19]
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Figure 5 | Reversible folding 

simulations of Fip35 and GTT. 

RMSD in two representative 100-

μs MD simulations of FiP35 (top) 

and the GTT variant (bottom).

(reproduced without permission 

from Piana et al., Journal of 

Molecular Biology, 2011)



Amber force fields:

• ff99SB*-ILDN with the TIP3P water model

• ff99SB-ILDN with the TIP4P-D water model

• ff03ws force field containing empirically optimized solute-solvent dispersion interactions

• ff99SB-UCB force field with modified Lennard-Jones (LJ) parameters, dihedral 

modifications and TIP4P-Ew water model

CHARMM force fields:

• CHARMM22* with TIP3P water model

• CHARMM36m with TIP3P water model

Based on the simulations results, the researchers decided to make modifications to the parameters of

Amber ff99SB-ILDN force field with TIP4P-D water model. These modifications aimed to improve

the agreement between the simulation results and the experimental data for disordered proteins,

while still maintaining the high accuracy of the force field for folded proteins. [19]

The resulting modified force field, called ff99SB-disp, contained modifications to the water model,

backbone torsion corrections and the strength of a backbone O-H LJ pair, demonstrated excellent

agreement with experimental observations for disordered proteins. [19]

During their simulations, among these 21 proteins and peptides, the GTT mutant  [14] which is a

fast-folding  protein,  was  also  tested.  It  was  observed  that  the  ff99SB*-ILDN force  field  [15],

[20] exhibited  the  closest  agreement  with  the  experimental  melting  curves  (Figure  6).  For

disordered proteins, ff99SB*-ILDN showed distorted dimensions and did not align well with the

tendencies of residual secondary structure, although it performed well for folded proteins, small

disordered peptides and fast-folding proteins. [19]
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Figure 6 | Stability of GTT 

Fip35 protein from simulated 

tempering simulations. 

Experimental melting curves 

are shown in black. No folded 

structures were observed with 

ff99SB-ILDN/TIP4P-D force 

field. (adapted without 

permission from Robustelli et 

al., Proceedings of the 

National Academy of 

Sciences, 2018)



1.3.6 Exploring folding stability of Fip protein, thermodynamic contributions from 1μs-length

folded/unfolded-state simulations using Amber ff99SB-ILDN force field

The scientists carried out two-state simulations, using the AMBER 18 package with the ff99SB-

ILDN protein force field and the TIP3P water model. At the folded-state simulation, they used as

initial structure, the structure with ID: 2F21 from PDB data base. The protein was solvated in water

with chloride ions in a cubic periodic box. The simulation process involved energy minimization,

equilibration  in  the  NVT  ensemble  to  gradually  raise  the  temperature  from  0  –  300  K  and

equilibration  in  the  NPT ensemble  at  300 K temperature  and  1  bar  pressure.  Six  independent

trajectories  with  different  initial  velocities  were  generated  by  repeating  the  production  MD

simulation for a duration of 1 μs at T = 300 K and P = 1 bar. [21]

For the unfolded-state simulations, the initial configuration obtained from the NPT equilibration

process in the folded state was used as a starting point. The system was first heated to 600 K under

the NVT ensemble, subjecting the protein to heat-denaturation and then a simulated cooling process

was conducted by gradually reducing the temperature by 50 K for every 1 ns of NVT ensemble

simulation until reaching the final temperature of 300 K. Afterward, an NPT ensemble equilibration

simulation was performed for 5 ns at 300 K and 1 bar pressure. Subsequently, they ran a 2 μs

simulation and obtained eight separate trajectories with random starting velocities. The analysis

focused on the last 1 μs segments of the unfolded-state simulations. [21]

Upon  performing  structural  and  thermodynamic  analysis  at  these  fourteen  trajectories,  the

researchers gained valuable insights into the folding stability of the Pin1 WW domain. They were

able to characterize the contributions of individual residues to the thermodynamic stability of the

protein. The analysis considered both the backbone and side-chain interactions. Notably,  β-sheet

regions were found to have a favorable impact on folding, while turn and terminal regions had a

destabilizing effect. Additionally, the formation of side-chain hydrophobic core regions played a

crucial  role  in  enhancing  the  thermal  stability  of  the  protein.  This  study  provides  a  deeper

understanding  of  the  folding  stability  of  the  Pin1 WW domain  and  contributes  to  the  broader

knowledge of protein folding dynamics. [21]
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1.4  Improved  parameterizations  resulted  in  the  creation  of  two  force  fields,

namely Amber ff99SB-ILDN and Amber ff99SB*-ILDN. These force fields were

subsequently employed in our own MD simulations.

Prior to the development of the Amber ff99SB-ILDN force field, researchers made adjustments to

the  backbone dihedral  parameters  in  the existing  ff94 and ff99 force fields.  These adjustments

aimed to greatly improve the preferred conformations of typical secondary structures. Through the

optimization of these parameters, they successfully enhanced the performance of the ff94 and ff99

force  fields.  Additionally,  they  specifically  addressed  the  long-standing  problem  of  glycine

sampling  in  protein  simulations.  As  a  result,  they  developed  a  modified  force  field  known as

ff99SB. [16]

To further improve the accuracy of protein simulations, researchers conducted simulations using the

ff99SB force field and encountered side chains that behaved differently than expected. Through a

three-step  process,  they  compared  the  behavior  of  χ1 dihedrals  in  short  helical  peptides  to  the

Protein  Data  Bank  (PDB)  to  identify  problematic  residues.  Four  residues  (isoleucine,  leucine,

aspartate and asparagine) showed significant deviations, indicating issues with the ff99SB force

field.  To  address  this,  they  created  new  χ1 side-chain  torsion  potentials  for  these  residues  by

adjusting  force-field  parameters  based  on  advanced  computational  techniques.  To  validate  the

improvements, they compared the simulated results with experimental NMR data and found a closer

match in the observed conformational states. This refinement resulted in the development of the

enhanced Amber ff99SB-ILDN force field (ILDN is the specified code assigned to the side chains

for which the potentials are adjusted). [15]

The improvements were exclusively targeted at dealing with the four specific residues (Ile, Leu,

Asp  and  Asn)  in  the  ff99SB  force  field.  The  adjustments  made  for  these  four  residues  can

significantly influence the stability of protein structures and flexible regions. [15]

Some other scientists  studied thoroughly the outcomes from prior MD simulations utilizing the

previously revised Amber ff99SB force field. [16], [22] Subsequently, they decided to advance their

research by investigating two peptides with helix-forming properties, Ala5 and Ac-(AAQAA)3-NH2.

Their  intention was to  make further  adjustments  to  the ff99SB force field.  Following torsional

modifications (described below), a newly revised force field named Amber ff99SB* emerged. Their

approach involved identifying the smallest necessary adjustment (Equation 1) to ensure that the

force fields (ff99SB and ff99SB*) accurately replicated both the scalar couplings observed in Ala5

and the proportion of helical structure in Ac-(AAQAA)3-NH2 at 300 K. [20]
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Scientists  selected  the  φ  and  ψ  torsional  parameters  due  to  their  direct  correlation  with  the

Ramachandran plot. They employed this concept as the foundation for modifying the ff99SB* force

field. In an effort to prevent overfitting and reduce the number of independent variables, a simple

cosine correction term is applied to the ψ torsion angle (Equation 2). This adjustment is particularly

significant as ψ plays a major role in determining the propensity for helix formation. [20]

V 1(ψ ; kψ , δ ψ)=kψ[1+cos (ψ−δψ)]

After evaluating their findings, scientists noticed that the amount of helix present in the simulations

does  not  significantly  change with  temperature.  They concluded that  this  weak dependence on

temperature is unlikely to be due to factors such as sampling, pressure, water model, simulation

protocol, or how the "helix" is defined. Instead, they believed that there were deeper problems with

the  force  field  being  used.  Therefore,  they  conducted  thermodynamic  analysis,  examining  the

energy-related aspects of  the helix-coil  equilibrium by separating it  into enthalpic and entropic

components.  By  employing  a  Bayesian  approach,  the  researchers  identified  the  optimal  LR

parameters u (enthalpic) and w (entropic)  that describe helix formation for each force field and

temperature. [20]

Despite overall improvements, the modified force fields still had issues with describing helix-coil

transitions. The force fields underestimated the cooperativity of the transition and resulted in more

fragmented  long  helices  compared  to  experimental  observations.  The  discrepancies  can  be

attributed to the small magnitude of entropy loss and enthalpy gain during helix formation. Further

corrections are needed to address these issues and improve the force fields. [20]
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Equation 2 | Parameters k
ψ
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ψ
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respectively. Corrections are applicable to all amino 

acids except glycine and proline. The resulting ff99SB* 

parameters are as follows: k
ψ
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δ
ψ
 = 105.4 deg



The adjustments made to the original ff99SB force field can be considered as a refinement process.

However, when considering the impact on the overall conformational distribution, the correction

terms have a significant effect. As a result, the scientists recommend using the modified force field,

ff99SB*,  for  simulations  involving  weakly  structured,  unfolded  peptides  and proteins  and also

peptides that form β-hairpin structures. [20]

Over the course of time, many scientists, including those from our own laboratory,  observing the

results from simulations that used a force field from the Amber family, they decided to combine

ff99SB-ILDN and ff99SB* in their simulations, leading to the development of a new and more

advanced force field in the Amber family, referred to as ff99SB*-ILDN. [23]–[31], [32]–[34] This

combination  has  gained  significant  popularity  and has  been  widely  adopted  by  researchers.  In

section (1.3.5), during the historical progression of WW domain folding using MD simulations, we

already described an experiment conducted by other scientists, where they found that the ff99SB*-

ILDN force field, in combination with the TIP3P water model, yielded the most stable simulations

of  proteins  and  showed  the  closest  agreement  with  experimental  chemical  shifts  and  NOE

violations. [19] These findings further support the effectiveness and reliability of the ff99SB*-ILDN

force field.

In this thesis, we will present a comprehensive analysis of two pre-existing MD simulations. One

simulation utilized the ff99SB-ILDN force field, while the other employed the ff99SB*-ILDN force

field. Both simulations aimed to successfully replicate the folding dynamics of the WW domain’s

Fip mutant. We will discuss the findings and outcomes of these simulations in detail.
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2. Analysis of Molecular Dynamics Simulations

The MD simulations were conducted using the NAMD software [35], which is a program designed

for performing molecular dynamics simulations of large biological structures on powerful computer

systems. The obtained simulations were mainly analyzed by using the user-friendly graphical user

interface called Grcarma. [36] Grcarma provides a set of tools and pipelines built around the Carma

program [37], which is used for analyzing molecular dynamics data. Carma is capable of processing

different file formats such as PDB, PSF, and binary DCD files, which contain information about the

simulated molecules. 

We used the  program Carma/Grcarma for  most  of  our  analyses,  such as  calculation  of  RMSD

matrix,  covariance  matrix,  RMS  from average,  radius  of  gyration,  fraction  of  native  contacts,

dihedral  and cartesian  principal  component  analysis,  determining secondary  structure  using  the

executable  of  the  STRIDE  program  and  pdb  files portraying representative,  average  and

superpositon structures. For the calculation of rmsf we used the plotting tool Grace, for the display

of  pdb  files  we  used  the  molecular  visualization  program  PyMOL and  for  the  alignment  of

structures we used the protein complex structural alignment program MM-align.

My colleagues conducted two molecular dynamics (MD) simulations. A 10μs simulation attempting

to fold a 35-residue amino acid sequence (see Introduction, section 1.2) using the ff99SB-ILDN

force field with the Fip35 mutant as the reference structure. They also performed a 15μs simulation

attempting  to  fold  a  34-residue  amino  acid  sequence  (see  Introduction,  section  1.2)  using  the

ff99SB*-ILDN force field, with the Fip34 mutant as a reference structure. Both simulations utilized

the explicit TIP3P water model and the systems were equilibrated at 360K and 1 atm. [15], [20] 
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2.1 Comparing and highlighting differences in RMSD matrices and Secondary

Structures derived from MD simulations using the ff99SB*-ILDN and ff99SB-

ILDN force fields

The first step we chose to take in order to conduct an initial assessment of the two trajectories

resulting from the ff99SB*-ILDN and ff99SB-ILDN force fields, is to quantify the differences and

similarities  of  the  structures  adopted  by  the  peptide  chain  throughout  the  simulation  (RMSD

matrix).  The second step  involves  visualizing  the  secondary  structures  obtained throughout  the

simulation.  By  aligning  these  results  accurately,  we  aim  to  observe  how  the  two  trajectories

correspond (whether they exhibit transient structures, how many transient structures are identified,

how long they persist, which secondary structures are acquired, whether they eventually attain the

desired secondary structure and if they remain in it until the end).

Figure 7 is a graphical representation of the RMSD matrix and the secondary structure [28] of the

trajectory derived from ff99SB*-ILDN force field. We selected the tasks RMSD matrix (specific

parameters: CA atoms, first frame: 1, last frame: 15229200, step: 5076) and secondary structure

(specific parameters: first frame: 1, last frame: 15229200, step: 508) from grcarma’s selection panel.

The  RMSD  matrix  (Figure  7 top)  compares  all  peptide  conformations  observed  during  the

simulation and color-codes them based on their similarity. Conformations with low RMSD values

are indicated in dark blue, representing highly similar structures, while the dissimilar structures are

shown in yellow. The conformations observed along the diagonal, which starts from the origin of

the axes (0,0), represent the persistent structures over time. The presence of off-diagonal blue areas

indicates  that  a  particular  conformation  has  been  visited  multiple  times  during  the  simulation,

appearing independently on different occasions.

The  Figure 7 (bottom) displays  the secondary structure assignments  for  the  respective  peptide

conformations, aligning directly with the RMSD matrix. The  α-helix is indicated in  magenta, the

turn in cyan, the β-sheet in yellow, and the random coil in white.
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Figure 7 | RMSD matrix (top panel), secondary structure (bottom panel) from  ff99SB*-ILDN force

field using the whole length of the trajectory. The RMSD matrix, top panel, is perfectly symmetric

and has been computed based on the peptide’s Cα atoms. The bottom panel represents the secondary

structure assignments per residue.

By examining both panels in  Figure 7, we observe the followings: During the  initial 7,000,000

frames, the chain is mostly disorder and rapidly switches between various conformations, mostly α-

helices and turns, but only a few of them are relatively stable and can be observed during the

simulation. We can detect some of them in the red circled areas on the RMSD matrix of Figure 7.
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After undergoing various transient conformations, it appears that at ~7,200,000th frame, the peptide

adopts a  final  conformation  and  remains  in  it  for  the  remaining  simulation  time.  The  final

conformation composed of turns and a  β-sheet consisting of three  β-strands. The first  β-strand is

formed by 5  residues  (7th-11th), the second  again by 5  residues (17th-21st)  and the third by 2

residues  (27th-28th).  It  is noteworthy that among the various transient conformations,  there are

almost  no  observed  β-sheet  structures,  which  are  the  dominant  secondary  structures in  the

simulation’s last approximately 8,000,000 frames. Instead,  a-helices, turns and  random coils are

observed.

Next, we present Figure 8 which provides a graphical representation of the RMSD matrix and the

secondary structure of the trajectory derived from ff99SB-ILDN force field. We selected the tasks

RMSD matrix (specific parameters: CA atoms, first frame: 1, last frame: 10,021600, step: 3341) and

secondary structure (specific parameters:  first  frame: 1, last  frame: 10,021,600, step: 334) from

grcarma’s selection panel.

In Figure 8, the same characteristics apply as in Figure 7 regarding the features of both graphical

representations  (such  as  the  color  coding)  and  their  interpretation.  Once  more,  the  secondary

structure assignments are in direct alignment with the RMSD matrix. In Figure 8’s top panel, the

RMSD matrix reveals that during the initial 8,500,000 frames of the simulation, we observe our

chain transiently adopting a few conformations, which it holds for a brief period before unfolding

once more. At approximately 8,500,000th frame, it undergoes a final folding event, forming a stable

structure that persists until the end of the simulation.

Upon initial observation, in Figure 8’s bottom panel, it is clear that throughout the simulation, there

are many turns and  β-sheets. Looking closer at the region “a” in the graph, we notice something

interesting, the structure formed is a  β-sheet structure with three strands. Surprisingly, our chain

adopts this structure within the first 3,800,000 frames. Unfortunately, it doesn't last long and is only

maintained for  ~ 600,000 frames.  We  can  also  notice some other  β-sheet  structures in the first

8,500,000 frames, like the region b, which has a  β-sheet with two strands. However, this is also

temporary, lasting for only ~ 400,000 frames. At approximately 8,500,000th frame, region c, it folds

one final time and remains in this conformation until the end. The final conformation is different

from the one  obtained from ff99SB*-ILDN force field, as it includes an  α-helix  consisting  of 7

amino acids at  its c-terminus, along with turns and a β-sheet  composed of two β-strands.  What is

interesting is that, during the initial 8,500,000 frames, there are no significant  α-helices observed,

but in the final conformation, among other elements, there is a relatively large α-helix considering

the total size of the chain.
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Figure 8 | RMSD matrix (top panel), secondary structure (bottom panel) from ff99SB-ILDN force

field using the whole length of the trajectory. The RMSD matrix, top panel, is perfectly symmetric

and has been computed based on the peptide’s Cα atoms. The bottom panel represents the secondary

structure assignments per residue.
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Concluding this section, we will attempt to explore in greater depth the secondary structure that has

been formed using the ff99SB*-ILDN force field. We provide Figure 9, which presents a graphical

representation of the RMSD matrix and the secondary structure of two distinct segments extracted

from the trajectory. In order to do that, we will attempt to isolate specific frames, meaning we will

zoom in on our structure. By using a smaller step, we will be able to achieve greater clarity.  The

specific  parameters below specify these two segments  in  frames.  We selected the tasks RMSD

matrix (specific parameters: CA atoms, first frame: 7,213,004, last frame: 15,229,200, step: 500)

and secondary structure (specific parameters: first frame: 6,800,000, last frame: 7,300,000, step: 50)

from grcarma’s selection panel.

In  Figure 9 (top),  our  graphical  representation  reveals  a  single color  (blue)  as  a  result  of  this

isolation,  indicating  low  RMSD  values,  as  we  previously  discussed.  This  was  the  expected

outcome, as we visually identified the limits where our final conformation forms through the initial

analysis of the RMSD Matrix (Figure 7,  top).  Consequently,  we successfully isolated our final

conformation, which was attained approximately at frame 7,213,004 and maintained throughout the

entire simulation.

In  Figure 9 (bottom), through the selection of frame 6,800,000 as the starting point and frame

7,300,000 as the endpoint, we were able to zoom in on the phase in which the formation of our final

conformation, the  β-sheet, initiates. This detailed analysis allowed us to  distinguish  the order in

which the individual β-strands of the β-sheet emerged. It was observed that β-strand I and β-strand

II formed simultaneously, while  β-strand III appeared approximately 400,000 frames later. These

findings align with existing literature about β-proteins’s WW domain  [9], [17], [38]–[43], which

proposes that,  β-strands I and II undergo initial formation via loop 1, followed by the subsequent

creation of β-strand III via loop 2 located between β-strands II and III.
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Figure 9 | RMSD matrix (top panel), secondary structure (bottom panel) from  ff99SB*-ILDN force

field using two specific segments of the trajectory.
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2.2  Exploring  the  ff99SB*-ILDN  force  field,  covariance  analysis,  RMS from

average, RMS fluctuation and representative structure visualization

In the following phases of our analysis, we will basically focus on the trajectory generated by the

ff99SB*-ILDN force field. Based on the results of the RMSD matrix and secondary structure, this

trajectory was able to acquire the desired secondary structure, the β-sheet and maintain it until the

end of the simulation.  Therefore,  we want to further analyze this trajectory to determine if  this

particular force field can indeed produce a protein that resembles the native protein. 

In the current phase of the analysis, we will calculate the trajectory’s covariance matrix [44], RMS

from  average and representative structure. To narrow down our analysis to the phases where the

final conformation has already been reached, we isolated these specific frames and performed the

analysis solely on them.  We based the frame selection on the outcomes we observed during the

analysis we already performed on the previous section (Figure 9). The selected limits (in frames)

are 7,300,000 (lower limit) and 15,229,200 (upper limit).

By executing the tasks: (Covariance, average and representative structures) from the task selection

panel,  several  files  are  generated.  A graphical  representation  of  the  covariance  matrix,  which

captures the relationships among different elements in the dataset,  a graphical representation of

RMS from average, pdb files to visually represent the average structure and a superposition of 500

structures  generated  from  the  trajectory  and  a  pdb  file  to  visually  represent  the  trajectory’s

representative structure. [36]

A crucial step before executing the aforementioned tasks is to superimpose/fit all the structures

within these frames, allowing them to align with one another. Additionally, in the Atom Selection

field, we chose Backbone over CA, which includes the four atoms N, C, O, and CA, providing

greater accuracy in our analysis. We also clicked the option: (Use dot product (needed for average

structures))  and  lastly,  we  normalized  our  data  by  clicking  the  option:  (Calculate  normalised

matrices).

After several unsuccessful attempts, it was deemed necessary during the fitting phase to introduce

an additional adjustment/parameter (use a subset of the residues for the fitting) and in the residue

selection, amino acids from 4 to 31 were chosen. With this adjustment, we instruct the program to

perform the fitting based on the motion of amino acids 4-31 while disregarding the movements of

the terminal amino acids. The reason for this is that the terminal amino acids, due to their greater

freedom of motion, introduced "noise" and distorted the results. This allows us to reduce the "noise"

without excluding any amino acids during the analysis phase.
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2.2.1 Calculation and insights from the covariance matrix, exploring the relationship among

amino acids

Figure 10 | Covariance matrix

Through the analysis of the covariance matrix in Figure 10, we can comprehend how the 34 amino

acids of  our peptide chain are correlated with each other  once the chain has  received its  final

conformation. Specifically, it shows the relationships among all amino acids, not just neighboring

ones. This graphical representation utilizes a specific color code, where dark red regions represent

correlated amino acids that are connected to each other, yellow regions indicate amino acids that

influence each other to a lesser extent and dark blue regions represent uncorrelated amino acids that

are independent from each other.
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The color observed along the diagonal, which divides the square exactly in the middle, is dark red.

This is expected, as it signifies the relationship of each amino acid with itself. The most significant

relationships observed in this phase are related to the amino acids that compose the three β-strands.

Specifically, three main relationships have been identified. It is evident that the amino acids of the

first β-strand (amino acids 7-12) are correlated with the amino acids of the second β-strand (amino

acids 15-21), indicating that the motion of the one β-strand follows the motion of the other. We can

observe this relationship in the region where the two black stars are located. The same relationship

is observed between the amino acids of the third  β-strand (amino acids 25-28) and those of the

second  β-strand,  as  indicated  by  the  region  with  white  stars.  The  region  with  two  gray  stars

represents the relationship between the amino acids of the first and third β-strands. The fact that we

see predominantly yellow color and not red in their relationship indicates that even though both are

correlated with the same strand, the second strand, they are not fully correlated with each other but

they are correlated to a lesser extent.
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2.2.2 Calculation of the root-mean-square from the average structure, quantifying deviations

throughout the simulation

Figure 11 | RMS from Average

In  Figure 11,  we have created  a  diagram that  represents  the  root-mean-square  (rms)  from the

average. The information provided relates to the average structure of each coordinate/frame and

compares the values obtained during the simulation to the average structure of our protein. The

larger the value, indicating a higher vertical line, the greater the  deviation between this average

coordinate and our average structure.  The frame with the minimum value is  the one that most

closely resembles the average and this is our representative structure.
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2.2.3 Root-mean-square fluctuation analysis, exploring structural flexibility at an atomic level

Figure 12 | Root mean square fluctuation

In  Figure  12, we created a  plot that represents the RMSF (root-mean-square fluctuation) of the

protein's average structure. For the plot, we extracted data from the pdb file of the average structure

and used the Grace tool. On the x-axis, we used the 136 atoms of our chain and on the y-axis, we

have the values  in Angstrom indicating the mobility/fluctuation of each atom in the chain. The

smaller the value, the less movement the atom exhibits  in space. By observing the shape of the

diagram, we can see that the regions with lower values correspond to the atoms responsible for the

formation of the  three β-strands (atoms 28-45, 60-84 and 100-112). The regions between the  β-

strands, which correspond to the loops, have higher values, indicating greater mobility. Even higher

values are observed for the atoms at the  two ends of the chain. Therefore, this diagram confirms

what we already know, that when our peptide chain has formed the  β-sheet, the amino acids that

form the β-strands are more stable in space, the intermediate regions, i.e., the loops, exhibit more

movement and finally, the two ends have the highest degree of freedom. We had previously noticed

that the two  termini showed significant mobility when attempting to run the task:  (Covariance,

average and representative structures), leading to "noise" and negative impacts on our results. 
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2.2.4 Visualizing the representative structure, insights into protein conformation and mobility

Figure 13 | Representative Structure visualization with termini

Using PyMOL, we created Figure 13 by performing a visualization of our representative structure.

The input for this image was the pdb file of the representative structure, generated earlier during the

task:  (Covariance,  average and representative structures).  For the visualization,  we selected the

"cartoon putty" style, which highlights the overall shape and folding pattern. 

We selected the specific configuration (cartoon putty) as it allows us to visually discern the mobility

of  different  segments.  Essentially,  this  command  displays  the  stable  regions  as  very  thin  and

increases their thickness as their mobility increases. Therefore, in this particular image, we observe

the  very  thin  regions  that  constitute  the  β-sheet  itself  and  the  thicker  regions  at  the  termini.

However, in Figure 12, we observed that the β-sheet does not exhibit the same mobility throughout

its  length.  The three  β-strands appear  almost  immobile,  while  the two loops connecting  the  β-

strands show significantly higher mobility. The reason why, in Figure 13, the entire β-sheet (loops

and  β-strands) appears uniformly thick is because the shape obtained when applying the cartoon
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putty style reflects the overall mobility of the structure. The much greater mobility of the structure's

two termini essentially overshadows any mobility exhibited by the rest of the structure, making it

nearly negligible in comparison. The information provided by the cartoon putty representation is not

limited to the structure's morphology but also incorporates a specific color code. Additionally, the

color code used enriches the aforementioned conclusion. Dark blue represents immobility, light blue

represents moderate mobility and red represents high mobility. Thus, the stable segments of the

protein are blue, the segments connecting the β-strands are light blue and the termini are red. The

conclusions drawn here align with those of the diagram in Figure 12.

Furthermore,  we  generated  an  additional  pdb  file  for  the  representative  structure  (Figure  14),

excluding amino acids 1-3 and 32-34, aiming to assess the extent to which their presence affects our

results. Upon comparing Figures 13 and 14, it becomes apparent that the considerable oscillation of

these specific amino acids does indeed overshadow the oscillation of the β-sheet. In Figure 14, the

difference in oscillation intensity between the two loops and the three strands is more distinctly

highlighted, both in chromatic variation and thickness.

Figure 14 | Representative Structure visualization without termini
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2.3 Radius of gyration analysis in the ff99SB*-ILDN trajectory, exploring the

compactness of the structure

In  the  current  analysis,  we  use  the  ff99SB*-ILDN  trajectory  without  superposition/fitting.  We

analyze the entire simulation range, not a specific part.  We selected the task Radius of gyration

(specific parameters: Heavy atoms, All residues, first frame: 1, last frame: 15229200, step: 1)

In Figure 15, we employed the Radius of gyration [45] task. By using the radius of gyration (Rg)

calculation, we can assess the distance  among atoms,  meaning how spread out the mass of our

structure is  around its  center  of mass.  It  gives us an idea of the compactness of our structure.

Mathematically, Rg is defined as the root mean square distance between each atom in the molecule

and  the  center  of  mass.  By  analyzing  the  graph  in  the  figure,  we  can  observe  that  from the

beginning of the simulation until just before the final folding occurs, we mainly obtain large values

for the radius of gyration, indicating that our structure is quite extended in space (unfolded), which

is reasonable since it has not yet adopted  its final conformation.  However, in frames 2e+06 and

6e+06, for a certain period of time, we can observe low values in the radius of gyration, indicating

the formation of transient structures that are sufficiently compact enough to appear in this graph.

These two transient structures can also be observed in the two red circled areas on the RMSD

matrix (Figure 7). Upon matching them with the secondary structure analysis (Figure 7 bottom), it

becomes  evident  that  they  are  mainly  composed  of  α-helices. After  the  7.2e+06th frame,  the

structure  once  again undergoes  folding  and  becomes  even  more  compact,  a  fact  that  is  also

confirmed by the RMSD matrix in Figure 7 (the big dark-blue square).
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Figure 15 | Radius of gyration diagram

35



2.4 Exploring fraction of native contacts, bond distances insights in the ff99SB*-

ILDN trajectory

Figure 16 | Graph of Fraction of Native Contacts: x-axis represents the duration of  the whole

simulation in frames, y-axis shows the percentages of Q, Qs and q values.

Continuing our analysis of the trajectory (ff99SB*-ILDN) using the full length, we aim to explore

the structure in greater detail. For this purpose, we chose the "Fraction of native contacts" [46] task

from the Grcarma’s task selection panel with the following specific parameters: backbone atoms, all

residues, first frame: 1, last frame: 15229200, step: 1. Additionally,  we selected the option  "Use

PDB file to define the native structure" and as observed in the experimentally-determined structure

of the protein,  we  used "FipWW_backbone34.pdb" as a reference,  which is  a modified pdb file

containing only the backbone atoms of the 34 amino acids.

To  further  assess  the  entire  trajectory  leading  up  to  the  successful  formation  of  the  final

conformation, fraction of native contacts (Figure 16) introduce us to three new terms. Specifically,

we refer to reaction coordinates which give us insights about the protein's native structure. 
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The blue line, representing the Q value, plays a crucial role in predicting transitional stages during

the simulation. It identifies the bonds within our structure that fall within a defined cutoff distance,

relative to the corresponding distances of the “natural” bonds in the reference structure. Essentially,

for each frame, it calculates the ratio of these bonds within the cutoff range to the total number of

bonds in the reference structure.  The range of values varies from 0 (no matching)  to 1 (100%

matching). 

The  green  line  represents  Qs,  providing  more  precise  information  about  the  distances  of  the

“natural” bonds compared to Q. Specifically, it shows the deviation between our bonds’s distances

and their expected distance when the structure is in its native state. The range of values is the same

as Q, from 0 (the bond distances are significantly different from the natural ones) to 1 (the bond

distances are exactly the same as the natural ones). 

To gain more insights from this analysis, we included the pdb file of the protein’s native structure,

downloaded from the protein database, to compute the normalized similarity value q. This allows us

to compare the native structure from the database to our simulated structure. q uses the same range

of values, with 0 indicating very different structures and 1 indicating identical structures.

Observing the graph in Figure 16, we notice two distinct phases where the results of all three values

align. From the first frame up to the point just before our chain folds into the final conformation, the

values for Q range from approximately 0.08 to 0.47, Qs ranges from about 0.04 to 0.26 and q ranges

from around 0.08 to 0.26. This indicates that during this phase, a comparison with the reference

structure reveals that the bond distances in our structure, which fall within the designated cutoff

range, range between 8% to 47% for Q and 4% to 26% for Qs and the values for q suggest that the

structure at this stage significantly deviates from the reference structure. In the second phase of the

analysis, from the point of achieving the final conformation until the end of the simulation, there is

a steep increase in the values of all three reaction coordinates. We have found that a significant

portion, ranging from 64% to 80%, of our bonds distances are within the cutoff range (Q value).

Furthermore, we have noticed a significant reduction in the deviation between the distances of our

bonds and the corresponding distances in the reference structure, leading to a notable increase in the

Qs  percentage,  ranging  from  46%  to  65%.  Finally,  the  similarity  between  the  two  structures

increased  40% to 65% (q value).
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2.5 Combined outcomes from fraction of native contacts and radius of gyration

analyses, provide additional insights

2.5.1  Comparing  q  vs  Rg  diagrams  derived  from  full  vs  excluded  terminal  residues  in

ff99SB*-ILDN trajectory

Figure 17 | q vs Rg graphs, left graph corresponds to the entire sequence, right graph focuses on

residues 4 - 31

In Figure 17, our focus was on the ff99SB*-ILDN trajectory. To create these two graphs, we first

calculated the fraction of native contacts and the Radius of gyration using the GUI grcarma. Among

other  outputs,  two files were generated:  Rgyration.dat and Qfraction.dat.  The Rgyration.dat  file

contains  information  about  the  Radius  of  gyration  (Rg),  while  the  Qfraction.dat  file  contains

information about the distances of the contacts (Q and Qs) and the similarity (q) of our structure

compared to the reference structure (native structure).
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For this specific analysis (Figure 17), we disregarded the columns Q and Qs and focused on the

column q. We combined Rg and q and created a scatter plot using a specific color code. Each dot in

the  graph  represents  one  frame,  so,  each  graph  contains  15,229,200  dots. These  graphs  are

presented  on  a  logarithmic  scale,  which  effectively  highlights  both  the  folded  and  unfolded

conformations.  The regions shown in dark red indicate a high concentration of structures in that

particular  area  of  the  graph,  blue  represents  a  lower  concentration  and  yellow  indicates  an

intermediate state.

For the left image, we considered the entire amino acid chain. We used the already generated files

Rgyration.dat and Qfraction.dat which are derived from sections 2.3 and 2.4 respectively. 

For the right image, we excluded the first three and last three residues. Specifically, during the

Radius of gyration task, we selected heavy atoms, residue selection 4 – 31, first frame: 1, last frame:

15229200 and step: 1. During the Fraction of native contacts task, we selected backbone atoms,

residue selection 4 – 31, first frame: 1, last frame: 15229200, step: 1. Additionally, we selected the

option "Use PDB file to define the native structure" and we used "FipWW_backbone4_31.pdb" as a

reference, which is a modified pdb file containing only the backbone atoms of the 28 amino acids.

By removing these terminal residues, known for their significant mobility, we try to understand to

what extent they influence the results of this analysis.

In both images we observe two regions with dark red. The first one is located at low values of both

Rg and q. In this region, we expect to find compact structures due to low Rg values but with low

similarity between the natural and the examined structures due to low q values. These structures

correspond to transient conformations. The second dark red region is situated at low Rg values and

high q values.  Here,  we anticipate finding compact structures with high similarity between the

natural and examined structures. This region contains all the frames where our chain has adopted its

final conformation. In fact, the highest concentration of structures is found in this second region,

which  aligns  with  the  fact  that  out  of  the  15,229,200  frames,  which  is  our  entire  simulation,

approximately 7,900,000 frames show our chain in its final conformation.

In both images of Figure 17, we observe exactly the same distribution of conformations adopted by

the chain, including transient and final conformations. But, there is a difference in q values, with the

truncated peptide chain having a maximum q value of 0.8061, whereas the whole peptide chain has

a maximum q value of 0.7148. Observing the two graphs, indeed, the second dark red region of the

truncated peptide chain is slightly shifted upwards. However, the differences observed between the

two images were found to be negligible.
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2.5.2 Comparing q vs Rg and Q vs Rg diagrams derived from both ff99SB*-ILDN and ff99SB-

ILDN trajectories

Figure 18 | q vs Rg graphs, left graph depicts the ff99SB*-ILDN trajectory using the entire

sequence, right graph corresponds to the ff99SB-ILDN trajectory using the entire sequence

For  the  following  analyses,  both  trajectories,  ff99SB*-ILDN and  ff99SB-ILDN,  were  used.  In

Figure 18, we aimed to compare the q vs Rg analysis between the two trajectories. The left graph of

Figure 18 is exactly the same as the one in Figure 17 (left) and corresponds to the ff99SB*-ILDN

trajectory, while the right graph of Figure 18 corresponds to the ff99SB-ILDN trajectory.

To create the above graph, we executed the Fraction of native contacts and Radius of gyration tasks

for our second trajectory (ff99SB-ILDN) and used the same graph from Figure 17 (left) for our first

trajectory  (ff99SB*-ILDN).  Before running the  Fraction of native contacts task for the ff99SB-

ILDN trajectory, we had to choose a pdb file to define the native structure. The initial amino acid

sequence  they  attempted  to  fold  using  the  ff99SB-ILDN  force  field  contained  35  residues.

Therefore,  the  pdb  file  we  chose  to  use  as  a  reference  also  had  to  contain  35  residues. This

additional residue in the ff99SB-ILDN pdb file includes an extra GLY at the beginning of the chain
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that is missing in the other pdb file. The analysis of the reference sequences has been detailed in the

introduction, in section 1.2.

Knowing that the first trajectory’s simulation (Figure 18 left) was successful while the second one

(Figure  18 right) was  not,  we  aim  to  examine  the  distribution  of  all  conformations  in  both

trajectories and compare them. By comparing them, we observe noticeable differences between the

two graphs. The majority of structures in both left and right graphs are found in the low values of

the radius of gyration (Rg), indicating that in both graphs, most of the structures are compact, i.e.,

folded. However, unlike the left graph, which exhibits two distinct dark-red regions, the right graph

shows only one region, located at low values of both Rg and q. As we explained in Figure 17, these

two regions in the left graph, representing low values for both Rg and q and low Rg values with

high q values, indicate the existence of transient structures and final conformations, respectively. On

the other hand, the concentration of structures in the specific region of the right graph indicates the

presence of only transient structures. Furthermore, comparing the intensity of the dark-red color, the

number of transient structures identified in the right graph is much higher than those in the left

graph.
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Figure 19 | Q vs Rg graphs, left graph depicts the ff99SB*-ILDN trajectory using the entire

sequence, right graph corresponds to the ff99SB-ILDN trajectory using the entire sequence

Additionally, in an effort to gain further insights, we created two more graphs using the generated

files  Rgyration.dat  and Qfraction.dat  from  Figure 18.  Figure 19 emerged from combining the

radius of gyration (Rg) with the similarity value Q. 

At  first  glance,  we  observe  a  similar  behavior  to  that  of  Figure  18.  However,  upon  closer

examination, we notice some differences. Specifically, the dark-red region (representing low Rg

values with high Q values) on the left side of Figure 19 appears more concentrated, with Q values

ranging from approximately 0.63 to 0.80, while the corresponding region on the left side of Figure

18 appears more spread out, with q values ranging from approximately 0.45 to 0.67. Therefore, we

understand  that  the  high  similarity  percentage  of  bond  distances  (Q)  relative  to  the  reference

structure  does  not  perfectly  align  with  the  similarity  percentage  of  the  overall  structure  (q)

compared to the reference. 

The graph on the right image confirms the presence of numerous transient structures and indicates a

lack of final conformations. However, compared to the corresponding graph in Figure 18, the one

and only dark-red region in the graph of Figure 19 is more spread out in space and exhibits a larger

range of Q values.
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2.6  Calculating  histograms  and  RMS  from  specific  frames,  choosing  the

maximum q, Q and Qs values, gaining insights about RMSD values

From now on, we will focus solely on the ff99SB*-ILDN trajectory. For our next analysis, we want

to calculate the RMSD, but this time we will do it based on a specific frame. We will perform this

calculation  seven  times,  using  a  different  frame  each  time  to  extract  as  much  information  as

possible. Initially, we need to carry out three calculations. First, we need to find the frame with the

highest q value, which means identifying the frame that shows the highest similarity to the structure

we used as a reference. Second, to identify the frame with the highest Q value, which represents the

frame  with  the  highest  percentage  of  bonds  distances  that  fall  within  the  cutoff  range  of the

corresponding bonds in the reference structure. Third, to find the frame with the highest Qs value,

which  corresponds  to  the  frame  where,  overall,  our  bond  distances  show  the  least  deviations

compared to the bond distances in the reference structure.

We will perform the above process twice, once using the entire peptide chain and the second time

choosing residues 4 to 31 of our chain. This specific segment of the chain was chosen based on the

analysis of the rmsf diagram of the average protein structure (Figure 12). In this diagram, we were

able to identify and remove the amino acids located at both ends of our chain that exhibit  the

highest mobility. 

The procedure for extracting these specific results  is  as follows: Initially,  if we haven't  done it

already, we need to execute the task “Fraction of native contacts” (once using the entire chain and

the second time selecting residues 4 - 31). Next, we identify the three frames with the highest values

of the three reaction coordinates (Q, Qs and q) from the trajectory of both the entire chain and the

truncated chain. Then, we proceed with calculating the RMS from each frame by choosing the task

fitting and selecting CA atoms and using the respective frame as a reference. Finally, we calculate

the histograms for each frame.

Therefore,  for  each  frame,  we  will  generate  two  different  plots:  “RMS  from  frame”  and  a

histogram.  The  “RMS  from  frame”  plot  is  obtained  by  comparing  each  frame  of  the  entire

simulation with the specific frame we have chosen beforehand. The smaller the difference between

the two frames, indicating a higher similarity, the smaller the vertical line appears in our plot. On

the other hand, the histogram provides information about the distribution of RMSDs. The horizontal

axis  represents  the  RMSD values  and is  measured  in  Å,  while  the  vertical  axis  represents  the

number of structures from our simulation that have a specific RMSD value. The smaller the RMSD

value, the higher the similarity of each structure with the previously selected frame.
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Frames selection:

Whole peptide chain:

• The maximum q value was found in frame 7,930,499 and it is 0.7148. In this frame, the Q

value is 0.7271 and the Qs value is 0.6224.

• The maximum Q value was located in frame 14,405,337 and it is 0.8424. In this frame, the q

value is 0.5787 and the Qs value is 0.6686.

• The maximum Qs value was identified in frame 14,250,453 and it is 0.6946. In this frame,

the Q value is 0.8243 and the q value is 0.6386.

Peptide chain consisting of amino acids 4 - 31:

• The maximum q value was observed in frame 12,962,296 and it is 0.8246. In this frame, the

Q value is 0.9245 and the Qs value is 0.8392.

• The maximum Q value was found in frame 14,365,495 and it is 1.0000. In this frame, the q

value is 0.6690 and the Qs value is 0.8731.

• The maximum Qs value was identified in frame 7,875,920 and it is 0.8939. In this frame, the

Q value is 0.9811 and the q value is 0.6095.

• The highest sum of Q, Qs, and q value was obtained in frame 13,523,301 and it is 2.6447.

Specifically, the Q value is 0.9811, the Qs value is 0.8744 and the q value is 0.7892.
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Figure 20 | Whole peptide chain: (top graph) RMS from frame 7930499 (q), (bottom graph)

histogram based on frame 7930499 (q)
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Figure 21 | Whole peptide chain: (top graph) RMS from frame 14405337 (Q), (bottom graph)

histogram based on frame 14405337 (Q)
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Figure 22 | Whole peptide chain: (top graph) RMS from frame 14250453 (Qs), (bottom graph)

histogram based on frame 14250453 (Qs)

47



Upon analyzing the diagrams in  Figures 20,  21 and  22 which include both the RMS from frame

plots and the histograms, we observe similarities among all three frames used. Specifically, in the

RMS from frame diagrams,  we distinguish  two  main  phases.  The  first  phase  begins  from the

beginning of the simulation until just before the final conformation of our protein, approximately up

to the 7,200,000th frame. The second phase starts where the first phase ends and coincides with the

end of the simulation. The protein's conformation in all three selected frames is very close to the

conformation of the reference structure. Therefore, it is logical to observe high RMSD values in the

first phase of the diagram and low values in the second phase, during which the chain has reached

its final configuration.

In the histograms we created for all three cases, we observe two main peaks. The peak on the right

corresponds to the accumulation of transient structures with high RMSD values, i.e., structures that

have very low similarity to the frame we used. On the other hand, the peak on the left corresponds

to the accumulation of folded structures with low RMSD values, i.e., structures that have acquired

the final conformation. Analyzing the left peak of the three histograms, an important insight it offers

is its elevated height. The height is noticeably greater compared to the right peak, indicating that in

our  simulation,  there  are  many  more  structures  with  final  conformation  than  transient

conformations. The frames where we had the maximum Q and Qs values have values below 3 Å,

while the q value has values above 4 Å.
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Figure 23 | Truncated peptide chain using amino acids 4-31: (top graph) RMS from frame

12962296 (q), (bottom graph) histogram based on frame 12962296 (q)
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Figure 24 | Truncated peptide chain using amino acids 4-31: (top graph) RMS from frame

14365495 (Q), (bottom graph) histogram based on frame 14365495 (Q)
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Figure 25 | Truncated peptide chain using amino acids 4-31: (top graph) RMS from frame 7875920

(Qs), (bottom graph) histogram based on frame 7875920 (Qs)
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The diagrams in Figures 23, 24 and 25 all exhibit a same pattern. The RMS from frame diagrams

consist of two main phases, which are based on the same logic and the histograms also consist of

two distinct peaks following the same logic. However, the question we need to answer at this stage

is the following: Did we manage, after removing the terminal amino acids, to find a frame that is

even closer to the native structure? Upon re-examining the left peaks of the three new histograms,

we observe that in all three frames, the accumulation of structures occurs at even lower RMSD

values compared to the three previous histograms. Therefore, we are closer to finding the frame we

are looking for.

During the search for frames with the maximum values of q, Q and Qs, we recorded the values of

all three measures for each frame. Upon reviewing these values, we observe that the maximum

value of one measure is not necessarily accompanied by high values of the other two measures. For

example, in the case of the peptide chain consisting of amino acids 4-31, in frame 14,365,495, the

measure Q has the highest possible value of 1.0000, but the measure q is only 0.6690. Therefore,

the next step we can take is to calculate the sum of the values of all three measures for each frame

and then identify the frame that exhibits the highest sum.

In Figure 26, we generated two supplementary diagrams using the frame with the maximum sum.

By comparing the left peak of this histogram with the corresponding left peaks from the previous

diagrams, we observe that the RMSD values, where the structures gather, remain consistently low,

below 3 Å. However, it's worth noting that these values are not lower than the ones we previously

observed in Figure 24.
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Figure 26 | Truncated peptide chain using amino acids 4-31: (top graph) RMS from frame

13523301 (maximum sum of q, Q and Qs), (bottom graph) histogram based on frame 13523301

(maximum sum of q, Q and Qs)
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2.7 The significance of dPCA and CPCA for a deeper understanding of internal

and overall motions in our system

Understanding the atomic motions/fluctuations in proteins and their correlations with each other is

of  great  importance  for  gaining  insights  into  protein  dynamics.  Atoms  that  exhibit  correlated

motions and move together in a coordinated manner, can be put to the same collective group. When

the fluctuations of an atom, belonging in a specific collective group, are significant, the collective

motions become dominant in influencing the behavior of the system.  It has been found that the

structure  of  the  molecule  directly  influences  the  formation  of  collective  groups.  Secondary

structural components tend to move as collective groups. [47]

Through the statistical tool PCA (Principal Components Analysis), we gain the ability to process

large,  high-dimensional  datasets,  by emphasizing  their  similarities  and differences.  During data

processing using PCA, we encounter two essential terms: “eigenvector” and “eigenvalue”, which

always appear together as a pair. The eigenvector plays a crucial role in expressing the data in a

specific manner and provides information about the direction, slope and magnitude of fluctuation.

The eigenvalue associated with a specific eigenvector indicates its significance in interpreting the

results and determines its rank. [48], [49]

The eigenvector with the highest eigenvalue is referred to as the principal component 1 (PC1), the

eigenvector with the second-highest eigenvalue is called principal component 2 (PC2) and so on.

What sets PCA apart and makes it particularly popular in data analysis is its ability to simplify high-

dimensional  data  by  ignoring  principal  components  with  very  low  eigenvalues,  i.e.,  low

significance, without necessarily distorting the results. Depending on the complexity of the system,

a corresponding number of principal components is generated. In the study of molecular dynamics

simulations,  tens  or  even  hundreds  of  principal  components  are  generated.  By  ranking  all  the

principal components from the highest eigenvalue to the lowest and analyzing the impact of each

principal component on the overall motion of the system, it has been found that a small subset of

principal components is sufficient to describe the motion of the entire system.  [48]–[50]

For the analysis of MD simulations, the use of both Dihedral PCA and Cartesian PCA methods is

essential. Dihedral PCA, focusing on the dihedral angles of a biomolecule, provides information

about  local/internal  conformational  changes,  while  Cartesian  PCA  deals  with  the  cartesian

coordinates of the atoms and informs us about the collective motions of the entire molecular system.

[51], [52] 
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2.7.1  Dihedral PCA, density distribution of fluctuations using the ff99SB*-ILDN trajectory

with step 1

Continuing the analysis of the ff99SB*-ILDN trajectory, we performed the task Dihedral PCA and

selected the following parameters: Residue selection from 4 to 31, an upper limit of 150 clusters, a

step of 1 and we included all frames from the simulation. During the residue selection, we excluded

these 6 amino acids for the same reason as in section 2.6, (to avoid unnecessary noise they might

cause).  However,  in  the  pdb files  generated  during this  analysis,  we instructed  the program to

include the terminal amino acids to provide more comprehensive representations. In the 3D analysis

of dPCA, 4 clusters emerged, while the 5D analysis revealed 147 clusters.

In  Figures 27,  29  and  31 (on the left), we have the 2D representations of density distribution of

fluctuations based on two specific principal components and we compare them with the scatter plot,

obtained from the 5D analysis, showing how the two corresponding principal components affect the

distribution of the 147 clusters (on the right).  These 147 clusters are distinguished by different

colors. In  Figure 27, the plots were generated using the first two principal components, PC1 and

PC2. Similarly, in Figure 29, the plots were based on PC1 and PC3, while Figure 31 was created

using PC2 and PC3.

Focusing on the left images, what we observe are many small dots, where each dot corresponds to a

specific frame. The color representation here informs us about the distribution of fluctuations. Dark

blue color indicates a high concentration of specific fluctuations, representing frames with specific

folding  patterns.  Red  color  denotes  very  low  concentration,  while  yellow  color  represents  an

intermediate state.

In Figures 28, 30 and 32, we revisit the three distributions shown in the left plots in Figures 27, 29

and  31,  respectively.  These are then compared with three additional scatter  plots  (on the right)

showing  the  density  distribution  of  the  147  clusters  based  on  their  corresponding  principal

components.
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Figure 27 | 2D representations of: density distribution of fluctuations based on PC1 and PC2 (left),

distribution of the 147 clusters from the 5D analysis based on PC1 and PC2 (right)

Figure 28 | 2D representations of: density distribution of fluctuations based on PC1 and PC2 (left),

density distribution of the 147 clusters from the 5D analysis based on PC1 and PC2 (right)
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Figure 29 | 2D representations of: density distribution of fluctuations based on PC1 and PC3 (left),

distribution of the 147 clusters from the 5D analysis based on PC1 and PC3 (right)

Figure 30 | 2D representations of: density distribution of fluctuations based on PC1 and PC3 (left),

density distribution of the 147 clusters from the 5D analysis based on PC1 and PC3 (right)
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Figure 31 | 2D representations of: density distribution of fluctuations based on PC2 and PC3 (left),

distribution of the 147 clusters from the 5D analysis based on PC2 and PC3 (right)

Figure 32 | 2D representations of: density distribution of fluctuations based on PC2 and PC3 (left),

density distribution of the 147 clusters from the 5D analysis based on PC2 and PC3 (right)
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The information provided by the three density distributions of fluctuations (PC1 vs PC2, PC1 vs

PC3, and PC2 vs PC3) (on the left) indicates the presence of two dark-blue regions with a high

accumulation of structures of specific fluctuations. Focusing on  Figure 27,  these two dark-blue

regions in the left image correspond to the green and yellow colors in the right plot. According to

the information derived from “Scatter plots of categorical data”, where in our case the categorical

data represent the clusters, a specific set of seven colors is used, following this order: “1” → Green,

“2” → Yellow, “3” → Blue, “4” → Magenta, “5” → Cyan, “6” → Red and “7” → White. When

there are more than eight categories (clusters), the plot cycles through the same set of colors.

Therefore, by observing both images in Figure 27, we can understand that the cluster with the green

color can be labeled as cluster 1 and corresponds to the first dark-blue region with the highest

accumulation of structures of the same fluctuation. Additionally, the cluster with the yellow color

can be labeled as cluster 2 and corresponds to the second dark-blue region.

2.7.2  Dihedral PCA, density distribution of fluctuations using the ff99SB*-ILDN trajectory

with step 2

We conducted the dPCA analysis twice, using different step sizes: one with a step size of 1 and the

other with a step size of 2. In the previous task, we explored the 2D representations of density

distribution of fluctuations in relation to specific pairs of principal components, namely PC1 vs

PC2,  PC1 vs  PC3 and  PC2 vs  PC3.  An  important  discovery  arising  from this  analysis  is  the

existence of two distinct peaks, representing two conformations with the same fluctuations, that

demonstrated extended stability during the simulation. Upon comparing these three distributions

(PC1 vs PC2, PC1 vs PC3, and PC2 vs PC3) with their corresponding (PC1’ vs PC2’, PC1’ vs PC3’,

and PC2’ vs PC3’) obtained with a step size of 2. Once again, we observed the appearance of two

peaks. Figure 32 illustrates the three distributions derived with a step size of 2.
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Figure 33 | 2D representation of density distribution of fluctuations PC1’  vs PC2’, PC1’  vs PC3’

and PC2’  vs PC3’

Continuing the analysis with a step of 2, we aim to identify the secondary structures associated with

these two peaks. To explore this, we examined the dPCA diagrams with a step of 1, which revealed

that each peak corresponds to a specific cluster. This observation was further confirmed by the

dPCA analysis with a step of 2, where the most prominent peak aligned with cluster 1 and the
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second peak aligned with cluster 2. These two clusters were found to exhibit  a parallel  β-sheet

conformation involving three clones.

The crucial question remains: Do both clusters indeed represent the final conformation adopted by

our  peptide  chain?  To  address  this,  we  conducted  a  comparative  analysis.  We  aligned  the

representative pdb files of clusters 1 and 2 obtained from the 3D analysis using the MM-align

protein  structural  alignment  program  [53].  Further  refinement  of  the  resulting  pdb  file  was

performed  with  PyMOL.  The  comparison  presented  in  Figure  34 highlights  minor  structural

differences, which account for the variations observed in their corresponding principal components.

Despite  these  differences,  the  alignment  between  the  two  structures  affirms  that  both  clusters

represent the chain's final conformation.

Figure 34 | Superimposition of the representative structures of clusters 1 and 2 from the 3D

analysis. Using pymol, structure is colored by secondary structure: sheet (magenta), helix (cyan)

and loop (salmon)
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During the 5D dPCA analysis, we obtained 4 representative structure pdb files corresponding to the

4  clusters  generated  by  the  3D  analysis,  as  well  as  98  representative  structure  pdb  files

corresponding to the 98 clusters generated by the 5D analysis. The previous examination in Figure

34 covered the first two clusters from the 3D analysis. Now, in  Figure 35, we will showcase a

selection of 39 representations from the 98 clusters of the 5D analysis.
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Figure 35 | 39 out of the 98 clusters of the representative structure in the 5D analysis. Using pymol,

structure is colored by secondary structure: sheet (magenta), helix (cyan) and loop (salmon)

In Figure 35, the first two clusters, as in the 3D analysis, correspond to the β-sheet conformation,

which is the final  conformation of our chain. Beyond that, we observe that most clusters involve

helical conformations of various lengths, while a few clusters (excluding the first two) specifically,

7 of them, correspond to the β-sheet structures.
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2.7.3  Dihedral  PCA, density distribution of  fluctuations using the ff99SB-ILDN trajectory

with step 1

Concluding the dPCA analyses, in order to gain a more comprehensive understanding, we extended

the dPCA to the trajectory generated by the ff99SB-ILDN force field.  Our parameter  selection

included: (residue selection: 4 - 31, clusters: 150, first frame: 1, last frame: 10021600 and step: 1).

As a result, we obtained 44 clusters from the 3D analysis and 123 clusters from the 5D analysis.

Subsequently, we constructed Figure 36, presenting a 2D representation of the density distribution

of fluctuations based on the three most significant principal components (PC1 vs PC2, PC1 vs PC3,

and PC2 vs PC3). As anticipated, the resulting images confirmed the fact that this specific force

field  fails  to  effectively  fold  our  protein.  All  three  representations  display  numerous  peaks,

indicating that throughout the simulation, the protein underwent multiple transient conformations,

that were maintained for a short period of time.
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Figure 36 | 2D representation of density distribution of fluctuations: PC1 vs PC2, PC1 vs PC3 and

PC2 vs PC3
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2.8 Cartesian PCA, isolating the first  principal component and visualizing  β-

sheet fluctuations

Using CPCA, our goal is to be able to observe the fluctuations/motions, known as conformational

dynamics, performed by our molecular system as a whole. The entire process is based on the first

eigenvector, which has the highest eigenvalue. PC1, with the largest eigenvalue, is the one that

distinguishes the folded from the unfolded structures. Therefore, after performing CPCA, we aim to

isolate and analyze the first principal component (PC1).

To  generate  the  final  image  illustrating  the  overall  motion  of  our  system,  we  employed  a

combination  of  the  graphical  user  interface  Grcarma and  executed  some additional  commands

through the terminal. The step-by-step process is outlined below:

Using grcarma we performed fitting and Cartesian PCA

fitting: (CA atoms, all residues, use frame as reference: 7300000, first frame: 7300000, last frame:

15229200, step 1, use subset of the residues for the fitting: CA, change residue selection: 5 – 30)

If we carry out the fitting without excluding the motion of terminal amino acids (change residue

selection: 5 - 30), the resulting final image is difficult to evaluate due to the presence of “noise”.

Additionally, we have chose to isolate these particular frames that represent only the phase of the

simulation where the final conformation is attained. Consequently, the fitting procedure is applied

to the “blue box”, which we have examined in Figure 7 (top) and Figure 9 (top). After the fitting,

we obtained a total of 7,929,201 frames.

C  PCA  :   (CA atoms, all residues, 150 clusters, perform five dimensional clustering, 150 clusters, first

frame: 1, last frame: 7929201, step: 1)

After completing the fitting and CPCA, we proceeded with the following steps:

Due to the fact that during the previous procedure we selected CA atoms for convenience, we make

the following renaming:

➢ mv carma.selected_atoms.psf CAs.psf 
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The file carma.fitted_0.dcd was produced using CPCA and includes only the CA atoms of the first

cluster. For convenience, we proceed with the following renaming:

➢ mv carma.fitted_0.dcd cluster_01.dcd

Determine the minimum and maximum observed values of the first principal component:

➢ awk '{print $2}' carma.PCA.fluctuations.dat | sort -n | tail -1

The maximum value is: 26.0772724

➢ awk '{print $2}' carma.PCA.fluctuations.dat | sort -n | head -1

The minimum value is: -13.2602043

By considering only the CA atoms and the minimum and maximum values of PC1, we will generate

a new DCD file named carma.play.dcd, which will contain solely the PC1 information:

➢ carma -verb -write -col -cov -eigen -play 1 -13.2602043 26.0772724 cluster_01.dcd CAs.psf

We will generate a PDB file to visualize the motion along the first eigenvector. For the -last option,

the total frames in cluster 1 are 2,687,183, so we will use half of this set, which is 1,343,592 frames.

Regarding the -step option, we will choose a value that produces around 300 PDB files at the end.

Using a step value of 4,570 will result in 294 PDB files:

➢ carma -v -w -pdb -last 1343592 -step 4570 carma.play.dcd CAs.psf

➢ cat carma.play.dcd.*.pdb > eigen_01.pdb 

➢ rm carma.play.dcd.*.pdb

Within the eigen_01.pdb file, there are 294 pdb files, all of which have been superimposed. This

superimposition  of  numerous  pdb  files,  representing  frames  where  the  final  conformation  is

reached, allows us to visualize the collective motion exhibited by the molecular structure over time.

We proceed with the analysis of the eigen_01.pdb file using PyMOL.
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Figure 37 | Superimposition structures of PC1’s 294 pdb files using the entire peptide chain. Using

pymol, structure is colored by spectrum: rainbow

Upon observing the final image in Figure 37, it becomes evident that the entire molecular structure,

including both flexible and rigid segments, undergoes significant motion during the simulation. The

flexible regions, namely the termini, exhibit significant oscillation, indicated by the thickness of the

structure. On the other hand, the stable segments, like the  β-sheet, experience relatively smaller

oscillations but are not completely motionless. A closer examination of the three β-strands reveals

an  intriguing  behavior,  they  oscillate  in  such  a  way  that  the  distances  between  them  and

consequently the hydrogen bonds, remain constant.

We repeated the entire above process one more time, but this time without including the C- and N-

terminal residues. As a result,  Figure 38 was generated,  in which it is now very clear that the

oscillation of the terminal regions is  significantly reduced. Regarding the  β-sheet,  the distances

between the strands remain constant during its oscillation.
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Figure 38 | Superimposition structures of PC1’s 294 pdb files excluding C- and N- terminal

residues. Using pymol, structure is colored by spectrum: rainbow
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2.9 Visualizing specific folding stages of our protein’s simulation

For the last part of our analysis, we chose a visual representation, focusing on specific segments of

the simulation. The aim was to observe the different stages of our peptide chain with higher detail,

leading to its final conformation.

2.9.1 Frames: 6,807,000 – 7,239,000, visualizing the entire process, starting from the formation

of the initial β-strands, up to the native structure
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Figure 39 | 21 representative structures showing native's structure formation process starting from

the initial β-strands. Using pymol, structure is colored by secondary structure: sheet (magenta),

helix (cyan) and loop (salmon)

We conducted three visual representations in total.  The first representation had lower resolution

compared to  the  other  two,  allowing  us  to  observe  the  entire  folding  process,  from the  initial

formation of the  β-turn-β motif to the creation of the β-sheet. Once again, we utilized the user-

friendly Grcarma for this analysis, selecting the task: Extract PDB(s) (parameters: Heavy atoms, all

residues, first frame: 6807000, last frame: 7239000 and step 21600). These parameters generated 21

pdb files, effectively describing this specific segment of the simulation. Figure 39 was then created

through further processing using PyMOL.

In the initial stages, before the  β-turn-β motif formation, we observed the presence of various  α-

helices of different lengths. Additionally, up to the establishment of the  β-turn-β motif, the chain

once more underwent unfolding and no clear conformation was evident (frame: 7,001,400). This
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confirms that our peptide chain goes through various folding and unfolding stages before reaching

its final conformation, even though it may have acquired the β-turn-β motif in previous frames.

At the early phase of the existence of the two clones, specifically at the C-terminal, where the third

β-strand would be formed in the future, we noticed the presence of small transient α-helices. Based

on Figure 39, we can see that in frame 7,217,400, the third β-strand starts to appear.

2.9.2 Frames: 6,800,000 – 7,060,000, with higher resolution, visualizing the process before the

formation of the first and second β-strands until the stabilization of the β-turn-β motif
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Figure 40 | 21 representative structures showing β-turn-β motif formation process starting from the

initial β-strands. Using pymol, structure is colored by secondary structure: sheet (magenta), helix

(cyan) and loop (salmon)

For the second visual representation,  we applied higher resolution by selecting a smaller frame

range and focusing on the stabilization phase of the  β-turn-β motif. The parameters chosen were

(heavy atoms,  all  residues,  first  frame:  6800000,  last  frame:  7060000 and step:  13000).  These

parameters generated 21 pdb files (Figure 40), which were further processed using PyMOL.

In Figure 40, we get a much closer look at the events that occurred in the initial frames of Figure

39. The first five images reveal the presence of  α-helices, followed by the emergence of the first

two β-strands starting from frame: 6,878,000. Similar to Figure 39, we still observe small α-helices

alongside the β-turn-β motif, but in this analysis, theses α-helices can be detected at both the C- and

N-termini of the chain.
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2.9.3  Frames:  7,150,000  –  7,295,000,  with  higher  resolution,  visualizing  the  process  from

shortly before the third β-strand attaches, up to the native structure
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Figure 41 | 21 representative structures showing native's structure formation process starting from

shortly before the third β-stand attaches. Using pymol, structure is colored by secondary structure:

sheet (magenta), helix (cyan) and loop (salmon)

For the third and final visual representation, we increased the resolution even further and focused on

the stabilization phase of the native state, starting from the attachment of the third β-strand. Using

Grcarma’s task: Extract PDB(s), we selected these specific parameters (heavy atoms, all residues,

first  frame: 7150000, last frame: 7295000 and step: 7250) and further processed the data using

PyMOL.

In Figure 41, these selected frames provide a closer look at the spatial stability of the β-turn-β motif

and the fully formed β-sheet, while also revealing the dynamic movement of the remaining chain.

By carefully  aligning the images  to  display the respective conformations  (β-sheet  and  β-turn-β

motif) with consistent orientations, we gain visual insight into the stable and mobile segments and

the extent of their motion in space.

Compared to Figure 39, in this particular figure, we captured the initial formation of the native state

slightly later, at frame: 7,222,500.
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3. Conclusions and discussion

In the final part of our thesis, we will present the conclusions that emerged throughout our research

and discuss  the implications of our findings.  Initially,  we had two trajectories  to analyze,  both

generated in the effort  to simulate the folding  process of the same protein,  Fip,  with the main

difference being the applied force field (Amber ff99SB-ILDN and Amber ff99SB*-ILDN). In our

laboratory, using the revised Amber ff99SB*-ILDN force field, efforts have already been made to in

order to fold various peptides with secondary structures such as α-helices or β-hairpins. [28]–[30] In

this  thesis,  we  selected  the  Fip  mutant.  The  Fip  protein  serves  as  a  significant  representative

example  of  a  β-sheet  composed of  three  antiparallel  β-strands.  Achieving the  simulation  of  its

folding from the unfolded state is of utmost importance.

Initially, in both trajectories, we performed two analyses, RMSD matrix and Secondary Structure,

with the aim of determining whether  and which force fields  can successfully fold the chain to

resemble the expected native structure. Only the ff99SB*-ILDN trajectory, at approximately 7.2 μs,

managed to form a β-sheet composed of three antiparallel strands and it appeared quite prominent.

Therefore, in our analyses, we quickly confirmed that the Amber ff99SB-ILDN force field is not

capable of successfully folding the Fip protein.

We performed various  analyses  on this  specific  trajectory  (ff99SB*-ILDN),  either  covering  the

entire simulation range or specific parts of it. In the analyses that utilized the full range, we gained a

comprehensive view of our peptide chain, acquiring insights not only into the final conformation,

the  β-sheet,  but  also  the  transient  structures  that  emerged  throughout.  Some  of  the  tasks  we

conducted using the full length were as follows: 1. Radius of Gyration: By analyzing all frames, we

determined the compactness of our structure  on each  frame. As expected, the structure was more

condensed when it  acquired the  final  conformation,  the  β-sheet.  However,  observing the entire

diagram,  we  identified  two  additional  regions  with  significant  compactness.  Comparing  these

frames (Figure 15) to the corresponding ones from the secondary structure (Figure 7), we noticed

that our structure adopted two transient α-helical conformations during those phases. 2. Fraction of

Native Contacts: Using specific reaction coordinates (Q, Qs and q), this analysis provided a detailed

and in-depth examination. It identified all the bonds in the structure for each frame of the simulation

and  informed  us  (by  providing  similarity  percentages)  about  their  distances  compared  to  the

corresponding bonds in the native structure. In this specific analysis, the similarity percentages of
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the final conformation with the native structure were quite high, confirming the great promise of

this particular trajectory.

With the purpose of gaining knowledge about the dynamics and motions of this specific architecture

(β-sheet), we isolated and further studied the frames in which we observe the native-like structure.

We calculated the covariance matrix, RMS from average, RMSF and performed secondary structure

visualization. These analyses provided valuable insights into how the amino acids are correlated

with each other, not only at an atomic level (residue vs. residue) but also at a secondary structure

level. The neighboring β-strands (β-strand I vs  β-strand II and β-strand II vs β-strand III) showed

strong correlation, indicating that the motion of one strand follows the motion of the other, while

the two terminal strands (β-strand I vs  β-strand III) exhibited lesser correlation. Additionally, by

observing the fluctuations of each amino acid, we confirmed that the amino acids forming the three

β-strands are significantly more stable than those in the two loops. Furthermore, we visualized the

fluctuations of the representative structure at  a secondary structure level.  With these insights at

hand, we have gained a preliminary understanding of the dynamic regions and stable components

within our structure, as well as the manner in which a β-sheet undergoes motion in space.

During our analysis  of the RMSD matrix,  we observed that  the peptide chain reached its  final

conformation around the 7,200,000th frame and maintained this conformation for approximately

7,900,000 frames. However, it's important to note that these 7,900,000 frames were not identical,

showing variations in the structural fluctuations. In order to identify the frame that best resembles

the native structure, the most representative one, we conducted a comprehensive examination by

utilizing data from the fraction of native contacts task and we creating histograms and calculating

RMSDs from specific frame. The RMSDs from specific frame gave us valuable insights into the

deviations exhibited by our frames throughout the simulation. The histograms, which compare each

frame to the reference frame, provided us with a clear picture of how these RMSD values are

distributed. Through this analysis, we identified the frame closest to the reference structure, which

turned out to be the 14,365,495th frame. Intriguingly, during the calculation of the fraction of native

contacts using amino acids 4-31 of the peptide chain, this frame demonstrated the highest Q value,

indicating its strong resemblance to the native conformation.

To gain a deeper understanding of the atomic and collective motions within our molecular structure,

we performed Dihedral  PCA and Cartesian  PCA analyses.  Studying the  density  distribution  of

fluctuations from dPCA, we identified two main regions with a high accumulation of structures

exhibiting  specific  fluctuations.  Visualizing  the  pdb  files  of  the  representative  structures,  we

deduced that both of these areas, referred to as clusters 1 and 2, represent the final conformation.
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During CPCA, we isolated PC1 as it distinguishes the folded structures from the unfolded ones. By

generating an image illustrating the overall motions of our system without interference from the

unfolded  structures,  we  gained  valuable  insights  into  the  motion  of  the  entire  structure.  This

particular analysis initially confirmed that the stable regions are within the β-sheet, specifically we

are referring to the three  β-strands,  while  the mobile  regions are the two termini  of the chain.

Furthermore, it provided information on the oscillations occurring throughout the entire structure.

Oscillations were observed everywhere, with more noticeable oscillations at the two termini and

significantly less in the three β-strands. However, the observed oscillations in the three β-strands are

not random, they are structured in a way that the distances between them remain constant as they

oscillate.  This  conclusion  was  not  surprising,  given  that  our  analysis  of  the  covariance  matrix

revealed a strong correlation between the amino acids in the neighboring strands. As a result, we

expected that the motion of one strand would have a significant impact on the motion of the other,

in a similar manner.

In  conclusion,  we  presented  three  visual  representations  of  specific  folding  stages  during  the

simulation of our protein, aiming to gain insights into the step-by-step transformation of our chain,

starting from the initial establishment of the β-turn-β motif and ultimately leading to the formation

of the β-sheet.

The successful folding simulation of the Fip mutant using the Amber ff99SB*-ILDN force field

marks  a  significant  milestone in  our  ongoing quest  to  find a  force field capable of  effectively

folding peptide chains. However, the journey towards this goal is far from over. Our ultimate goal is

to  achieve  force  field  transferability,  which  means  the  ability  to  fold  all  types  of  secondary

structures and their combinations, not just limited to one β-sheet and two-three α-helices. We also

aim  to  successfully  fold  more  complex  proteins,  larger  polypeptides  with  diverse  secondary

structures and even proteins with quaternary structures.

This progress represents a crucial step forward in understanding the dynamics and motions of our

molecular structure and opens up exciting possibilities for further research and improvement in the

field of protein folding simulations.
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