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Abstract. Itis a fact, that important information related to systems’ behavior and
dynamics, can be revealed as time passes. Observing changes over time, can often
lead to the detection of patterns and trends that might not be immediately apparent
from a single system’s snapshot. Additionally, the concept of time can be essen-
tial in understanding cause-and-effect relationships. Observing how changes in
one variable over time affect changes in another, can gain insights into the causal
relationships between different system components. Time series analysis of data
that change over time, can be a powerful tool for understanding complex systems
in the field of cyber security. Reservoir Computing (RC) is a Machine Learning
technique, using a fixed and randomly generated high-dimensional dynamic sys-
tem, called a Reservoir, to transform and classify input data. The reservoir acts
as a nonlinear and temporal filter of the input data, which is then readout by a
linear output layer. Continuous-Time Reservoir Computing (CTRC) is a type of
recurrent neural network, aiming to model the continuous-time dynamics of the
network’s neurons. It is particularly useful for applications where time is critical
and it can provide insights into the underlying system’s dynamics. This paper
proposes a next-generation CTRC for cyber defense, where the reservoir neurons
are modeled as continuous-time dynamical systems. This means that their behav-
ior is described by a system of differential equations that change over time. In
order to model the drift phenomenon, identify the abnormal changes in the data,
and adaptively stabilize the learning system. The CTRC parameters are optimized
using the Reinforcement Learning (RL) method. The proposed system, as proved
experimentally, has several advantages over discrete systems, including the ability
to handle signals with high sampling rates and to effectively capture real cyber
security signals’ continuous nature.
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1 Introduction

RC is a computational framework that utilizes the dynamics of a high-dimensional,
randomly connected network to process and learn from input signals [1]. It is an efficient
and powerful technique for solving complex machine-learning tasks, particularly those
involving time-series data. At the heart of a reservoir computing system is a reservoir,
which is a randomly connected network of nodes. The nodes in the reservoir are typically
arranged recurrently, meaning they have connections to each other that allow information
to be processed over time. The input signal is fed into the reservoir, interacting with
the network’s dynamics to produce a high-dimensional state vector. The state vector
represents the current state of the reservoir, and it captures the temporal patterns and
features of the input signal. The state vector is then fed into a readout layer, a simple,
linear layer that maps the reservoir states to the desired output [2]. The readout layer is
typically trained using linear regression or another simple learning algorithm. It learns to
produce the correct output based on the input signal and the current state of the reservoir
[3].

Reservoir computing is a machine learning algorithm employing linear optimization.
Itis suitable for processing information generated by dynamical systems, using observed
time-series data. It is important that it requires very small training data sets, and thus it
has small requirements of computing resources. One of the key advantages of reservoir
computing is that the reservoir itself is not trained. Instead, the reservoir’s random
connections and internal dynamics are fixed, and the readout layer is the only trained part
of the system. This greatly simplifies the training process and makes it more efficient.
Another advantage of RC is that it can have many nodes, enabling it to capture the input
signal’s complex temporal patterns and features. This makes it particularly well-suited
to sophisticated tasks where the input signal is a complex, time-varying waveform [4].

Next-generation automated RC [5] is an emerging technology that has the potential
to enhance cyber defense greatly. It involves applying the basic principles of RC to
analyze network traffic [6] and identify anomalies indicative of cyberattacks or other
security threats. The basic concept of the next-generation automated RC is that a high-
dimensional, randomly connected network can be used to model complex data patterns
and relationships on cyber security prospects. This can be particularly useful when
traditional rule-based detection methods are ineffective, such as zero-day attacks or
other advanced persistent threats.

One extremely novel application of next-generation automated RC for cyber defence
is the CTRC [7]. It is an extension of the RC paradigm that operates in continuous
rather than discrete time. In a traditional discrete-time reservoir computing system,
input signals are fed into the reservoir at discrete intervals. In contrast, the input signal is
processed in real-time without discretization in a CTRC system. Specifically, in CTRC,
the reservoir dynamics are described by continuous-time differential equations. The input
signal drives the reservoir dynamics, producing an output signal. The output signal is
then passed through a readout layer to produce the desired output. The continuous-time
nature of the system enables the reservoir to process input signals in real time without
discretization. This is particularly useful in applications where the input signal is a
continuous data stream, such as large-scale network traffic analyses, which can be used
to make predictions and detect anomalies in continuous data streams [8].
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One of the challenges of CTRC is that it can be more difficult to train and opti-
mize than discrete-time RC. This is because the reservoir dynamics are described by
continuous-time differential equations, which can be more complex to model and opti-
mize than discrete-time ones. Specifically, the biggest challenge with continuous-time
differential equations is that they require numerical integration, which can be computa-
tionally expensive and lead to instability or accuracy issues if not implemented correctly.
Furthermore, optimizing continuous-time differential equations can be more difficult
than that discrete-time equations, as the optimization problem becomes a Partial Differ-
ential Equation (PDE) instead of a simple algebraic equation. In order to overcome these
challenges, the proposed CTRC’s system parameters are optimized using RL method.

2 Methodology

The proposed CTRC system is modelled using continuous-time differential equations,
and the system parameters are optimized using the RL method and, specifically, the Q-
Learning approach. The following paragraphs are presenting the specific steps required
to combine these approaches:

2.1 Defining the CTRC System

The architecture of a CTRC system, includes the input, reservoir, and output layers. The
respective connection and input weights are random in RC. The reservoir weights are
scaled in such a way as to ensure the Echo State Property (ESP), which is defined as
the state in which the reservoir is an “echo” of the entire input history. Of course, this is
partly determined by its architecture [9]. The discrete layers of the CTRC are only those
of input u(n) and output y(n) as they are defined by the problem. The hidden layers are
clustered in an RC region, and their number is indistinguishable. The neurons in the RC,
x(n), are connected by some percentage, which determines how sparsity the RC will be.
A depiction of the RC architecture [10] is presented in the following Fig. 1.

__“soutput y(n)

Input Layer Reservoir Layer Output Layer

Fig. 1. RC architecture

The synaptic associations that link the levels together and the RC are characterized
by a value that identifies the weights [11]. In CTRC, each input neuron is connected via
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Wi"l-j weights (i-input neuron, j-neuron in the RC) to each neuron from the RC. Although
normalized, these weights are determined randomly before training, and their values are
the final ones as they do not change during training. Also, each RC neuron is connected
to each other neuron, via weights W (j-neuron in RC, k-neuron RC, and j # k). The
respective weights, although normalized, are randomly determined before training and
their values do not change. We use x/)(¢) € RV to declare the status of level / at time 7.
By omitting the bias conditions, the first level state transition function is defined by the
following Eq. 1, [12, 13]:

D) = (1 _ a(1>)x<”(r “4a® tanh(Winu(t) + WO 1)) (1)
For each level higher than / > 1 Eq. 1, has the following form (2) [7, 14]:

XDty = (1 - a<’>)x<’>(z “4a® tanh(Wlx’—l(z) + WD 1)) )

where W;, € RV#*NU is the input weight matrix, W e RVRXNR i the recurrent weight
matrix for layer I, W) € RN#*NR is the matrix containing the connection weights between
layer I-1 and [, a) is the leaky parameter of layer / and tanh is the Tangent Hyperbolic
function. Finally, each RC neuron is connected via W, weights (j-neuron in the RC,
m-neuron input) to the neurons in the output layer. The weights, located in the readout
layer, are the only ones trained to get their final values [1, 15].

2.2 Defining the Differential Equations

The differential Eqgs. 3 and 4, govern the behaviour of the state vectors x1(¢) and x2(¢)
in the continuous-time reservoir computing system, enable the system to capture both
temporal and spatial patterns of the network’s traffic data. They are given by [16, 17]:

dxl/dt = —x1(t) + £ L(W 1x1(£) + Winlu(t)) 3)

dx2/dt = —x2(t) + F2(W2x2(t) + Win2u(t) + Vx1(£)) 4)

In the above Eqgs. 3, 4, x1(¢) represents the state vector that captures the temporal
patterns of the network traffic data, while x2(t) represents the state vector that captures
the spatial patterns of the data. In Eq. 3, the term —x1(#) represents the leaky integrator,
which causes the state vector to decay over time. The term f 1(W1 x 1(t) + Winlu(t))
represents the nonlinear activation function, which maps the input signal and the current
state of the reservoir to a new state vector [18]. In Eq. 4, the term —x2(¢) represents
the leaky integrator, and the term f2(W2 x 2(t) + Win2u(t) + V x 1(t)) represents
the nonlinear activation function. Moreover, V is a weight matrix that captures the
interaction between the temporal and spatial patterns of the network traffic data. The
above differential equations describe how the state vectors x1(¢) and x2(¢) change over
time in response to the input signal u(t) and the current state of the reservoir. The weight
matrices W1, W2, Winl, Win2, and V are optimized using Q-Learning algorithm to
minimize the difference between the predicted output of the system and the true labels
in a training dataset in order to model the drift phenomenon, identify the abnormal
changes in the data, and adaptively stabilize the learning system.
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2.3 Defining the RL Algorithm

The RL algorithm optimizes the CTRC system parameters. This involves using the
Q-learning algorithm. Q-learning is a RL algorithm, and the following are the exact
methodology steps to use Q-learning to optimize the CTRC system parameters [19, 20]:

1. Defining the state space: The state space for the Q-learning algorithm is based on
the output of the CTRC system. The state space captures relevant information about
the current network traffic analysis of the cyber defense scenario. The state space,
denoted by S, represents the possible states of the cyber defense system at any given
time. The state space can be defined in terms of the output of the CTRC system, which
might include features such as network traffic patterns, system logs, or other relevant
data. The state space can be discretized into a set of discrete states, S = {si, s2,...,
sn }, where n is the number of discrete states.

2. Defining the action space: The action space for the Q-learning algorithm is based on
the possible actions that the agent can take to mitigate cyber-attacks. For example, the
action space might include blocking traffic from a specific IP address, shutting down a
compromised system, or initiating a backup of critical data. The action space, denoted
by A, represents the set of actions that the agent can take to mitigate cyber-attacks.
The action space can be defined based on the available defensive actions, such as
blocking traffic from a specific IP address, shutting down a compromised system, or
initiating a backup of critical data. The action space can be discretized into a set of
discrete actions, A = {ay, ap,..., ay }, where m is the number of discrete actions.

3. Defining the reward function: The reward function for the Q-learning algorithm is
based on the agent’s performance in the cyber defence task. The reward function
encourages the agent to mitigate cyber-attacks effectively and discourage ineffective
or harmful actions. The reward function, denoted by R, is a function that maps a state-
action pair to a scalar reward value. The reward function should encourage the agent
to mitigate cyber-attacks effectively and discourage ineffective or harmful actions.
The reward function 5, can be defined as follows [21]:

R(s,a) = r(s, a) 5

where (s, a) is the immediate reward associated with taking action a in state s.

4. Initializing the Q-table: The Q-table is a lookup table that maps states and actions to
expected rewards. The Q-table is initially set to arbitrary values. The Q-table, denoted
by Q, is a lookup table that maps states and actions to expected rewards. The Q-table
is initially set to arbitrary values. The Q-value for a state-action pair (s, a) is denoted
by Q(s, a).

5. Running the Q-learning algorithm: The use of the Q-learning algorithm to update
the Q-table by iteratively selecting actions based on the current state and the values
in the Q-table. The Q-table is updated using the Bellman equation, which estimates
the expected future reward from the current state and action. The algorithm works as
follows [19, 22]:

a. At each time step t, the agent observes the current state st and selects an action at
based on an exploration-exploitation tradeoff.

b. The agent receives an immediate reward rt = r(st, at) and transitions to a new
state sz 4 1.
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c. The Q-value for the current state-action pair (st, at) is updated using the Bellman
Eq. 6:

Q(st, ar) < Q(st, at) + a[rt + ymaxaa'Q(st + 1,a’) — Q(st,at)] ~ (6)

where « is the learning rate, y is the discount factor, and maxa’Q(st + 1, a’) is the
maximum expected reward over all actions in the next state st + 1.

d. The Q-table is updated at each time step, and the process continues until
convergence is achieved.

6. Training the CTRC system: The Q-table adjusts the CTRC system parameters, such
as the weight matrices and bias terms. The CTRC system is trained to optimize the
expected future reward as the Q-table estimates.

7. Evaluating the performance: The performance evaluation process of the trained CTRC
system is implemented based on a test dataset. This involves measuring accuracy,
precision, recall, and F1-score metrics.

8. Refining the system: The CTRC algorithm parameters are refined based on the eval-
uation results. This involves automatically adjusting the set of parameters optimized
in the Q-learning process.

3 Experiments

To provide a perfect simulation environment, the Factry.io data collecting platform and
the InfluxDB were used [23]. Factry.io is a data collection and visualization platform
that enables users to easily collect, monitor, and analyze data from various sources, such
as machines, sensors, and devices [24]. It provides a user-friendly interface to connect to
different data sources, set up data collection parameters, and visualize data in real-time.
InfluxDB, on the other hand, is a time-series database designed to handle high volumes
of data that are time-stamped. It is optimized for storing and retrieving time-stamped data
and enables fast queries and data analysis. InfluxDB supports a variety of data types and
formats, including numerical, string, and Boolean data, and provides a SQL-like query
language to access and manipulate data. Factry.io can integrate with InfluxDB to store
and query time-series data collected from various sources. Users can configure Factry.io
to send data to InfluxDB, which can then be used for further analysis or visualization.
InfluxDB’s efficient data storage and retrieval capabilities make it an ideal choice for
managing large volumes of time-series data collected by Factry.io.

The goal was to gather data about the industrial environment using the open-source
OPC-UA collector protocol [25]. It is a time series of sensor data that has been compiled.
In order to store sensor data in InfluxDB, programmable PLC controllers, SCADA sys-
tems, and construction equipment are used to collect the data. Time series or timestamps
are best served by the storage database. Measurements or events that are tracked through-
out time and gathered as time series data are used to create them. Such occurrences may
include transactions, application performance monitoring, and server analytics [26]. Sen-
sors or different kinds of analytics are examples of potential sources. In this instance,
data for one year was gathered from three sensors’ hourly quantifiable values within the
context of a machine condition that runs continuously. The attack modifies the sensor
settings to alter how some mechanisms operate, but the meters and displays of the entire
system are not aware of this.
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There is a tank specifically for raw water storage. A water level sensor is part of this,
along with a valve that opens when the sensor detects a level of less than or equal to 0.5 m
and closes when the level is higher than 0.8 m. Also, it has a pump whose operation
is based on a procedure that separates the pressure levels through a semipermeable
membrane. This is seen as a safety device because the pump shuts off immediately
if the water level in the tank falls below 0.25 m. The attacker wants to increase the
water without being noticed by a typical detection system that looks for irregularities.
This is accomplished by altering the sensor and actuator information and creating the
proper packets, which are altered so that the devices’ functionality can be changed by
the fieldbus communication.

The model was trained to recognize anomalies during the operation of the SCADA
automations that manage the water tank in the situation under examination using the
above-described technique. The success or failure of the anomaly recognition approach
is largely dependent on the class separation threshold. This research suggests a trustwor-
thy heuristic approach of selection, based only on assessment criteria, to identify an ideal
threshold. The suggested technique specifically implies that a distance function, which
calculates the distance d between the objects and the appropriate target category, is con-
structed during the training phase. For the binary class separation (normal or abnormal),
a threshold is utilized.

The proposed algorithm calculating the density around each data point in order to
identify the dynamic threshold. This is achieved by counting the number of points in a
user-defined neighborhood (Eps-Neighbourhood) with the definition of thresholds. The
purpose is to locate points in the center of the areas (core), on their borders (border),
and points that involve noise (noise). The extra data points are added to the center of
the regions if they are densely accessible, i.e., there is a chain of core points where each
one belongs to the neighborhood (Eps-Neighborhood) of the next point and therefore to
distinguish the extreme values for each time frame. Specifically, the neighborhood area
of a point p is defined as the set of points for which the Euclidean distance between the
points p, g is smaller than the parameter Eps [27, 28]:

Ngps(p) = {q € DI dist(p, q) < Eps} )

provided that p = (p1, p2) and g = (g1, ¢2), the Euclidean distance is defined as:

J@pn? + @rp? ®)

So, a point p is considered to be reachable from a point g based on a density
determined by the parameters Eps, MinPts if:

p € NEps (@) and NEps (¢) > MinPts 9)

Two plots to visualize the dynamic threshold calculation depicted in the following
Fig. 2.

Samples (outliers) are considered abnormal when the anomaly score departs from
the expected behavior by the application of the dynamic threshold.
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Fig. 2. Dynamic threshold calculation

Evaluating the performance of anomaly detection algorithms is important to under-

stand how well they are able to detect anomalies in a given dataset. Here are the used
performance metrics for anomaly detection [29-31]:

1.
2.

W

9]

Accuracy: The percentage of correctly classified data points as normal or anomalous.
RMSE: It measures the average distance between the predicted and actual values in
a dataset taking into account the scale of the values.

. Precision: The proportion of true positive predictions out of all positive predictions.
. Recall (Sensitivity): The proportion of true positive predictions out of all actual

positives

. F-Score: The harmonic mean of precision and recall.
. AUC: A metric that measures the performance of the model across different thresholds

for labeling data as normal or anomalous. It is calculated as the area under the ROC
curve, which plots the true positive rate (sensitivity) against the false positive rate (1-
specificity) at different threshold values. A higher AUC indicates better performance.

Table 1 shows the classification accuracy and performance metrics of five different

classifiers: CTRC, One Class SVM, Long Short-Term Memory (LSTM), Isolation Forest

and k-NN.
Table 1. Classification Accuracy and Performance Metrics

Classifier Accuracy RMSE Precision Recall F-Score AUC
CTRC 97.89% 0.0821 0.980 0.980 0.978 0.9887
One Class SVM 93.66% 0.0912 0.937 0.936 0.937 0.9752
LSTM 93.17% 0.0932 0.932 0.933 0.933 0.9703
Isolation Forest 91.38% 0.1007 0914 0914 0.913 0.9588
k-NN 87.99% 0.1185 0.880 0.880 0.880 0.9502

In the above Table 1, it is shown that the CTRC has the highest accuracy (97.89%)

and AUC (0.9887), as well as the highest precision, recall, and F-score. One Class
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SVM, LSTM, Isolation Forest and k-NN also have relatively high accuracy, but their
performance metrics are lower than those of the CTRC. In terms of RMSE, the CTRC
has the lowest value (0.0821), indicating that its predictions are on average closer to the
actual values than the other classifiers. The Precision, Recall, and F-score for CTRC are
also relatively high, indicating that it is able to correctly identify positive cases while
minimizing false positives.

The CTRC model as a type of Recurrent Neural Network has shown to be effective
for time series forecasting and classification tasks. Specifically, CTRC can be trained
easily, using a single forward pass through the reservoir, making it computationally effi-
cient and faster to train than other recurrent neural networks such as LSTM networks.
This efficiency is beneficial for real-time applications where the model needs to make
predictions quickly. In addition is robust to noise in the input data and to perform well
even when the input data is corrupted or contains missing values. This robustness is use-
ful in real-world cybersecurity applications where the data may not be perfectly clean.
Moreover, CTRC is relatively easy to implement and does not require complex optimiza-
tion algorithms or hyperparameter tuning. This make it more accessible to researchers
and practitioners who may not have extensive experience with machine learning. Finally,
it adapts to changing input data over time due to the differential equation, allowing it
to continuously learn and improve its predictions based on Q-learning algorithm. This
adaptability is extremely useful in the cyber defense applications where the input data
changes frequently or where there are multiple sources of variability.

Overall, the CTRC model’s efficiency, robustness, ease of implementation, and adapt-
ability make it a promising approach for time series classification and forecasting tasks,
and it may outperform other classifiers in certain scenarios. In conclusion, based on the
obtained values of the performance indices and considering the objective difficulties
raised in this research, the proposed model has been proven very efficient, able to cope
with complex situations and to recognize anomalies.

4 Discussion and Conclusions

This research presents a next-generation anomaly detection model for cyber defence
where the reservoir neurons are modelled as continuous-time dynamical systems. The
CTRC system uses the dynamics of a high-dimensional, randomly connected network to
process and learn from complicated input signals. In particular, CTRC expands the con-
stantly operating reservoir computing paradigm. It provides discretization-free real-time
processing of input signals, and the Q-Learning method is used to optimize the system
parameters. The fundamental goal of CTRC is to convert the time-series data input into
a high-dimensional representation that can be applied to tasks involving classification or
prediction. The input is transformed through the reservoir, a fixed network of nonlinear
dynamical systems with random initialization. Differential equations with a continuous
time are used to describe reservoir dynamics. The output layer is trained to distinguish
between normal (i.e., non-anomalous) and abnormal data to apply CTRC for anomaly
detection.

The proposed approach is extremely helpful when conventional rule-based detection
techniques fall short, such as zero-day assaults or other sophisticated, persistent threats.
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It also has several advantages over other machine learning methods, such as a quick and
easy training procedure and the ability to interpret time-series data effectively.

While Continuous-Time Reservoir Computing (CTRC) has shown promising results,

there are two specific limitations to consider in future research using this model:

1.

Model Complexity: CTRC can have a high model complexity due to many reservoir
nodes and recurrent connections. This can make it difficult to interpret and analyze
the model and make it prone to overfitting.

. Limited Memory: The reservoir in CTRC has a limited memory capacity, which

means that it may struggle to process long-term dependencies in data. This makes it
less suitable for applications with important long-term patterns or trends.
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