
A

r
e
s
t
o
r
o
I
o
i
r
o
m
©

K

1

c
g
c
o
c
o
i
r
1

0
d

Available online at www.sciencedirect.com

BioSystems 92 (2008) 61–68

Reconstruction of DNA sequences using genetic algorithms
and cellular automata: Towards mutation prediction?

Ch. Mizas a, G.Ch. Sirakoulis a, V. Mardiris a, I. Karafyllidis a,
N. Glykos b, R. Sandaltzopoulos b,∗

a Democritus University of Thrace, Department of Electrical and Computer Engineering, 67100 Xanthi, Greece
b Democritus University of Thrace, Department of Molecular Biology and Genetics, Laboratory of Gene Expression,

Molecular Diagnostics and Modern Therapeutics, 68100 Alexandroupolis, Greece

Received 21 December 2006; received in revised form 28 November 2007; accepted 10 December 2007

bstract

Change of DNA sequence that fuels evolution is, to a certain extent, a deterministic process because mutagenesis does not occur in an absolutely
andom manner. So far, it has not been possible to decipher the rules that govern DNA sequence evolution due to the extreme complexity of the
ntire process. In our attempt to approach this issue we focus solely on the mechanisms of mutagenesis and deliberately disregard the role of natural
election. Hence, in this analysis, evolution refers to the accumulation of genetic alterations that originate from mutations and are transmitted
hrough generations without being subjected to natural selection. We have developed a software tool that allows modelling of a DNA sequence as a
ne-dimensional cellular automaton (CA) with four states per cell which correspond to the four DNA bases, i.e. A, C, T and G. The four states are
epresented by numbers of the quaternary number system. Moreover, we have developed genetic algorithms (GAs) in order to determine the rules
f CA evolution that simulate the DNA evolution process. Linear evolution rules were considered and square matrices were used to represent them.
f DNA sequences of different evolution steps are available, our approach allows the determination of the underlying evolution rule(s). Conversely,
nce the evolution rules are deciphered, our tool may reconstruct the DNA sequence in any previous evolution step for which the exact sequence

nformation was unknown. The developed tool may be used to test various parameters that could influence evolution. We describe a paradigm
elying on the assumption that mutagenesis is governed by a near-neighbour-dependent mechanism. Based on the satisfactory performance of
ur system in the deliberately simplified example, we propose that our approach could offer a starting point for future attempts to understand the
echanisms that govern evolution. The developed software is open-source and has a user-friendly graphical input interface.
2008 Elsevier Ireland Ltd. All rights reserved.

volu

1
i
w
a
e
(
p
t

eywords: Genetic algorithms; Cellular automata; DNA sequence modelling; E

. Introduction

In the recent years, advances of biochemical and biophysi-
al instrumentation methodologies allowed collection of whole
enome and proteome sequences (Venter et al., 2001). The
omplexity of the available information calls for the devel-
pment of ever more powerful bioinformatics tools to attack
omplex problems associated with proper interpretation of the
btained information. Faster and more accurate computational

ntelligence algorithms and data processing technologies are
equired (Baxevanis and Ouellette, 1998; Chou and Zhang,
992; Cios et al., 2005; Durbin et al., 2000; Zhang and Chou,

∗ Corresponding author. Tel.: +30 25510 30622; fax: +30 25510 30624.
E-mail address: rmsandal@mbg.duth.gr (R. Sandaltzopoulos).

e
t
(
a
K
P
W

303-2647/$ – see front matter © 2008 Elsevier Ireland Ltd. All rights reserved.
oi:10.1016/j.biosystems.2007.12.002
tion; Simulation; Bioinformatics; Nanotechnology

993, 1994; Sirakoulis et al., 2004). In general, computational
ntelligence methods may be employed provided that they are
isely combined with bioinformatics, as illustrated in Baxevanis

nd Ouellette (1998). In order to contribute to this effort we mod-
lled DNA sequence as a one-dimensional cellular automaton
CA) thus allowing the use of powerful and sophisticated com-
utation techniques for the development of useful bioinformatics
ools (Sirakoulis et al., 2003).

CAs, originally developed by von Neumann (1966) as mod-
ls of self-reproducing systems, have been extensively used
o model and simulate environmental and biological systems
Bernadres and dos Santos, 1997; Chou et al., 2006; Gao et

l., 2006; Gaylord and Nishidate, 1996; Kansal et al., 2000;
arafyllidis, 1997, 1998; Karafyllidis and Thanailakis, 1997;
atel et al., 2001; Salzberg et al., 2004; Sirakoulis et al., 2000;
ang et al., 2005; Xiao et al., 2005a,b, 2006a,b). CAs were

mailto:rmsandal@mbg.duth.gr
dx.doi.org/10.1016/j.biosystems.2007.12.002

6 Systems 92 (2008) 61–68

s
e
t
t
t
a
b
f
n
c

f
a
d
e
a
t
t
e
l
i
t
b

2

f
C
t

(
c
t
f
(
u
i
c
v
o
.

i
C

s

C

w
m
s
o
e

s
w

F
e

n
c
c

N

w
m
o

N

s
o
n

C

t
i

C

h
r
t

p
b
t
o
f

2 Ch. Mizas et al. / Bio

howed to be a promising model for DNA sequence (Sirakoulis
t al., 2003), because certain aspects of the DNA structure, func-
ion and evolution can be simulated using several mathematical
ools (such as linear algebra and operators), introduced through
he use of CAs. In our model the sugar-phosphate backbone of
DNA molecule corresponds to the CA lattice and the organic
ases to the CA cells. At each position of the lattice one of the
our bases A (adenine), C (cytosine), T (thymine) and G (gua-
ine) of the DNA molecule may be allocated. These four bases
orrespond to the four possible states of the CA cell.

In elementary CAs, the CA evolution rule can be extracted
rom a given number of CA evolution patterns. This method can
lso be applied to the CAs that model DNA sequences. Thus, we
eveloped a simulator, named DNA EVO, which allows mod-
lling DNA evolution by extracting CA rule(s) using genetic
lgorithms (GAs) (Holland, 1975; Goldberg, 1989). The evolu-
ion rule(s) can be determined by providing the global state of
he DNA sequence in various evolution steps. Conversely, if the
volution rule(s) and DNA sequences are given for several evo-
ution steps, it may be possible to determine the DNA sequence
n previous evolution steps. DNA EVO is an interactive simula-
ion tool that includes a graphical user interface [GUI] which has
een implemented using Tcl/Tk facilities (Welch et al., 2003).

. Modelling DNA in Terms of Cellular Automata

In this work we match certain properties of DNA with the
eatures of a proposed CA thus modelling DNA in terms of
As. Sketching certain directions that DNA modelling might

ake, we hope to stimulate further research in this direction.
Cellular automata (CAs) were introduced by von Neumann

1966) and Ulam (1974) as a possible idealization of biologi-
al systems, in order to model biological self-reproduction. In
his work, we model DNA as a one-dimensional CA and, there-
ore, only one-dimensional CAs will be presented in this section
Sirakoulis et al., 2003). A one-dimensional CA consists of a reg-
lar uniform lattice, which may be infinite in size and expands
n a one-dimensional space. Each site of this lattice is called a
ell. At each cell a variable takes values from a discrete set. The
alue of this variable is the state of the cell. Fig. 1(a) shows a
ne-dimensional CA. The CA lattice consists of identical cells,
. ., i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3, . . ., and the correspond-
ng states of these cells are Ci−3, Ci−2, Ci−1, Ci, Ci+1, Ci+2 and

i+3.
The state of the ith cell takes values from a predefined discrete

et:

i ∈ {c1, c2, c3, . . . , cn} (1)

here c1, c2, c3, . . ., cn are the elements of the set. This set
ay be a set of integers, a set of real numbers, a set of atoms, a

et of molecules, or even a set of properties. If this set contains
nly the two binary numbers, i.e. Ci ∈ {0, 1}, the CA is called

lementary.

The CA is a dynamic system, which evolves in discrete time
teps. Its evolution is manifested as a change of its cell states
ith time. The state of each cell is affected by the states of its

C

m

ig. 1. (a) An example of a typical one-dimensional CA; (b) a sequence of
volution steps of a one-dimensional CA.

eighbouring cells. All the cells that may possibly affect the
hange of the state of the ith cell are the neighbourhood of this
ell. The neighbourhood is defined as follows:

(i, r) = {Ci−r, . . . , Ci−3, Ci−2, Ci−1, Ci, Ci+1, Ci+2,

Ci+3, . . . , Ci+r}, r = 0, 1, 2, 3, . . . , m (2)

here r is the size of the neighbourhood. If r = 1, which is the
ost usual case then the neighbourhood of the ith cell consists

f the same cell and its left and right immediate neighbours:

(i, 1) = {Ci−1, Ci, Ci+1} (3)

The state of the ith cell at time step t + 1 is affected by the
tates of its neighbours at the previous time step t, i.e. the state
f the ith cell at a time step is a function of the states of its
eighbours at the previous time step:

t+1
i = F (Ct

i−r, . . . , C
t
i−3, C

t
i−2, C

t
i−1, C

t
i, C

t
i+1, C

t
i+2,

Ct
i+3, . . . , C

t
i+r) (4)

This function is the CA evolution rule. The upper index in
he state symbol denotes the time step. Ct+1

i is the state of the
th cell at time step t + 1. If r = 1, Eq. (4) becomes

t+1
i = F (Ct

i−1, C
t
i, C

t
i−1) (5)

Fig. 1(b) shows the evolution of a one-dimensional CA. The
orizontal axis is space and the vertical axis is time. Each row
epresents the CA at each time step and each column represents
he state of the same cell at various time steps.

DNA may be modelled as a one-dimensional CA; the sugar-
hosphate backbone corresponds to the CA lattice where the four
ases A, C, T and G may be attached, each one corresponding
o the four possible states of a CA cell. The state of the ith cell
f this CA takes values from the discrete set that comprises the
our bases:
i ∈ {A, C, T, G} (6)

We define as an evolution event a change in the state of one or
ore CA cells. Therefore, any point mutation (i.e. a mutation of

Syste

a
c
g
n
i

v
t
u
s
s
i
T
o
s
fi
d
t
g
t
v
e

f
t
a

a
S
h
m
a
m
o

s
s
o
(

C

g
o
A

m
h
c

C
s
n
w
o
c
t

A

t
i
a
l
t
t
f
s
a

(

· ·
Mi−2

Mi−1

Mi,

Mi+1

Mi+2

· ·

b
p
m
T
o
c
I
c
w
C

a
d
a
be possible to determine the evolution rule (or rules) that trig-
Ch. Mizas et al. / Bio

single nucleotide) is an evolution event and it corresponds to a
ell state change. If a DNA strand is passed unaltered from one
eneration to the other, no state change occurs, and the CA does
ot evolve. The CA evolves if there occurs at least one change
n one of its cells and this change is transmitted to an offspring.

A time step in CA evolution is determined as the time inter-
al between any pair of subsequent CA cell changes. So, the
ime flow is not uniform because mutations do not occur in reg-
lar intervals. Consider for example an asexually reproducing
pecies with a generation period of 1 day. Suppose that a CA cell
tate change (DNA mutation) occurs now, the next one occurs
n 10 days, the next one in 3 days and the next one in 6 days.
hen the first time step represents 10 days of real time, the sec-
nd 3 days and the third 6 days. But, in the CA model all time
teps are equivalent, i.e. the difference in real time between the
rst, the second and the third time step does not become evi-
ent. An advantage of modelling DNA sequence as a CA is that
he DNA strand and the individuals transmitting it from one
eneration to the other may exist in different time scales and,
herefore, the lifespan and the generation period of the indi-
iduals that bear it appear to be time-like irrelevant for DNA
volution.

Since CAs are deterministic computational models, their use-
ulness in modelling DNA evolution is proportional to the degree
hat DNA evolution is a deterministic procedure. Indeed there
re indications that the mechanisms of mutagenesis are not

bsolutely random procedures (McFadden and Al-Khalili, 1999;
chwefel, 2002); for example, neighbour-dependent mutation
as been studied using Markov chains and revealed biases in
utation rates that depend on the neighbouring bases (Arndt et

l., 2001). Therefore, we will proceed to the construction of our
odel by assuming that mutations, i.e. CA cell changes, depend

n the states of some of the cells that are located nearby.
Suppose that a state change at the ith cell occurs, and a time

tep is taken. In the model presented here it is supposed that the
tate of this cell has changed under the influence of the states
f its neighbours. The new state of the ith cell at this time step
which is generally the t + 1 step) is given by

t+1
i = M̂(Ct

i−r, . . . , C
t
i−3, C

t
i−2, C

t
i−1, C

t
i, C

t
i+1, C

t
i+2,

Ct
i+3, . . . , C

t
i+r) (7)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

Ct+1
i−2

Ct+1
i−1

Ct+1
i

Ct+1
i+1

Ct+1
i+2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · · · ·
· · · Mi−2,j−2

· · · Mi−1,j−2

· · · Mi,j−2

· · · Mi+1,j−2

· · · Mi+2,j−2

· · · · · ·
Eq. (7) is a more general expression of the evolution rule
iven in Eq. (4), where the function F has been replaced by an
perator, M̂, which is a more general mathematical abstraction.
n operator may be a mathematical function, a logic function, a

g
s
d
s

ms 92 (2008) 61–68 63

atrix, etc. The operator operates on the state of the neighbour-
ood of the ith cell at time step t and produces the state of this
ell at time step t + 1.

In Eq. (7) cell states correspond to one of the four bases A,
, T and G. Operators act on numbers and symbols that repre-

ent numbers. Therefore, the four bases must be represented by
umbers. Since there are only four bases, the most appropriate
ay of representing them by numbers is to correspond each one
f them to a respective number of a quaternary number system,
omprising only four numbers, i.e. 0, 1, 2 and 3. We represent
he bases with numbers as follows:

→ 0, C → 1, T → 2, G → 3 (8)

A vast number of evolution rules can be applied to the CA
hat models DNA. Interestingly, evolution rules that include base
nsertion and/or base deletion may be used. Usually, whenever
novel CA model is proposed, one initially studies linear evo-

ution rules. The study of linear rules reveals the dynamics of
he CA evolution and provides a very good insight to the struc-
ures created by evolution. The use of linear rules in our case is
urther justified by the fact that a linear algebra has already been
uccessfully applied for the analysis of mutation rates (Jones et
l., 1999).

In the case of linear evolution rules, the operator M̂ of Eq.
7) is a matrix, M, and the evolution rule takes the form:

· · · · · · · · · · · · ·
,j−1 Mi−2,j Mi−2,j+1 Mi−2,j+2 · · ·
,j−1 Mi−1,j Mi−1,j+1 Mi−1,j+2 · · ·

j−1 Mi,j Mi,j+1 Mi,j+2 · · ·
,j−1 Mi+1,j Mi+1,j+1 Mi+1,j+2 · · ·
,j−1 Mi+2,j Mi+2,j+1 Mi+2,j+2 · · ·
· · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

Ct
i−2

Ct
i−1

Ct
i

Ct
i+1

Ct
i+2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

The column matrix at the right hand side of Eq. (9) is formed
y the states of all CA cells at time step t. This matrix is multi-
lied by the matrix M, which represents the evolution rule. The
atrix elements Mi,j may take only two values, namely 0 and 1.
he column matrix at the left hand side of Eq. (9) is the result
f the matrix multiplication and it contains the states of all CA
ells at time step t + 1. All the additions are modulo 4 additions.
n the case of a CA with n cells (DNA strand with n bases) the
olumn matrices have n rows and the matrix M is a square matrix
ith n columns and n rows. Each square matrix M represents a
A rule.

In the case of elementary CAs, it has been shown that, given
n evolution pattern, the evolution rule that generated it can be
etermined (Adamatzky, 1994). Similarly, if the DNA sequence
t various time steps of a line of evolution is available, it may
ered this evolution line. Once the evolution rule and the DNA
equence at present time are known, it may be possible to pre-
ict the next evolution event (or events) and, therefore, the DNA
equence at the next time step.

6 Systems 92 (2008) 61–68

3
P

l
r
s
D
H
m

M

n
m
c
w
i
a

T
c
t
g

s
c
c
c
p
t

F
T

F

C
c
h
1
4
i
D
t
o
t
T
v
t
T

n
w
c

o
h
t
2
2
p

4 Ch. Mizas et al. / Bio

. Simulation of DNA Sequence Evolution Using the
roposed Model

We employed the model described above to simulate the evo-
ution of DNA sequences. We have chosen to apply an evolution
ule that incorporates only nearest neighbour interactions in our
imulations, as most of the studies on mathematical models of
NA are limited to such interactions (Archilla et al., 2002).
ence, an evolution rule may be represented by the following
atrix:

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· ·
· · · 1 1 0 0 0 · · ·
· · · 1 1 1 0 0 · · ·
· · · 0 1 1 1 0 · · ·
· · · 0 0 1 1 1 · · ·
· · · 0 0 0 1 1 · · ·
· ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

All the elements in a matrix row are zero, except the three
eighbouring elements that are equal to one. If this matrix is
ultiplied by the column matrix formed by the states of all CA

ells, at time step t, the state of the ith element at time step t + 1
ill be the modulo 4 addition of its own state and the states of

ts left and right neighbours (cells i − 1 and i + 1, respectively),
t time step t.

Fig. 2 shows the simulated evolution of a DNA sequence.
he simulation starts with a random sequence of a DNA strand
omprising 30 bases and produces the strands for 30 successive
ime steps. Base A is shown in white, C in light gray, T in dark
ray and G in black.

A vast number of evolution rules can be applied to the pre-
ented CA that models DNA evolution. The CA rule space
omprises every possible local rule that may be applied to the CA

ells. In this simulation we have chosen to limit the mathemati-
al model to the nearest neighbour. For CAs with only two states
er cell, the number of possible rules is given by 22n

, where n is
he number of cells in the neighbourhood. In one-dimensional

ig. 2. Simulated evolution of a random DNA sequence: A, white; C, dark gray;
, light gray; G, black.

d
I
a
t
f

g
c
t
s
.

a
b
c
t
f
T
a
“
r
h
w

ig. 3. Evolution rules of the four state classical CA model of DNA evolution.

As with only two states per cell, the neighbourhood of a cell
omprises the cell itself and those on its left and right sides,
ence the number of all possible rules is 28 (von Neumann,
966), while in the four-state CA these rules are extended to
43

or 464. The entire rule space of such CAs must be searched
n order to find the putative CA evolution rules that govern the
NA sequence evolution. In this work GAs are utilized in order

o explore the vast CA rule space. A possible evolution scheme
f the proposed CA is shown in Fig. 3, where the first row gives
he possible states the cells within the neighbourhood could take.
he ri’s in the second row are the rule components which take
alues from the discrete set {0, 1, 2, 3}. The last row shows
he coefficients associated with the corresponding components.
he rule R can be defined as R = (r0, r1, r2, r3, . . ., r63). The

umerical label D assigned to R is given by: D = ∑26−1
s=0 rs2s,

hich is the sum of the coefficients associated with all nonzero
omponents.

GAs have already been used to search the rule spaces of
ne-dimensional CAs with two states per cell, the neighbour-
ood of which comprises the cell itself and the three cells to
he right and to the left of it (Das et al., 1994; Iovine et al.,
005; Karafyllidis, 2004; Mitchel et al., 1994; Yang and Billings,
000). Such GAs have been utilized to design (i.e. to find the
roper rule of) CAs that can perform two computational tasks:
ensity classification and synchronization (Das et al., 1994;
ovine et al., 2005; Karafyllidis, 2004; Mitchel et al., 1994; Yang
nd Billings, 2000). Here we describe a GA that is suitable for
he analysis of DNA sequence evolution and elaborate on its
unction.

GAs are search procedures that mimic the mechanics of
enetics and natural selection. They provide robust searching
apabilities in complex problem solution spaces. Possible solu-
ions of an optimization problem are represented as a finite length
tring: {x1, x2, . . ., xn}, over an alphabet of finite length: {a1, a2,
. ., am}. A possible solution represented in this way is called
“chromosome”. Each chromosome contains smaller building
locks xi, i = 1, 2, 3, . . ., n, referred to as “genes”. A set of
hromosomes is referred to as a “population”. A target func-
ion (whose value we seek to optimize) provides the mechanism
or evaluating the solution represented by each chromosome.
his function is referred to as a “fitness function”, and the value
ssigned to each chromosome, using the fitness function, is the

chromosome fitness”. The chromosome with the highest fitness
epresents the optimal solution. Chromosomes of a relatively
igh fitness value represent very good or superior solutions,
hereas chromosomes of a relatively lower fitness value rep-

Syste

r
1

s
c
e
c
h
s
s
p
m
t
s
a
n

T
c
1
o

g
c
t
r
u
s
f
a
s
t

e
m
n
l
i
a
a
c
t
C
a
u

r
M
v
t
t
T
o
N
M

f

a
s
1

s
s
s

4

u
l
D
G
2
p
p
u

a
i
n
a
p
f

M

w
s
c
t
v
o
C
t
m
a

fi

b

Ch. Mizas et al. / Bio

esent bad or inferior solutions to the problem at hand (Holland,
975).

Usually the alphabet used is {0, 1} and chromosomes are
trings of 0s and 1s: {1 0 0 1 . . . 0 1}. In this case, each gene
an be either 0 or 1. If the length of a chromosome is L, it is
vident that the number of possible chromosomes is 2L, each
hromosome representing a different solution to the problem at
and. Within the entire population, the chromosome that repre-
ents the optimum, or a chromosome that represents a very good
olution, has to be found. The entire population, i.e. the set of all
ossible chromosomes, is referred to as the “search space”. In
ost cases the search space is so large that conventional search

echniques are ineffective. Therefore we employ GAs in order to
earch such a vast search space as in the case of DNA sequence
nalysis described above, aiming to discover the optimal, or a
ear-optimal, solution.

A GA starts with a randomly chosen initial population.
he initial population comprises a relatively small number of
hromosomes. Typically, GAs use an initial population size of
00–10,000. The fitness function is used to calculate the fitness
f each chromosome in the initial population.

GAs produce the next generation by performing three
enetic operations on the initial population, namely selection,
rossover and mutation. It is noteworthy that the terms “selec-
ion”, “crossover” and “mutation” bear the meaning commonly
eferred to by computer scientists and are distinct from the terms
sed by population geneticists. Selection is a process that selects
uperior chromosomes, i.e. those with the most optimal fitness
unction values, which will survive to the next generation, and
lso selects inferior chromosomes, which will perish. A simple
election strategy is to allow a number of the fittest chromosomes
o survive, and to discard the less fit ones.

In every generation, crossover generates offspring by
xchanging genetic material between pairs of highly fitted chro-
osomes. We utilize crossover operation in order to introduce

ovel combinations of the genetic material. In this way it is
ikely to lead the evolution of the GA to the global optimum of
ts fitness function. Assuming that L is the chromosome length,
crossover point is chosen at random. The crossover point can

ssume values in the range 1 to (L − 1). The portions of the two
hromosomes beyond this crossover point are exchanged to form
wo new chromosomes of the next generation. The crossover rate

controls the frequency with which the crossover operation is
pplied. If N is the size of the population C × N chromosomes
ndergo crossover in each generation.

After crossover, chromosomes are subjected to mutation. A
andom gene of a random chromosome is selected and mutated.

utation of a gene changes its value from 0 to 1, or vice
ersa. Mutation operation increases the population variability
hus helping to prevent irrecoverable loss of potentially impor-
ant information concerning the solutions of the problem at hand.
he mutation operation plays a secondary role in the creation
f the new generation, and the mutation rate M is kept low. If
is the population size and L the chromosome length, then
× N × L genes undergo mutation per generation.
The fitness of each chromosome is calculated using the fitness

unction, and a new generation is created by selection, crossover
ms 92 (2008) 61–68 65

nd mutation. The iteration stops when an arbitrarily acceptable
olution is reached or after a given number of generations (Fogel,
995).

The successful description of DNA evolution by a CA system,
uch as the one presented above, combined with the use of GA
earches provide an extremely powerful simulation method to
tudy DNA evolution.

. DNA EVO Simulation Tool

DNA EVO is an automated simulation tool, based on the
sage of GAs, designed to extract very efficiently the CA evo-
ution rule, or rules that govern the evolution of DNA sequence.
NA EVO’s user interface has been implemented using Tcl/Tk
UI’s facilities, enabling interactive simulation (Welch et al.,
003). The proposed tool is open-source and platform inde-
endent. No previous knowledge of CAs, GAs or computer
rogramming is necessary to use the simulator, because of the
ser-friendly graphical user interface that has been developed.

After the assignment of the origin DNA sequence by the user,
n initial population P that contains n possible solutions, mean-
ng n CA evolution rules is constructed randomly. The value of
is user-defined and should be a compromise between accuracy

nd the availability of computer time and memory. For each
ossible solution i of population P with n individuals an error
unction is given by

er(i) =
SET∑
j=0

|y(i, j) − ŷ(i, j)| (11)

here y(i, j) is the measured state at data point j for chromo-
ome i and ŷ(i, j) is the predicted state, in correspondence. Each
hromosome in the current population is ranked with respect
o ‘Mer’ of Eq. (11). The chromosome with the lowest ‘Mer’
alue occupies the first position, the chromosome with the sec-
nd lowest ‘Mer’ value occupies the second position and so on.
hromosomes with the same error share the same rank. After

he final ranking we calculate the fitness function for each chro-
osome. The fitness function of the ith chromosome is defined

s

t(i) = MAX(rank(i)) − rank(i)

MAX(rank(i)) − MIN(rank(i))
(12)

The GA algorithm for the selection of CA evolution rules can
e summarized as follows:

(1) Set the current generation number i = 1.
(2) Set the GA algorithm parameters.
(3) Generate a random population set P with n individuals.
(4) Compute ‘Mer’ (modulus of error function) for each indi-

vidual in P (Eq. (11)).
(5) Rank the individual in R.
(6) Calculate the fitness function value of each chromosome
(Eq. (12)).
(7) Apply the parent selection technique to P.
(8) Employ crossover and mutation to P to produce the corre-

sponding offspring set P′.

66 Ch. Mizas et al. / BioSystems 92 (2008) 61–68

F thm, s
t d suc

(
(

o
e
D
s
n
m
I
p
c
f
i
t
o
c

s
n
o
2
l
a

s
u
I
1
c
i
s
w
s
a

e
c
f
o
n
e
s
r

5

a
t
m
D
b

F
s
b

ig. 4. The final screen of the DNA EVO after the execution of the GA algori
here were no errors in this example, i.e. the defined evolution rule could be use

(9) Calculate the corresponding fitness function for the chro-
mosomes in the offspring set P′. Select the n fittest
individuals from both the population set P and the cor-
responding set P′, by comparing their fitness value. Reset
P using the corresponding newly selected n individuals and
nullify the offspring set P′.

10) Set the generation number i = i + 1.
11) Return to (4) and repeat until a pre-specified number of

generations is reached.

The code of the GA algorithm was developed with the usage
f Tcl/Tk and interacts in real time with the user’s defined param-
ters. These parameters are the original DNA sequences, the
NA sequences of intermediate evolution steps, the final DNA

equences, the number of individuals in a set, the maximum
umber of generation and the number of parents. The afore-
entioned parameters remain unchanged during the simulation.

t should be mentioned that DNA EVO does not impose any a
riori limitations on these parameters which are modifiable and
an be changed interactively. Simulation results are saved in txt
ormat suitable for numerical experiments and can be visualized
n a graphical format with the help of the “Show results” but-
on. Furthermore, the software verifies input data and, in case
f parameter values that are unacceptable, the user is forced to
orrect these values.

A paradigm of the functional operation of DNA EVO is pre-
ented in Figs. 4 and 5. In this example, the user defined the
umber of individuals to be equal to 2000, the maximum number

f generations equal to 100 and the number of parents equal to
0. She/he has also inserted the DNA sequences with 100 bases
ength corresponding to the origin, the final and one intermedi-
te evolution step, shown in Fig. 4 (upper part). In this example,

r
a
t
i

ig. 5. The DNA sequences corresponding to the origin, the final and one interme
equences produced by the evolution process according to the CA rule defined by DN
etween the corresponding sequences of these two panels proving the efficiency of th
howing the user defined input data and the extracted evolution rule. Note that
cessfully to reconstruct the final sequence.

equences differing from each other by as much as ∼80% were
sed deliberately in order to provide an extremely hard test case.
n the lower part of Fig. 4 are shown the DNA EVO results after
00 generations in the DNA sequences, produced by the exe-
ution of the analogous CA rule. The CA rule found is shown
n Fig. 4. It is obvious that DNA EVO managed to reconstruct
uccessfully the evolution pattern of the given DNA sequences
ithout any errors. Apparently, evolution data visualization is

traightforward, and the evolution patterns can be easily studied
nd interpreted.

Furthermore, the simulator was tested in 20 different cases,
ach one referred to two random 100 bases long DNA sequences,
orresponding to the origin and the final evolution step, differing
rom each other by as much as ∼25%. Additionally, the number
f individuals was chosen to be equal to 2000, the maximum
umber of generations equal to 200 and the number of parents
qual to 100. In most of the cases (60%, data not shown) the
imulator performed superbly and was able to decipher the CA
ule without any error.

. Discussion

We have modelled DNA as a one-dimensional cellular
utomaton where the sugar-phosphate backbone corresponds to
he CA lattice and the organic bases to the CA cells. Every cell

ay have any of four possible states, corresponding to the four
NA bases A, C, T and G. These four states are represented
y the quaternary number system. Linear evolution rules, rep-

esented by square matrices, were considered. In our model we
ssumed that DNA mutagenesis is influenced by the identity of
he nucleotide to be mutated and the identity of the nucleotides in
ts vicinity. Based on this assumption, we developed proper GAs

diate evolution step provided by the user are shown on the upper panel. The
A EVO are presented on the lower panel. It is striking that there is no mismatch
e algorithm.

Syste

t
l
D
i
e

n
e
d
e
s
l
e
t
t
s

m
C
p
F
b
i
m
m
d
A
K
p
c
t
a
l
n
c
C
t
u
i
e
m
p
i
r
d
s
m
b
a
h
e
t
p
m
o

o

c
v
s
i
s
n
t
c
r
F
t
d
T
I
i
d
t
G

m
s
m
d
s
d

R

A

A

A

B

B

B

B

B

C

C

C

D

Ch. Mizas et al. / Bio

hat efficiently extract the CA rule that governs sequence evo-
ution. We reported the design of a software package, named
NA EVO, that simulates DNA sequence evolution accord-

ng to our model using a GA methodology for determining the
volution rule generating given evolution patterns.

The simulation tool has been tested successfully in random
umerical experiments. In these tests, several time steps of the
volution of a DNA sequence were given and the simulator
etermined the possible rule (or rules) that generated the given
volution pattern. Hence, we showed that, given a set of DNA
equences that represent a series of evolution steps, the simu-
ator can be used in reconstructing DNA sequences of missing
volution steps. If a series of snapshots of the evolutionary his-
ory of a DNA sequence is available, DNA EVO can be used
o make a plausible prediction about the subsequent evolution
tep, i.e. the next mutation that may take place.

Our model relies on the assumption that mutations are deter-
inistic events and their evolution can be modelled using
As. Although it is generally accepted that mutations hap-
en at random, there are observations that challenge this idea.
or example, a recent study using Markov chains revealed
iases in mutation rates that depend on the neighbouring bases
ndicating a neighbour-dependent influence in the process of

utagenesis (Arndt et al., 2001). Recent quantum-mechanical
odels of DNA evolution have proposed that mutagenesis is

irected by quantum-mechanical mechanisms (McFadden and
l-Khalili, 1999; Baake et al., 1997, 1998; Bieberich, 2000;
irby, 2002; Ogryzko, 1997). Such models are strongly sup-
orted by recent data indicating that quantum proton tunneling
auses tautomeric transitions in base pairs resulting in muta-
ions during DNA replication (Golo and Volkov, 2002; Hjort
nd Stafstrom, 2001; Kryachko, 2002). In addition, there is at
east one well-documented example where the neighbour of a
ucleotide may influence mutagenesis: CpG islands (i.e. dinu-
leotide sequences CG) have been mapped in mutation hotspots.
ytosines in such doublets may be targets for DNA methyla-

ion, producing 5-methyl-cytosine. 5-Methyl-cytosine may then
ndergo oxidative deamination resulting in the conversion of the
nitial cytosine into a thymine. Since thymine is a chemical moi-
ty naturally occurring in DNA, this mutation may escape the
echanisms of DNA mismatch repair systems and has a high

ropensity to be fixed. So, a G residue following a C residue
ncreases the likelihood that the C residue be mutated into a T
esidue. Hence there is mounting evidence that there is at least a
eterministic component in the process of mutagenesis. Having
hown the efficiency of our model in predicting DNA sequence
utations in a fully deterministic world, our next attempt would

e to incorporate probabilistic components in our system. Such
n approach might yield a tool able to wisely predict the likeli-
ood of certain mutations. The usefulness of the ability to predict
ven the likelihood of mutations is tremendous. We might be able
o use available data (Ghedin et al., 2005) in order to foresee
ossible mutations of viruses and other pathogens. Such infor-

ation might allow us to prepare ourselves for future possible

utbreaks.
Our model focuses on the neighbour-dependent mechanics

f DNA sequence changes without taking into account the pro-

D

ms 92 (2008) 61–68 67

esses of natural selection. Therefore, at least in the present
ersion, our model is not suitable for the analysis of DNA
equences of functional genes during phylogenesis. However,
t might be very useful for the analysis of the evolution of DNA
equences that evade the pressure of natural selection, such as
on coding sequences, hypervariable DNA sequences (such as
he D-loop of mitochondrial DNA) and viral DNA or RNA under
onditions of lack of competition (e.g. when different viruses
eplicate in the same cells or in the presence of helper viruses;
urió et al., 2005). Alternatively, our system might be used for

he analysis of mutagenesis caused by DNA polymerases that
o not possess efficient proofreading activity in vitro, such as
aq polymerase employed in polymerase chain reactions (PCR).
mportantly, such reactions are used in DNA engineering when it
s intended to introduce mutations. In this vein, it is intriguing to
esign experiments that may provide real data (DNA sequences)
hat could be used for the calibration of our simulator and the
A for the selection of the CA evolution rule.
The use of modelling DNA sequences as CAs and the imple-

entation of GAs for the analysis of DNA sequence evolution
hould not be restricted to efforts towards understanding the
echanisms of mutagenesis. For example, we envision that the

evelopment of CA models may be useful for analysing the
elf-organizing properties of DNA and possibly indicate new
irections in the field of artificial intelligence for bioinformatics.

eferences

damatzky, A., 1994. Identification of Cellular Automata. Taylor & Francis,
London.

rchilla, J.F.R., Christiansen, P.L., Gaididei, Yu.B., 2002. Interplay of nonlin-
earity and geometry in a DNA-related, Klein-Gordon model with long-range
dipole–dipole interaction. Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.)
65, 016609/1-6.

rndt, P.F., Burge, C.B., Hwa, T., 2001. DNA sequence evolution with neighbor-
dependent mutation. http://www.arXiv.org/pdf/physics/0112029.

aake, E., Baake, M., Wagner, H., 1997. Ising quantum chain is equivalent to a
model of biological evolution. Phys. Rev. Lett. 78, 559–562.

aake, E., Baake, M., Wagner, H., 1998. Quantum mechanics versus classical
probability in biological evolution. Phys. Rev. E 57, 1191–1192.

axevanis, A.D., Ouellette, B.F., 1998. Bioinformatics, a Practical Guide to the
Analysis of Genes and Proteins. Wiley-Interscience, New York.

ernadres, A.T., dos Santos, R.M.Z., 1997. Immune network at the edge of
chaos. J. Theor. Biol. 186, 173–187.

ieberich, E., 2000. Probing quantum coherence in a biological system by means
of DNA amplification. BioSystems 57, 109–124.

hou, K.C., Zhang, C.T., 1992. Diagrammatization of codon usage in 339 HIV
proteins and its biological implication. AIDS Res. Hum. Retroviruses 8,
1967–1976.

hou, K.C., Wei, D.Q., Du, Q.S., Sirois, S., Zhong, W.Z., 2006. Review: progress
in computational approach to drug development against SARS. Curr. Med.
Chem. 13, 3263–3270.

ios, K.J., Mamitsuka, H., Nagashima, T., Tadeusiewicz, R., 2005. Computa-
tional intelligence in solving bioinformatics problems. Artif. Intell. Med. 35,
1–8.

as, R., Mitchel, M., Crutchfield, J.P., 1994. A genetic algorithm discovers
particle-based computation in cellular automata. In: Proceedings of the Third

Conference on Parallel Problem Solving from Nature, Jerusalem, Israel, pp.
344–353.

urbin, R., Eddy, S., Krogh, A., Mitchison, G., 2000. Biological sequence anal-
ysis. In: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press, Cambridge.

http://www.arxiv.org/pdf/physics/0112029

6 Syste

F
F

G

G

G

G

G

H

H

I

J

K

K

K

K

K

K

K

M

M

O

P

S

S

S

S

S

U

V

v

W

W

X

X

X

X

Y

8 Ch. Mizas et al. / Bio

ogel, D.B., 1995. Evolutionary Computation. IEEE Press, New York.
urió, V., Moya, A., Sanjuán, R., 2005. The cost of replication fidelity in an

RNA virus. Proc. Natl. Acad. Sci. U.S.A. 102, 10233–10237.
ao, L., Ding, Y.S., Dai, H., Shao, S.H., Huang, Z.D., Chou, K.C., 2006. A

novel fingerprint map for detecting SARS-CoV. J. Pharm. Biomed. Anal.
41, 246–250.

aylord, R.J., Nishidate, K., 1996. Modeling nature. In: Cellular Automata
Simulations with Mathematica. Telos Springer-Verlag, Berlin.

hedin, E., et al., 2005. Large-scale sequencing of human influenza reveals the
dynamic nature of viral genome evolution. Nature 437, 1162–1166.

oldberg, D.A., 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA.

olo, V.L., Volkov, Yu.S., 2002. Tautomeric Transitions in DNA. Los Alamos
Preprint Archive. http://www.xxx.lanl.gov/abs/cond-mat/0110599.

jort, M., Stafstrom, S., 2001. Band resonant tunneling in DNA molecules.
Phys. Rev. Lett. 87, 228101–228104.

olland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Michigan.

ovine, G., D’Ambrosio, D., Di Gregorio, S., 2005. Applying genetic algorithms
for calibrating a hexagonal cellular automata model for the simulation of
debris flows characterised by strong inertial effects. Geomorphology 66,
287–303.

ones, M.E., Thomas, S.M., Clarke, K., 1999. The application of a linear algebra
to the analysis of mutation rates. J. Theor. Biol. 199, 11–23.

ansal, A.R., Torquato, S., Harsh, IV.G.R, Chiocca, E.A., Deisboeck, T.S., 2000.
Simulated brain tumor growth dynamics using a three-dimensional cellular
automaton. J. Theor. Biol. 203, 367–382.

arafyllidis, I., 1997. A model for the prediction of oil slick movement and
spreading using cellular automata. Environ. Int. 23, 839–850.

arafyllidis, I., 1998. A model for the influence of the greenhouse effect on
insect and microorganism geographical distribution and population dynam-
ics. BioSystems 45, 1–10.

arafyllidis, I., 2004. Design of a dedicated parallel processor for the predici-
tion of forest fire spreading using cellular automata and genetic algorithms.
Engineering Applications of Artificial Intelligence 17, 19–36.

arafyllidis, I., Thanailakis, A., 1997. A model for predicting forest fire spread-
ing using cellular automata. Ecological Modeling 99, 87–97.

irby, K.G., 2002. Biological adaptabilities and quantum entropies. BioSystems
64, 33–41.

ryachko, E.S., 2002. The origin of spontaneous point mutations in DNA via
Lowdin mechanism of proton tunnelling in DNA base pairs. Int. J. Quantum
Chem. 90, 910–923.

cFadden, J., Al-Khalili, J., 1999. A quantum mechanical model of adaptive

mutation. BioSystems 50, 203–211.

itchel, M., Crutchfield, J.P., Hraber, P.T., 1994. Evolving cellular automata to
perform computations. Physica D 75, 361–391.

gryzko, V.V., 1997. A quantum-theoretical approach to the phenomenon of
directed mutations in bacteria. BioSystems 43, 83–95.

Z

Z

ms 92 (2008) 61–68

atel, A.A., Gawlinski, E.T., Lemieux, S.K., Gatenby, R.A., 2001. A cellular
automaton model of early tumor growth and invasion: the effects of native
tissue vascularity and increased anaerobic tumor metabolism. J. Theor. Biol.
213, 315–331.

alzberg, C., Antony, A., Sayama, H., 2004. Evolutionary dynamics of cellu-
lar automata-based self-replicators in hostile environments. BioSystems 78,
119–134.

chwefel, H.P., 2002. Deep insight from simple models of evolution. BioSystems
64, 189–198.

irakoulis, G.Ch., Karafyllidis, I., Thanailakis, A., 2000. A cellular automaton
model for the effects of population movement and vaccination on epidemic
propagation. Ecol. Model. 133, 209–223.

irakoulis, G.Ch., Karafyllidis, I., Mizas, Ch., Mardiris, V., Thanailakis, A.,
Tsalides, Ph., 2003. A cellular automaton model for the study of DNA
sequence evolution. Comput. Biol. Med. 33, 439–453.

irakoulis, G.Ch., Karafyllidis, I., Sandaltzopoulos, R., Tsalides, Ph.,
Thanailakis, A., 2004. An algorithm for the study of DNA sequence evolution
based on the genetic code. BioSystems 77, 11–23.

lam, S., 1974. Some ideas and prospects in biomathematics. Ann. Rev. Biol.
12, 277–292.

enter, J.C., et al., 2001. The sequence of the human genome. Science 291,
1304–1351.

on Neumann, J., 1966. Theory of Self-Reproducing Automata. University of
Illinois Press, Urbana.

ang, M., Yao, J.S., Huang, Z.D., Xu, Z.J., Liu, G.P., Zhao, H.Y., Wang, X.Y.,
Yang, J., Zhu, Y.S., Chou, K.C., 2005. A new nucleotide-composition based
fingerprint of SARS-CoV with visualization analysis. Med. Chem. 1, 39–47.

elch, B., Jones, K., Hobbs, J., 2003. Practical Programming in Tcl and Tk, 4th
ed. Prentice Hall, Englewood Cliffs, NJ.

iao, X., Shao, S., Ding, Y., Huang, Z., Chen, X., Chou, K.C., 2005a. Using
cellular automata to generate image representation for biological sequences.
Amino Acids 28, 29–35.

iao, X., Shao, S., Ding, Y., Huang, Z., Chen, X., Chou, K.C., 2005b. An
application of gene comparative image for predicting the effect on replica-
tion ratio by HBV virus gene Missense mutation. J. Theor. Biol. 235, 555–
565.

iao, X., Shao, S.H., Ding, Y.S., Huang, Z.D., Chou, K.C., 2006a. Using cellu-
lar automata images and pseudo amino acid composition to predict protein
subcellular location. Amino Acids 30, 49–54.

iao, X., Shao, S.H., Chou, K.C., 2006b. A probability cellular automaton
model for hepatitis B viral infections. Biochem. Biophys. Res. Commun.
342, 605–610.

ang, Y., Billings, S.A., 2000. Neighborhood detection and rule selection from

cellular automata patterns. IEEE Trans. Syst. Man Cybernet. A 30, 840–847.

hang, C.T., Chou, K.C., 1993. Graphic analysis of codon usage strategy in
1490 human proteins. J. Protein Chem. 12, 329–335.

hang, C.T., Chou, K.C., 1994. Analysis of codon usage in 1562 E. coli protein
coding sequences. J. Mol. Biol. 238, 1–8.

http://www.xxx.lanl.gov/abs/cond-mat/0110599

	Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction?
	Introduction
	Modelling DNA in Terms of Cellular Automata
	Simulation of DNA Sequence Evolution Using the Proposed Model
	DNA_EVO Simulation Tool
	Discussion
	References

