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Abstract. The main goal of smart cities is to dynamically optimize the quality
of life, through the application of information and communication technologies
(ICT). The involved networks, require a continuous increase in data exchange, in
order to intelligently control services and in particular, mechanisms that acti-
vate a higher degree of automation in the city. As many critical services are
interconnected, the need for cyber security is increasing, in order to ensure data
exchange protection, privacy, and better health and safety services for all citizens.
The security and evolution of smart cities is based on the security of their smart
networks which are activated by specific automation mechanisms, such as the
SCADA networks and the pre-eminent automation systems. This paper presents
the AnomaTS, an advanced Machine Learning system, for anomaly detection
in sensors of SCADA networks, taking into account the temporal state of their
mechanisms.
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1 Introduction

Attacks against SCADA [1] networks and in particular against the Industrial Control
Systems (ICS) aim to undertake themechanical control, the dynamic rearrangement of the
centrifuge or the reprogramming in complex devices. The aim of such attacks is to speed
up or slow down their operation, leading to the destruction or to the cause of permanent
damage of all industrial equipment [2]. One of themost common attacks against SCADA
industrial infrastructure is related to the case where the attacker, having first installed
himself asMan-In-The-Middle in anEthernet ring using theDevice-Level-Ring protocol,
carries out a Stealthy Sensor attack [3]. This is achieved by taking advantage of fieldbus
communication in the industrial EtherNet/IP protocol.

Specifically, the Fieldbus protocol is used for distributed real-time control, allowing
daisy-chain, star, ring, branch, and tree network topologies. The analog sensor control
signals are coded using 4–20 mA measurements, while the I/O settings use messages
that do not follow specific formats and sizes, as they are specified by the designer of the
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control system [4]. Communication between sensors and control devices is performed
via multicast EtherNet/IP connection over UDP. As IP Multicast is organized the data is
transferred to UDP datagrams, using Class D address space network and the communi-
cation is done without ensuring the accurate transmission of the data to the information
receivers. It should be specified that the opposite happens for the datagrams of the address
spaces related to Classes A–C [1].

As each address in the Class D address space, represents the group of those whowish
to receive the data, a host participates in the group for as long as it wishes by simply
sending a JOIN Internet Group Message Protocol (IGMP) message. Due to the fact that
there is no group owner, it is not necessary to be a member of the group in order to send
data or to monitor the transmitted information. Obviously, it is generally very easy to
install an intruder as Man-In-The-Middle. After establishing Man-In-The-Middle, the
attacker launches a Stealthy Sensor attack. This attack configures the settings of sensors
and actuators, in order to change the operation of specific mechanisms. However, this
cannot be figured by the receivedmeasurements and it cannot be perceived by the offered
displays of the overall system. More sophisticated forms of attack are applied against
the sensors used in the control loops to collect measurements on SCADA infrastructure
[3]. The sensors, which are active devices of the infrastructure network, are PLCs which
are properly connected to each other, in order to allow remote monitoring and control
of processes with high response speed.

This is the case even when the devices are distributed between different remote
points. Communication (sending and receiving data) is achieved with the widely used
SCADA MODBUS messaging protocol, which was originally published by Modicon
(now Schneider Electric) for use with its programmable logic controllers (PLCs) [5].
It must be clarified that this is part of the application layer protocol, located at level
7 of the OSI model. Modbus Masters devices request information about the transfer
of discrete/analog I/O and data logging from slave Modbus by performing a simple
request-response format. A serious vulnerability of MODBUS lies in the inability of
the protocol to recognize a forged slave/master IP address in the SCADA network. An
attacker who performs a Man-In-The-Middle attack, can exploit this vulnerability and
collect networkMSU/MTU information from the returned messages, by sending queries
containing invalid addresses [6].

Initially, the attacker selects network MSU/MTU information from the returned
messages, and then he triggers a DoS (denial of service)/DDoS (distributed denial of
service) attack, by sending request or response parameters, which contain malicious
values related to the selection of the data field [7]. A very common attack scenario is
related to the protocols and algorithmic ways of strategic control, which are used by
control centers for smooth operation, cost minimization and security of power systems.

Power system safety is usually defined by a set of lower and upper limits for var-
ious system parameters, such as power of transmission line, and the allowed mini-
mum/maximum operating frequency [8]. The control strategy is essentially a set of
control commands which are sent to sensors and actuators, such as power generator
adjustment points, error margins that have no effect on system’s security, and various
on/off commands. Possible removal of alerts when the system is out of range, as well as
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the replacement of the cost function parameters, can create the conditions for an enemy
attack on the control strategy, with completely disastrous results.

2 Anomaly Detection

Various anomaly detection techniques have been proposed in the literature [9], aiming to
resolve severe cases of industrial equipment behavior deviation [10]. They can perform
even when the nature of the attack is new and therefore unknown [11]. They are based
on a tactic of comparing the current situation, with a model or more generally with a
set of parameters that are considered to describe the normal operation of the system.
To achieve these results, behavioral analysis related to key network parameters such as
operating specifications, average power per time window is widely used.

Detection of abnormalities is related to other technical or heuristic forms of analysis,
in order to identify patterns that help detect, identify and predict their occurrence,without
leading to false alarms [9, 12]. The implementation of a powerful anomaly detection
system requires [9, 13, 14]:

1. Minimization of false positives: False positives lead to reduced categorization per-
formance and to potential loss of events in the future. In order to avoid the problems
in question, it is necessary to implement a sensitive system, capable of carrying out
warnings only for the most serious anomalies. Accordingly, it should be possible to
draw up customized warning rules if additional sensitivity is needed.

2. Alerting: When an incident occurs, there should be real-time or near-real-time alerts
to minimize the impact.

3. Scaling:Anomaly detection systems should be able to performhundreds of checks on
data flows over time, automatically scaling forecast methods to deal with increased
demand events.

4. Robustness: When an anomaly occurs, the algorithm should not integrate these data
points in order to estimate normal system behavior, but it should be able to avoid the
anomaly, using large windows of historical data.

5. Handle missing data: Missing measurements may create a decomposing coherence
structure that weakens the ability to predict. This should be adequately addressed by
anomaly detection algorithms.

6. Filtering: Some anomalies are much more important than others, so it should be
possible to filter them and take respective action.

The proposed AnomaTS anomaly detection system, seeks to understand the interac-
tions between the mechanisms of intelligent networks and their automation processes,
aiming to identify cyber-attacks. More specifically, the proposed approach creates a
model that correlates the status of a system and its evolution over time, using mod-
ern Machine Learning (ML) techniques. Its target is to detect specialized cyber-attack
patterns.

3 The Proposed Anomaly Detection Methodology

The proposed anomaly detection methodology is implemented as a system of iterative
tasks that is applied on dataflows. Basically, there are three types of performed processes:
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1. Data ingestion. They collect input source data in a buffer and they process them.
2. Anomaly detection. They receive measurement data from the buffer and apply

anomaly detection methodologies.
3. The anomaly detection algorithm makes a real-time prediction, based on a trained

model that has been trained in dead time.
4. It can maintain abnormal points and predictions in the buffer and it can display them

centrally, through a centralized anomaly control panel.
5. Alerting. It takes the abnormal points from the buffer and it filters them with the

configured rules,which are synthesized as concentrations of diametricmeasurements
and they are compared to predefined boundaries

6. If these rules are followed, notifications are sent and actions are imposed.

The system is assisted by a database that enhances the anomaly detection workflow
by storing the following:

1. Metrics metadata: They include measurement aliases, measurement levels and
measurement relationships

2. Ingestion configuration: It determines data retention windows, data source types and
endpoints.

3. Anomaly detection rules: They are defining anomaly retention time windows, model
references and limits.

4. Configurations: They are related to configurations of notification rules, and anomaly
visualization.

The actual anomaly detection problem, can be considered as a problem of anal-
ysis – prediction of time series [6, 13]. The aim is to find the mathematical relation
that can model historical data in relation to time. The general modeling method, uses
non-parametric techniques offering significant advantages over conventional methods.
It gives an opportunity to overcome the statistical problems associated with the nor-
mality and linearity assumptions that are necessary in conventional or linear regression
methods. The hypothesis of the underlying technique [15], suggests that the predictors
have a cumulative structure, which allows their easy interpretation and modeling. At
the same time, a detailed search of the transformation of each variable is not required.
More specifically, the estimation of the dependent variable Y in this case, for a single
independent variable X , can be given by the following Eq. 1:

ϒ = s(X ) + error (1)

Where s(X ) is an unspecified smoothing function, whereas error is the error which
usually has zero mean value and constant dispersion. The smoothing function can be
determined, for example, by the current mean or by the current median, or by the local
least-squares, the Kernel, the Loess or the spline method. The term “current” means
the serial calculation of a statistic, which is applied to overlapping intervals of values
of the independent variable, such as running mean. In modeling, the classical linear
hypothesis is extended to include any error probability distribution (Poisson, Gamma,
Gaussian, Binomial και Inverse Gaussian).
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3.1 Description of the Dataset

The Factry.io data collection platform, combined with the InfluxDB were employed
to create an ideal simulation scenario [16]. The aim was the collection of industrial
environment data, based on theOPC-UA open-source collector protocol. It is a collection
of sensor data in the form of time series.

Sensor data is collected from construction equipment, via programmable PLC con-
trollers and SCADA systems in order to be stored in InfluxDB. The storage database is
optimized for timestamp or time series. Time series data is obtained by measurements or
by events that are monitored and collected over time. Such events can be server metrics,
application performance monitoring and transactions. Potential sources can be sensors,
or various types of analytics.

In this case, one-year data were collected from hourly measurable values of three
sensors, in the context of a machine condition that operates 24/7. The attack configures
the sensor settings, in order to change the operation of specific mechanisms, but this is
not perceived by the meters and displays of the overall system.

Specifically, there is a storage tank for raw water. This includes a water level sensor,
a valve that opens when the sensor shows a level lower or equal to 0.5 m and closes when
the level is higher than 0.8 m. It also contains a pump, whose action depends on a process
according to which the pressure levels lead in separation through a semipermeable mem-
brane. If the water level in the tank is below 0.25 m, the pump is immediately switched
off, which is interpreted as a safety mechanism. The attacker’s goal is to exaggerate the
water without being detected by a standard detection mechanism based on the detection
of anomalies. This is achieved by modifying the sensor and actuator information, by
constructing appropriate packets, which are adapted so that the fieldbus communication
can change the functionality of the devices.

A graphical representation of the anomalies contained in the time series under
consideration is shown in Figs. 1 and 2 below.

Fig. 1. 3D plot of the time-series anomalies in the IoT (internet of things) dataset
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Fig. 2. 2D plot of the time-series anomalies in the IoT dataset

4 The Proposed Intelligent AnomaTS Algorithm

Considering the enormous difficulty of the attack scenario, the algorithm additionally
receives the pressure drop measurements in a water filter present in the tank. The differ-
ence in the measurements of water pressure collected at the input from the ones collected
at the output, in combination with the indications of other sensors, can give a clear sign
of an anomaly related to a cyber-attack.

To solve the given scenario, the intelligent AnomaTS algorithm is proposed, which
adapts as components, many linear and non-linear time functions, where in their simplest
form three basic elements are used: trend, seasonality, and events, which are combined
in the following Eq. 2 [17]:

y(t) = g(t) + s(t) + ev(t) + e(t) (2)

where:

g(t), trend models non-periodic changes (i.e. growth over time)
s(t), seasonality presents periodic changes (i.e. weekly, monthly, yearly)
ev(t), ties in effects of events (on potentially irregular schedules ≥ 1 day(s))
e(t), covers idiosyncratic changes not accommodated by the model

A more general form of the above equation can be as follows:

y(t) = piecewise_trend(t) + seasonality(t) + events_effects(t) + noise(t)

In a more thorough analysis, the test variables can be deconstructed as follows:
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1. Trend. The process includes two possible trend models for g(t), namely a Saturating
Growth Model and a Piecewise Linear Model as follows:

a. Saturating Growth Model. If the data suggests promise of saturation:

g(t) = C

1 + exp(−k(t − m))
(3)

where C is the carrying capacity,k is the growth rate and m is an offset
parameter.

The integration of trend changes in the model is explicitly defined by the S
change points Sj, j = 1, . . . , S where the change in growth rate is located. This
defines a change of settings vector δj respective to time sj with δ ∈ RS . For every
moment t the rate k can be expressed as k + ∑

j:t>Sj δj. If in this relation we

estimate the vector α(t) ∈ {0, 1}S such as:

aj(t) =
{
1, if t ≥ Sj
0, otherwise

(4)

The rhythm at the moment t is k+a(t)Tδ. When the rythm k is set, the offset
parameter m must also be adapted to connect the endpoints of the sections. The
correct setting at the point of change j is estimated as follows:

yj =
(

Sj − m −
∑

i<j
yt

)(

1 − k + ∑
i<j δt

k + ∑
i≤j δt

)

(5)

The final function is completed as follows:

g(t) = C(t)

1 + exp
(−(

k + a(t)Tδ
)(
t − (

m + a(t)Ty
))) (6)

b. Linear Trend with Changepoints. It is a Piecewise Linear Model with stable
development rate, estimated as follows:

g(t) =
(
k + a(t)Tδ

)
t +

(
m + a(t)Ty

)
(7)

where k is the growth rate, δ has the rate adjustments,m is the offset parameter
and, to make the function continuous, yj is set to −Sjδj.

c. AutomaticChangepoint Selection is used to estimate the changepoints as follows:

δj ∼ Laplace(0, τ ) (8)

where τ directly controls the flexibility of the model in altering its rate. It
should be noted that a sparse earlier adjustment δ has no effect on the primary
growth rate k, such as τ evolves to 0 and the adjustment reduces the typical (no
piecewise) logistic or linear growth.
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d. Trend Forecast Uncertainty. When the model deviates beyond background to
make a prediction, the trend g(t) will have a stable rythm. Uncertainty in the
forecast trend is estimated by extending the production model forward, where
there are S change points over a history of points T, each of which has a change
of pace δj ∼ Laplace(0, τ ). The simulation of future rhythm changes (imitating
those of the past) is achieved by replacing τ t with a variance derived from the
data. This is achieved by estimating the maximum probability of the rate scale
parameter as follows:

λ = 1

S

∑S

j=1

∣
∣δj

∣
∣ (9)

Future sample change points are randomized in such a way that the average
frequency of the change points matches the corresponding historical points as
follows:

∀j > T ,

{
δj = 0w.p.T−S

T
δj ∼ Laplace(0, λ)w.p. ST

(10)

2. Seasonality. Seasonal variable s(t) offers adaptivity to the model, allowing changes
based on everyday, weekly and annual seasonality. Approximate smooth seasonal
snapshots are connected to a standard Fourier series in order to produce a flexible
model of periodic modeling.

s(t) =
N∑

n=1

(

an cos

(
2πnt

P

)

+ bn sin

(
2πnt

P

))

(11)

3. Events. The ev(t) element reflects predictable events, including those on irregular
schedules, which may create serious bias in the model. Assuming that the results
of the events are independent, seasonality is calculated by the model creating a
regression matrix:

Z(t) = [1(t ∈ D1), . . . , 1(t ∈ DL)] (12)

h(t) = Z(t)k (13)

5 Running and Testing the AnomaTS Algorithm

Utilizing the procedure described above, the model was trained to detect the abnor-
malities that occur during the operation of the SCADA automations that control the
water tank of the scenario under consideration. The class separation threshold, plays
the most important and critical factor in the success or failure of the anomaly recogni-
tion method. To determine an optimal threshold, this paper proposes a reliable heuristic
method of selection, based solely on evaluation criteria. In particular, the proposed algo-
rithm assumes that a distance function is defined in the training phase, which measures
the distance d between the objects and the respective target category. The threshold
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θ , is used for the binary class separation (normal or abnormal) [11, 18]. The samples
(outliers) for which the anomaly score deviates from the normal operation by more than
25% are characterized as abnormals. This percentage emerged after a thorough analysis
following a trial and error approach. Finally, the threshold θ was set at Anomaly score
> 0.6 in order to strengthen the classifier and isolate any divergent actions (Fig. 3).

Fig. 3. Outliers with Anomaly score > 0.6

The following Figs. 4 and 5 show the results of the tests performed to select the
proper threshold, that could offer the best performance.

Fig. 4. Precision for different threshold values Fig. 5. Recall for different threshold values

The followingTable 1, is theConfusionMatrix of theBinaryClassificationperformed
following the proposedAnomaTSmethod. Table 2 presents the values of the classification
accuracy for five different Machine Learning algorithms.

Table 1. Confusion matrix

Normal Abnormal

TP 80 7 FN

FP 5 273 TN

In conclusion, based on the obtained values of the performance indices and taking
into account the objective difficulties raised in this research, the proposedmodel has been
proven very efficient, able to cope with complex situations and to recognize anomalies.
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Table 2. Classification accuracy and performance metrics

Classifier Accuracy RMSE Precision Recall F-score AUC

AnomaTS 96.72% 0.0841 0.967 0.967 0.967 0.9823

One class SVM 94.18% 0.0942 0.942 0.942 0.942 0.9790

Isolation forest 93.57% 0.0936 0.935 0.935 0.936 0.9712

k-NN 92.29% 0.1009 0.991 0.930 0.930 0.9697

Clustering 88.57% 0.1128 0.886 0.886 0.886 0.9464

6 Conclusions

An extremely innovative, reliable, low-demand and highly efficient anomaly recogni-
tion system, based on advanced computational intelligence methods, was presented in
this paper. The proposed framework, utilizes advanced techniques in order to detect
malfunctions or deviations from the normal operation mode of industrial equipment,
which in most of the cases is due to cyber-attacks. The proposed digital security system
was tested on a complex data set, which responds to specialized operating scenarios of
normal and malicious behavior.

Proposals for the development and future improvements of this system, should focus
on the automated optimization of the appropriate pre-training parameters, so as to achieve
an even more efficient, accurate and faster classification process. It would also be impor-
tant to study the expansion of this system by implementing more complex architectures
with the implementation of multidimensional chronological data. Finally, an additional
element that could be studied in the direction of future expansion, is the development
and application of self-improvement techniques, capable of redefining its parameters
automatically, so that it can fully automate the process of anomalies detection.
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3. Irmak, E., Erkek, İ.: An overview of cyber-attack vectors on SCADA systems. In: 2018 6th
International Symposium on Digital Forensic and Security (ISDFS), Antalya, pp. 1–5 (March
2018). https://doi.org/10.1109/ISDFS.2018.8355379

4. Kang, D., Kim, B., Na, J.: Cyber threats and defence approaches in SCADA systems. In:
16th International Conference on Advanced Communication Technology, pp. 324–327 (Feb.
2014). https://doi.org/10.1109/ICACT.2014.6778974

https://doi.org/10.1109/ACCESS.2019.2926441
https://doi.org/10.1109/ISDFS.2018.8355379
https://doi.org/10.1109/ISDFS.2018.8355379
https://doi.org/10.1109/ICACT.2014.6778974


AI Threat Detection and Response on Smart Networks 695

5. Deng,L., Peng,Y., Liu,C.,Xin,X.,Xie,Y.: Intrusiondetectionmethodbasedon support vector
machine access ofModbus TCP protocol. In: 2016 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
pp. 380–383 (Dec. 2016). https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.
2016.90

6. Aminuddin, M.A.I.M., Zaaba, Z.F., Samsudin, A., Juma’at, N.B.A., Sukardi, S.: Analysis
of the paradigm on tor attack studies. In: 2020 8th International Conference on Information
Technology and Multimedia (ICIMU), pp. 126–131 (Aug. 2020). https://doi.org/10.1109/ICI
MU49871.2020.9243607

7. Al-Hawawreh, M., Sitnikova, E.: Leveraging deep learning models for ransomware detection
in the industrial internet of things environment. In: 2019Military Communications and Infor-
mation Systems Conference (MilCIS), Canberra, Australia, pp. 1–6 (Nov. 2019). https://doi.
org/10.1109/MilCIS.2019.8930732

8. Al-Hawawreh, M., den Hartog, F., Sitnikova, E.: Targeted ransomware: a new cyber threat
to edge system of brownfield industrial internet of things. IEEE Internet Things J. 6(4),
7137–7151 (2019). https://doi.org/10.1109/JIOT.2019.2914390

9. Deorankar, A.V., Thakare, S.S.: Survey on Anomaly detection of (IoT)-internet of things
cyberattacks usingmachine learning. In: 2020 Fourth International Conference onComputing
Methodologies and Communication (ICCMC), pp. 115–117 (Mar. 2020). https://doi.org/10.
1109/ICCMC48092.2020.ICCMC-00023

10. Demertzis, K., Iliadis, L.: A Hybrid Network Anomaly and Intrusion Detection Approach
Based on Evolving Spiking Neural Network Classification. In: Sideridis, A.B., Kardasi-
adou, Z., Yialouris, C.P., Zorkadis, V. (eds.) E-Democracy 2013. CCIS, vol. 441, pp. 11–23.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11710-2_2

11. Demertzis, K., Iliadis, L., Tziritas, N., Kikiras, P.: Anomaly detection via blockchained deep
learning smart contracts in industry 4.0. Neural Comput. Appl. 32(23), 17361–17378 (2020).
https://doi.org/10.1007/s00521-020-05189-8

12. Gaddam, A., Wilkin, T., Angelova, M.: Anomaly detection models for detecting sensor faults
and outliers in the IoT – a survey. In: 2019 13th International Conference on Sensing Tech-
nology (ICST), Sydney, Australia, pp. 1–6 (Dec. 2019). https://doi.org/10.1109/ICST46873.
2019.9047684

13. Cook, A.A., Misirli, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE
Internet Things J. 7(7), 6481–6494 (2020). https://doi.org/10.1109/JIOT.2019.2958185

14. Demertzis, K., Iliadis, L., Bougoudis, I.: Gryphon: a semi-supervised anomaly detection
system based on one-class evolving spiking neural network. Neural Comput. Appl. 32(9),
4303–4314 (2019). https://doi.org/10.1007/s00521-019-04363-x

15. Anezakis, V.-D., Demertzis, K., Iliadis, L., Spartalis, S.: A Hybrid Soft Computing Approach
Producing Robust Forest Fire Risk Indices. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016.
IAICT, vol. 475, pp. 191–203. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44944-9_17

16. InfluxDB OSS 2.0 Documentation: https://docs.influxdata.com/influxdb/v2.0/. Accessed 19
July 2021

17. Žunić, E., Korjenić, K., Hodžić, K., Ðonko, D.: Application of Facebook’s prophet algorithm
for successful sales forecasting based on real-world data. Int. J. Comput. Sci. Inf. Technol.
12(2), 23–36 (2020). https://doi.org/10.5121/ijcsit.2020.12203

18. Demertzis, K., Iliadis, L., Anezakis, V.: MOLESTRA: a multi-task learning approach for
real-time big data analytics. In: 2018 Innovations in Intelligent Systems and Applications
(INISTA), pp. 1–8 (July 2018). https://doi.org/10.1109/INISTA.2018.8466306

https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.90
https://doi.org/10.1109/ICIMU49871.2020.9243607
https://doi.org/10.1109/MilCIS.2019.8930732
https://doi.org/10.1109/JIOT.2019.2914390
https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00023
https://doi.org/10.1007/978-3-319-11710-2_2
https://doi.org/10.1007/s00521-020-05189-8
https://doi.org/10.1109/ICST46873.2019.9047684
https://doi.org/10.1109/JIOT.2019.2958185
https://doi.org/10.1007/s00521-019-04363-x
https://doi.org/10.1007/978-3-319-44944-9_17
https://docs.influxdata.com/influxdb/v2.0/
https://doi.org/10.5121/ijcsit.2020.12203
https://doi.org/10.1109/INISTA.2018.8466306

	AI Threat Detection and Response on Smart Networks
	1 Introduction
	2 Anomaly Detection
	3 The Proposed Anomaly Detection Methodology
	3.1 Description of the Dataset

	4 The Proposed Intelligent AnomaTS Algorithm
	5 Running and Testing the AnomaTS Algorithm
	6 Conclusions
	References




