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ABSTRACT: We examine the sensitivity of folding molecular dynamics simulations on
the choice between three variants of the same force field (the AMBER99SB force field and
its ILDN, NMR-ILDN, and STAR-ILDN variants). Using two different peptide systems (a
marginally stable helical peptide and a β-hairpin) and a grand total of more than 20 μs of
simulation time we show that even relatively minor force field changes can lead to
appreciable differences in the peptide folding behavior.

1. INTRODUCTION

Folding molecular dynamics simulations of peptides and
proteins are an acid test for the ability of biomolecular
empirical force fields to reproduce the physical reality.1−12 The
reason is that in the case of a folding simulation the whole
complexity of the peptide’s folding landscape must be
reproduced and not just the dynamics of the biomolecule’s
folded state. What this line of thought implies, then, is that
folding simulations can be used as a sensitive tool to gauge not
only the ability of any given force field to reproduce the
experimental data but also as a purely comparative tool to
quantify the sensitivity of folding trajectories to even minor
force field changes. We believe that assessing the sensitivity of
molecular dynamics trajectories to relatively small force field
variation is important for quantifying the convergence − or
otherwise − of force fields: if within the same force field family
significant differences in the folding behavior are observed, then
this would demonstrate the complexity and delicate balance
required to fine-tune biomolecular force fields and would serve
as a reminder of just how difficult it is to develop a physically
relevant biomolecular force field.
In this communication we use three variants of one of the

most successful and popular biomolecular force fields − the
AMBER99SB force field13,14 − to quantify the sensitivity of the
folding trajectories on relatively small force field changes. The
three variants that we selected to study (namely, the ILDN,
NMR-ILDN, and STAR-ILDN variants, see next section)
essentially differ only in the backbone dihedral angle potential
with these differences being due and arising from the different
strategies used for their respective optimization (see references
in the next section).
Given the very large number of recent papers that compare

the performance of different force fields (see, for example refs

6, 7, and 10 and references therein) a natural question arises as
to the significance of the present contribution. We believe that
the present study is a useful addition to the existing literature
for several reasons. The first is that we have used two peptide
systems that differ significantly in terms of the secondary
structure of their respective folded states (helical vs β-hairpin).
The second is that the peptides studied here also differ
markedly in the stabilities of their folded states (the β-hairpin is
the prototype of a fast folding and stable peptide, the helical
peptide is marginally stable). The third reason is that by
choosing such a closely related set of force fields, any
differences observed in the peptides’ folding behavior can
immediately be attributed to their variation (which essentially is
the backbone dihedral angle potential). The fourth reason is
that we have selected peptides that are already known to fold to
the correct secondary structure using the parental force field
and can, thus, minimize the complications arising from using a
desperate set of force fields. Lastly, by selecting relatively small
peptides and performing a total of 20 μs of adaptive tempering
simulation we can possibly establish statistical significance for
the observed differences. In the paragraphs that follow we
discuss the design, implementation, and statistical significance
of the calculations performed, the results obtained from the
simulations, and the implication of these results for force field
convergence and development.

2. METHODS
2.1. Peptides and Design of the Simulations. We have

chosen to simulate two well-studied peptides that are already
known to fold correctly using the plain AMBER99SB force
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field. The first peptide is a variant of residues 101−111 of the
human α-Lactalbumin protein (peptide sequence INYWLA-
HAKAG). This peptide, hereafter denoted as the αLa peptide,
is known from two independent NMR determinations15,16 to
possess a marginally stable 310-helical structure in its N-
terminus (residues 3−6) with its C-terminus being mostly
disordered and is known to fold to a helical structure using the
plain AMBER99SB force field.17 The second peptide is
CLN025 which is the prototype for a fast folding and very
stable β-hairpin.18 The difference in the stabilities of the two
peptides necessitated the application of two different simulation
protocols: Whereas αLa − and due to its marginal stability −
could be studied with a classical NpT simulation, for the very
stable CLN025 peptide we resorted to adaptive tempering19 as
a means to increase the number of folding/unfolding events
and to improve the sampling of the non-native states. The three
force field variants that we used for our simulations are (a) the
AMBER99SB-ILDN force field,20 hereafter referred to as
‘ILDN’, (b) the AMBER99SB-NMR-ILDN variant,21 hereafter
referred to as ’NMR’, and, finally, (c) the AMBER99SB-STAR-
ILDN force field,22 which will be referred to as ’STAR’. The
plain AMBER99SB force field has not been explicitly included
in these calculations because results from the application of this
force field to these peptides were already available from
previous studies.11,17,18

2.2. System Preparation and Simulation Protocol. The
production of the starting peptide structures in the fully
extended state and solvation-ionization was performed with the
program LEAP from the AMBER tools distribution.23 For all
simulations we used periodic boundary conditions and a cubic
unit cell sufficiently large to guarantee a minimum separation
between the PBC-related images of the peptides of at least 16
Å. We followed the dynamics of the peptides’ folding
simulations using the program NAMD24 for a grand total of
21.7 μs using the TIP3P water model25 and the force fields
mentioned in the previous section (simulation lengths were 5.3,
5.0, and 5.0 μs for CLN025, 2.4, 2.0, and 2.0 μs for aLa). For
the CLN025 peptide adaptive tempering19 was applied as
implemented in the program NAMD (Adaptive tempering is
formally equivalent to a single-copy replica exchange folding
simulation with a continuous temperature range. For the
CLN025 simulations this temperature range was 300 to 500 K
inclusive and was applied to the system through the Langevin
thermostat, see below.).
The simulation protocol was the following. The systems were

first energy minimized for 1000 conjugate gradient steps
followed by a slow heating-up phase to a temperature of 320 K
(with a temperature step of 20 K) over a period of 32 ps.
Subsequently the systems were equilibrated for 10 ps under
NpT conditions without any restraints, until the volume
equilibrated. This was followed by the production NpT runs
with the temperature and pressure controlled using the Nose-̀
Hoover Langevin dynamics and Langevin piston barostat
control methods as implemented by the NAMD program, with
adaptive tempering (for CLN025) applied through the
Langevin thermostat, while the pressure was maintained at 1
atm. The Langevin damping coefficient was set to 1 ps−1, and
the piston’s oscillation period was set to 200 fs, with a decay
time of 100 fs. The production runs were performed with the
impulse Verlet-I multiple time step integration algorithm as
implemented by NAMD. The inner time step was 2 fs, short-
range nonbonded interactions were calculated every one step,
and long-range electrostatics interactions were calculated every

two timesteps using the particle mesh Ewald method with a
grid spacing of approximately 1 Å and a tolerance of 10−6. A
cutoff for the van der Waals interactions was applied at 9 Å
through a switching function, and SHAKE (with a tolerance of
10−8) was used to restrain all bonds involving hydrogen atoms.
Trajectories were obtained by saving the atomic coordinates of
the whole systems every 0.8 ps.

2.3. Trajectory Analysis. The programs CARMA,26

GRCARMA,27 and Cluster5D28 have been used for almost all
of the analyses, including removal of overall rotations/
translations, calculation of RMSDs from a chosen reference
structure, calculation of the radius of gyration, calculation of the
average structure (and of the atomic root mean squared
fluctuations), production of PDB files from the trajectory,
Cartesian space principal component analysis and correspond-
ing cluster analysis, dihedral space principal component analysis
and cluster analysis, calculation of the frame-to-frame RMSD
matrices, calculation of similarity Q values, etc. Chemical shifts
were calculated using the program SPARTA+29 as previously
described.30 Secondary structure assignments were calculated
with the program STRIDE.31 All molecular graphics work and
figure preparation were performed with the programs VMD,32

RASTER3D,33 and CARMA. Estimated NOE values were
obtained from the trajectories using ⟨r−3⟩-based averaging
where r is the instantaneous distance between two selected
protons from a trajectory. Reduced χ2 values (for both NOEs
and chemical shifts) were calculated as χ2 = [Σ(Sobs−Scalc)2/
σ2]/ν where Sobs and Scalc are the observed and calculated values
of the quantity under examination, σ2 is the corresponding
estimated variance, and ν is the number of degrees of freedom.
Please note that the estimated variances (σ2) used for
calculating the reduced χ2 values were derived solely from the
simulation-derived measurements and did not include estimates
for additional sources of errors such as the experimental errors
(generally very small compared with the simulation-derived
uncertainties) or the errors introduced from the use of
approximations such as those implemented in the SPARTA+
program. What this analysis implies, then, is that the χ2 values
quoted in this communication are safe, in the sense that they
represent overestimates of the true quantities.

2.4. Extent of Sampling and Statistical Significance.
Demonstrating statistical significance for the results obtained
from a comparison between folding simulations appears to be a
nightmare. To start with, it is almost certain that the sampling
of the unfolded state is nowhere near convergence, and, thus,
the comparison criteria must be based on derived quantities
that avoid the unfolded state altogether. In addition, and as
exemplified by the αLa peptide with its disordered C-terminus,
the analysis must also be able to differentially focus on the
potentially foldable substructures. Finally, even if the unfolded
state and disordered substructures are excluded from the
analyses, it is still highly improbable that all potentially
accessible transiently stable peptide structures (corresponding
to local minima of the peptide’s energy landscape) will have
been visited within the time scale of our simulations.
Having noted these problems, we believe that we can

possibly establish statistical significance for our results by
combining two different approaches. The first is to limit our
comparisons on derived quantities − such as per residue
secondary structure preferences and Q-T diagrams (discussed
in the next section) − that can avoid the complications arising
from the unfolded state and disordered substructures. The
second, and more important, is based on an attempt to quantify
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the extent of sampling of the simulations through a recently
described probabilistic method which is based on the
application of Good-Turing statistics to biomolecular trajecto-
ries.34 The results obtained from this method are presented and
discussed in the following paragraphs.
The application of Good-Turing statistics to biomolecular

trajectory data produces an estimate of the probability of
unobserved species (i.e. thus far unobserved protein/peptide
structures) as a function of the RMSD of those unobserved
structures from the structures that have already been observed
in the simulation. For an example to clarify this, focus on the
upper (black) curve from the first graph in Figure 1. The high

probability of unobserved species for low RMSD values signifies
the fact that if we were to continue the simulation it would be
very probable to observe structures that although similar to
some of the structures already observed, they would still differ
slightly from them. As the RMSD (from the already observed
structures) increases, the probability monotonically decreases.
For a numerical example (and again referring to the black curve
of the CLN025 diagram in Figure 1), we would expect that on
average one out of five new (previously unobserved) structures

(corresponding to Punobserved = 0.20) would differ by an RMSD
of at least ∼1.0 Å from the structures already observed or that
one out of ten new structures (Punobserved = 0.10) would differ by
an RMSD of at least 1.5 Å, etc. It is the exact form of these
graphs (and how quickly they reach low probability values) that
signifies how well the trajectory has sampled the biomolecule’s
configurational space.
The upper diagram of Figure 1 shows the results from two

sets of Good-Turing calculations as applied to the CLN025
peptide. The first set (corresponding to the upper three curves)
is the direct application of the method to the three force fields
studied in this paper and using for the analysis the whole of the
trajectories (including the unfolded structures of the peptide).
The lower three curves show the results from the same
calculation but only using those peptide structures that are
associated with low temperatures from adaptive tempering (T <
340 K). These low temperature structures correspond to
relatively stable (from the simulation’s point of view) peptide
conformers. Taken together, these results show that although
the whole of the peptide’s configurational space (including
unfolded structures) has not been adequately sampled (the
upper three curves have relatively high Punobserved values even for
large RMSD values), the stable peptide conformers demon-
strate a much better sampling for all three force fields with
negligible Punobserved values for RMSDs higher than ∼1.5 Å. The
implication of this analysis is that any differences observed
between the stable peptide conformers (as obtained from the
three force fields) are probably statistically significant.
The second diagram of Figure 1 shows the results from two

sets of Good-Turing calculations as applied to the αLa peptide.
The first set (corresponding to the upper three curves) is the
direct application of the method to the three force fields studied
in this paper and using for the analysis all peptide residues
(including the disordered C-terminus). The lower three curves
show the results from the same calculation but only using
residues 2−7 of the peptide. As can be seen, the NMR force
field (green and brown curves) differs appreciably in its
behavior from the STAR and ILDN force fields. The reason for
this difference will be discussed in section 3.2, but in summary
the NMR force field overstabilizes an α-helical structure for
these residues which leads to a significant reduction of the
conformational space available to the αLa peptide. Taken
together, these graphs show that although the whole of the
peptide’s configurational space (including its disordered
residues) has not been adequately sampled (the upper three
curves have relatively high Punobserved values even for large
RMSD values), the residues that are known from the
experiment to form the secondary structure (residues 2−7)
demonstrate a much better sampling for all three force fields
with negligible Punobserved values for RMSDs higher than ∼1.2 Å.
The implication of this analysis is that any differences observed
in the secondary structure of residues 2−7 (as obtained from
the three force fields) are probably statistically significant.
To conclude this section, it appears that the length of our

simulations is probably sufficient for guaranteeing a reasonable
sampling of the peptides’ stable conformers, but it is not
sufficient for studying differences over the whole of the
peptides’ folding landscapes. The implication of this analysis is
that not all differences observed between the force fields can be
considered significant. This will be discussed on a per analysis
basis in the next section.

Figure 1. Extent of sampling and statistical significance. Results from
the application of Good-Turing statistics to the folding trajectories of
the CLN025 and αLa peptides. See section 2.4 for a discussion and
analysis of these diagrams. For both diagrams the color coding is the
following. For the upper three curves (of each diagram): black →
STAR force field, red → ILDN, green → NMR. For the lower three
curves: blue → STAR force field, orange → ILDN, brown → NMR.
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3. RESULTS

3.1. For the Stably Folded β-Hairpin Peptide the
Differences Are Relatively Minor. In Figure 2 we compare
the folding behavior of the CLN025 peptide for the three force
fields using what will be referred to as Q-T diagrams.35 In these
diagrams (see the first graph in the top row of Figure 2) the
vertical axis (T) corresponds to the adaptive tempering
temperature from the simulation, the horizontal axis (Q) is
the similarity index36 to the experimentally known CLN025
structure (Q values range from 0.0 and 1.0, with a value of 1.0
corresponding to a structure identical with the experimentally
determined), and hot colors in the graphs indicate high log
density (i.e., that a large number of structures from the
trajectory have the corresponding Q-T values). The calcu-
lations of Q values used in this communication are identical
with the (q) values described in detail in the Supporting
Information of ref 36. The high density peak near the lower

right-hand-side corner of these diagrams (marked as ’F’ in
Figure 2) corresponds to correctly folded peptide structures.
The extent and density of the tail of this peak toward the high
temperature regime is directly related to the thermal stability of
the folded conformer. The peak marked as ’M’ (at lower Q
values) corresponds to the misfolded (1-offset β-hairpin)
CLN025 structure. Finally, the extended area at the low Q/
high temperature part of the graph (marked as ’U’) corresponds
to unstable/unfolded peptide structures. Comparison between
the Q-T diagrams for the three force fields (most easily seen in
the first column of Figure 2) shows that in broad terms all three
force fields perform well, and they all correctly fold the
CLN025 peptide as expected. There are, however, significant
differences between them as brought out by the inner 3 × 3
graphs of Figure 2 which depict the difference Q-T diagrams
between the respective force fields. Examination of these
difference maps shows that whereas the ILDN and STAR force
fields are quite similar, the NMR variant appears to deviate

Figure 2. β-Hairpin peptide, difference Q-T diagrams. The top row and first column of this matrix are the Q-T diagrams of the corresponding force
fields (see section 3.1 for a description). In the first diagram of the top row the unfolded, misfolded, and correctly folded peptide configurations are
marked as U, M, and F, respectively. The contents of the matrix (the inner 3 by 3 graphs) are the differences between the respective force fields. The
difference graphs were calculated as [(column force field) minus (row force field)]. The color bar at the lower right-hand corner expresses the
observed differences in units of percent change compared to the maximum of the distributions (corresponding to the correctly folded peptide
conformer marked as ’F’).
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appreciably. In more detail, the main difference between the
ILDN and STAR force fields is that ILDN slightly overstabilizes
the native β-hairpin structure which (a) leads to a higher
thermal stability of the folded structure [as indicated by the
positive (red)/negative (blue) vertically aligned peaks at high Q
values] and (b) reduces the population for the misfolded 1-
offset hairpin (indicated by the difference peak at lower Q
values). The NMR force field on the other hand appears to
deviate significantly from both the ILDN and STAR variants.
The most pronounced difference is that the Q values for the
NMR-derived folded peptide structures are systematically lower
than the Q values obtained from ILDN and STAR. This
difference leads to the appearance of the characteristic side-by-
side pattern of positive/negative peaks at high Q values.
Surprisingly, and although the Q values are lower, the NMR
force field appears to overstabilize the β-hairpin structure even
more than the ILDN variant as can be deduced from the
asymmetric length of the tails of the difference peaks toward
the high temperature regime. The additional stabilization of the
native β-hairpin structure demonstrated by the NMR variant
further reduces the populations of the misfolded structures and
gives rise to the pronounced difference peaks at medium Q
values. These differences in the stabilization of the native β-
hairpin structure by the different force fields can more readily
be seen in Supporting Information Figures S1 and S2 which
compare the melting curves and the fraction of folded
structures vs temperature for the three force fields.
The discussion in the previous paragraph established that

there are indeed statistically significant differences between the
three force fields. The systematic difference observed in the
preferred Q values between the ILDN/STAR and NMR
variants suggests that the ILDN and STAR force fields
reproduce more closely the experimentally determined
CLN025 structure. To confirm that this is indeed the case
we have compared the representative folded peptide structures
obtained from the three force fields with the experimental
structure. The RMSDs (after least-squares superposition)
between the experimental and the ILDN, STAR, and NMR
representative structures were found to be 0.75, 0.77, and 0.81
Å respectively for the Cα atoms and 0.87, 0.92, and 0.97 Å for
all backbone atoms. These structural differences do establish
that STAR and ILDN reproduce more closely the experimental
structure but do not differentiate which one of the three force
field variants is closer to the raw experimental data. We have
addressed this issue by calculating the reduced χ2 value
(goodness-of-fit) between the experimentally determined
NOEs (as deposited with the PDB entry 2rvd) and the values
expected from the distributions of interproton distances
obtained from the three simulations. The reduced χ2 values
were found to be 2.4 for the STAR variant, 2.8 for ILDN, and
3.3 for the NMR force field, indicating the better agreement of
STAR with the experiment [The quoted χ2 values were
calculated from all structures whose associated adaptive
tempering temperature was less than 320 K. Essentially
identical results were obtained with all other temperature
ranges that we have tested]. Since for the CLN025 peptide
chemical shifts have also been deposited with the Protein Data
Bank (PDB entry 2rvd), we have also calculated the reduced χ2

values between the experimental and simulation-derived
chemical shifts (chemical shifts were calculated from the
simulations using the program SPARTA+29 as previously
described30). For the HN chemical shifts the reduced χ2 values
were found to be 1.129 for the STAR variant, 1.134 for ILDN,

and 1.158 for the NMR force field, in agreement with the
results obtained from the NOEs. Similar results were also
obtained by examining the HA chemical shifts which gave
reduced χ2 values of 0.788 for the STAR variant, 0.796 for
ILDN, and 0.798 for the NMR force field. The significantly
lower χ2 values obtained from the chemical shifts (compared
with the comparison of NOEs) are mostly the result of the
relatively high standard deviations of the simulation-derived
values as can be seen in Supporting Information Figure S3. We
close this paragraph by noting that the lower melting
temperature predicted by the STAR variant (see Supporting
Information Figures S1 and S2) is also in better agreement with
the experimental thermal stability data available for the
CLN025 peptide.

3.2. For the Less Stable Helical Peptide the NMR
Variant Deviates Significantly. Figure 3 shows the STRIDE-

derived31 per residue secondary structure preferences for the
αLa peptide and for each of the three force fields studied.
Again, and as observed for the β-hairpin peptide, the STAR and
ILDN variants appear to be quite similar to relatively minor
differences, such as the sightly higher 310- and α-helical
populations for STAR (most easily seen for residue 4), and the
presence of a very minor β-population for the ILDN force field.
Both STAR and ILDN predict a marginally stable helical
population for residues 3−6, amounting to approximately 40%
of the trajectories’ total length, and an almost completely
disordered C-terminus (residues 7−11). In contrast, the NMR
variant overstabilizes an almost purely α-helical population at
the expense of both the 310-helical and disordered con-
formations. The overstabilization of the α-helical structure in
the case of NMR is such that the helical population reaches
approximately 80% of the trajectory’s total length for residues
4−5 and extends with significant helicity out to residues 7−10.
These pronounced differences between the secondary structure
preferences can also be seen in Supporting Information Figure
S4 which shows a direct comparison between the Ramachan-

Figure 3. Helical peptide, secondary structure preferences. This
diagram shows WebLogo-like representations of the STRIDE-assigned
per residue secondary structure preferences for the αLa peptide and
for each of the three force fields examined. The symbols are C → coil
(green), T → turn (green), G → 310 helix (orange), H → α-helix
(red), E → extended beta structure (blue).
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dran plots of the STAR and NMR variants along with a
difference Ramachandran plot.
The preceding analysis established the presence of

appreciable differences between the force fields but has not
addressed the issue of how the three variants perform in
comparison with the experimental data. The αLa peptide is
known from several independent CD and NMR experi-
ments15,16 to form a marginally stable helical 310-like structure
with an estimated population for its foldable part of
approximately 40% as deduced from (a) the [Θ]215/[Θ]198
and [Θ]208/[Θ]198 ellipticity ratios,16 (b) by analyzing the
integrated cross peak intensity of NOESY spectra,16 (c) by
calculating the peptide’s helical fraction from the molar
ellipticity at 222 nm,15 (d) by comparing the CD-derived
helical fraction between the peptide in aqueous solution and
the peptide in 30% TFE,15 and, finally, (e) by comparing − on
a per residue basis − the number and magnitude of deviations
of the CαH chemical shifts from random coil values for the
peptide in aqueous solution and the peptide in 30% TFE.15

Additionally, the STRIDE-derived secondary structure assign-
ments of the NMR-derived peptide structure conformers (PDB
entry 1CB3) show a mixture of 310-helix and α-helix for
residues 3−6, with the majority of the assignments being 310-
helical. These results clearly indicate that the STAR and ILDN
variants are in much better agreement with the experiment than
the NMR force field both in predicting the peptide’s marginal
stability and in preferentially populating a 310-helical con-
formation (instead of a pure α-helical conformation as is the
case with the NMR force field). To put these observations in
numbers we have also calculated for each of the three force
fields the number of upper bound violations of the deposited
NOE restraints, as well as the values of the corresponding
average violations (NOE data were obtained from the PDB
entry 1cb3). For a grand total of 138 restraints, the STAR force
field gave 17 upper bound violations with an average violation
of 0.10 Å, the ILDN variant gave 18 violations with an average
of 0.12 Å, and NMR gave 20 violations with an average of 0.15
Å, in good agreement with the results obtained from the
secondary structure analysis. Please note that a comparison
with experimentally determined chemical shifts (as previously
described for the CLN025 peptide) can not be performed in
the case of αLa because no such data have been deposited for
this peptide.
In summary, for the less stable helical peptide the NMR force

field clearly deviates from the STAR and ILDN variants by
overstabilizing and α-helical structure. The STAR and ILDN
variants both reproduce closely the experimentally available
data for the peptide, with the STAR force field performing
detectably better than the ILDN variant.

4. DISCUSSION
We believe that we have convincingly established the sensitivity
of folding simulations to even relatively limited variation within
the same force field subfamily. Using two completely different
peptide systems, we have demonstrated that three different
variants of the AMBER99SB force field show statistically
significant differences even in the case of a fast-folding and very
stable β-hairpin peptide. For the marginally stable 310-helical
peptide the differences were so pronounced that even a simple
enumeration of secondary structure preferences sufficed for
differentiating between the three variants. Clearly, and as a
cursory examination of Figure 3 and of Supporting Information
Figure S1 shows, the word ’variant’ may be a poor choice

considering the amount of differences between the force fields
examined.
In a sense, our results reinforce what is common knowledge

in the field: development of a balanced biomolecular force field
is an extremely difficult and delicate procedure. In this respect,
the consistently better performance of the STAR force field
serves as a testimony to the care taken during its development
to avoid overfitting22 and suggests that maybe we have reached
the stage where we should substitute the expression ’force field
development’ with the expression ’force field refinement’.
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