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Abstract A novel pose normalization method based on 3D
object reflective symmetry is presented. It is a general pur-
pose global pose normalization method; in this paper it is
used to enhance the performance of a 3D object retrieval
pipeline. Initially, the axis-aligned minimum bounding box
of a rigid 3D object is modified by requiring that the 3D
object is also in minimum angular difference with respect
to the normals to the faces of its bounding box. To esti-
mate the modified axis-aligned bounding box, a set of pre-
defined planes of symmetry are used and a combined spatial
and angular distance, between the 3D object and its sym-
metric object, is calculated. By minimizing the combined
distance, the 3D object fits inside its modified axis-aligned
bounding box and alignment with the coordinate system is
achieved. The proposed method is incorporated in a hybrid
scheme, that serves as the alignment method in a 3D object
retrieval system. The effectiveness of the 3D object retrieval
system, using the hybrid pose normalization scheme, is eval-
uated in terms of retrieval accuracy and demonstrated using
both quantitative and qualitative measures via an extensive
consistent evaluation on standard benchmarks. The results
clearly show performance boost against current approaches.
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1 Introduction

The diversity of 3D object acquisition sources implies that
3D objects which may even be part of the same dataset,
have their geometrical properties arbitrarily defined. There-
fore, before any kind of processing is carried out, it must
be ensured that the 3D objects have been normalized in
terms of position, scaling and rotation. Pose normaliza-
tion of 3D objects is a common preprocessing step in var-
ious computer graphics applications (Bustos et al. 2004;
Shilane et al. 2004; Tangelder and Veltkamp 2008; Zaharia
and Prêteux 2004). Visualization, broken fragment recon-
struction, biometrics and 3D object retrieval are only a few
examples of applications that benefit from a pose normaliza-
tion procedure. To achieve normalization, for every 3D ob-
ject, a corresponding set of normalization transformations
(translation, scaling and rotation) in 3D space must be de-
fined.

In most cases, translation and scale normalization can be
achieved by standard techniques. The most frequently used
method for performing translation normalization is to posi-
tion the centroids of 3D objects at the origin. Scale normal-
ization can be performed through the definition of a fixed
surrounding object (a sphere or a rectangle) within which
every 3D object is contained exactly. Rotation normaliza-
tion (or 3D object alignment), however, is the most difficult
part and still under investigation (Chaouch and Verroust-
Blondet 2009; Chen and Ouhyoung 2002; Kazhdan 2007;
Paquet 2000; Rustamov 2007; Vranić et al. 2001). Although
it is relatively easy to perform manual alignment of a 3D
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Fig. 1 Comparison between the alignment results of the CPCA (Vranić 2004), NPCA (Papadakis et al. 2007) and ROSy methods on objects of
the ‘LAMP’ class of the PSB dataset. (a) CPCA, (b) NPCA, (c) ROSy

object with a fixed number of rotations and acceptable accu-
racy, the high complexity and the numerous variations of 3D
objects render the automation of such a procedure difficult.

In this paper, rotation normalization is achieved by con-
straining the 3D objects’ bounding boxes to be minimal
based on PCA and reflective object symmetry. For this, an
axis-aligned bounding box is defined and a distance mea-
sure, that estimates the degree of parallelization of a 3D
object to the faces of that structure, is given. This distance
measure is based on the spatial and angular relation of a 3D
object and its symmetric object, with respect to the principal
planes, which are set as the planes of symmetry. Experimen-
tal results of the proposed method show that the qualitative
normalization outcome is improved, compared to current ap-
proaches (Fig. 1). Additionally, when the proposed method
is incorporated in a hybrid pose normalization scheme, it
can significantly enhance the discriminative power of a 3D
object retrieval system.

We shall define pose normalization as the complete nor-
malization procedure which includes rotation, translation
and scaling normalization; alignment will refer to rotation
normalization only. Furthermore, throughout this paper the
terms 3D model and 3D object, unless otherwise stated, will
refer to both vertices and normals sets of a 3D mesh. The
term symmetric object will refer to a 3D object that is the
result of a reflective symmetry transformation on a given 3D
object, against a specified principal plane of symmetry.

The remainder of the paper is structured as follows. In
Sect. 2, previous work in pose normalization and 3D object
retrieval is discussed. In Sect. 3, the problem of pose normal-
ization is defined and preliminaries for the presented work
are given. Section 4 details the proposed pose normalization
method and Sect. 5 presents detailed experimental results
achieved in the course of the method’s evaluation. Finally,
conclusions are drawn in Sect. 6.
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2 Related Work

In this section an overview of the state-of-the-art in pose
normalization methods, with a particular focus on the align-
ment phase, is presented. A discussion on the state-of-the-art
in 3D object retrieval techniques is also included.

2.1 Pose Normalization

Pose normalization methods can be divided into three ma-
jor categories: (i) methods that are based on principal com-
ponent analysis of the 3D objects; (ii) methods that exploit
symmetry characteristics of the 3D objects and (iii) meth-
ods that achieve alignment by defining a shape descriptor of
the 3D objects. Based on this categorization, an overview of
pose normalization methods follows.

The best-known approach for computing the alignment
of 3D objects is Principal Component Analysis (PCA) or
Karhunen-Loeve transformation (Paquet 2000; Shilane et
al. 2004; Theodoridis and Koutroumbas 2006; Vranić et
al. 2001; Zaharia and Prêteux 2004). The PCA algorithm,
based on the computation of 3D object moments, estimates
the principal axes of a 3D object that are used to deter-
mine its orientation. In its original form, PCA has a number
of disadvantages: it can be imprecise and often the princi-
pal axes of 3D objects that belong to the same class pro-
duce poor alignments (Chen et al. 2003). To alleviate these
problems, Vranic introduced an improvement to the original
method, the Continuous PCA (CPCA) algorithm (Vranić,
2004, 2005b; Vranić et al. 2001). CPCA computes the prin-
cipal axes of a 3D object based on the continuous triangle
set. Similar to the CPCA method, Papadakis et al. proposed
the Normal PCA (NPCA) algorithm (Papadakis et al. 2007,
2008), which computes the principal axes of the 3D ob-
ject based on the surface normal set. Related to PCA is the
use of Singular Value Decomposition (SVD) for alignment
(Theodoridis and Koutroumbas 2006). In Elad et al. (2001)
and Osada et al. (2002), the SVD of the covariance matrix
of the 3D object is computed and the unitary matrix is ap-
plied to the 3D object for rotation normalization. The PCA-
based pose normalization methods and especially the CPCA
and NPCA variants, although general and well performing
in most cases can fail to capture some specific characteris-
tics of 3D objects such as symmetries and large planar or
bumpy surfaces.

Another major category of normalization methods ex-
ploits symmetry characteristics found in a large number of
3D objects. Kazhdan et al. (2002) define a reflective symme-
try descriptor that represents a measure of reflective symme-
try for an arbitrary 3D voxel object, for all planes through
the object’s center of mass. This descriptor is used for find-
ing the main axes of symmetry or to determine that none of
them exist in a 3D object. Podolak et al. (2006) extended this

work and introduced a Planar Reflective Symmetry Trans-
form (PRST) that computes a measure of the reflective sym-
metry of a 3D shape with respect to all possible planes. This
measure is used to define the center of symmetry and the
principal symmetry axes of the global coordinate system.
Rustamov improved this approach with the augmented sym-
metry transform in Rustamov (2007). Minovic et al. (1993)
compute symmetries of a 3D object, based on the computa-
tion of a principal octree aligned with the principal axes.
Then the degree of symmetry is computed, based on the
number of distinct eigenvalues associated with the princi-
pal axes. Martinet et al. (2006) use generalized moments
to detect perfect symmetries in 3D shapes and Mitra et al.
(2006) compute partial and approximate symmetries in 3D
objects. Sun and Sherrah (1997) convert the symmetry de-
tection problem to the correlation of the Gaussian image.
Using both PCA-alignment and planar reflective symme-
try, Chaouch and Verroust-Blondet (2009) compute a 3D
object’s alignment axes and then, using a Local Transla-
tional Invariance Cost (LTIC), make a selection of the most
suitable ones. Using a rectilinearity measure, Lian et al.
(2009) attempt to find a 3D object’s best rotation by esti-
mating the maximum ratio of its surface area to the sum
of its three orthogonal projected areas. Similar to the pre-
vious approach (Chaouch and Verroust-Blondet 2009), a se-
lection between the proposed and a PCA-based alignment is
made. Most of the methods that exploit symmetry charac-
teristics for achieving pose normalization, seem to perform
quite well in most cases. However, a major problem related
to the symmetry-based techniques is that symmetry detec-
tion either focuses on small fragments or larger abstract ar-
eas of the 3D objects, and thus it is unable to handle 3D
objects that present complex, multilevel (global and local)
symmetry in their structure.

A third category of methods achieves rotation invariance
by the definition of the shape descriptor. These descrip-
tors are invariant under rotation, but usually discard dis-
criminative information regarding the 3D object. Descrip-
tors based on spherical harmonics (Kazhdan et al. 2003;
Tangelder and Veltkamp 2008), Zernike moments (Novotni
and Klein 2004; Tangelder and Veltkamp 2008) and shell
histograms (Ankerst et al. 1999; Xiang et al. 2007; Yu et
al. 2007) are examples of representation methods able to
achieve rotation invariance by definition. Kazhdan et al.
(2003) introduce the Spherical Harmonic Representation, a
general method for obtaining a rotation invariant represen-
tation of spherical shape descriptors that describes them in
terms of the distribution of energies across different frequen-
cies. The same authors extended this method with symmetry
information to provide a more discriminating representation
in Kazhdan et al. (2004). Novotni and Klein (2004) use 3D
Zernike invariants as descriptors for 3D shape retrieval and
Ankerst et al. (1999) proposed the Shape Histograms de-
scriptor, where 3D space is divided into concentric shells,
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sectors, or both and for each part, the object’s shape distri-
bution is computed giving a sum of histogram bins. Finally,
Chen and Ouhyoung (2002) use a region based 2D shape de-
scriptor to recover the affine transformation between two 3D
objects and thus achieve normalization between them. The
majority of methods that achieve rotation invariance by the
definition of shape descriptors, perform best on specific 3D
object classes that are composed of 3D objects with similar
structure. Due to this explicit behavior, these methods are
unable to handle general 3D objects originating from differ-
ent classes, or with significant structural differences. Also,
these methods generally result in descriptors with relatively
low discriminating power.

A careful review of the works presented shows that in or-
der to achieve better results, most recent studies attempt to
combine techniques from the same or different categories;
these often include variations of PCA and/or exploitation
of 3D object symmetry characteristics. However, although
it seems that most of these methods perform exceptionally
well, a major problem is that they usually combine results
blindly without taking into account any complementarity in-
volved.

2.2 3D Object Retrieval

Content-based 3D object retrieval methods can be classi-
fied into three major categories according to the spatial di-
mensionality of the information used, namely 2D, 3D and
their combination. According to this categorization, a brief
overview of the related work in the area of 3D shape descrip-
tors for generic 3D object retrieval is presented.

One of the most acknowledged methods for 3D object
retrieval, based on the extraction of features from 2D rep-
resentations of the 3D objects, was the Light Field descrip-
tor, proposed by Chen et al. (2003). This descriptor is com-
prised of Zernike moments and Fourier coefficients com-
puted on a set of projections taken at the vertices of a do-
decahedron. Lian et al. (2009) proposed an enhancement
to the Light Field descriptor, by computing the same fea-
tures on projections taken from the vertices of geodesic
spheres generated by the regular unit octahedron. Vranić
(2004) proposed a shape descriptor where features are ex-
tracted from depth buffers produced by six projections of
the object, one for each side of a cube which encloses the
object. In the same work, the Silhouette-based descriptor is
proposed which uses the silhouettes produced by the three
projections taken from the Cartesian planes. Zarpalas et al.
(2007) introduced a 3D shape descriptor called the spher-
ical trace transform, which is the generalization of the 2D
trace transform. In this method, a variety of 2D features are
computed for a set of planes intersecting the volume of a
3D object. A newly proposed method is the depth line de-
scriptor proposed by Chaouch and Verroust-Blondet (2007,

2009) where a 3D object is projected to the faces of its
bounding box giving six depth buffers. Each depth buffer is
then decomposed into a set of horizontal and vertical depth
lines that are converted to state sequences which describe
the change in depth at neighboring pixels. Papadakis et al.
(2009) proposed PANORAMA, a 3D shape descriptor that
uses a set of panoramic views of a 3D object which describe
the position and orientation of the object’s surface in 3D
space. For each view the corresponding 2D Discrete Fourier
Transform and the 2D Discrete Wavelet Transform are com-
puted.

In the second major category of 3D object retrieval tech-
niques, shape descriptors are extracted from 3D shape rep-
resentations. A set of subcategories can be identified here,
namely, statistical, graph-based and spherical function based
descriptors. In the shape histogram descriptor proposed by
Ankerst et al. (1999), 3D space is divided into concentric
shells, sectors, or both and for each part, the object’s shape
distribution is computed giving a sum of histograms bins.
The shape distributions descriptor proposed by Osada et al.
(2002) measures a set of shape characteristics for a random
set of points belonging to the object, using appropriate shape
functions, e.g. the 2D function which measures the distance
between two random surface points. Zaharia and Preteux
(2001) presented the 3D shape spectrum descriptor which
is the histogram that describes the angular representation of
the first and second principal curvature along the surface of
the 3D object. Xiang et al. (2007) propose a rigid transfor-
mation insensitive descriptor, called the Poisson shape his-
togram descriptor, extracted by a voxelized representation
of the 3D objects. In Yu et al. (2007) a two-step descrip-
tor called Sorted Extended Gaussian Image (SEGI) is pre-
sented. Based on Extended Gaussian Image and Shell his-
tograms, SEGI initially performs approximate 3D object re-
trieval based on the sorted histogram bins and them refines
the results by recording the relations between the bins. In
Zhang et al. (2005) consider the use of medial surfaces to
compute an equivalent directed acyclic graph of an object.
In the work of Sundar et al. (2003), the 3D object passes
through a thinning process producing a set of skeletal points,
which finally form a directed acyclic graph by applying the
minimum spanning tree algorithm. Cornea et al. (2005) pro-
pose the use of curve skeletons produced by the application
of the generalized distance field to the volume of the 3D ob-
ject and similarity is measured using the earth mover’s dis-
tance. The P3DS descriptor developed by Kim et al. (2004)
uses an attributed relational graph whose nodes correspond
to parts of the object that are represented using ellipsoids and
the similarity is computed by employing the earth mover’s
distance. Kazhdan et al. (2002, 2004) proposed planar re-
flective symmetry descriptor (PRSD), a collection of spher-
ical functions that describes the measure of a model’s ro-
tational and reflective symmetry with respect to every axis
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passing through the center of mass. Extending this work to
every possible plane Podolak et al. presented the planar re-
flective symmetry transformation (PRST) in Podolak et al.
(2006).

Besides the previous categories, combinations of differ-
ent methods have been considered in order to enhance the
overall performance. Vranić (2004) proposed the Ray-based
descriptor which characterizes a 3D object by a spherical
extent function capturing the furthest intersection points of
the object’s surface with rays emanating from the origin.
Spherical harmonics or moments can be used to represent
the spherical extent function. A generalization of the pre-
vious approach uses several spherical extent functions of
different radii. The GEDT descriptor proposed by Kazhdan
et al. (2003) is a volumetric representation of the Gaussian
Euclidean Distance Transform of a 3D object, expressed by
norms of spherical harmonic frequencies. In Papadakis et al.
(2007), the CRSP descriptor was proposed which uses the
Continuous PCA (CPCA) along with Normals PCA (NPCA)
to alleviate the rotation invariance problem and describes a
3D object using a volumetric spherical-function based rep-
resentation expressed by spherical harmonics. Generalizing
from 2D to 3D, Novotni and Klein (2004) presented the 3D
Zernike descriptor, Daras et al. (2006) introduced the gen-
eralized radon transform and Ricard et al. (2005) developed
the 3D ART descriptor by generalizing the 2D angular ra-
dial transform. Vranic (2005b) developed a hybrid descrip-
tor called DESIRE, that consists of the Silhouette, Ray and
Depth buffer based descriptors, which are combined linearly
by fixed weights. Papadakis et al. (2008) proposed a hy-
brid descriptor formed by combining features extracted from
a depth-buffer and spherical function based representation,
with enhanced translation and rotation invariance properties.
The advantage of this method over similar approaches is the
top discriminative power along with minimum space and
time requirements.

3 Preliminaries

In this section, the problem of pose normalization is de-
scribed through the Surface-Oriented Minimum Bounding
Box (SoMBB), a modified version of the Axis-Aligned
Bounding Box (AABB) which is commonly used in col-
lision detection techniques (van den Bergen 1997; Gold-
smith and Salmon 1987). Furthermore, using the proper-
ties of the reflective symmetry transformation the problem
will be mathematically formulated and the foundation for
the proposed solution will be set.

Pose normalization is, by definition, a complex proce-
dure, highly dependent on the target application. For that
reason, various definitions have been proposed in the liter-
ature (Kazhdan et al. 2004; Tangelder and Veltkamp 2008;

Fig. 2 Difference between the AABB and SoMBB on objects of the
same class. On column (a) two 3D objects are enclosed inside their
AABB, while on column (b) the same 3D objects are enclosed inside
their SoMBB. Marked faces indicate faces whose normals are parallel
to the SoMBB’s face normals

Vranić 2004). We next attempt to provide the definition of
a 3D object’s SoMBB and formulate the problem of pose
normalization based on the notion of the SoMBB. A 3D ob-
ject’s Surface-Oriented Minimum Bounding Box (SoMBB)
is an axis-aligned bounding box that has the minimum possi-
ble volume while simultaneously the normals to its faces are
in minimum angular difference with the majority of the con-
tained 3D object’s face normals (Fig. 2). Pose normalization
is the procedure of finding a set of homogeneous transfor-
mations (translation, scaling, rotation) that fit a 3D object
into its SoMBB.

Constraining the face normals of a 3D object to be in
minimum angular difference with the faces of its SoMBB
can be interpreted as making the average normal to the ob-
ject’s large planar areas parallel to the box’s face normals
(Gottschalk et al. 1996). Example 3D object classes that
explicitly define large planar areas are buildings, airplanes,
ships, tables, billboards, etc. (Fig. 3a). Object classes that
define large planar areas as the average normal of many
small triangles with similar orientation are quadruped ani-
mals, hands, human bodies, etc. (Fig. 3b).

If a 3D object is not aligned with the coordinate system
axes but arbitrarily positioned in space, the calculation of the
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Fig. 3 3D objects enclosed in their SoMBBs. Marked faces illustrate
the components of a 3D objects’ planar surface and the arrows show
the direction of its averaged normal axis (parallel to the normals to
the left-right faces of the SoMBB). (a) Illustrates a 3D object that has
a planar surface defined by structure and (b) illustrates a 3D object
that defines a planar surface through many small triangles with similar
orientation

Fig. 4 Examples of the reflective symmetry transformation on planes
YZ, XY and XZ, respectively

corresponding SoMBB is not an easy task. However, let us
suppose that the SoMBB is already precalculated, although
the object has an arbitrary rotation in space. If the object is
fit inside its SoMBB, then it becomes aligned with the co-
ordinate system. Translation and scaling of the 3D object,
to fit inside the SoMBB can be adequately solved by one of
the common techniques, however, the rotation of the 3D ob-
ject, so as to satisfy the two SoMBB conditions (minimum
volume and minimum angular difference between the nor-
mals to its faces and the 3D object’s face normals) remains a
hard task. To solve this problem, properties of the reflective
symmetry transformation will be taken into account.

Assume that a 3D object M , represented by a set of
m vertices P ∈ R

m×3, and a corresponding set of normals
N ∈ R

m×3, exists in the Euclidean R
3 space. The reflec-

tive symmetry transformation (or reflection) (Theoharis et
al. 2008) is a linear transformation which computes the sym-
metric object M−1

� about a candidate plane of symmetry
� (� : ax + by + cz + d = 0). The planes of symmetry
used, are the three principal planes of the Cartesian coor-
dinate system (i.e. XY, XZ, YZ). Figure 4 illustrates exam-
ple reflective symmetry transformations against the princi-
pal planes of the Cartesian coordinate system.

We also need to introduce Euler angles which will prove
useful in the sequel. According to Euler’s Rotation Theo-

rem, to reach any target frame, a specific sequence of three
rotations, that are described by three angles is required. If the
three rotations are written in terms of rotation matrices, then
the general rotation can be written as the product of these
rotation matrices. The three angles giving the corresponding
rotation matrices are called the Euler angles (Mitchell 1965;
Goldstein and Poole 2001). There are six possible conven-
tions regarding the Euler angles (X − Y − X, X − Z − X,
Y −X−Y , Y −Z−Y , Z −X−Z and Z −Y −Z), depend-
ing on the axes about which the rotations occur. The first
two rotations establish a common principal rotation axis be-
tween the source and target frames (also known as the ‘line
of nodes’). The third rotation, about the principal rotation
axis, aligns the remaining axes of the reference and target
frames. Different conventions result in a different axis or-
dering of the target frame.

Note that in the remainder of the paper, when referring to
axes or planes that belong to the target coordinate system,
they will be denoted with uppercase lettering (e.g. axis X

and plane YZ), while when referring to axes or planes that
belong to the source coordinate system of the 3D object,
they will be denoted with lowercase lettering (e.g. axis x

and plane yz).

4 The Proposed Method

In this section, a minimization criterion that measures the
fitness of a 3D object into its SoMBB will be defined and
the complete pose normalization method will be described.

According to Chan and Tan (2001) if an arbitrary model
is reoriented in such way that the areas of the bounding
boxes of its projections onto the three principal planes are
minimum, then the volume of the bounding box of the re-
oriented model is also minimum. Ahn et al. (2005, 2008)
showed that finding the minimum convex hull of the union
of two convex sets1 is equivalent to finding maximum over-
lap2 between them. Therefore, defining the maximum over-
lap between a 3D object and its symmetric object, with re-
gard to a given symmetry plane � is equivalent to defining
the two objects’ minimum convex hull projected onto �.
However, since 3D objects M and M−1

� are symmetric, their
projected convex hulls are identical and will be minimized
simultaneously.

To define the maximum overlap between 3D objects M

and M−1
� we use a measure based on the distance between

their corresponding vertices. The distance between each ver-
tex pi of the original 3D object M and the corresponding

1E.g. the convex hulls of our 3D objects.
2The maximum overlap is achieved when the union of the two convex
sets occupies the minimum total space.



268 Int J Comput Vis (2011) 91: 262–279

vertex p−1
i,� of the symmetric object M−1

� is twice the dis-
tance between pi and the plane of symmetry �. The mean
distance between all the corresponding vertices of objects M

and M−1
� can be used as a measure of the total distance be-

tween the original 3D object and the plane of symmetry (1).
When this distance becomes minimal, with regard to the di-
mension defined by the normal to the plane of symmetry, the
volume of the 3D object’s SoMBB is minimized as well (by
maximizing the overlap between the two objects). During
the minimization process (see (6)) the 3D object is trans-
formed while the planes of symmetry remain fixed.

Dist(M,M−1
� ) = 1

m

m∑

i=1

|pi − p−1
i,�| (1)

Using (1) as the minimization function, we achieve the
results shown in Fig. 2a. As has been described before, our
motivation is to achieve an alignment which is intuitively
shown in Fig. 2b. To this end, we enrich the functional with
an additional term that expresses the minimum angular dif-
ference measure based on the angular distance between the
corresponding face normals of 3D objects M and M−1

� . The
angle θi,� between a surface normal ni of the original 3D
object M and the corresponding surface normal n−1

i,� of the

symmetric object M−1
� is supplementary to the angle be-

tween the surface normal ni and the normal to the plane of
symmetry (2). When θi,� is minimized, surface normals ni

and n−1
i,� become perpendicular to the normal to the plane

of symmetry, whereas when θi,� is maximized surface nor-
mals ni and n−1

i,� become parallel to the normal to the plane
of symmetry.

θi,� =
[

cos−1
(

ni · n−1
i,�

|ni ||n−1
i,�|

)]
(2)

The mean angle between all the corresponding normals
of 3D objects M and M−1

� can be used to define the angular
difference between the normal to the plane of symmetry and
the face normals of the 3D object (3).

Ang(M,M−1
� ) = 1

m

m∑

i=1

1

π
θi,� (3)

Since the parallelization of the corresponding face nor-
mals of a 3D object and its symmetric object is not always
perfect, Ang(M,M−1

� ) could be relaxed so that narrower an-
gles are rewarded over wider angles (4). Figure 5 illustrates
the difference between (3) and (4).

Angtanh(M,M−1
� ) = 1

m

m∑

i=1

tanh

(
3

2
(θi,� − π)

)
+ 1 (4)

When Angtanh(M,M−1
� ) is minimized, the mean angle

between the face normals of the 3D object and the normals

Fig. 5 Graphical representation of Ang(M,M−1
� ) and Angtanh(M,

M−1
� ), respectively

to the SoMBB’s faces that are parallel to the plane of sym-
metry is also minimized.

Equations (1) and (4) aim to minimize the volume of the
SoMBB and to have the 3D object’s face normals as paral-
lel as possible to the normals to the SoMBB’s faces. We use
them together (5), with equal weights, to create our mini-
mization criterion.

k� = arg min{Dist(M,M−1
� ) + Angtanh(M,M−1

� )} (5)

In (5), Dist(M,M−1
� ) is dependent on the scaling of

the 3D objects, the distance between their centroids and
the distance between the corresponding vertices, while
Angtanh(M,M−1

� ) depends only on the angle between the
normals and lies in the range [0,1]. To normalize (5) and
give equal weights to the two factors, 3D objects M and
M−1

� need to be centered at the origin and properly scaled
so as to fit inside the unit sphere. Once translation and scale
normalization are performed, Dist(M,M−1

� ) ranges in the
interval [0,2]. The final form of the minimization criterion
is expressed by (6), where the ranges of Dist(M,M−1

� ) and
Angtanh(M,M−1

� ) are equalized through multiplication of
Dist(M,M−1

� ) with a normalization factor of 0.5.

k� = arg min

{
1

2
Dist(M,M−1

� ) + Angtanh(M,M−1
� )

}

= arg min

{
1

2m

m∑

i=1

|pi − p−1
i,�|

+ 1

m

m∑

i=1

tanh

(
3

2
(θi,� − π)

)
+ 1

}
(6)
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Algorithm 1 Object pose normalization based on Reflective Object Symmetry (ROSy)
1: Read input 3D object M ;
2: Resampling of M ;
3: Translation normalization of the centroid of M to the origin of the coordinate system;
4: Scale normalization of M to the unit sphere;
5: for ROT_AXIS in (Z,Y,Z) do
6: if ROT_AXIS = Y then
7: � ← YZ;
8: else if ROT_AXIS = Z then
9: � ← XZ;

10: end if
11: kbest ← ∞;
12: M−1

� ← Reflection_Transform(M,�);
13: for ANGLE = 0◦ to 180◦ step 2◦ do
14: M ← Rotation_Transform(M , ANGLE, ROT_AXIS);
15: M−1

� ← Rotation_Transform(M−1
� , -ANGLE, ROT_AXIS);

16: k� = 1
2 Dist(M,M−1

� ) + Angtanh(M,M−1
� );

17: if k� < kbest then
18: kbest ← k�;
19: Mbest ← M ;
20: end if
21: end for
22: end for
23: for � in (XY,YZ,ZX) do
24: M−1

� ← Reflection_Transform(Mbest,�);
25: d� = 1

2 Dist(Mbest,M
−1
� );

26: end for
27: Label axes in ascending plane distance order (XY < YZ < ZX);
28: return Mbest;

Dist(M,M−1
� ) and Angtanh(M,M−1

� ) contribute equally
to the computation of k� and, as will be shown in the evalu-
ation section, experimental results support this choice.

Next, the use of the minimization criterion will be ex-
panded on all three principal planes of the Euclidean space.
The complete method is called 3D object pose normalization
based on Reflective Object Symmetry (ROSy) and aligns an
arbitrary 3D object with a reference coordinate system. The
corresponding algorithm is outlined in Algorithm 1.

A preliminary step of the proposed method is the resam-
pling of the input 3D object M (Algorithm 1: step 2) to
ensure that any deficiencies of the digitization process are
eliminated. Unwanted conditions like irregular distribution
of vertices on the 3D object’s surface could potentially re-
sult in a poor alignment. Object resampling is achieved by
redistributing the vertices of the 3D object along its surface

triangles, based on a ratio of fi = tarea
i

tarea
sum

, where tarea
i denotes

the area of triangle i and tarea
sum denotes the total area of the

object’s surface. Note that at least one vertex will accrue
from every initial triangle and so, it is possible that the final
number of 3D object vertices is greater than the original.

Standard translation and scale normalizations are then
performed (Algorithm 1: steps 3–4). Translation invariance
is achieved by using the Continuous Principal Component
Analysis (CPCA). The centroid of the object is computed
using CPCA and then the whole object is translated, so that
the centroid coincides with the coordinate origin (Papadakis
et al. 2007; Vranić 2004; Vranić et al. 2001). Scale invari-
ance is achieved through the scaling of M so that it fits ex-
actly into the unit sphere. Translation and scale normaliza-
tion, position the object ‘inside’ its SoMBB and limit the
range of Dist(M,M−1

� ) in the interval [0,2].
At this point, although 3D object M is positioned at the

center of its SoMBB, it is uncertain if it complies with the
two SoMBB constraints: minimum bounding box volume
and minimum angular difference between the 3D object’s
face normals and the normals to the bounding box’s faces.
To ensure this, criterion k� must be minimized on all three
orthogonal planes of symmetry (Algorithm 1: steps 5–22).

In the proposed methodology, following the concept of
Euler angles, the target is to establish the common princi-
pal rotation axis, by aligning the 3D object with two faces
of the corresponding SoMBB. Then, the input object will
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Fig. 6 Illustration of the alignment procedure for a single rotation step
on the YZ plane of symmetry. The bounding rectangle illustrates the
SoMBB of the 3D object’s projection on plane XY . (a) Original 3D
object orientation. (b) Original (M) and its symmetric (M−1

� ) 3D ob-

jects. (c) Selected principal axes projection of the original (solid axis)
and the symmetric (dashed axis) 3D object, on principal plane YZ.
(d)–(f) Stepwise minimization of the distance between the original and
its symmetric 3D object

be rotated about this common principal rotation axis, so as
to further align it with the third face of the SoMBB and
thus with the coordinate system. Criterion k� will ensure
that the normals to the faces of the SoMBB will attain min-
imum angular difference to the 3D object face normals and,
simultaneously, that the SoMBB will attain minimum vol-
ume. Note that since the ordering of axes is not important,
the Z−Y −Z convention will be arbitrarily selected, for the
alignment procedure.

The selected plane of symmetry for each iteration step
must fulfill two conditions: (i) its normal must be perpen-
dicular to the target SoMBB face normal and (ii) the axis
about which the rotation occurs must be perpendicular to
the plane’s normal. On each iteration, 3D object M and its
symmetric object M−1

� are rotated by 180 degrees in op-
posing directions with a step of 2 degrees, until k� is mini-
mized (Fig. 6). Since vertex and normal cardinality is fixed
for each model, the time required for the alignment process

to complete is linear in the number of iteration steps. We
have selected a step of 2 degrees which results in good align-
ments while preserving acceptable processing speed. Ex-
haustive search is performed here as k� is not necessarily
a monotonic function. When the rotation normalization pro-
cedure is complete, object M will be aligned with the Carte-
sian coordinate system.

In detail, let us assume that the initial orientation of the
3D object is arbitrary. The first rotation about axis Z, given
minimization criterion kXZ , aligns the 3D object with the
first selected plane of symmetry, XZ. The direction of the
3D object’s orientation becomes constrained by the first
plane of symmetry. The second rotation, about axis Y , given
minimization criterion kYZ (symmetry plane YZ), further
aligns the input 3D object M with axis Z of the coordi-
nate system (the 3D object is aligned with both planes XZ

and YZ). The direction of the 3D object’s orientation thus
becomes constrained by axis Z of the coordinate system,
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Fig. 7 Overview of all the steps of the alignment procedure. (a) Ini-
tial 3D object orientation. (b) Symmetric 3D object against plane XZ.
(c)–(d) Minimum kXZ point after rotation of the 3D object and its sym-
metric object about axis Z. (e) Symmetric object against plane YZ.

(f)–(g) Minimum kYZ point after rotation of the 3D object and its sym-
metric object about axis Y . (h) Symmetric 3D object against plane XZ.
(i) Minimum kXZ point after rotation of the 3D object and its symmet-
ric object about axis Z. (j) Final aligned 3D object

which is the intersection of the first and the second planes
of symmetry, XZ and YZ, respectively. Once the common
principal rotation axis has been established, rotation of the
3D object about this axis, around symmetry plane XZ, given
minimization criterion kXZ , results in the alignment of the
3D object with the remaining axes X and Y of the coordinate
system (Fig. 7).

The symmetric object M−1
� of the input 3D object M

is created by the reflective symmetry transformation func-
tion (Algorithm 1: step 12) that takes as input the vertices
and surface normals of a 3D object M and a plane of sym-
metry. The rotation transformation function (Algorithm 1:
steps 14–15) takes as input a 3D object, an angle of rotation
and the axis about which the rotation occurs and returns the
rotated 3D object. The rotation function is iteratively used
with opposing angles for the 3D object and its symmetric
object (to maintain the symmetry property) and the transfor-
mation that results from the best k� value, is kept.

The aforementioned pose normalization procedure is able
to orient the principal axes of a 3D object with the Cartesian
coordinate system axes. However, although the object is cor-
rectly aligned with the reference coordinate system, the or-

dering of the dimensions is not defined, yet. The final step of
the method is to label the principal axes of the aligned object
by computing the mean distance of its vertices from each co-
ordinate system axis (Algorithm 1: steps 23–27). Although
the direct calculation of the mean distance between the ver-
tices of the 3D object and each of the three coordinate sys-
tem axes is the simplest method, structural specificities like
symmetries or density variations of the 3D object’s surface
could lead to inaccurate results. To overcome this problem,
symmetric objects can also be used for the labeling of the
3D object’s axes.

This procedure is similar to using the Manhattan distance
for the calculation of the mean distance between the 3D
object vertices and the coordinate system axes, and the re-
sults derive from a 2-step calculation, therefore distinguish-
ing better similar dimensions of the 3D object. If the mean
distance between the vertices of the original and symmetric
3D objects is small, against a specific principal plane, then
most of the 3D object’s vertices lie close to that plane, which
possibly contains the primary and secondary principal axes
of the 3D object. If the vertex distance is large, then most of
the 3D object’s vertices lie far from the principal plane and
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thus, this plane cannot contain the principal axis of the 3D
object.

The primary principal plane, which has the smallest ver-
tex distance between the 3D object and its symmetric 3D
object, is assumed to contain the 3D object principal axis,
while the tertiary principal plane (with the largest vertex dis-
tance) is assumed to contain the tertiary principal axis. Since
the principal axes are perpendicular, they are defined as the
two non-common axes of the primary and the tertiary prin-
cipal planes and the second principal axis of the 3D object
is defined as their common axis.

5 Experimental Evaluation

This section provides detailed performance results of the
ROSy pose normalization method. The first step of the eval-
uation process is to set up the testing framework. The result
of pose normalization is an aligned placement of the input
3D object in space. As it is not trivial to directly quantify
the quality of the alignment, an indirect way of testing and
comparison will be addressed.

Since pose normalization procedures are primarily used
as a preprocessing step in graphics applications like visual-
ization, reconstruction from broken fragments and 3D ob-
ject retrieval, it is possible to evaluate the performance of
the proposed method through the final results of such a sys-
tem. We have chosen a state-of-the-art 3D object retrieval
methodology, by Papadakis et al. (2008) as the evaluation
vehicle. The datasets, on which the experiments were con-
ducted, are the following: the training and test sets of the
Princeton Shape Benchmark (PSB) (Shilane et al. 2004),
the classified objects of the National Taiwan University
database (NTU) (Chen et al. 2003), the MPEG-7 dataset
(Vranić 2005a), the Engineering Shape Benchmark dataset
(ESB) (Jayanti et al. 2006) the National Institute of Stan-
dards and Technology dataset (NIST), which contains shape
normalized and visually categorized 3D objects found in
the SHREC 2009 competition (Fang et al. 2008) and both
the Articulated and Non Articulated objects of the McGill
dataset (Zhang et al. 2005). From the NTU dataset, only the
classified objects were used, as unclassified objects would
not give accurate retrieval results. Table 1 shows the number
of categories and the total number of objects in each dataset
used for the experiments.

In the previous section, 1
2 Dist(·) and Angtanh(·) were de-

fined as equally weighted in the equation of the minimiza-
tion criterion k�. This choice is justified through a series of
retrieval tests with differently normalized weight factors. In
these tests ROSy was used as the pose normalization proce-
dure of the 3D object retrieval system and the resulting Dis-
counted Cumulative Gain (DCG) (Jarvelin and Kekalainen
2002) was measured on the PSB test, the NIST, the ESB

Table 1 Categories and cardinalities of evaluation datasets

3D object dataset # of categories # of objects

PSB training 90 907

PSB test 92 907

NTU 41 549

MPEG-7 135 1300

ESB 48 866

NIST 40 800

McGill Articulated 10 254

McGill Non Articulated 9 202

Table 2 Impact of the weight factor (in the minimization criterion k�)
on DCG score for four datasets. Higher DCG score is better

Weight factors DCG score
1
2 Dist(·) Angtanh(·) PSB test NIST ESB MPEG7

0 1 0.665 0.719 0.729 0.805

0.25 0.75 0.666 0.756 0.732 0.812

0.5 0.5 0.678 0.764 0.732 0.821

0.75 0.25 0.667 0.763 0.700 0.809

1 0 0.645 0.724 0.698 0.790

and the MPEG7 datasets. The DCG statistic gives a sense of
how well the overall retrieval would be viewed by a human.
Correct shapes near the front of the list are more likely to be
seen than correct shapes near the end of the list. Table 2 con-
firms that the most suitable choice is the use of equal weight
factors in the minimization criterion.

Papadakis’ 3D object retrieval system, in its original
form, uses a combination of the CPCA and NPCA algo-
rithms to achieve pose normalization of a 3D object set. This
approach defines a successful hybrid scheme that could be
further improved by the proposed method. However, to test
if the three pose normalization methods can benefit the re-
trieval process, without adding any redundant complexity
to it, a complementarity test needs to be performed. This
test assesses the number of classes that are best aligned by
each method in terms of retrieval accuracy, by performing
the DCG test on the retrieval results of the test PSB dataset.
If the percentages of success of the three methods are sim-
ilar, then the methods can be considered complementary.
Firstly, a test of the complementarity between the CPCA
and the NPCA methods was performed and then the same
evaluation was conducted for all three pose normalization
methods. The results, illustrated in Fig. 8, confirm that both
CPCA and NPCA methods are between them complemen-
tary in terms of per class retrieval accuracy and that the pro-
posed method is also complementary to them. Therefore, the
addition of the ROSy method to the pose normalization pro-
cedure, could potentially improve the overall performance
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Fig. 8 DCG retrieval scores for
the CPCA, NPCA and ROSy
pose normalization methods,
color coded by the method that
achieves the best results per
class. (a) Per class CPCA and
NPCA complementarity results.
(b) Per class CPCA, NPCA and
ROSy complementarity results.
(c) The correspondence between
class ids and class names.
Parenthesized ids refer to
plot (b)

of the retrieval system, by achieving better alignment (in
terms of retrieval accuracy) on a subset of objects where the
original two component approach fares badly.

The next step is to test whether the retrieval system can
actually benefit by using ROSy in addition to the original
pose normalization approach. This quantitative evaluation is
based on Precision-Recall (P-R) plots. In this test, for every
query object that belongs to a class C, recall is the percent-
age of objects of class C that are retrieved and precision
is the proportion of retrieved objects that belong to class C

over the total number of retrieved objects. The best score is
100% for all plots.

In Fig. 9, the P-R plot of the retrieval process on the PSB
test dataset is illustrated. The proposed triple (CPCA, NPCA
and ROSy) approach, identified as ROSy+ for the remain-
der of the paper, is compared against the CPCA, NPCA and
ROSy standalone methods and the dual (CPCA, NPCA) ap-

proach. To make the illustrated results more concrete, four
quantitative measures are also displayed: Nearest Neighbor
(NN), First Tier (FT), Second Tier (ST) and Discounted Cu-
mulative Gain (DCG) (Shilane et al. 2004). Nearest Neigh-
bor (NN) indicates the percentage of queries where the clos-
est match belongs to the query class. First Tier (FT) and Sec-
ond Tier (ST) statistics measure the recall for the (D − 1)

and 2(D − 1) closest matches respectively, where D is the
cardinality of the query’s class.

ROSy itself has similar performance to CPCA and
NPCA. However, the combination of the three pose nor-
malization methods (ROSy+) gives a significant boost to the
discriminative power of the retrieval process, outperforming
the original hybrid (CPCA, NPCA) approach. Similar to the
original methodology, the descriptor consists of three sets of
coefficients corresponding to the three aligned versions of
the object (using CPCA, NPCA and ROSy). The compari-
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Fig. 8 (Continued)

Fig. 9 Precision-Recall plot for
the Princeton Shape Benchmark
test dataset. The use of ROSy
alongside the original approach
significantly boosts the
performance of the retrieval
process

son between two objects is done between the corresponding
aligned sets, consequently, the CPCA aligned query object
is compared with the CPCA aligned version of the gallery
object, the NPCA aligned query object is compared with the
NPCA aligned version of the gallery object and similarly
for the ROSy version. The 2D and 3D features are com-
puted for three alternative rotation normalized versions of a
3D object. Thus, the final hybrid 3D shape descriptor si of

an object i is the concatenation of the 2D and 3D features
for each aligned version of the 3D object, giving:

si = (2Df CPCA
i ,2Df NPCA

i ,2Df ROSy
i ,

3Df CPCA
i ,3Df NPCA

i ,3Df ROSy
i ) (7)

where 2Df j
i and 3Df j

i are the 2D and 3D feature vectors
of model i, respectively. Each feature vector is computed
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Fig. 10 Precision-Recall plot
for the Princeton Shape
Benchmark test dataset. ROSy+
retrieval results are compared
against state-of-the-art 3D
object retrieval techniques

by an alignment of model i, using CPCA, NPCA or ROSy,
denoted by j ∈ {CPCA,NPCA,ROSy}.

To compare the descriptors s1 and s2 of two 3D objects
the following schema is adopted, to compute their distance:

Distance(s1, s2) = dist2Df + dist3Df (8)

where dist2Df and dist3Df is the distance between the 2D and
3D features, respectively, computed as:

dist2Df = min
j

(L1(2Df j

1,2Df j

2))

dist3Df = min
j

(L1(3Df j

1,3Df j

2))

(9)

where j ∈ {CPCA,NPCA,ROSy} and L1 is the Manhattan
distance between the corresponding features.

The comparison giving the minimum distance sets the
distance score between the query and gallery objects. The
notion of taking the minimum distance is based on the ex-
pectation that the best establishment of correspondences be-
tween two objects is achieved when the difference between
the shape descriptors is minimum.

In Fig. 10 it is further illustrated that the 3D ob-
ject retrieval system using ROSy+ outperforms two recent
pose normalization methods: DLA (Chaouch and Verroust-
Blondet 2009) and GSMD+SHD+R (Lian et al. 2009), the
PANORAMA descriptor (Papadakis et al. 2009) and also
three classic 3D object retrieval methods: Lightfield (Chen
et al. 2003), SH-GEDT (Kazhdan et al. 2003) and DESIRE
(Vranic 2005b) approaches. Again, the P-R plot of the re-
trieval process on the PSB test dataset and the four quantita-
tive measures (NN, FT, ST, DCG) are displayed.

To establish that increase in the discriminative power is
not dependent on the PSB dataset, the dual (CPCA, NPCA)
and the ROSy+ approaches were tested on the rest of the
available datasets. The quantitative measure scores of the

Table 3 Quantitative measures of ROSy+ and the CPCA-NPCA pose
normalization methods for the PSB train, NTU, MPEG-7, ESB, NIST,
McGill datasets. The quantitative measures of Figs. 9 and 10 are also
presented. All measures are normalized

Dataset Method NN FT ST DCG

PSB Test ROSy+ 0.779 0.524 0.659 0.756

CPCA-NPCA 0.742 0.473 0.606 0.712

CPCA 0.673 0.426 0.546 0.676

NPCA 0.677 0.402 0.524 0.664

ROSy 0.678 0.446 0.550 0.678

PANORAMA 0.753 0.479 0.603 0.750

DLA 0.713 0.429 0.552 0.687

GSMD-SHD+R 0.731 0.472 0.602 0.721

LFD 0.642 0.375 0.484 0.642

SH-GEDT 0.553 0.310 0.414 0.584

DESIRE 0.658 0.404 0.513 0.663

PSB Train ROSy+ 0.799 0.521 0.655 0.765

CPCA-NPCA 0.730 0.460 0.598 0.718

NTU ROSy+ 0.434 0.237 0.326 0.521

CPCA-NPCA 0.413 0.222 0.300 0.503

MPEG-7 ROSy+ 0.879 0.619 0.731 0.837

CPCA-NPCA 0.861 0.596 0.707 0.819

ESB ROSy+ 0.874 0.508 0.657 0.796

CPCA-NPCA 0.829 0.465 0.605 0.747

NIST ROSy+ 0.918 0.634 0.776 0.867

CPCA-NPCA 0.881 0.556 0.721 0.841

McGill Articulated ROSy+ 0.965 0.599 0.753 0.871

CPCA-NPCA 0.941 0.568 0.721 0.857

McGill Non Articulated ROSy+ 0.881 0.517 0.696 0.822

CPCA-NPCA 0.891 0.513 0.689 0.817

results are shown in Table 3. These scores show that the re-
sults are consistent throughout the datasets, revealing the
stability of the proposed approach and the gain with re-
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Fig. 11 Alignments of the ‘MAILBOX’ class: (a) ROSy pose normalization results. (b) A consistently rotated version of ROSy pose normalization
results by 90 degrees around the Z axis. (c) Results of the method proposed in Chaouch and Verroust-Blondet (2009)

spect to the original hybrid (CPCA, NPCA) system. Fur-
thermore, it is clear that ROSy+ performs better than previ-
ous methods and the recently proposed methods by Chaouch
and Verroust-Blondet, using the Depth Line Approach de-
scriptor (Chaouch and Verroust-Blondet 2009), by Lian et
al. using the combined GSMD-SHD descriptors with Recti-
linearity (Lian et al. 2009) and by Papadakis et al. using the
PANORAMA descriptor (Papadakis et al. 2009) by about
2%–5%.

Comparing the plots and the four quantitative measures,
it can be concluded that the combined use of the three com-
plementary pose normalization methods significantly ele-
vates the discriminative power of the 3D object retrieval sys-
tem. On all 8 datasets, ROSy+ is able to achieve an average
performance gain of about 3% over the previous dual ap-
proach. This gain is significant, because it is accomplished
exclusively by enhancing the pose normalization procedure
and not the core retrieval algorithm. Note that Papadakis’
object retrieval system (Papadakis et al. 2008) has achieved
state-of-the-art performance.

A visual qualitative evaluation is next provided. In
Fig. 11, comparative alignments between ROSy and the pro-
posed method by Chaouch and Verroust-Blondet (2009), on
the complete ‘MAILBOX’ class of the PSB dataset, are il-
lustrated. These alignments show that ROSy is able to pro-
duce accurate alignments, similar to those of the method
proposed by Chaouch and Verroust-Blondet, while simulta-
neously achieving better quantitative scores. As is illustrated
in Fig. 12, ROSy is also capable of producing accurate align-
ment results that, regardless of the originating class or the
morphology of the input objects, are consistent and stable.
In Fig. 12, 3D objects (a)–(d) show perfect global symmetry
against one principal plane. 3D Objects (e)–(h) show global
symmetry against one principal plane, that is not perfect
however, because of minor parts of the objects that don’t
fully match. 3D Objects (i) and (j) show global symmetry
against two principal planes simultaneously, while 3D ob-
jects (k)–(n) have local symmetries in their structures. 3D
Objects (o) and (p) exhibit no symmetry at all.
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Fig. 12 Sample alignments of 3D objects originating from different PSB classes, using ROSy pose normalization method. The illustrated 3D
objects exhibit various types of global symmetries (a)–(j), local symmetries (k)–(n) or no symmetries, at all (o)–(p)

Fig. 13 Alignments of the PSB class ‘SWINGSET’. (a) CPCA, (b) NPCA, (c) ROSy

With respect to the CPCA and NPCA approaches, ROSy
uses a combination of spatial (vertices) and angular (nor-
mals) features, to achieve 3D object alignment. The NPCA
method performs better with objects that have dominant flat
surfaces, while CPCA best aligns objects that are composed
of bumpy surfaces. The ROSy method, while able to handle
well 3D objects composed of either flat or bumpy surfaces,
also exhibits no degradation of performance in the alignment
of 3D objects that have both types of surfaces. Comparative

examples of alignments, against the CPCA and NPCA meth-
ods, on the ‘SWINGSET’ class which contains round-edged
3D objects are illustrated in Fig. 13. Also, Fig. 1 shows com-
parative alignment results for 3D objects that belong to the
‘LAMP’ class and are composed of both flat and bumpy sur-
faces.

At this point a paradox arises. Although ROSy alone
clearly produces visually better alignments than CPCA or
NPCA, its standalone retrieval results are not spectacularly
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different from those of CPCA and NPCA (Fig. 9). Since
a 3D object retrieval system is a complex procedure, only
speculations can be made about the cause. However the ex-
perimental process reveals an interesting fact: 3D objects
that belong to different classes, but have related structure
(e.g. trucks and cars) are also aligned similarly by ROSy.
Although this is correct, in terms of alignment, it possibly
interferes with the retrieval process because it enhances the
similarities between the 3D objects and hides their differ-
ences.

The proposed method was tested on a Core2Quad
2.5 GHz system, with 6 GB of RAM, running Matlab
R2009a. The system’s speed is dependent on the number
of 3D object vertices. The iterations are exhaustive in the
current implementation but an optimization method could
be developed to improve its speed. For a typical 5000 vertex
object, the time required for the pose normalization process
is about 0.8 seconds.

6 Conclusion

In this paper a novel method for 3D object pose normal-
ization, based on the reflective symmetry properties of 3D
objects, is presented. ROSy successfully complements the
CPCA and NPCA methods as a pose normalization pre-
processing step for a 3D object retrieval system. The ad-
dition of the proposed method increases the discriminative
power of the system by about 3%, over the previous best
approach. Furthermore, the proposed method is able to pro-
duce high quality alignments of 3D objects, regardless of
their originating class or morphology. These alignments are
both stable and consistent.
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