Next Generation Automated Reservoir
Computing for Cyber Defense

Konstantinos Demertzis! ® and Lazaros Iliadis?

1 School of Science and Technology, Informatics Studies, Hellenic Open University, Patra,
Greece
demertzis.konstantinos@ac.eap.gr
2 School of Engineering, Department of Civil Engineering, Faculty of Mathematics
Programming and General Courses, Democritus University of Thrace, Kimmeria, Xanthi, Greece
liliadis@civil.duth.gr

Abstract. Itis a fact, that important information related to systems’ behavior and
dynamics, can be revealed as time passes. Observing changes over time, can often
lead to the detection of patterns and trends that might not be immediately apparent
from a single system’s snapshot. Additionally, the concept of time can be essen-
tial in understanding cause-and-effect relationships. Observing how changes in
one variable over time affect changes in another, can gain insights into the causal
relationships between different system components. Time series analysis of data
that change over time, can be a powerful tool for understanding complex systems
in the field of cyber security. Reservoir Computing (RC) is a Machine Learning
technique, using a fixed and randomly generated high-dimensional dynamic sys-
tem, called a Reservoir, to transform and classify input data. The reservoir acts
as a nonlinear and temporal filter of the input data, which is then readout by a
linear output layer. Continuous-Time Reservoir Computing (CTRC) is a type of
recurrent neural network, aiming to model the continuous-time dynamics of the
network’s neurons. It is particularly useful for applications where time is critical
and it can provide insights into the underlying system’s dynamics. This paper
proposes a next-generation CTRC for cyber defense, where the reservoir neurons
are modeled as continuous-time dynamical systems. This means that their behav-
ior is described by a system of differential equations that change over time. In
order to model the drift phenomenon, identify the abnormal changes in the data,
and adaptively stabilize the learning system. The CTRC parameters are optimized
using the Reinforcement Learning (RL) method. The proposed system, as proved
experimentally, has several advantages over discrete systems, including the ability
to handle signals with high sampling rates and to effectively capture real cyber
security signals’ continuous nature.

Keywords: Reservoir Computing - Continuous-Time Reservoir Computing -
Cyber Defense - Time Series Analysis

© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023

I. Maglogiannis et al. (Eds.): AIAI 2023, IFIP AICT 676, pp. 16-27, 2023.
https://doi.org/10.1007/978-3-031-34107-6_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34107-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-34107-6_2

Next Generation Automated Reservoir Computing for Cyber Defense 17
1 Introduction

RC is a computational framework that utilizes the dynamics of a high-dimensional,
randomly connected network to process and learn from input signals [1]. It is an efficient
and powerful technique for solving complex machine-learning tasks, particularly those
involving time-series data. At the heart of a reservoir computing system is a reservoir,
which is a randomly connected network of nodes. The nodes in the reservoir are typically
arranged recurrently, meaning they have connections to each other that allow information
to be processed over time. The input signal is fed into the reservoir, interacting with
the network’s dynamics to produce a high-dimensional state vector. The state vector
represents the current state of the reservoir, and it captures the temporal patterns and
features of the input signal. The state vector is then fed into a readout layer, a simple,
linear layer that maps the reservoir states to the desired output [2]. The readout layer is
typically trained using linear regression or another simple learning algorithm. It learns to
produce the correct output based on the input signal and the current state of the reservoir
[3].

Reservoir computing is a machine learning algorithm employing linear optimization.
Itis suitable for processing information generated by dynamical systems, using observed
time-series data. It is important that it requires very small training data sets, and thus it
has small requirements of computing resources. One of the key advantages of reservoir
computing is that the reservoir itself is not trained. Instead, the reservoir’s random
connections and internal dynamics are fixed, and the readout layer is the only trained part
of the system. This greatly simplifies the training process and makes it more efficient.
Another advantage of RC is that it can have many nodes, enabling it to capture the input
signal’s complex temporal patterns and features. This makes it particularly well-suited
to sophisticated tasks where the input signal is a complex, time-varying waveform [4].

Next-generation automated RC [5] is an emerging technology that has the potential
to enhance cyber defense greatly. It involves applying the basic principles of RC to
analyze network traffic [6] and identify anomalies indicative of cyberattacks or other
security threats. The basic concept of the next-generation automated RC is that a high-
dimensional, randomly connected network can be used to model complex data patterns
and relationships on cyber security prospects. This can be particularly useful when
traditional rule-based detection methods are ineffective, such as zero-day attacks or
other advanced persistent threats.

One extremely novel application of next-generation automated RC for cyber defence
is the CTRC [7]. It is an extension of the RC paradigm that operates in continuous
rather than discrete time. In a traditional discrete-time reservoir computing system,
input signals are fed into the reservoir at discrete intervals. In contrast, the input signal is
processed in real-time without discretization in a CTRC system. Specifically, in CTRC,
the reservoir dynamics are described by continuous-time differential equations. The input
signal drives the reservoir dynamics, producing an output signal. The output signal is
then passed through a readout layer to produce the desired output. The continuous-time
nature of the system enables the reservoir to process input signals in real time without
discretization. This is particularly useful in applications where the input signal is a
continuous data stream, such as large-scale network traffic analyses, which can be used
to make predictions and detect anomalies in continuous data streams [8].



18 K. Demertzis and L. Iliadis

One of the challenges of CTRC is that it can be more difficult to train and opti-
mize than discrete-time RC. This is because the reservoir dynamics are described by
continuous-time differential equations, which can be more complex to model and opti-
mize than discrete-time ones. Specifically, the biggest challenge with continuous-time
differential equations is that they require numerical integration, which can be computa-
tionally expensive and lead to instability or accuracy issues if not implemented correctly.
Furthermore, optimizing continuous-time differential equations can be more difficult
than that discrete-time equations, as the optimization problem becomes a Partial Differ-
ential Equation (PDE) instead of a simple algebraic equation. In order to overcome these
challenges, the proposed CTRC’s system parameters are optimized using RL method.

2 Methodology

The proposed CTRC system is modelled using continuous-time differential equations,
and the system parameters are optimized using the RL method and, specifically, the Q-
Learning approach. The following paragraphs are presenting the specific steps required
to combine these approaches:

2.1 Defining the CTRC System

The architecture of a CTRC system, includes the input, reservoir, and output layers. The
respective connection and input weights are random in RC. The reservoir weights are
scaled in such a way as to ensure the Echo State Property (ESP), which is defined as
the state in which the reservoir is an “echo” of the entire input history. Of course, this is
partly determined by its architecture [9]. The discrete layers of the CTRC are only those
of input u(n) and output y(n) as they are defined by the problem. The hidden layers are
clustered in an RC region, and their number is indistinguishable. The neurons in the RC,
x(n), are connected by some percentage, which determines how sparsity the RC will be.
A depiction of the RC architecture [10] is presented in the following Fig. 1.

__“soutput y(n)

Input Layer Reservoir Layer Output Layer

Fig. 1. RC architecture

The synaptic associations that link the levels together and the RC are characterized
by a value that identifies the weights [11]. In CTRC, each input neuron is connected via



Next Generation Automated Reservoir Computing for Cyber Defense 19

Wi"l-j weights (i-input neuron, j-neuron in the RC) to each neuron from the RC. Although
normalized, these weights are determined randomly before training, and their values are
the final ones as they do not change during training. Also, each RC neuron is connected
to each other neuron, via weights W (j-neuron in RC, k-neuron RC, and j # k). The
respective weights, although normalized, are randomly determined before training and
their values do not change. We use x/)(¢) € RV to declare the status of level / at time 7.
By omitting the bias conditions, the first level state transition function is defined by the
following Eq. 1, [12, 13]:

D) = (1 _ a(1>)x<”(r “4a® tanh(Winu(t) + WO 1)) (1)
For each level higher than / > 1 Eq. 1, has the following form (2) [7, 14]:

XDty = (1 - a<’>)x<’>(z “4a® tanh(Wlx’—l(z) + WD 1)) )

where W;, € RV#*NU is the input weight matrix, W e RVRXNR i the recurrent weight
matrix for layer I, W) € RN#*NR is the matrix containing the connection weights between
layer I-1 and [, a) is the leaky parameter of layer / and tanh is the Tangent Hyperbolic
function. Finally, each RC neuron is connected via W, weights (j-neuron in the RC,
m-neuron input) to the neurons in the output layer. The weights, located in the readout
layer, are the only ones trained to get their final values [1, 15].

2.2 Defining the Differential Equations

The differential Eqgs. 3 and 4, govern the behaviour of the state vectors x1(¢) and x2(¢)
in the continuous-time reservoir computing system, enable the system to capture both
temporal and spatial patterns of the network’s traffic data. They are given by [16, 17]:

dxl/dt = —x1(t) + £ L(W 1x1(£) + Winlu(t)) 3)

dx2/dt = —x2(t) + F2(W2x2(t) + Win2u(t) + Vx1(£)) 4)

In the above Eqgs. 3, 4, x1(¢) represents the state vector that captures the temporal
patterns of the network traffic data, while x2(t) represents the state vector that captures
the spatial patterns of the data. In Eq. 3, the term —x1(#) represents the leaky integrator,
which causes the state vector to decay over time. The term f 1(W1 x 1(t) + Winlu(t))
represents the nonlinear activation function, which maps the input signal and the current
state of the reservoir to a new state vector [18]. In Eq. 4, the term —x2(¢) represents
the leaky integrator, and the term f2(W2 x 2(t) + Win2u(t) + V x 1(t)) represents
the nonlinear activation function. Moreover, V is a weight matrix that captures the
interaction between the temporal and spatial patterns of the network traffic data. The
above differential equations describe how the state vectors x1(¢) and x2(¢) change over
time in response to the input signal u(t) and the current state of the reservoir. The weight
matrices W1, W2, Winl, Win2, and V are optimized using Q-Learning algorithm to
minimize the difference between the predicted output of the system and the true labels
in a training dataset in order to model the drift phenomenon, identify the abnormal
changes in the data, and adaptively stabilize the learning system.



20 K. Demertzis and L. Iliadis

2.3 Defining the RL Algorithm

The RL algorithm optimizes the CTRC system parameters. This involves using the
Q-learning algorithm. Q-learning is a RL algorithm, and the following are the exact
methodology steps to use Q-learning to optimize the CTRC system parameters [19, 20]:

1. Defining the state space: The state space for the Q-learning algorithm is based on
the output of the CTRC system. The state space captures relevant information about
the current network traffic analysis of the cyber defense scenario. The state space,
denoted by S, represents the possible states of the cyber defense system at any given
time. The state space can be defined in terms of the output of the CTRC system, which
might include features such as network traffic patterns, system logs, or other relevant
data. The state space can be discretized into a set of discrete states, S = {si, s2,...,
sn }, where n is the number of discrete states.

2. Defining the action space: The action space for the Q-learning algorithm is based on
the possible actions that the agent can take to mitigate cyber-attacks. For example, the
action space might include blocking traffic from a specific IP address, shutting down a
compromised system, or initiating a backup of critical data. The action space, denoted
by A, represents the set of actions that the agent can take to mitigate cyber-attacks.
The action space can be defined based on the available defensive actions, such as
blocking traffic from a specific IP address, shutting down a compromised system, or
initiating a backup of critical data. The action space can be discretized into a set of
discrete actions, A = {ay, ap,..., ay }, where m is the number of discrete actions.

3. Defining the reward function: The reward function for the Q-learning algorithm is
based on the agent’s performance in the cyber defence task. The reward function
encourages the agent to mitigate cyber-attacks effectively and discourage ineffective
or harmful actions. The reward function, denoted by R, is a function that maps a state-
action pair to a scalar reward value. The reward function should encourage the agent
to mitigate cyber-attacks effectively and discourage ineffective or harmful actions.
The reward function 5, can be defined as follows [21]:

R(s,a) = r(s, a) 5

where (s, a) is the immediate reward associated with taking action a in state s.

4. Initializing the Q-table: The Q-table is a lookup table that maps states and actions to
expected rewards. The Q-table is initially set to arbitrary values. The Q-table, denoted
by Q, is a lookup table that maps states and actions to expected rewards. The Q-table
is initially set to arbitrary values. The Q-value for a state-action pair (s, a) is denoted
by Q(s, a).

5. Running the Q-learning algorithm: The use of the Q-learning algorithm to update
the Q-table by iteratively selecting actions based on the current state and the values
in the Q-table. The Q-table is updated using the Bellman equation, which estimates
the expected future reward from the current state and action. The algorithm works as
follows [19, 22]:

a. At each time step t, the agent observes the current state st and selects an action at
based on an exploration-exploitation tradeoff.

b. The agent receives an immediate reward rt = r(st, at) and transitions to a new
state sz 4 1.



Next Generation Automated Reservoir Computing for Cyber Defense 21

c. The Q-value for the current state-action pair (st, at) is updated using the Bellman
Eq. 6:

Q(st, ar) < Q(st, at) + a[rt + ymaxaa'Q(st + 1,a’) — Q(st,at)] ~ (6)

where « is the learning rate, y is the discount factor, and maxa’Q(st + 1, a’) is the
maximum expected reward over all actions in the next state st + 1.

d. The Q-table is updated at each time step, and the process continues until
convergence is achieved.

6. Training the CTRC system: The Q-table adjusts the CTRC system parameters, such
as the weight matrices and bias terms. The CTRC system is trained to optimize the
expected future reward as the Q-table estimates.

7. Evaluating the performance: The performance evaluation process of the trained CTRC
system is implemented based on a test dataset. This involves measuring accuracy,
precision, recall, and F1-score metrics.

8. Refining the system: The CTRC algorithm parameters are refined based on the eval-
uation results. This involves automatically adjusting the set of parameters optimized
in the Q-learning process.

3 Experiments

To provide a perfect simulation environment, the Factry.io data collecting platform and
the InfluxDB were used [23]. Factry.io is a data collection and visualization platform
that enables users to easily collect, monitor, and analyze data from various sources, such
as machines, sensors, and devices [24]. It provides a user-friendly interface to connect to
different data sources, set up data collection parameters, and visualize data in real-time.
InfluxDB, on the other hand, is a time-series database designed to handle high volumes
of data that are time-stamped. It is optimized for storing and retrieving time-stamped data
and enables fast queries and data analysis. InfluxDB supports a variety of data types and
formats, including numerical, string, and Boolean data, and provides a SQL-like query
language to access and manipulate data. Factry.io can integrate with InfluxDB to store
and query time-series data collected from various sources. Users can configure Factry.io
to send data to InfluxDB, which can then be used for further analysis or visualization.
InfluxDB’s efficient data storage and retrieval capabilities make it an ideal choice for
managing large volumes of time-series data collected by Factry.io.

The goal was to gather data about the industrial environment using the open-source
OPC-UA collector protocol [25]. It is a time series of sensor data that has been compiled.
In order to store sensor data in InfluxDB, programmable PLC controllers, SCADA sys-
tems, and construction equipment are used to collect the data. Time series or timestamps
are best served by the storage database. Measurements or events that are tracked through-
out time and gathered as time series data are used to create them. Such occurrences may
include transactions, application performance monitoring, and server analytics [26]. Sen-
sors or different kinds of analytics are examples of potential sources. In this instance,
data for one year was gathered from three sensors’ hourly quantifiable values within the
context of a machine condition that runs continuously. The attack modifies the sensor
settings to alter how some mechanisms operate, but the meters and displays of the entire
system are not aware of this.



22 K. Demertzis and L. Iliadis

There is a tank specifically for raw water storage. A water level sensor is part of this,
along with a valve that opens when the sensor detects a level of less than or equal to 0.5 m
and closes when the level is higher than 0.8 m. Also, it has a pump whose operation
is based on a procedure that separates the pressure levels through a semipermeable
membrane. This is seen as a safety device because the pump shuts off immediately
if the water level in the tank falls below 0.25 m. The attacker wants to increase the
water without being noticed by a typical detection system that looks for irregularities.
This is accomplished by altering the sensor and actuator information and creating the
proper packets, which are altered so that the devices’ functionality can be changed by
the fieldbus communication.

The model was trained to recognize anomalies during the operation of the SCADA
automations that manage the water tank in the situation under examination using the
above-described technique. The success or failure of the anomaly recognition approach
is largely dependent on the class separation threshold. This research suggests a trustwor-
thy heuristic approach of selection, based only on assessment criteria, to identify an ideal
threshold. The suggested technique specifically implies that a distance function, which
calculates the distance d between the objects and the appropriate target category, is con-
structed during the training phase. For the binary class separation (normal or abnormal),
a threshold is utilized.

The proposed algorithm calculating the density around each data point in order to
identify the dynamic threshold. This is achieved by counting the number of points in a
user-defined neighborhood (Eps-Neighbourhood) with the definition of thresholds. The
purpose is to locate points in the center of the areas (core), on their borders (border),
and points that involve noise (noise). The extra data points are added to the center of
the regions if they are densely accessible, i.e., there is a chain of core points where each
one belongs to the neighborhood (Eps-Neighborhood) of the next point and therefore to
distinguish the extreme values for each time frame. Specifically, the neighborhood area
of a point p is defined as the set of points for which the Euclidean distance between the
points p, g is smaller than the parameter Eps [27, 28]:

Ngps(p) = {q € DI dist(p, q) < Eps} )

provided that p = (p1, p2) and g = (g1, ¢2), the Euclidean distance is defined as:

J@pn? + @rp? ®)

So, a point p is considered to be reachable from a point g based on a density
determined by the parameters Eps, MinPts if:

p € NEps (@) and NEps (¢) > MinPts 9)

Two plots to visualize the dynamic threshold calculation depicted in the following
Fig. 2.

Samples (outliers) are considered abnormal when the anomaly score departs from
the expected behavior by the application of the dynamic threshold.



Next Generation Automated Reservoir Computing for Cyber Defense 23

Dynamic threshold: 0.26648814 19505682 Dynamic threshold: 0.370978143870606

035
0.50

030 045

025 0.40

035

0.20
030

015 025

020
0 20 40 60 80 100 0 20 40 60 80 100

Fig. 2. Dynamic threshold calculation

Evaluating the performance of anomaly detection algorithms is important to under-

stand how well they are able to detect anomalies in a given dataset. Here are the used
performance metrics for anomaly detection [29-31]:

1.
2.

W

9]

Accuracy: The percentage of correctly classified data points as normal or anomalous.
RMSE: It measures the average distance between the predicted and actual values in
a dataset taking into account the scale of the values.

. Precision: The proportion of true positive predictions out of all positive predictions.
. Recall (Sensitivity): The proportion of true positive predictions out of all actual

positives

. F-Score: The harmonic mean of precision and recall.
. AUC: A metric that measures the performance of the model across different thresholds

for labeling data as normal or anomalous. It is calculated as the area under the ROC
curve, which plots the true positive rate (sensitivity) against the false positive rate (1-
specificity) at different threshold values. A higher AUC indicates better performance.

Table 1 shows the classification accuracy and performance metrics of five different

classifiers: CTRC, One Class SVM, Long Short-Term Memory (LSTM), Isolation Forest

and k-NN.
Table 1. Classification Accuracy and Performance Metrics

Classifier Accuracy RMSE Precision Recall F-Score AUC
CTRC 97.89% 0.0821 0.980 0.980 0.978 0.9887
One Class SVM 93.66% 0.0912 0.937 0.936 0.937 0.9752
LSTM 93.17% 0.0932 0.932 0.933 0.933 0.9703
Isolation Forest 91.38% 0.1007 0914 0914 0.913 0.9588
k-NN 87.99% 0.1185 0.880 0.880 0.880 0.9502

In the above Table 1, it is shown that the CTRC has the highest accuracy (97.89%)

and AUC (0.9887), as well as the highest precision, recall, and F-score. One Class



24 K. Demertzis and L. Iliadis

SVM, LSTM, Isolation Forest and k-NN also have relatively high accuracy, but their
performance metrics are lower than those of the CTRC. In terms of RMSE, the CTRC
has the lowest value (0.0821), indicating that its predictions are on average closer to the
actual values than the other classifiers. The Precision, Recall, and F-score for CTRC are
also relatively high, indicating that it is able to correctly identify positive cases while
minimizing false positives.

The CTRC model as a type of Recurrent Neural Network has shown to be effective
for time series forecasting and classification tasks. Specifically, CTRC can be trained
easily, using a single forward pass through the reservoir, making it computationally effi-
cient and faster to train than other recurrent neural networks such as LSTM networks.
This efficiency is beneficial for real-time applications where the model needs to make
predictions quickly. In addition is robust to noise in the input data and to perform well
even when the input data is corrupted or contains missing values. This robustness is use-
ful in real-world cybersecurity applications where the data may not be perfectly clean.
Moreover, CTRC is relatively easy to implement and does not require complex optimiza-
tion algorithms or hyperparameter tuning. This make it more accessible to researchers
and practitioners who may not have extensive experience with machine learning. Finally,
it adapts to changing input data over time due to the differential equation, allowing it
to continuously learn and improve its predictions based on Q-learning algorithm. This
adaptability is extremely useful in the cyber defense applications where the input data
changes frequently or where there are multiple sources of variability.

Overall, the CTRC model’s efficiency, robustness, ease of implementation, and adapt-
ability make it a promising approach for time series classification and forecasting tasks,
and it may outperform other classifiers in certain scenarios. In conclusion, based on the
obtained values of the performance indices and considering the objective difficulties
raised in this research, the proposed model has been proven very efficient, able to cope
with complex situations and to recognize anomalies.

4 Discussion and Conclusions

This research presents a next-generation anomaly detection model for cyber defence
where the reservoir neurons are modelled as continuous-time dynamical systems. The
CTRC system uses the dynamics of a high-dimensional, randomly connected network to
process and learn from complicated input signals. In particular, CTRC expands the con-
stantly operating reservoir computing paradigm. It provides discretization-free real-time
processing of input signals, and the Q-Learning method is used to optimize the system
parameters. The fundamental goal of CTRC is to convert the time-series data input into
a high-dimensional representation that can be applied to tasks involving classification or
prediction. The input is transformed through the reservoir, a fixed network of nonlinear
dynamical systems with random initialization. Differential equations with a continuous
time are used to describe reservoir dynamics. The output layer is trained to distinguish
between normal (i.e., non-anomalous) and abnormal data to apply CTRC for anomaly
detection.

The proposed approach is extremely helpful when conventional rule-based detection
techniques fall short, such as zero-day assaults or other sophisticated, persistent threats.



Next Generation Automated Reservoir Computing for Cyber Defense 25

It also has several advantages over other machine learning methods, such as a quick and
easy training procedure and the ability to interpret time-series data effectively.

While Continuous-Time Reservoir Computing (CTRC) has shown promising results,

there are two specific limitations to consider in future research using this model:

1.

Model Complexity: CTRC can have a high model complexity due to many reservoir
nodes and recurrent connections. This can make it difficult to interpret and analyze
the model and make it prone to overfitting.

. Limited Memory: The reservoir in CTRC has a limited memory capacity, which

means that it may struggle to process long-term dependencies in data. This makes it
less suitable for applications with important long-term patterns or trends.

References

10.

11.

. Bala, A., Ismail, L., Ibrahim, R., Sait, S.M.: Applications of metaheuristics in reservoir com-

puting techniques: a review. IEEE Access 6, 58012-58029 (2018). https://doi.org/10.1109/
ACCESS.2018.2873770

Demertzis, K., Iliadis, L., Pimenidis, E.: Geo-Al to aid disaster response by memory-
augmented deep reservoir computing. Integr. Comput.-Aided Eng. 28(4), 383-398 (2021).
https://doi.org/10.3233/ICA-210657

Freiberger, M., Katumba, A., Bienstman, P., Dambre, J.: Training passive photonic reservoirs
with integrated optical readout. IEEE Trans. Neural Netw. Learn. Syst. 30(7), 1943-1953
(2019). https://doi.org/10.1109/TNNLS.2018.2874571

Li, S., Pachnicke, S.: Photonic reservoir computing in optical transmission systems. In: 2020
IEEE Photonics Society Summer Topicals Meeting Series (SUM), pp. 1-2 (2020). https://
doi.org/10.1109/SUM48678.2020.9161045

Gauthier, D.J., Bollt, E., Griffith, A., Barbosa, W.A.S.: Next generation reservoir computing.
Nat. Commun. 12(1), Art. no. 1 (2021). https://doi.org/10.1038/s41467-021-25801-2

. Demertzis, K., Kikiras, P., Tziritas, N., Sanchez, S.L., Iliadis, L.: The next generation cognitive

security operations center: network flow forensics using cybersecurity intelligence. Big Data
Cogn. Comput. 2(4), Art. no. 4 (2018). https://doi.org/10.3390/bdcc2040035

Hart, A.: Generalised Synchronisation for Continuous Time Reservoir Computers. Rochester,
NY (2021). https://doi.org/10.2139/ssrn.3987856

Smith, L.M., Kim, J.Z., Lu, Z., Bassett, D.S.: Learning continuous chaotic attractors with
a reservoir computer. Chaos Interdiscip. J. Nonlinear Sci. 32(1), 011101 (2022). https://doi.
org/10.1063/5.0075572

. Abu, U.A.,, Folly, K.A., Jayawardene, 1., Venayagamoorthy, G.K.: Echo state network (ESN)

based generator speed prediction of wide area signals in a multimachine power system. In:
2020 International SAUPEC/RobMech/PRASA Conference, pp. 1-5 (2020). https://doi.org/
10.1109/SAUPEC/RobMech/PRASA48453.2020.9041236

Duport, F., Smerieri, A., Akrout, A., Haelterman, M., Massar, S.: Fully analogue photonic
reservoir computer. Sci. Rep. 6(1), Art. no. 1 (2016). https://doi.org/10.1038/srep22381
Manjunath, G.: An echo state network imparts a curve fitting. IEEE Trans. Neural Netw.
Learn. Syst. 33(6), 25962604 (2022). https://doi.org/10.1109/TNNLS.2021.3099091

. Wang, Z., Yao, X., Huang, Z., Liu, L.: Deep echo state network with multiple adaptive

reservoirs for time series prediction. IEEE Trans. Cogn. Dev. Syst. 13(3), 693-704 (2021).
https://doi.org/10.1109/TCDS.2021.3062177


https://doi.org/10.1109/ACCESS.2018.2873770
https://doi.org/10.3233/ICA-210657
https://doi.org/10.1109/TNNLS.2018.2874571
https://doi.org/10.1109/SUM48678.2020.9161045
https://doi.org/10.1038/s41467-021-25801-2
https://doi.org/10.3390/bdcc2040035
https://doi.org/10.2139/ssrn.3987856
https://doi.org/10.1063/5.0075572
https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041236
https://doi.org/10.1038/srep22381
https://doi.org/10.1109/TNNLS.2021.3099091
https://doi.org/10.1109/TCDS.2021.3062177

26

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

K. Demertzis and L. Iliadis

Whiteaker, B., Gerstoft, P.: Memory in echo state networks and the controllability matrix rank.
In: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3948-3952 (2022). https://doi.org/10.1109/ICASSP43922.2022.
9746766

Shao, Y., Yao, X., Wang, G., Cao, S.: A new improved echo state network with multiple
output layers for time series prediction. In: 2021 6th International Conference on Robotics
and Automation Engineering (ICRAE), pp. 7-11 (2021). https://doi.org/10.1109/ICRAES
3653.2021.9657812

Li, X., Bi, E, Yang, X., Bi, X.: An echo state network with improved topology for time series
prediction. IEEE Sens. J. 22(6), 5869-5878 (2022). https://doi.org/10.1109/JSEN.2022.314
8742

Kidger, P.: On Neural Differential Equations. arXiv (2022). https://doi.org/10.48550/arXiv.
2202.02435

Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378,
686-707 (2019). https://doi.org/10.1016/j.jcp.2018.10.045

Demertzis, K., Iliadis, L.: Adaptive elitist differential evolution extreme learning machines
on big data: intelligent recognition of invasive species. In: Angelov, P., Manolopoulos, Y.,
Iliadis, L., Roy, A., Vellasco, M. (eds.) INNS 2016. AISC, vol. 529, pp. 333-345. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-47898-2_34

Bai, Z., Pang, H., Liu, M., Wang, M.: An improved Q-Learning algorithm and its application
to the optimized path planning for unmanned ground robot with obstacle avoidance. In: 2022
6th CAA International Conference on Vehicular Control and Intelligence (CVCI), pp. 1-6
(2022). https://doi.org/10.1109/CVCI56766.2022.9964859

Huang, D., Zhu, H., Lin, X., Wang, L.: Application of massive parallel computation based
Q-learning in system control. In: 2022 5th International Conference on Pattern Recognition
and Artificial Intelligence (PRAI), pp. 1-5 (2022). https://doi.org/10.1109/PRAIS5851.2022.
9904213

Yin, Z., Cao, W., Song, T., Yang, X., Zhang, T.: Reinforcement learning path planning based
on step batch Q-learning algorithm. In: 2022 IEEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA), pp. 630-633 (2022). https://doi.org/10.
1109/ICAICA54878.2022.9844553

Chouiekh, C., Yahyaouy, A., Aarab, A., Sabri, A.: Road traffic: deep g-learning agent control
traffic lights in the intersection. In: 2022 International Conference on Intelligent Systems and
Computer Vision (ISCV), pp. 1-5 (2022). https://doi.org/10.1109/ISCV54655.2022.9806135
InfluxDB Times Series Data Platform. InfluxData (2022). https://www.influxdata.com/home/.
Accessed 28 Feb 2023

Industrial IoT (IIoT) solutions for smart industries — Factry. Factry - Open Manufacturing
Intelligence. https://www.factry.io/. Accessed 28 Feb 2023

Nguyen, Q.-D., Dhouib, S., Chanet, J.-P., Bellot, P.: Towards a web-of-things approach for
OPC UA field device discovery in the industrial IoT. In: 2022 IEEE 18th International Confer-
ence on Factory Communication Systems (WFCS), pp. 1-4 (2022). https://doi.org/10.1109/
WEFCS53837.2022.9779181

Demertzis, K., Iliadis, L.S., Anezakis, V.-D.: An innovative soft computing system for smart
energy grids cybersecurity. Adv. Build. Energy Res. 12(1), 3-24 (2018). https://doi.org/10.
1080/17512549.2017.1325401

Wang, H., Wang, Y., Wan, S.: A density-based clustering algorithm for uncertain data. In:
2012 International Conference on Computer Science and Electronics Engineering, vol. 3,
pp. 102-105 (2012). https://doi.org/10.1109/ICCSEE.2012.91


https://doi.org/10.1109/ICASSP43922.2022.9746766
https://doi.org/10.1109/ICRAE53653.2021.9657812
https://doi.org/10.1109/JSEN.2022.3148742
https://doi.org/10.48550/arXiv.2202.02435
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1007/978-3-319-47898-2_34
https://doi.org/10.1109/CVCI56766.2022.9964859
https://doi.org/10.1109/PRAI55851.2022.9904213
https://doi.org/10.1109/ICAICA54878.2022.9844553
https://doi.org/10.1109/ISCV54655.2022.9806135
https://www.influxdata.com/home/
https://www.factry.io/
https://doi.org/10.1109/WFCS53837.2022.9779181
https://doi.org/10.1080/17512549.2017.1325401
https://doi.org/10.1109/ICCSEE.2012.91

28.

29.

30.

31.

Next Generation Automated Reservoir Computing for Cyber Defense 27

Khan, M.M.R., Siddique, M.A.B., Arif, R.B., Oishe, M.R.: ADBSCAN: adaptive density-
based spatial clustering of applications with noise for identifying clusters with varying den-
sities. In: 2018 4th International Conference on Electrical Engineering and Information &
Communication Technology (iCEEiCT), pp. 107-111 (2018). https://doi.org/10.1109/CEE
ICT.2018.8628138

Botchkarev, A.: Performance metrics (error measures) in machine learning regression, fore-
casting and prognostics: properties and typology. Interdiscip. J. Inf. Knowl. Manag. 14,
045-076 (2019). https://doi.org/10.28945/4184

Koyejo, O.0., Natarajan, N., Ravikumar, P.K., Dhillon, I.S.: Consistent binary classification
with generalized performance metrics. In: Advances in Neural Information Processing Sys-
tems, vol. 27 (2014). https://papers.nips.cc/paper/2014/hash/30c8e1ca872524tbf7ea5c519ca
397ee-Abstract.html. Accessed 24 Oct 2021

Liu, Y., Zhou, Y., Wen, S., Tang, C.: A strategy on selecting performance metrics for classifier
evaluation. Int. J. Mob. Comput. Multimed. Commun. [JIMCMC 6(4), 20-35 (2014). https://
doi.org/10.4018/IIMCMC.2014100102


https://doi.org/10.1109/CEEICT.2018.8628138
https://doi.org/10.28945/4184
https://papers.nips.cc/paper/2014/hash/30c8e1ca872524fbf7ea5c519ca397ee-Abstract.html
https://doi.org/10.4018/IJMCMC.2014100102

	Preface
	Workshops

	Organization
	Keynote Lectures
	Evolutionary Neural Architecture Search: Computational Efficiency, Privacy Preservation and Robustness Enhancement
	Interpretable-By-Design Prototype-Based Deep Learning
	Intelligent Mobile Sensing For Understanding Human Behaviour
	Secure, Efficient and High Performance Computing: A Computer Architecture Perspective
	How AI/Machine Learning Has the Power of Revolutionizing (for Good?) Cybersecurity?
	Contents – Part II
	Contents – Part I
	Cyber Security/Anomaly Detection
	Implicit Directed Acyclic Graphs (DAGs) for Parallel Outlier/Anomaly Detection Ensembles*-12pt
	1 Introduction
	2 Types of Outlier Ensembles
	3 Ensembles as DAGs
	4 Parallelization of DAGs
	5 Implementation and Results
	6 Conclusion
	References

	Next Generation Automated Reservoir Computing for Cyber Defense
	1 Introduction
	2 Methodology
	2.1 Defining the CTRC System
	2.2 Defining the Differential Equations
	2.3 Defining the RL Algorithm

	3 Experiments
	4 Discussion and Conclusions
	References

	One-Class Models for Intrusion Detection at ISP Customer Networks
	1 Introduction
	2 Related Work on ML-Based IDS for IoT Networks
	3 Machine Learning Models for Anomaly Detection
	3.1 Public Datasets Description
	3.2 Feature Extraction and Description
	3.3 Selected ML Methods, Decision and Tuning

	4 Results and Discussion
	4.1 Baseline and Tuned Classification Performance
	4.2 Anomaly Detection vs. Supervised Learning Comparison
	4.3 Impact of Packet Acceleration (PA) on Model Accuracy

	5 Conclusion
	References

	Explainable AI/Social Impact of AI
	An Innovative Method to Study the Social Impact of AI on the Work Environment Based on a Multi-dimensional Human-Centred Analysis of the Worker-AI Team
	1 Introduction
	2 The Research Context
	3 The Multi-dimensional Model
	3.1 System Dimension
	3.2 Social and Human Dimension
	3.3 Strategic Dimension
	3.4 Core Framework

	4 The Research Methodology and Use-Cases Selection
	5 The Analysis of the Results: The Preliminary Taxonomy
	5.1 Management Consistency
	5.2 System Understanding
	5.3 Worker’s Adherence
	5.4 Worker’s Profiling

	6 Conclusions and Future Work
	References

	CaTabRa: Efficient Analysis and Predictive Modeling of Tabular Data
	1 Introduction
	1.1 Related Work

	2 The CaTabRa System
	2.1 General Workflow
	2.2 Model Training and Hyperparameter Tuning: AutoML
	2.3 Performance Reports
	2.4 Model Explanations
	2.5 Out-of-Distribution Detection
	2.6 Utilities for Working with Longitudinal Data

	3 Use-Cases
	3.1 Use-Case 1: COVID-19 Prediction
	3.2 Use-Case 2: ICU Mortality Prediction

	4 Conclusion
	References

	Explaining Machine Learning-Based Feature Selection of IDS for IoT and CPS Devices
	1 Introduction
	2 Description of Methodology
	2.1 Permutation Importance and Feature Selection
	2.2 Explainable AI Tools

	3 Datasets and Preprocessing
	3.1 IDS Datasets
	3.2 Data Preprocessing
	3.3 ML Models and Hyperparameter Selection

	4 Result and Discussion
	5 Conclusion
	References

	Explaining the Unexplainable: Role of XAI for Flight Take-Off Time Delay Prediction
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Prediction Models
	2.3 Explanation Models
	2.4 Validation Approaches

	3 Explaining Take-Off Delay Prediction
	3.1 Phase 1: Data Preparation
	3.2 Phase 2: Development
	3.3 Phase 3: Validation

	4 Results and Discussion
	4.1 Quantitative Evaluation
	4.2 User Evaluation

	5 Conclusions
	References

	Towards Autonomous Developmental Artificial Intelligence: Case Study for Explainable AI
	1 Introduction
	2 Requirements for Today’s Autonomous Artificial Intelligence
	2.1 Computational Efficiency of Learning Algorithms
	2.2 Self-adaptation
	2.3 Explainability of Learning Algorithms
	2.4 Summary of Desired Learning Attributes

	3 Case Study of Self-adaptive Unsupervised Learning: TMGWR
	3.1 Sensorimotor Map Learning
	3.2 Suitability for Autonomous Learning
	3.3 Explainability in the TMGWR-Based Algorithm

	4 Conclusions
	References

	Graph Neural Networks/Constraint Programming
	Efficient Spatio-Temporal Graph Neural Networks for Traffic Forecasting
	1 Introduction
	2 Related Work
	2.1 Traffic Forecasting
	2.2 Graph Pooling

	3 The Proposed Efficient Spatio-Temporal Net
	3.1 Preliminaries
	3.2 Temporal Pooling
	3.3 Graph Pooling
	3.4 Architecture

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Experimental Results

	5 Conclusion
	References

	GCN-based Reinforcement Learning Approach for Scheduling DAG Applications
	1 Introduction
	2 RL Scheduling
	2.1 System Model
	2.2 RL Scheduler Components

	3 Experiments
	4 Results
	4.1 Dataset 1 - FCNN Agent
	4.2 Dataset 2 - FCNN Agent
	4.3 Dataset 1 - GCN Based Network
	4.4 Dataset 2 - GCN Based Network

	5 Comparative Analysis with Existing Algorithms
	6 Conclusion
	References

	Prediction of Drug Interactions Using Graph-Topological Features and GNN
	1 Introduction
	2 Methodology
	2.1 Graph Neural Network for DDI Modeling
	2.2 GraphSAGE
	2.3 Feature Generation

	3 Experiments and Results
	3.1 Dataset
	3.2 Experimental Setup

	4 Conclusions
	References

	Scheduling the Service of Cargo Vessels in a Single Port with Spatial and Temporal Constraints
	1 Introduction
	2 Problem Definition
	3 Proposed Scheduling Algorithms
	3.1 Optimal Algorithm
	3.2 FCFS Heuristic Algorithm
	3.3 ``Smart'' Heuristic Algorithm

	4 Evaluation
	4.1 Algorithms' Performance Evaluation
	4.2 Execution Times

	5 Conclusions and Future Work
	References

	IoT/Fuzzy Modeling/Augmented Reality
	Improving Supply Chain Management by Integrating RFID with IoT Shared Database: Proposing a System Architecture
	1 Introduction
	2 Radio Frequency Identification (RFID) in Supply Chain Management
	3 Internet of Things (IoT) Shared Database and Radio Frequency Identification (RFID) in Supply Chain Management
	4 Proposing a System Architecture for Integrating Internet of Things (IoT) Shared Database and Radio Frequency Identification (RFID) in Supply Chain Management
	4.1 Problem Faced by Inventory Management
	4.2 The Proposed RFID System in Inventory Management, Integration with “Self-Transactional Materials”
	4.3 Data Storage and Real-Time Event Processing with the IoT Shared Database
	4.4 Communication and Data Transmission
	4.5 The Proposed Architecture

	5 Conclusion
	References

	Utilizing AR and Hybrid Cloud-Edge Platforms for Improving Accessibility in Exhibition Areas
	1 Introduction
	2 Scientific Background
	2.1 Related Work
	2.2 Technological Foundation

	3 Design and Implementation
	3.1 System Overview
	3.2 Multitenant Cloud Platform for AR-Based POI Resolution
	3.3 User Application

	4 The System in Practice
	5 Results and Evaluation
	6 Conclusion
	References

	Learning (Active-AutoEncoders-Federated)
	Active Learning Query Strategy Selection Using Dataset Meta-features Extraction
	1 Introduction
	2 Active Learning
	3 Meta-features Extraction
	4 Related Works
	5 Experiments and Results
	5.1 Dataset Construction
	5.2 Decision Tree Creation

	6 Conclusion and Future Work
	References

	Maritime Federated Learning for Decentralized On-Ship Intelligence
	1 Introduction
	2 Architectural and Technical Methodology
	2.1 Maritime Federated Learning
	2.2 Cargo Ship Dataset
	2.3 Machine Learning-Based Pipeline for PEP Prediction

	3 Simulation Results
	3.1 Optimization of ML Model Hyperparameters
	3.2 Ship-Specific Model Selection
	3.3 Multi-ship Collaborative ML Methods

	4 Conclusions
	References

	OF-AE: Oblique Forest AutoEncoders
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	4 Experiments
	4.1 Datasets and Experimental Setup
	4.2 Tabular Data Reconstruction
	4.3 Image Reconstruction

	5 Conclusions and Discussions
	References

	VAE-Based Generic Decoding via Subspace Partition and Priori Utilization
	1 Introduction
	2 Related Work
	2.1 Generic Decoding
	2.2 Zero-Shot Learning (ZSL)
	2.3 Variational Auto-Encoders (VAE)

	3 Method
	3.1 Overall Model Architecture
	3.2 Feature Extractor
	3.3 Subspace Partition and Prior Knowledge Network (PKN)
	3.4 Feature VAE
	3.5 Latent Space Disentangling Network
	3.6 Training and Inference

	4 Experiments
	4.1 Experimental Settings
	4.2 Results
	4.3 Ablation Study

	5 Conclusion
	References

	Machine Learning
	A Difference Measuring Network for Few-Shot Learning
	1 Introduction
	2 Related Work
	2.1 Feature-Wise Methods
	2.2 Metric-Wise Methods

	3 Methods
	3.1 Problem Definition
	3.2 DMNet Model

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Experimental Results
	4.4 Visualization

	5 Conclusions
	References

	Accelerated Monitoring of Powder Bed Fusion Additive Manufacturing via High-Throughput Imaging and Low-Latency Machine Learning
	1 Introduction
	2 Materials and Methods
	2.1 Specimen Description
	2.2 Printing Process Monitoring Setup
	2.3 Prediction Methodology

	3 Experimental Results
	3.1 CT Segmentation
	3.2 System Settings Prediction
	3.3 Pore Density Prediction

	4 Conclusions
	References

	AutoTiM - An Open-Source Service for Automated Provisioning and Operation of Time Series Based Machine Learning Models
	1 Introduction
	2 Related Work
	2.1 Time Series Classification and Its Application
	2.2 Automated Machine Learning

	3 Concept
	3.1 Requirements
	3.2 Technical Notes
	3.3 Architectural Overview

	4 Evaluation
	4.1 Datasets
	4.2 Methodology
	4.3 Results and Benchmark Comparison
	4.4 Discussion

	5 Summary and Future Work
	References

	Characterization of an Absorption Machine Using Artificial Neural Networks
	1 Introduction
	2 Scope of the Research: CIESOL Building
	2.1 Description of the Absorption Machine

	3 Time-Series Forecasting Models
	3.1 Artificial Neural Networks

	4 Results and Discussion
	4.1 Inputs, Outputs and Training for the ANN
	4.2 Datasets Construction
	4.3 Architecture and Structure Selection
	4.4 Results Obtained from the Second Testing Dataset

	5 Conclusions and Future Works
	References

	Comparing Machine Learning Techniques for House Price Prediction
	1 Introduction
	2 Literature Review
	3 Dataset and Problem Definition
	4 Preprocessing the Dataset and Data Analysis
	5 Application of Algorithms
	5.1 Linear Models
	5.2 Non-linear Models
	5.3 Ensemble Models

	6 Results and Models Evaluation
	7 Conclusion and Future Work
	References

	Forecasting Goal Performance for Top League Football Players: A Comparative Study
	1 Introduction
	2 Background
	3 Methodology
	3.1 Research Questions
	3.2 Data Preparation and Modeling

	4 Findings
	5 Discussion
	6 Conclusions
	6.1 Conclusion
	6.2 Future Work

	Appendix
	References

	Forecasting of Wind Turbine Synthetic Signals Based on Nonlinear Autoregressive Networks
	1 Introduction
	2 System and Models Description
	2.1 Wind Turbine Description
	2.2 Neural Network Models Signals Description
	2.3 Neural Networks Description
	2.4 System Identification

	3 Discussion of the Results
	4 Conclusions and Future Works
	References

	Hybrid Machine Learning and Autonomous Control Assisted Framework for Fault Diagnostics and Mitigation in Diesel Engines
	1 Introduction
	2 Hybrid Engine and Fault Model
	2.1 Different Fault Models

	3 Online Hybrid Diagnostics Module for Fault Prediction
	3.1 Denoising Autoencoder
	3.2 Twin-Neural Network Framework for Fault Diagnosis

	4 Hierarchical Control Module for Fault Mitigation
	4.1 Control Calibration Maps for Different Fault Strength Using Bayesian Optimization
	4.2 Online Feedback Controller for Fault Mitigation

	5 Integrated Simulation Results
	5.1 Fuel Injector Clogging
	5.2 Intake Manifold Leak

	6 Conclusion
	References

	Machine Learning for Predicting Production Disruptions in the Wood-Based Panels Industry: A Demonstration Case
	1 Introduction
	2 Materials and Methods
	2.1 Industrial Data
	2.2 Machine Learning Methods
	2.3 Evaluation

	3 Results
	4 Conclusions
	References

	ML-Based Prediction of Carbon Emissions for Potato Farms in Iran
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Potato Farm Dataset
	3.2 Feature Standardisation and Engineering
	3.3 The Regression Models

	4 Results and Evaluation
	5 Conclusions and Future Work
	References

	Pre-launch Fashion Product Demand Forecasting Using Machine Learning Algorithms
	1 Introduction
	2 Literature Review
	3 Dataset
	4 Categories of Predictive Methods
	4.1 Non-linear Methods
	4.2 Ensemble Methods
	4.3 Neural Networks

	5 Description of the Metrics
	6 Results
	7 Conclusions and Suggestions for Future Research
	References

	Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Dataset and Data Preprocessing
	3.2 Machine Learning Algorithms

	4 Results and Discussion
	4.1 Simulation Results
	4.2 Dataset Quantity Study

	5 Conclusions
	References

	Natural Language
	Are These Descriptions Referring to the Same Entity or Just to Similar Ones?
	1 Introduction
	2 Dataset
	2.1 Ontology Alignment Evaluation Initiative
	2.2 Evaluation

	3 Methods and Results
	3.1 Exact Matching
	3.2 The SentenceBERT Step
	3.3 The Same vs Similar (SvS) Step
	3.4 Pipeline
	3.5 Parameters

	4 Discussion
	4.1 Exact Match
	4.2 Language Model Steps

	5 Related Work
	5.1 OAEI Competition
	5.2 Complete Alignment

	6 Conclusion
	References

	Efficient Approaches for the Discovery of Sensitive Information by Using Natural Language Processing Techniques
	1 Problem Description
	2 Introduction
	3 PII Dataset
	4 NER Algorithm
	4.1 Algorithm: NER ch32ramachandran
	4.2 Generating Dataset ch32ramachandran

	5 Building the NER Framework
	6 Implementation of SpaCy
	6.1 Introduction to SpaCy Training Sets
	6.2 Using SpaCy to Create a NER Training Set
	6.3 Adding a Custom NER Pipeline and Label in SpaCy
	6.4 Training Custom Entities into SpaCy Models
	6.5 Convert the Training Data to SpaCy Binary Files
	6.6 Testing Our NER Model

	7 Confusion Matrix for NER Models
	7.1 Create Target Vector
	7.2 Generating the Confusion Matrix
	7.3 Visualizing the Matrix

	8 Implementation of Flair
	8.1 Introduction to Flair
	8.2 Using Flair to Train a Custom NER Model

	9 Comparison Between Flair and SpaCy NER Models
	10 Summary
	11 Conclusion
	References

	Natural Language Processing for the Turkish Academic Texts in the Engineering Field: Key-Term Extraction, Similarity Detection, Subject/Topic Assignment
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Preprocessing
	3.2 Keyword and Key-Term Extraction - KeyEx
	3.3 Postprocessing
	3.4 Similarity Detection - SimDet
	3.5 Subfield Classification by Machine Learning – SubCla

	4 Case Study
	4.1 The Data
	4.2 Performance of the Algorithms

	5 Results and Discussion
	References

	Towards Automatic Evaluation of NLG Tasks Using Conversational Large Language Models
	1 Introduction
	2 Related Studies
	3 Conversational LLMs as Automatic Evaluators for NLG Tasks
	4 Evaluation
	4.1 Procedure
	4.2 Results

	5 Discussion
	5.1 Guidelines for Researchers

	6 Limitations and Future Studies
	7 Conclusions
	References

	Optimization-Genetic Programming
	Cognitive Digital Twin in Manufacturing: A Heuristic Optimization Approach
	1 Introduction
	2 Methodology
	2.1 Metaheuristic for Cognitive Digital Twin
	2.2 Cognitive Digital Twin for PTU Manufacturing

	3 Results and Discussion
	3.1 Results
	3.2 Analysis of Results

	4 Conclusions
	A Details of Features Taken from the PTU Manufacturing Process
	References

	Generation of Optimum Frenet Curves by Genetic Algorithms for AGVs
	1 Introduction
	2 Work Methodology
	3 Occupancy Map
	4 Optimization Through Genetic Algorithm
	5 Results Visualization
	6 Experiments
	7 Conclusions and Future Works
	References

	MPPT Control in an Offshore Wind Turbine Optimized with Genetic Algorithms and Unsupervised Neural Networks
	1 Introduction
	2 Wind Turbine Model
	2.1 Offshore Wind Turbine
	2.2 Aerodynamic Model
	2.3 Mechanical Model
	2.4 Electrical Generator Model

	3 Neural Networks for MPPT Control
	3.1 Radial Basis Neural Network
	3.2 Control Configuration Parameters

	4 Results
	5 Conclusions and Future Works
	References

	Predicting Hotel Performance in Oman with AI-Driven Predictive Analytic
	1 Introduction
	2 Problem Statement and Objectives
	3 Literature Review
	4 Framework Designed
	4.1 Data Cleaning and Exploration Unit
	4.2 LGPDT Unit

	5 Experiment
	5.1 Comparative Analysis of LGPDT on Different Datasets
	5.2 Performance of LGPDT on Tourism Dataset

	6 Conclusion
	References

	SASHA: Hyperparameter Optimization by Simulated Annealing and Successive Halving
	1 Introduction
	2 Hyperparameter Optimization
	2.1 Problem Definition
	2.2 Successive Halving
	2.3 SASHA

	3 Experiments
	3.1 Test Function
	3.2 MNIST

	4 Conclusion
	References

	Robotics
	Data Collection Automation in Machine Learning Process Using Robotic Manipulator
	1 Introduction
	2 Realization of Gestures and Autmatised Dataset Generation
	3 Gesture Recognition System Used for Verification
	3.1 Input Circuitry of the Gesture Recognition System
	3.2 Machine Learning Algorithm

	4 Data Collection
	5 Training
	6 Testing
	7 Summary and Discussion
	References

	Emergence of Communication Through Artificial Evolution in an Orientation Consensus Task in Swarm Robotics
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 The Robots and the Communication System
	3.2 Continuous-Time Recurrent Neural Networks
	3.3 Genetic Algorithm

	4 The Experiment
	4.1 Description of the Experiment
	4.2 Fitness Function
	4.3 Neural Controller

	5 Results
	6 Conclusions
	References

	Spiking NN
	Lossless Method of Constraining Membrane Potential in Deep Spiking Neural Networks
	1 Introduction
	2 Background and Related Work
	2.1 Membrane Potential of Spiking Neuron
	2.2 Hardware Implementations

	3 Guideline for Constraining Membrane Potential
	3.1 Error Analysis
	3.2 Underlying Cause of Accuracy Degradation
	3.3 Guideline and Validation

	4 Hardware-Friendly Method
	4.1 Packed Spike Format
	4.2 Results

	5 Conclusion
	References

	Matching Patterns of Temporal Neural Activity Using the Victor-Purpura Distance in Real-Time
	1 Introduction
	2 Methods
	2.1 Temporal Code-Driven Stimulation Protocol
	2.2 Closed-Loop Stimulation Using Victor-Purpura Distance
	2.3 Hardware-Software Architecture
	2.4 Experimental Design

	3 Results
	3.1 Real-Time Performance Analysis
	3.2 Analyzing Brief Bursts of Spikes Evoked by the Close-Loop Stimulation Protocol

	4 Conclusions
	References

	Text Mining/Transfer Learning
	Thematic Modeling of UN Sustainable Development Goals: A Comparative Meta-based Approach
	1 Introduction
	2 Background and Literature Review
	2.1 Aurora's Search Queries
	2.2 Auckland's Search Queries
	2.3 Elsevier's 2020, 2021 and 2022 Search Queries

	3 Methodology
	3.1 Problem Formulation
	3.2 CUT's SDG Keyword Mapping
	3.3 Operationalization

	4 Data Collection and Comparative Analysis
	5 Conclusion and Future Work
	References

	Transfer Learning Through Knowledge-Infused Representations with Contextual Experts
	1 Introduction
	2 Related Work
	3 Methods
	3.1 General Architecture
	3.2 Combination Mechanism
	3.3 Contextual Experts
	3.4 Downstream Model

	4 Experiments
	4.1 Results

	5 Conclusion
	References

	Author Index

