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Abstracts. The concept drift phenomenon describes how the statistical properties
of a data distribution change over time. In cybersecurity domain,where data arrives
continuously and rapidly in a sequential manner, concept drift can be a significant
challenge. Identifying concept drift, it enables security analysts to detect emerging
attacks, respond promptly, and make informed decisions based on the changing
nature of the data being analyzed. The Adaptive Reservoir Neural Gas (AR-NG)
clustering algorithm is proposed in this paper to handle concept drift in real-time
data streams. It is a novel approach that combines reservoir computing power
with the neural gas algorithm, allowing the algorithm to automatically update
its clustering structure as new data arrives. Furthermore, in order to effectively
handle evolving data streams that significantly change over time in unexpected
ways, the proposed method incorporates a density-based clustering mechanism
(DBCM) to concept drift detection. Experiments on real-time data streams show
that the proposed algorithm is effective at mitigating the impact of concept drift,
making it a useful tool for real-time data analysis and decision-making in dynamic
environments.
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1 Introduction

The phenomenon of concept drift describes how the statistical properties of a data distri-
bution change over time [1]. Concept drift can be a significant challenge in data stream
mining, where data arrives continuously and rapidly in a sequential manner. The mean,
variance, correlation, and probability distribution of the data are all statistical properties
of the data distribution. When there is concept drift, these properties change, causing
shifts in the underlying patterns, relationships, and structures of the data. Changes in user
behavior, evolving trends, seasonality, or external factors influencing the data generation
process can all cause concept drift. It can be gradual, with changes occurring gradually
over time, or abrupt, with changes occurring suddenly and significantly [2].
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Concept drift complicates data analysis and mining because models trained on his-
torical data may become outdated and less accurate in predicting or clustering new data
instances. It is critical to detect and adapt to changing data distributions in order to
maintain model performance and validity in the presence of concept drift. On the other
hand, in the cybersecurity domain, identifying concept drift is crucial because it can help
detect and respond to evolving threats and attacks [3].

Specifically, by identifying concept drift, cybersecurity systems can adapt and learn
from new patterns or behaviors that emerge over time. This enables the early detection
of emerging threats that might go undetected by traditional rule-based or signature-
based systems. Moreover, concept drift detection allows intrusion detection systems
(IDS) to detect changes in the patterns of malicious behavior, helping to identify new
attack vectors or evasion techniques [4]. Also, by dynamically adapting security con-
trols based on concept drift, organizations can better protect their systems and networks.
Also, when concept drift is detected, it may indicate a potential security breach or an
ongoing attack. Rapid response can help mitigate the impact of the attack, contain the
incident, and prevent further damage or data exfiltration [5]. Furthermore, by under-
standing how the data distribution or behavior has changed, security analysts can make
more informed decisions regarding incident prioritization, resource allocation, and the
selection of appropriate defensive measures [6]. Finally, concept drift detection can trig-
ger the retraining or recalibration of machine learning cyber-defense models to adapt to
new data distributions and ensure accurate and up-to-date detection [7].

The AR-NG clustering algorithm is used in this paper to present an innovative app-
roach to effectively address concept drift in real-time data streams. AR-NG combines
reservoir computing’s strengths with the Neural Gas algorithm to create a powerful and
adaptive clustering solution that can update its structure as new data arrives.

Reservoir computing is a computational framework that processes input data using
a fixed, randomly initialized dynamic reservoir. The Neural Gas algorithm, on the other
hand, is a clustering technique that divides data into groups based on similarities. AR-NG
gains the ability to adaptively update its clustering structure in response to changes in the
data distribution by incorporating reservoir computing into the Neural Gas algorithm.

AR-adaptiveNG’s nature enables it to capture the evolving patterns and relationships
within the real-time data streams. AR-NG dynamically adjusts its clustering structure to
reflect the current data distribution as new data points arrive, ensuring that the clusters
remain accurate and up to date.

Also, by incorporating the density-based clusteringmechanism, the proposedmethod
enhances concept drift detection in evolving data streams. It is designed to discover
clusters of arbitrary shape in a dataset, based on the density of data points in the feature
space. This approach allows the method to effectively detect concept drift and adapt the
clustering structure to handle unexpected changes in the data distribution.

The methodology of AR-NG algorithm is described in detail below.

2 Methodology

The AR-NG algorithm is designed to handle concept drift in real-time data streams
by combining reservoir computing with the neural gas algorithm and incorporating a
density-based clustering mechanism using DBCM. Specifically, reservoir computing is
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a computational framework that processes sequential data using a fixed-size dynamic
reservoir. The reservoir is a network of neurons that is randomly connected and serves as
a computational resource [8]. The reservoir computing approach is used in the AR-NG
algorithm to deal with the dynamic nature of data streams. The reservoir computing
architecture consists of the input, reservoir, and output layers. The connection and input
weights are chosen at random [9]. The reservoir weights are scaled so that the Echo State
Property (ESP) is maintained, which is defined as the state in which the reservoir is a
“echo” of the entire input history [10]. The discrete layers are only those of input u(n)
and output y(n) as they are defined by the problem. The hidden layers are clustered in an
region, and their number is indistinguishable. The neurons x(n), are connected by some
percentage, which determines how sparsity the reservoir computing will be [11].

The synaptic associations that link the levels together and the reservoir computing
are characterized by a value that identifies the weights [12]. In the proposed system, each
input neuron is connected via Win

ij weights (i-input neuron, j-neuron) to each neuron
from the reservoir computing. Although normalized, these weights are determined ran-
domly before training, and their values are the final ones as they do not change during
training. Also, each neuron is connected to each other neuron, via weightsWjk (j-neuron,
k-neuron, and j �= k). The respective weights, although normalized, are randomly deter-
mined before training and their values do not change. We use x(l)(t) ∈ RNR to declare the
status of level l at time t. By omitting the bias conditions, the first level state transition
function is defined by the following equations [13]:

x(1)(t) =
(
1 − a(1)

)
x(1)(t − 1) + a(1) tanh

(
Winu(t) + Ŵ (1)x(1)(t − 1)

)

For each level higher than l > 1 equation 1, has the following form (2) [8, 14]:

x(l)(t) =
(
1 − a(l)

)
x(l)(t − 1) + a(l) tanh

(
Wlxl−1(t) + Ŵ (l)x(l)(t − 1)

)

where Win ∈ RNR×NU is the input weight matrix, W
∧(l)∈ RNR×NR is the recurrent weight

matrix for layer l,W (l)∈RNR×NR is thematrix containing the connectionweights between
layer l–1 and l, a(l) is the leaky parameter of layer l and tanh is the Tangent Hyperbolic
function. Finally, each reservoir computing neuron is connected via Wout

jm weights (j-
neuron, m-neuron input) to the neurons in the output layer. The weights, located in the
readout layer, are the only ones trained to get their final values [15, 16].

The Neural Gas algorithm is a competitive learning algorithm used for clustering. It
organizes data points into clusters based on their similarity [17]. In AR-NG, the Neural
Gas algorithm is combined with reservoir computing to create an adaptive clustering
structure that can handle concept drift. Competitive learning neural networks include a
competitive layer comprising of Competitive Neurons (CNE). Every CNEi is charac-
terized by a weight vector wi = (wil,…,wid)T , i = 1,…, M and it estimates a similarity
measure with the input data vector xi = ( xil,…,xid)T x ∈ R. For every input vector that is
introduced to the network there is a competition between the CNE for the determination
of the winning neuron. The winner is the neuron that has the higher degree of similarity
between the input vector and its assigned weight vector. The output of the winning CNE
is set to om = 1, whereas for the rest of the neurons the output is oi = 0, i = 1,…,M,
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i �= m. The default similarity function used is the inverse value of the actual Euclidean
distance ‖x − wi‖ between the input vector xn and the weight vector wi [18].

Initially, the algorithm initializes the clustering structure using the Neural Gas algo-
rithm. This involves randomly selecting initial cluster centers and updating them based
on the similarity between data points and cluster centers [19]. The initialization step cre-
ates an initial set of clusters to start with. These clusters are recreated with the algorithm
calculating the density around each data point. This is achieved by counting the number
of points in a user-defined neighborhood (Eps-Neighbourhood) with the definition of
thresholds [20, 21]. The purpose is to locate points in the center of the areas (core), on
their borders (border), and points that involve noise (noise). The extra data points are
added to the center of the regions if they are densely accessible, i.e., there is a chain
of core points where each one belongs to the neighborhood (Eps-Neighborhood) of the
next point and therefore to distinguish the extreme values for each cluster.

Thus, the user can see the streams in different periods. Specifically, the neighborhood
area of a point p is defined as the set of points for which the Euclidean distance between
the points p, q is smaller than the parameter [22, 23]:

NEps(p) = {q ∈ D | dist(p, q) ≤ Eps}
provided that p = (p1, p2) and q = (q1, q2), the Euclidean distance is defined as:

√
(q1−p1)2 + (q2−p2)2

So, a point p is considered to be reachable from a point q based on a density
determined by the parameters Eps,MinPts if:

p ∈ NEps(q) and NEps (q) ≥ MinPts

Having calculated the cluster density, the kernel methods’ property is exploited to
express several samples through a symmetric and positive definite matrix, according to
the similarity of two samples in each position. Thus, the array elements are in a linear
space, regardless of the space they come from. This allows the introduction of one more
function in the processing stage, which exploits the nonlinear structure of the features
to present them as a sparse representation problem modified to work in a Reproducible
Kernel Hilbert Space (RKHS) [24].

Specifically, as the data is in a Euclidean space, the problem of the sparse represen-
tation of an L-dimensional vector u ∈ R

L and a basis D = [D1, . . . ,Dm] ∈ R
L×m The

following relationship defines it [25]:

�(h,D) := min
a

∥∥∥∥∥h −
m∑
i=1

Diai

∥∥∥∥∥
2

2

+ λ‖a‖1

The sparseness of this vector is required. In the above relation, the vector a ∈ R
m

Represents the sparse coefficients, and the function �(h,D) is the optimal approximation
of the problem. The above relationship between the sample distances has to be modified
to a nonlinear one. For this purpose,wefirst define amapping functionϕ : RL → H. This
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function maps the samples from the original space to a new Hilbert space equipped with
the inner product. Therefore, using the inner product, two groups of samples, ui, uj ∈ R

L,
are mapped to a new space using the relation [26]:

k
(
ui, uj

) = ϕ(ui)
T · ϕ

(
uj

) ∈ R

Similarly, a set of m sequences can be expressed as a Kernel Matrix K ∈ R
m×m

Whose elements express the similarities between the samples. The similarity function
used herein is the Radial Basis Function (RBF), whose variance has been estimated as
the mean value of the distances of the training data [27].

But the relation of sparse coding, as presented, does not allow to work with the
K register. For this reason, a modified version has been introduced, which offers the
potential to work in this space based on the following equation [28]:

�(ĥ, D̂) := min
a

∥∥∥ĥ − D̂a
∥∥∥
2

2
+ λ‖a‖1

To fully utilize the intrinsic properties of sparse representations in the above space,
the proposed methodology introduces the concept of a Spatial Pooler, which normalizes
sparse input representations by enriching the input representation with its temporal
context. Specifically, the Spatial Pooler aims to prepare sparse input representations
for further processing, ensuring that inputs similar to each other (have high overlap and
thus high coherence) produce output vectors similar to each other. So, each input pattern
is encoded by the Spatial Pooler into sparse representations represented as a set of Ak
indices of the given pattern at iteration k. [29].

At each step, the similarity between the sparse input representations at step k and
step k + 1 is calculated by the equation [30]:

s = |Ak ∩ Ak+1|
max(|Ak |, |Ak+1|)

Similarity s is defined as the ratio between the number of elements (cardinality) of
the same active clusters in sparse representations generated in steps k and k + 1 and a
maximum amount of data in two comparable steps. Spatial Pooler is usually stable if
the sparse representations of the same pattern do not change for its entire life cycle. In
this case, the similarity s between all representations of the same pattern is 100%.

As the data stream arrives continuously and rapidly, the AR-NG algorithm processes
each incoming data point sequentially. For each data point, the algorithm performs the
following steps:

1. Neuron Activation: The reservoir neurons are activated based on the incoming data
point. The activation level of each neuron in the reservoir is determined by its
similarity to the current data point.

2. Competitive Learning: The activated neurons compete with each other to become the
winning neuron. The winning neuron is the one with the highest activation level.

3. Clustering Initialization. Clustering initialization refers to the process of setting up
the initial state of a clustering algorithm before the actual clustering procedure begins.
It involves determining the initial cluster assignments or centroids for the data points
being clustered. Proper initialization is important as it can significantly impact the
quality and convergence speed of the clustering results.
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4. Update Clustering Structure: The winning neuron and its neighboring neurons in the
topological order are updated to adapt to the incoming data point. This step allows
the clustering structure to dynamically evolve and adjust to concept drift.

5. Density-Based Clustering: After updating the clustering structure, a density-based
clustering mechanism is employed to detect concept drift. This mechanism identifies
clusters based on the density of data points. It assigns data points to clusters and
identifies outliers as noise points. By analyzing the density-based clusters, the algo-
rithm can detect significant changes in the data distribution, indicating the presence
of concept drift.

6. ConceptDriftHandling: If concept drift is detected, the algorithmcan take appropriate
actions to handle it. For example, it maymerge or split clusters, update cluster centers,
or adjust the clustering parameters to adapt to the new data distribution.

By combining reservoir computing, the Neural Gas algorithm, and DBCM for
density-based clustering, the AR-NG algorithm provides an effective solution for han-
dling concept drift in real-time data streams. It adapts to changing data distributions,
maintains accurate clustering structures, and enables real-time analysis in dynamic
environments.

The pseudocode that presented in the Appendix 1 is a high-level representation of the
AR-NG algorithm. This pseudocode provides a high-level overview of the steps involved
in the code, including initialization, data processing in batches, clustering, performance
evaluation, concept drift detection, handling, analysis, and plotting of results.

3 Dataset and Results

Factry.io and InfluxDB were used to collect and store data about the industrial envi-
ronment, such as programmable PLC controllers, SCADA systems, and construction
equipment, in order to create a perfect test-bed environment for the proposed algorithm.
They are created using measurements or events tracked over time, such as transactions,
application performance monitoring, and server analytics [31].

The scenario was focused on collecting time series data from sensors that measure
quantifiable values in an hourly manner. These sensors can be monitoring different
parameters related to industrial machines’ conditions and specifically to a raw water
storage tank, equipped with a water level sensor and a valve. The system is configurated
such that the valve opens when the water level detected by the sensor is less than or
equal to 0.5 m and closes when the level is higher than 0.8 m. Additionally, included a
pump that operates based on pressure levels separated by a semipermeable membrane.
The pump acts as a safety device and shuts off if the water level falls below 0.25 m.

An attacker aims to manipulate the system by modifying the sensor and actuator
information by creating packets to alter the sensor readings and actuator behavior. He
exploits the fieldbus communication protocol to change the functionality of the devices
without raising suspicions from typical detection systems that look for irregularities.

One year of data was gathered, to create a data stream that is hourly quantifiable
values from the sensors, reflecting the machine’s condition over time. The concept drift
was related by modifying the sensor settings and actuator behavior according to the
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attacker’s intentions. This drift can occur gradually or in sudden changes, mimicking
the evolving behavior of the compromised system.

For the experiments, configured the system to send the collected data as a data stream.
In the scenario described, the data stream has the following properties [32]:

1. Batch Size: The batch size refers to the number of data points collected and processed
at a given time. In the provided scenario, each hour’s data is considered as a batch.

2. Time Granularity: The time granularity refers to the resolution or interval at which
the data is collected and recorded. In this scenario, the time granularity is specified
as hourly quantifiable values from the sensors. This means that the data points are
collected and recorded at hourly intervals.

3. Data Source: The data source in this scenario is industrial sensors that monitor var-
ious parameters related to machine conditions. The sensors provide quantifiable
values reflecting the state of the machines and are collected using the appropriate
infrastructure.

4. Data Format: Since the data is collected from sensors, it is numerical data representing
measurements or readings from those sensors.

5. Concept Drift: The concept drift refers to changes or shifts in the underlying data
distribution over time. In this scenario, concept drift is introduced by the attacker who
modifies the sensor and actuator information. This leads to changes in the behavior
of the system, which is reflected in the data stream. The concept drift is intentional
and occurs gradually (medium), abruptly (high) random with very frequent changes
(chaotic) depending on the attacker’s actions.

After each data point is processed, the clustering performance is evaluated using
several evaluation metrics. Here are the evaluation metrics used in the code:

1. AdjustedRand Index (ARI): The adjustedRand indexmeasures the similarity between
the true cluster assignments and the predicted cluster assignments, taking into account
all pairs of samples and their respective cluster assignments. A value of 1 indicates
a perfect clustering, while a value close to 0 suggests random clustering. With over-
lapping entries of different clusters of modeled clustering Cm and real clustering Cr ,
ARI can be computed as follows [22]:

ARI(Cr,Cm) = �ij
nij
2 − �ia

ai
2 �

bj
2

2

1
2�ia

ai
2 + �ja

bj
2 − �iai�jbj

n

where, nij is the number of nodes that are present in both cluster Cm
i and Cr

j , ai is the
summation of all nij corresponding to any Cr

j of Cr and all Cm
i of Cm, and bj is the

summation of all nij corresponding to any Cm
i of Cm and all Cr

j of C
r .

2. Silhouette Coefficient: The silhouette coefficient measures how well each sample in
a cluster is separated from samples in other clusters. It computes the mean distance
between a sample and all other points in the same cluster (a) and the mean distance
between the sample and all other points in the nearest neighboring cluster (b). The
silhouette coefficient ranges from –1 to 1, where a value close to 1 indicates well-
separated clusters, 0 indicates overlapping clusters, and –1 indicates incorrect cluster
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assignments. Specifically, silhouette score for a datapoint i is given as [22]:

s(i) =

⎧⎪⎨
⎪⎩

1 − a(i)
b(i) if a(i) < b(i)

0 if a(i) = b(i)
b(i)
a(i) − 1 if a(i) > b(i)

where bi is the inter cluster distance defined as the average distance to closest cluster
of datapoint i except for that it’s a part of:

bi = min
k �=i

1

|Ck |
∑
j∈Ck

d(i, j)

where ai is the intra cluster distance defined as the average distance to all other points
in the cluster to which it’s a part of:

ai = 1

|Ci| − 1

∑
j∈Ci,i �=j

d(i, j)

3. Calinski-Harabasz Index: The Calinski-Harabasz index, also known as the vari-
ance ratio criterion, measures the ratio between the within-cluster dispersion
and the between-cluster dispersion. It evaluates the compactness and separa-
tion of clusters, where a higher index value indicates better-defined clusters. The
Calinski-Harabasz index is calculated as [22]:

CH =
BGSS
K−1
WGSS
N−K

= BGSS

WGSS
× N − K

K − 1

where N is total number of observations, K is total number of clusters and

BGSS =
k∑

k=1

nk × ‖Ck − C‖2

where nk is the number of observations in cluster k, Ck is the centroid of cluster
k, C is the centroid of the dataset (barycenter) and K is the number of clusters,

WGSSk =
nk∑
i=1

‖Xik − Ck‖2

where nk is the number of observations in cluster k, Xik is the i-th observation
of cluster k, Ck is the centroid of cluster k and then sum all individual within group
sums of squares:

WGSS =
K∑

k=1

WGSSk

whereWGSSk is the within group sum of squares of cluster k and K is the number of
clusters.
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4. Davies-Bouldin Index: The Davies-Bouldin index measures the average similarity
between each cluster and its most similar cluster, taking into account both the size
and the separation between clusters. A lower index value indicates better clustering,
where 0 indicates perfectly separated clusters. Calculate the Davies-Bouldin index as
[22]:

D = 1

N

N∑
i=1

Di

where Di chooses the worst-case scenario, and this value is equal to Ri,j for the most
similar cluster to cluster i:

Rij = ∥∥Ai − Aj
∥∥
p =

(
n∑

k=1

∣∣ak,i − ak,j
∣∣p

) 1
p

Ri,j is a measure of separation between cluster Ci and cluster Cj and ak,i is the k th
element of Ai, and there are N such elements in A for it is an n dimensional centroid.

To evaluate the method and prove its superiority, 3 different data streams with vary-
ing difficulty concept drift were used (medium, high, and chaotic) in which a comparison
wasmadewith corresponding competing algorithms, namelyDensity-based spatial clus-
tering of applications with noise (DBSCAN), OnlineK-Means, CluStream andBalanced
Iterative Reducing and Clustering using Hierarchies (BIRCH). The results are presented
in the following Table 1.

These results indicate the performance of different methods in handling concept drift
in Data Streams. Higher values for ARI and Silhouette indicate better clustering quality,
while higher values for Calinski-Harabasz and lower values for Davies-Bouldin indicate
better cluster separation.

For Data Stream 1 (medium), AR-NG method achieved the highest scores across all
metrics, indicating good performance in handling concept drift. It has the highest ARI
and Silhouette Score, and it also performs well in the Calinski-Harabasz and Davies-
Bouldin measures. DBSCAN, Online K-Means, CluStream, and BIRCH methods also
show competitive performance, but slightly lower than AR-NG in terms of ARI and
Silhouette Score.

For Data Stream 2 (high), the AR-NG method maintains its relatively high perfor-
mance, although the scores decrease compared toData Stream1. It still outperforms other
methods in most metrics. DBSCAN, Online K-Means, CluStream, and BIRCHmethods
show comparable performance, but they exhibit significant lower scores compared to
AR-NG.

ForData Stream3 (chaotic), allmethods experience a significant drop in performance
across all metrics. This is likely due to the introduction of chaotic concept drift, which
poses challenges for themethods to adapt and accurately cluster the data.AR-NGmethod
still performs better than othermethods, but its scores decrease substantially compared to
the previous data streams. DBSCAN,OnlineK-Means, CluStream, andBIRCHmethods
also show a decrease in performance, with DBSCAN having the lowest scores among
them.
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Table 1. Performance Results

Data Method Scores

ARI Silhouette Calinski-Harabasz Davies-Bouldin

Data Stream
1 (Medium)

AR-NG 0.82837 0.694837 1513 0.215832

DBSCAN 0.80212 0.669901 1487 0.270023

Online
K-Means

0.79441 0.660725 1469 0.268830

CluStream 0.79092 0.658722 1457 0.283102

BIRCH 0.78996 0.642399 1401 0.308972

Data Stream
2 (High)

AR-NG 0.78401 0.61774 1408 0.312113

DBSCAN 0.74392 0.55973 1251 0.360921

Online
K-Means

0.74489 0.56130 1269 0.359872

CluStream 0.73825 0.54671 1204 0.373321

BIRCH 0.74003 0.55682 1238 0.359283

Data Stream
3 (Chaotic)

AR-NG 0.42007 0.36093 1102 0.380049

DBSCAN 0.32901 0.29087 857 0.499208

Online
K-Means

0.31992 0.30011 799 0.535561

CluStream 0.33459 0.26994 865 0.523009

BIRCH 0.35022 0.27690 888 0.501297

Overall, the results suggest that the AR-NGmethod demonstrates better adaptability
to concept drift compared to the other methods, at least in the provided scenarios. These
performance metrics suggest that the clustering algorithm is accurately capturing the
underlying structure of the data, with well-separated and meaningful clusters.

4 Conclusion

Identifying concept drift in the cybersecurity domain is essential for staying ahead of
evolving threats, adapting security measures, andmaintaining the effectiveness of cyber-
security systems. It enables organizations to detect emerging attacks, respond promptly,
and make informed decisions based on the changing nature of the data being analyzed.
The Adaptive Reservoir Neural Gas algorithm presented in this paper offers a novel and
effective solution for handling concept drift in real-time data streams.
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By combining the power of reservoir computing and the Neural Gas algorithm,
AR-NG achieves adaptive clustering that efficiently captures the evolving data distribu-
tion. Specifically, the use of reservoir computing in the clustering algorithm provides
a powerful framework for efficient and parallel processing of input data streams, mak-
ing it suitable for real-time or online applications. Also, the algorithm utilizes DBCM, a
density-based clustering mechanism, which can effectively discover clusters of arbitrary
shapes and handle noise in the data without require specifying the number of clusters in
advance.

The key important is that the algorithm incorporates adaptive parameters to handle
concept drift in the data stream, which can significantly impact the clustering results.
By adapting the reservoir parameters based on concept drift detection, the algorithm
can maintain accurate and up-to-date clustering models. This achieves by employs com-
petitive learning to find the winning neuron among the activated reservoir neurons in
order to identify themost representative neurons for each data point, leading to improved
clustering accuracy and separation.

As proven experimentally the proposed streaming approach is memory-efficient
since it does not require storing the entire data stream in memory. Instead, it processes
data points sequentially, updating the clusteringmodel and adapting the parameters incre-
mentally as new data arrives. The results of this study provide evidence of its efficacy,
positioning AR-NG as a valuable tool for dynamic environments requiring real-time
data analysis and decision-making.

While the above algorithm has its benefits, it also has some limitations and areas
for future improvement. Particularly, as the number of data points increases, the pro-
cessing and memory requirements of the algorithm may become a bottleneck. Scaling
up the algorithm to handle big data efficiently would be a challenge. In addition, the
algorithm relies on manually setting parameters such as the size of the reservoir, DBCM
parameters (epsilon and min_samples), and the number of neighbors. Finding the opti-
mal parameter values can be a challenging task, and these values may vary depending on
the characteristics of the data stream. A more automated approach for parameter tuning
would enhance the algorithm’s performance and applicability. From this point of view,
investigating techniques to parallelize the algorithm’s computations could improve its
efficiency and scalability. This could involve utilizing parallel processing frameworks
or distributed computing approaches to handle the processing of data points in parallel,
making the algorithm more suitable for larger-scale data streams.



Adaptive Reservoir Neural Gas: An Effective Clustering Algorithm 163

Appendix 1

Pseudocode of the proposed AR-NG methodology
# Constants
RESERVOIR_SIZE = 100
FEATURE_SIZE = 2
# Function to initialize parameters
initialize_parameters()
# Function to initialize clustering structure using Neural Gas
initialize_neural_gas()
# Function to calculate activation level based on similarity
calculate_activation_level()
# Function to activate reservoir neurons based on data point
activate_reservoir_neurons()
# Function to perform competitive learning and find the winning neuron
competitive_learning()
# Function to update clustering structure based on winning neuron and neighbors
update_clustering_structure()
# Function to update a neuron's cluster and position
update_neuron()
# Function to generate data stream
generate_data_stream()
# Function to evaluate clustering performance
evaluate_clustering_performance()
# Main function
if __name__ == '__main__':

# Initialize parameters
reservoir = initialize_parameters()
initialize_neural_gas(reservoir)
# Data stream
data_stream = generate_data_stream(1000)
# Initialize variables
clusters = []
ari_scores = []
silhouette_scores = []
calinski_harabasz_scores = []
davies_bouldin_scores = []
# Generate true labels for evaluation
true_labels = generate_true_labels()
# Perform online clustering
batch_size = 100
num_batches = length(data_stream) / batch_size
for batch_idx in range(num_batches):

start_idx = batch_idx * batch_size
end_idx = start_idx + batch_size
# Process a batch of data points
for i in range(start_idx, end_idx):

data_point = data_stream[i]
# Activate reservoir neurons
activate_reservoir_neurons(reservoir, data_point)
# Perform competitive learning and update clustering structure
winning_neuron = competitive_learning(reservoir)
update_clustering_structure(winning_neuron)
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# Store cluster assignment
clusters[i] = winning_neuron['cluster']

# Evaluate clustering performance for the current batch
ari, silhouette, calinski_harabasz, davies_bouldin = evaluate_clustering_performance(

true_labels[start_idx:end_idx], clusters[start_idx:end_idx], reservoir[:end_idx]
)
if ari is not None:

ari_scores.append(ari)
silhouette_scores.append(silhouette)
calinski_harabasz_scores.append(calinski_harabasz)
davies_bouldin_scores.append(davies_bouldin)

# Detect and handle concept drift for the current batch
if detect_concept_drift(clusters[:end_idx]):

handle_concept_drift(clusters[:end_idx])
# Perform analysis and decision-making for the current batch
perform_analysis(clusters[:end_idx])
# Plot clustering result for the current batch
plot_clusters(data_stream[:end_idx], clusters[:end_idx])

# Plot ARI scores over batches
plot_ari_scores(ari_scores)
# Plot silhouette scores over batches
plot_silhouette_scores(silhouette_scores)
# Plot Calinski-Harabasz scores over batches
plot_calinski_harabasz_scores(calinski_harabasz_scores)
# Plot Davies-Bouldin scores over batches
plot_davies_bouldin_scores(davies_bouldin_scores)
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