
Vietnam J Comput Sci
DOI 10.1007/s40595-017-0095-3

REGULAR PAPER

Computational intelligence anti-malware framework for android

OS

Konstantinos Demertzis1
· Lazaros Iliadis1

Received: 2 May 2016 / Accepted: 15 February 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract It is a fact that more and more users are adopting
the online digital payment systems via mobile devices for
everyday use. This attracts powerful gangs of cybercriminals,
which use sophisticated and highly intelligent types of mal-
ware to broaden their attacks. Malicious software is designed
to run quietly and to remain unsolved for a long time. It man-
ages to take full control of the device and to communicate (via
the Tor network) with its Command & Control servers of fast-
flux botnets’ networks to which it belongs. This is done to
achieve the malicious objectives of the botmasters. This paper
proposes the development of the computational intelligence
anti-malware framework (CIantiMF) which is innovative,
ultra-fast and has low requirements. It runs under the android
operating system (OS) and its reasoning is based on advanced
computational intelligence approaches. The selection of the
android OS was based on its popularity and on the number
of critical applications available for it. The CIantiMF uses
two advanced technology extensions for the ART java virtual
machine which is the default in the recent versions of android.
The first is the smart anti-malware extension, which can rec-
ognize whether the java classes of an android application
are benign or malicious using an optimized multi-layer per-
ceptron. The optimization is done by the employment of the
biogeography-based optimizer algorithm. The second is the
Tor online traffic identification extension, which is capable
of achieving malware localization, Tor traffic identification

B Konstantinos Demertzis
kdemertz@fmenr.duth.gr

Lazaros Iliadis
liliadis@fmenr.duth.gr

1 Lab of Forest-Environmental Informatics and Computational
Intelligence, Democritus University of Thrace, 193
Pandazidou st., 68200 N.Orestiada, Greece

and botnets prohibition, with the use of the online sequential
extreme learning machine algorithm.

Keywords Android malware · Firmware malware · Mobile
banking malware · Rootkits · Ransomware · Online
sequential extreme learning machine · Tor traffic analysis ·

Botnets

1 Introduction

1.1 Android security model

One of the most important features that distinguish the
android OS, is the adoption of user identifiers (UIDs) which
imparts sophisticated security capabilities, compared to the
modes of traditional OS. In particular, the android appli-
cations run as separate processes with different UIDs and
different permissions each. In this way, there is no applica-
tion capable to read/write data or code to another, whereas
if it is necessary to make data exchange with another appli-
cation, it requires the assignment of specific permission. It
should be noted that the android uses the mandatory access
control (MAC) model in all of the processes, even in those
that run with root/superuser privileges [1]. Specifically, this
model is based on a security label system, which is attributed
to both “subjects” (e.g. applications, users) and “objects”,
which are the categories that manage information, related
to different needs. This means that they can be assigned to
sections of individual information within a system. Specific
types of security clearance (classification labels) are assigned
to the applications and to their corresponding data. In this
way, the android is based on security clearances, on the clas-
sification data labels and on the system’s security policies,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40595-017-0095-3&domain=pdf

Vietnam J Comput Sci

to reach a decision on which subject is entitled to access an
object.

The classification data labels are assigned to each type of
object (file, directory, device, network). Based on the secu-
rity policies, the system checks the security clearances of a
“subject” (e.g. user, application) by comparing them to the
classification data labels of an “object” (e.g. data, files) to
which access is sought. Access is not approved, if security
policies are not met. The MAC model is called mandatory
[1], because the classification of “subjects” and “objects”
is performed automatically by the system, without the inter-
vention of users who theoretically cannot change these rating
levels.

1.2 Android rootkits

An android rootkit [2] is a set of executable scripts and
configuration files, allowing the continuous access to the
root/superuser privileges. It should be mentioned that they
actively hide their presence from the system administrators.
This is done by their incorporation into basic android OS files
or other legitimate applications.

Thus, they enable secret maintenance of the system’s
control by executing commands or by stealing important
data (e.g. credit card numbers, passwords, banking appli-
cations) totally unnoticed. Typically, an attacker installs an
android rootkit by exploiting known security loopholes (zero-
day exploit, unpatched), to obtain passwords (e.g. phishing,
clickjacking), or to perform direct attack on encryption
(brute-force attack, hijack attack) or through close-in attack
(social engineering).

The action of the rootkit, starts after the installation of
the android OS, which is equivalent to simultaneous acquisi-
tion root/superuser privileges and after the installation of the
necessary “Payloads”.

Then the rootkit is activated and redirects the system calls
to completely conceal its presence. For example, when a
system function accesses a DLL library, it is misled by the
rootkit, which activates its own code to overtake the control
of its files. The kernel level rootkits [2] (which are the most
dangerous) have the following capabilities:

(a) To change the privileges of a process (privilege escala-
tion).

(b) They can create or open doors against a security gap or
program

(c) They can create a coded or encrypted communication
channel with C & C servers (HTTPS, Tor)

(d) They can “load” drivers or collect and record informa-
tion from the system in which they operate through key
loggers or password sniffers (telephone number, coun-
try, IMEI, model, android OS version, list of installed
apps).

(e) It is possible to perform unstructured supplementary ser-
vice data (USSD) request [1], even to neutralize the
defenses of the system by replacing legal with false and
malicious applications (e.g. Rogue security software,
fake antivirus) [3].

The malware response programs, if not themselves fake, they
perform out a scan in a modified system, where changes can-
not be traced, since rootkits distort the files so that every
signature-based or difference-based control fails.

Thus, the user cannot revoke the full administrator rights
from the malicious software, even if he uninstalls all appli-
cations that turned his phone a pawn of unknown forces,
capable of an imperceptible files interception. It should be
mentioned that there are cases which even require the full
cancellation of the operating system.

The firmware malware [3], a special category of android
rootkits, is extremely difficult to detect because the traditional
virus scanners will not detect firmware threats.

Android rootkits ransomware encrypt data and then they
demand money to unlock the victim’s files. If the money is
not paid within the period specified by the criminals, they
threaten to hold the decryption key, which is kept only on the
hacker’s C & C server.

Finally, the android rootkits are mainly mobile banking
malware, which have been developed with the objective of
financial fraud. They are conducting illegal financial trans-
actions and they steal money.

The memory dumps analysis method is the most seri-
ous approach of treating these threats. It performs a forced
dump of the operating system’s virtual memory to identify
an active rootkit. However, this technique is highly spe-
cific, it requires access to private source code, it is time
consuming and it requires specialized personnel with the
respective tools (digital forensic investigation tools). More-
over, it does not have the ability to detect every type of threat,
as a hypervisor rootkit is able to monitor and to overturn the
lower level of the system in an attempt to read the memory
[3].

1.3 Tor-based botnets and Tor traffic analysis

The objective of Tor [4] is to conceal the user IDs and their
activity in the network to prevent the monitoring and analysis
of the traffic and to separate the detection from the routing
using virtual circuits, or overlays, which change periodically.

It is the implementation of onion routing [5], in which
multiple layers of encryption are employed, to ensure perfect
forward secrecy between the nodes and the hidden services
of Tor, while launching randomly the communication via
Tor nodes (consensus) operated by volunteers worldwide.
Although the Tor network is operating in the Transport layer
of the OSI, the onion proxy software shows customers the

123

Vietnam J Comput Sci

secure socket interface (SOCKS) which operates in the ses-
sion layer.

Also, a continuous redirection of traffic requests between
the relays (entry guards, middle relays and exit relays), takes
place in this network. Both the sender and recipient addresses
and the information are in the form of encrypted text, so that
no one at any point along the communication channel can
decrypt the information or identify both ends directly [5]. The
most famous types of malware are seeking communication
recovery and its maintenance with the C & C remote servers
on a regular basis, so that botmasters can collect or transfer
information and upgrades to the compromised devices (bots).
This communication is usually performed using hardcoded
address or default lists address (pool addresses) controlled
by the creator of the.

The mode of communication of the latest, sophisticated
malware generations, lies in the creation of an encrypted
communication channel, based on the chaotic architecture
of Tor, to alter the traces and to distort the elements that
define an attack and eventually to increase the complexity of
the botnets.

Although modern programming techniques enable the
malware creators to use thousands, alternating and different
subnet IP address, to communicate with their C2 servers, the
trace of those IPs is relatively straightforward for the network
engineers, or for the responsible security analysts. Once iden-
tified, they are included in a blacklist and eventually they are
blocked as spam. On the other hand, the limitation of the Tor-
based botnets is extremely difficult because the movement of
the Tor network resembles that of the HTTPS protocol.

1.4 Tor vs HTTPS

The Tor network not only performs encryption, but it is also
designed to simulate normal HTTPS protocol traffic, which
makes the identification of its channels an extremely com-
plex and specialized process, even for experienced engineers
or network analyzers. Specifically, the Tor network can use
the TCP port 443, which is used by the HTTPS, so that the
supervision and interpretation of a session exclusively with
the determination of the door cannot constitute a reliable
method.

A successful method for detecting Tor traffic is the sta-
tistical analysis and the identification of the secure sockets
layer protocol differences (SSL) [6]. The SSL protocol uses
a combination of public and symmetric key encryption. Each
SSL connection always starts with the exchange of messages
by the server and the client until the secure connection is
established (handshake). The handshake allows the server
to prove its identity to the client using public-key encryp-
tion techniques and then allows the client and the server to
cooperate in the creation of a symmetric key to be used to
quickly encrypt and decrypt data exchanged between them.

Optionally, the handshake also allows the client to prove its
identity to the server [6]. Given that each Tor client creates
self-signed SSL, using a random domain name that changes
around every 30 min, a statistical analysis of the network
traffic based on the specific SSL characteristics can identify
the Tor sessions, in a network full of HTTPS traffic.

2 Innovation of the proposed method

Android rootkits are the most sophisticated and highly
intelligent malware techniques that make detection of “con-
tamination” and analysis of malicious code, a very complex
task. It is a fact that they spread through chaotic Tor-based
botnets in which communication is done using the anonymity
Tor network, which makes it impossible to identify and locate
the C & C servers. In addition, the network traffic for the Tor
packet is designed to simulate the respective traffic of the
HTTPS protocol, which causes serious Tor traffic identifi-
cation weaknesses by the motion analysis systems. Finally,
given the passive mode of traditional android mobile secu-
rity systems, which are unable in most cases to identify these
types of major threats, the development and use of alterna-
tive more radical and more substantial methods appear as a
necessity. This work proposes the development and testing of
a novel computational intelligence system named CiantiMF.
The system requires the minimum consumption of resources
and it significantly enhances the security mechanisms of the
android OS [7].

Specifically, the architecture of the proposed system
is based on the hybrid use of two advanced ART JVM
(ANDROID) extensions, namely the SAME and the OTTIE.
The SAME uses a neural network, optimized with the BBO
algorithm and it is capable of recognizing whether the java
classes of an android application are benign or malicious. The
OTTIE employs the OSELIM algorithm to perform malware
localization, Tor traffic identification and botnets prohibition.

The CiantiMF system is a biologically inspired artifi-
cial intelligence computer security technique [8–12]. Unlike
other existing approaches which are based on individual pas-
sive safety techniques, the CiantiMF is an integrated active
safety system. It provides intelligent surveillance mecha-
nisms and classification of malware, it is able to defend itself
and to protect from Rootkits malware, it detects and prevents
encrypted Tor network activities and it can efficiently exploit
the potential of the hardware, with minimal computational
cost.

A major innovation of the CiantiMF approach is related to
the architecture of the proposed hybrid computational intelli-
gence system, which combines for the first time two very fast
and highly effective biologically inspired machine learning
algorithms towards the solution of a multidimensional and
complex IT security problem. Another novelty is the addi-

123

Vietnam J Comput Sci

tion of a hybrid machine learning system as an extension to
the ART JVM, under the android OS. This addition pours
intelligence at compiler level, something that significantly
enhances the defense mechanisms of the system, as well as
controlling the outset dependencies of an application.

Furthermore, a major innovative feature of this proposal
is related to the identification and separation of the Tor net-
work traffic from the traffic of the HTTPS protocol, which
is presented for the first time in static or dynamic network
traffic analysis systems.

3 Related work

Several publications discuss android-specific security mech-
anisms, involving overall security assessment of the platform
[13], malware detection [14], application permission anal-
ysis [15], and kernel hardening [16]. Significant work has
been done in applying machine learning (ML) methods, using
features derived from both static [17–19] and dynamic [20]
analysis to identify malicious android applications [21], to
network traffic classification [22], malware traffic analysis
[23] and botnets localization [24]. In parallel, several other
authors [25–27] have also summarized scientific effort of
detecting the botnets while proposing novel taxonomies of
detection techniques, introducing different classes of botnet
detection and presenting some of the most prominent meth-
ods within the defined classes. Also, traffic analysis attacks
have been extensively studied over the past decade [28,29].
The authors have acknowledged the potential of machine
learning-based approaches in providing efficient and effec-
tive detection, but they have not provided a deeper insight into
specific methods, neither the comparison of the approaches
by detection performances nor evaluation practice.

On the other hand, Cheng et al. [30] proposed the use
of ELM methods to classify binary and multi-class network
traffic for intrusion detection with high accuracy. Hsu et al.
[31] proposed a real-time system for detecting botnets based
on anomalous delays in HTTP/HTTPS requests from a given
client with very promising results. Also, Haffner et. al. [32]
employed AdaBoost, hidden Markov, Naive Bayesian and
maximum entropy models to classify network traffic into
different applications, with very high secure shell (SSH, is
a cryptographic network protocol operating at layer 7 of the
OSI model to allow remote login and other network services
to operate securely over an unsecured network) detection rate
and very low false-positive rate, but they employed only few
bytes of the payload. Furthermore, Alshammari et al. [33]
employed repeated incremental pruning, to produce error
reduction (RIPPER) and AdaBoost algorithms for classifying
SSH traffic from offline log files without using any payload,
IP addresses or port numbers. Holz et al. [34] proposed a pas-
sive method to locate botnets and Apvrille et al. [35] propose

a heuristic engine that statically pre-processes and prioritizes
samples to accelerate the detection of new android malware
in the wild. Crowdroid [36] made a first step towards the use
of dynamic analysis results for android malware detection by
performing k means clustering based on system call invoca-
tion counts. Afonso et al. [37] dynamically analyze android
apps to use the number of invocations of API and system calls
as coarse-grained features to train various classifiers. Their
monitoring approach relies on modifying the app under anal-
ysis, which is easily detectable by malware. Dini et al. [38]
proposed a multi-level anomaly detector for android malware
(MADAM) system to monitors android at the kernel level and
user level to detect real malware infections using machine
learning techniques to distinguish between standard behav-
iors and malicious ones. The Droid Dolphin [39] approach
relies on repackaging an application with monitoring code.
Chakravarty et al. [40] assess the feasibility and effectiveness
of practical traffic analysis attacks against the Tor network
using NetFlow data and proposed an active traffic analysis
method based on deliberately perturbing the characteristics
of user traffic at the server side, and observing a similar
perturbation at the client side through statistical correlation.
Almubayed et al. [41] proposed a research has considered
many ML algorithms to fingerprint Tor usage in the network.
Chaabane et al. [42] provides a deep analysis of both the
HTTP and BitTorrent protocols giving a complete overview
of their usage, depict how users behave on top of Tor and also
show that Tor usage is now diverted from the onion routing
concept and that Tor exit nodes are frequently used as 1-hop
SOCKS proxies, through a so-called tunneling technique.
Finally, Chakravarty et al. proposed methods for performing
traffic analysis using remote network bandwidth estimation
tools, to identify the Tor relays and routers involved in Tor
circuits [43,44].

4 Architecture of the CIantiMF

The architecture of the CIantiMF requires the creation of two
parallel extensions which act additionally and complemen-
tary to the function of the ART JVM. This injects artificial
intelligence at android compiler level, significantly enhanc-
ing its active security. Specifically, SAME [45] analyzes the
java classes before they load and run a java application (class
loader). Introduction of the files in the ART JVM passes
necessarily through the said extension in which it is checked
whether the classes are benign or malicious. If they are found
malicious, a decision is made, either automatically, if the
accuracy of classification exceeds a desired threshold, or
after an intervention of the system’s operator for the rejec-
tion and non-installation of the application. If the control
class is found benign, then the installation process continues

123

Vietnam J Comput Sci

Fig. 1 The proposed
architecture of the CIantiMF

normally without problems, while the user is informed that
it is a safe application.

Then, when the application is executed, a control of the
network traffic that is generated by the application is per-
formed to determine whether it is related to malicious sources
or not. A thorough analysis is also carried out to identify the
potential encrypted traffic and accordingly if it is following
the HTTPS protocol it is allowed, whereas if it is following
the Tor protocol it is rejected by default as malicious.

The proposed architecture of the CIantiMF is presented
in Fig. 1.

It should be emphasized that the above architectural shape
operates based on the dynamic analysis of the android sys-

tem’s parameters, adapting the requirements of the running
applications on the basis of stringent criteria and robust secu-
rity policies.

This adaptation is the result of an automatic process,
derived from computational intelligence technologies, thus
overcoming the potential inability of users to take timely
measures to protect themselves. Finally, it is important that
these malware identification procedures require fewer steps
than the processor to analyze an application, resulting in a
better resources management and in less energy consump-
tion.

123

Vietnam J Comput Sci

4.1 Smart anti-malware extension (SAME)

In our previous work [45], we have proposed the SAME
which introduces intelligence to the compiler and classifies
malicious java classes in time to spot the android malwares.
This is done by applying the java class file analysis (JCFA)
approach and based on the effective BBO optimization algo-
rithm, which is used to train a MLP.

Generally, the source code java files (.java) of a java appli-
cation are compiled to byte code files (.class) which are
platform independent and they can be executed by a JVM
just like ART which is an ahead-of-time (AOT) compiler. The
classes are organized in the .java files with each file contain-
ing at least one public class. The name of the file is identical
to the name of the contained public class. The ART loads the
classes required to execute the java program (class loader)
and then it verifies the validity of the byte code files before
execution (byte code verifier) [3]. The JCFA process includes
also the analysis of the classes, methods and specific charac-
teristics included in an application. The SAME, introduces
advanced artificial intelligence (AI) methods, applied on spe-
cific parameters and data (obtained after the JCFA process)
to perform binary classification of the classes comprising
an application, in benign or malicious. More specifically the
SAME system employs the biogeography-based optimizer to
train a MLP which classifies the java classes of an application
successfully in benign or malicious.

The architectural design of the SAME introduces an addi-
tional functional level inside the ARTJVM, which analyzes
the java classes before their loading and before the execution
of the java program (class loader). The introduction of the
files in the ARTJVM, always passes from the above level,
where the check for malicious classes is done. If malicious
classes are detected, decisions are done depending on the
accuracy of the classification. If the accuracy is high, then
the decisions are done automatically, otherwise the actions
are imposed by the user regarding the acceptance or rejection
of the application installation. In the case that the classes are
benign, the installation is performed normally and the user
is notified that this is a secure application [45].

A basic innovation of the SAME is the inclusion of a
machine learning approach as an extension of the ART JVM
used by the android OS. This joint with the JCFA and the
fact that the ART JVM resolves ahead-of-time all of the
dependencies during the loading of classes, introduces Intel-
ligence in compiler level. This fact enhances the defensive
capabilities of the system significantly. It is important that
the dependencies and the structural elements of an applica-
tion are checked before its installation enabling the malware
cases.

An another important innovative part of this research is
related to the choice of the independent parameters, which
was done after several exhaustive tests, to ensure the max-

imum performance and generalization of the algorithm and
the consumption of the minimum resources.

Finally, it is worth mentioning that the BBO optimization
algorithm (popular for engineering cases) is used for the first
time to train an artificial neural network (ANN) for a real
information security problem.

4.2 Online Tor traffic identification extension (OTTIE)

The TTIE is essentially a tool for analysis of web stream-
ing traffic in fixed intervals, to extract timely conclusions in
which some or all of the incoming data are not available for
access from any permanent or temporary storage medium,
but those arrive in a form of consecutive flows. For these
data there is no control over the order in which they arrive,
their size may vary and many of them offer no real infor-
mation. Also the examination of individual IP packets or
TCP segments can extract only a few conclusions and there-
fore the interdependence of the individual packets to each
other, their analysis cannot be done with simple static meth-
ods, but it requires further modeling of traffic and the use of
advanced analytical methods for the extraction of knowledge
from complex data sets. This modeling in TTIE is achieved
by the use of the computational intelligence online sequential
extreme learning machine (OSELM) algorithm.

The extreme learning machine (ELM) as an emerging
biologically inspired learning technique provides efficient
unified solutions to “generalized” single-hidden layer feed
forward networks (SLFNs) but the hidden layer (or called fea-
ture mapping) in ELM need not be tuned [46]. Such SLFNs
include but are not limited to support vector machine, poly-
nomial network, RBF networks, and the conventional feed
forward neural networks. All the hidden node parameters
are independent from the target functions or the training
datasets and the output weights of ELMs may be determined
in different ways (with or without iterations, with or without
incremental implementations). ELM has several advantages,
ease of use, faster learning speed, higher generalization per-
formance, suitable for many nonlinear activation function
and kernel functions.

According to the ELM theory [46], the ELM with Gaus-
sian radial basis function kernel (GRBFK) K (u, v) =

exp(−γ ||u − v||2) is used in this approach. The hidden neu-
rons are k = 20 that chosen with trial and error method.
Subsequently, wi are the assigned random input weights and
bi , i = 1, . . . , N are the biases. To calculate the hidden layer
output matrix H , the Eq. (1) is used.

H =

⎡

⎢

⎣

h (x1)
...

h (xN)

⎤

⎥

⎦
=

⎡

⎢

⎣

h1 (x1) · · · hL (x1)
...

...

h1 (xN) · · · hL (xN)

⎤

⎥

⎦
(1)

123

Vietnam J Comput Sci

h(x) = [h1(x), ..., hL (x)] is the output (row) vector of the
hidden layer with respect to the input x . Also h(x) actually
maps the data from the d-dimensional input space to the L-
dimensional hidden-layer feature space (ELM feature space)
H and thus h(x) is indeed a feature mapping. ELM is to
minimize the training error as well as the norm of the output
weights:

Minimize : ||Hβ − T ||2 and ||β|| (2)

where H is the hidden-layer output matrix of the equation (1),
||β|| is used to minimize the norm of the output weights and
actually to maximize the distance of the separating margins
of the two different classes in the ELM feature space 2/||β||.

To calculate the output weights β the function (3) is used:

β =

(

I

C
+ HT H

)−1

HTT (3)

where c is a positive constant is obtained and T resulting from
the function approximation of SLFNs with additive neurons

T =

⎡

⎢

⎣

tT
1
...

tT
N

⎤

⎥

⎦
[46]

which is an arbitrary distinct sample with

ti = [ti1, ti2, . . ., tim]T ∈ Rm[47]

The OSELM is an alternative technique for large-scale com-
puting and machine learning approaches that used when data
become available in a sequential order to determine a map-
ping from data set corresponding labels. The main difference
between online learning and batch learning techniques is that
in online learning the mapping is updated after the arrival of
every new data point in a scale fashion, whereas batch tech-
niques are used when one has access to the entire training
data set at once. It is a versatile sequential learning algorithm
because the training observations are sequentially (one-by-
one or chunk-by-chunk with varying or fixed chunk length)
presented to the learning algorithm. At any time, only the
newly arrived single or chunk of observations (instead of the
entire past data) are seen and learned. A single or a chunk of
training observations is discarded as soon as the learning pro-
cedure for that particular (single or chunk of) observation(s)
is completed. The learning algorithm has no prior knowl-
edge as to how many training observations will be presented.
Unlike other sequential learning algorithms which have many
control parameters to be tuned, OSELM with RBFkernel only
requires the number of hidden nodes to be specified [47,48].

The proposed method uses an OSELM that can learn data
chunk-by-chunk with a fixed chunk size of 20×20, with RBF

kernel classification approach to perform malware localiza-
tion, Tor traffic identification and botnets prohibition in an
energetic security mode that needs minimum computational
resources and time [7]. The OSELM consists of two main
phases namely: boosting phase (BPh) and sequential learn-
ing phase (SLPh). The BPh used to train the SLFNs using the
primitive ELM method with some batch of training data in
the initialization stage and these boosting training data will
be discarded as soon as boosting phase is completed. The
required batch of training data is very small, which can be
equal to the number of hidden neurons [46–48].

The general classification process with OSELM classifier
is described below:
Phase 1 (BPh) [47,48]

The process of BPh for a small initial training set N =

{(xi , ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · · , Ñ } is described as
follows:

(a) Assign arbitrary input weight wβ(0) = M0 HT
0 T0i and

bias bi or center µi and impact width σi , i = 1, . . . Ñ ,
where Ñ number for hidden neuron or RBF kernel for a
specific application.

(b) Calculate the initial hidden layer output matrix H0 =

[h1, · · · , h
Ñ
]T, where hi = [g(w1 ·xi +b1), . . . , g(w

Ñ
·

xi + b
Ñ
)]T, i = 1, . . . , Ñ , where g activation function

or RBF kernel.
(c) Estimate the initial output weight, where M0 =

(HT
0 H0)

−1 and T0 = [t1, . . . , t
Ñ
]T.

(d) Set k = 0.

Phase 2 (SLPh) [47,48]
In the SLPh the OSELM will then learn the train data

chunk-by-chunk with a fixed chunk size of 20×20 and all the
training data will be discarded once the learning procedure on
these data is completed. The essentials step of this phase for
each further coming observation (xi , t1), where xi ∈ Rn, ti ∈

Rm and i = Ñ + 1, Ñ + 2, Ñ + 3, described as follows:

(a) Calculate the hidden layer output vector h(k+1) =

[g(w1 · xi + b1), . . . , g(w
Ñ

· xi + b
Ñ
)]T

(b) Calculate latest output weight β(k+1) by the algorithm
β̂ = (HT H)−1 H TT which is called the recursive least-
squares (RLS) algorithm.

(c) Set k = k + 1

The proposed TTIE algorithm includes the following ruleset
which is the core of its reasoning and described below.
Step 1 Perform malware localization by OSELM with mal-
ware localization dataset (MLD). If the malware analysis
gives a positive result (Malware) the network traffic is
blocked and the process is terminated. If the malware analy-

123

Vietnam J Comput Sci

sis gives a negative result (Benign), no action is required and
goes to step 2.
Step 2 Perform network traffic analysis by OSELM with
network traffic classification dataset (NTCD). If the net-
work traffic classification result is not a HTTPS, no action
is required. If the network traffic classification result is a
HTTPS, go to step 3.
Step 3 Performs Tor-traffic identification by OSELM with
Tor-traffic identification dataset (TTID). If the botnet clas-
sification result gives a positive result (Botnet) the network
traffic blocked and the process terminated. If the botnet clas-
sification result gives a negative result (HTTPS), no action is
required.

The overall algorithmic approach of TTIE that is pro-
posed herein is described clearly and in detail in the following
Fig. 2.

5 Comparative testing

Performance evaluation was performed based on a thor-
ough comparative analysis (20 trials for each test and we
compute the average result) of the obtained prediction accu-
racy and generalization capability between the CIantiMF
and the following six corresponding batch mode machine
learning methods using a tenfold cross validation approach,
namely: random forest (RF), k-nearest neighbors (k-NN),
support vector machines (SVM), feed forward neural net-
works (FFNN), group methods of data handling (GMDH)
and polynomial artificial neural network (PANN).

5.1 Datasets

The selection of the data was the result of an extensive
research on the functionality of the protocol SSL, combined
with a deep analysis of the independent variables, to obtain
the ones that give the maximum precision under the strict con-
dition of minimal computing resources consumption. This
effort resulted in the creation of training sets, capable to prop-
erly train the employed learning algorithms.

Three datasets with high complexity were constructed and
used for testing by the CIantiMF. The first MLD comprised
32 independent variables and 2 classes (benign or malware).
This dataset containing 73,469 patterns (37,127 benign sam-
ples they were chosen from the Pcaps from National Cyber
Watch Mid-Atlantic Collegiate Cyber Defense Competition
and 36,342 malicious samples they were chosen from http://
malware-traffic-analysis.net/) [49]. The idea of the network
traffic analysis and the features extraction approach were
based on the functional mode of the TCP protocol and
moreover on the acknowledgement method of the reliable
submission and receipt of the data. Also it relies on the error-
free data transfer mechanisms between the network layer

and the application layer, of the TCP header structure and
the three-way handshake process [50].

The full list of the 32 features with the class is detailed in
Table 1.

The second NTCD (Network Traffic Classification Dataset)
comprised 22 independent variables and 12 network traffic
classes (TELNET, FTP, HTTP, HTTPS, DNS, Lime, Local
Forwarding, Remote Forwarding, SCP, SFTP, x11 and Shell).
This dataset containing 137,050 patterns they were chosen
from the Pcaps from Information Technology Operations
Center (ITOC), US Military Academy [51].

The feature management and export (for Tables 2, 3) was
based on the analysis of the network traffic and specifically on
the methodology used in [52]. The full list of the 22 features
with the corresponding classes is presented in the following
Table 2.

Finally, the third TTID comprised 45 independent vari-
ables and 2 classes (Tor or HTTPS). This dataset containing
217,483 patterns they were chosen from the Pcaps from [53].
The full list of 45 features with their corresponding classes
is presented in the following Table 3.

In the preprocessing process the duplicate records and
records with missing values were removed. Also the datasets
were determined and normalized to the interval [−1, 1] to
phase the problem of prevalence of features with wider range
over the ones with a narrower range, without being more
important [54].

Taking into account the limited capacity of resources and
computing power of mobile devices and the limitations posed
by their dependence on the battery, we have made a trans-
formation of the TTID independent variables vector space,
which is a very complex and extensive dataset. Principal com-
ponents analysis (PCA) has been performed to obtain new
linear combinations, capable to contain the largest possible
part of the variance of the original information, without lim-
iting the predictive capability and accuracy of the learning
algorithm. However, due to the fact that the results have dete-
riorated enough (almost 12% less accuracy was obtained) the
approach was abandoned.

Then, we have performed correlation analysis on various
subsets of features which had the highest correlation with the
obtained class, regardless of their interrelation. Also other
subsets were used, which were highly correlated with the
class and they appeared to have high cross-correlation (cor-
relation attribute evaluation) [55].

Finally, we have tried to use subsets for which we have
calculated the cost-sensitive classification, based on the cost
matrix (cost sensitive subset evaluation). The method takes
a cost matrix and a base evaluator. Cost matrix is a way to
change the threshold value for a decision boundary. If the
base evaluator can handle instance weights, then the training
data are weighted according to the cost matrix, otherwise the
training data are sampled according to the cost matrix. The

123

http://malware-traffic-analysis.net/
http://malware-traffic-analysis.net/

Vietnam J Comput Sci

Fig. 2 The proposed architecture of the OTTIE

process of performing cost-sensitive subset evaluation is a
very effective method because the error-based methods con-
sider the classification errors as equally likely, which is not
the case in all the real-time applications [55,56]. The subsets
for which the value of each feature was calculated using the

information gain with respect to the class (information gain
attribute evaluation) [55].

Eventually, the subset chosen was based on the method of
correlation-based feature subset selection (subsets of features
that correlate highly with the class value and has low correla-

123

Vietnam J Comput Sci

Table 1 MLD: extracted features from network traffic (31 independent
and 2 depended)

ID Feature name ID Feature name

1 seq_number 17 response_seq_number

2 ack_number 18 response_ack_number

3 src_port 19 response_src_port

4 dst_port 20 response_dst_port

5 fin 21 response_fin

6 syn 22 response_syn

7 rst 23 response_rst

8 psh 24 response_psh

9 ack 25 response_ack

10 window 26 response_window

11 check 27 response_check

12 ip_len 28 response_ip_len

13 ip_id 29 response_ip_id

14 ip_off 30 response_ip_off

15 ip_ttl 31 response_ip_ttl

16 ip_sum 32 Classes (benign or malicious)

Table 2 NTCD: extracted features from network traffic (22 indepen-
dent and 12 depended)

ID Feature name ID Feature name

1 min_fpktl 13 min_biat

2 mean_fpktl 14 mean_biat

3 max_fpktl 15 max_biat

4 std_fpktl 16 std_biat

5 min_bpktl 17 duration

6 mean_bpktl 18 proto

7 max_bpktl 19 total_fpackets

8 std_bpktl 20 total_fvolume

9 min_fiat 21 total_bpackets

10 mean_fiat 22 total_bvolume

11 max_fiat 23 Classes (TELNET,
FTP, HTTP,
HTTPS, DNS,
Lime, Local
Forwarding,
Remote
Forwarding, SCP,
SFTP, x11 and
Shell)

12 std_fiat

tion with each other). From this dataset we have obtained the
minimum error of the classifier in the training and test data,
in relation to the value of each feature (attribute evaluation
with particle swarm optimization) [55].

Finally, we have gained 33.5% reduction of the initial
parameters, whereas the accuracy dropped only by 0.1%

Table 3 TTID: extracted flow statistics from network traffic (45 inde-
pendent and 2 depended)

ID Feature name ID Feature name

1 srcip 24 max_biat

2 srcport 25 std_biat

3 dstip 26 duration

4 dstport 27 min_active

5 proto 28 mean_active

6 total_fpackets 29 max_active

7 total_fvolume 30 std_active

8 total_bpackets 31 min_idle

9 total_bvolume 32 mean_idle

10 min_fpktl 33 max_idle

11 mean_fpktl 34 std_idle

12 max_fpktl 35 sflow_fpackets

13 std_fpktl 36 sflow_fbytes

14 min_bpktl 37 sflow_bpackets

15 mean_bpktl 38 sflow_bbytes

16 max_bpktl 39 fpsh_cnt

17 std_bpktl 40 bpsh_cnt

18 min_fiat 41 furg_cnt

19 mean_fiat 42 burg_cnt

20 max_fiat 43 total_fhlen

21 std_fiat 44 total_bhlen

22 min_biat 45 dscp

23 mean_biat 46 Classes (Tor or HTTPS)

compared to the accuracy of the system that used all 45 fea-
tures. The following Table 4 presents the 30 features included
in the final dataset.

6 Results and comparative analysis

Given the complexity of the analysis and of the network traf-
fic monitoring which is a realistic and very difficult task of
computer security sector, the proposed system managed to
perform with high accuracy.

Also it is really important that the created datasets appear
to have particularly high complexity, as they emerged taking
into account even the most unfavorable scenarios and almost
all potential cases of network traffic that may occur. This is
a factor that played an important role towards the general-
ization capacity of the proposed system. It is characteristic
that during the classification process, in each case of different
scenarios represented by the use of different datasets, the pro-
posed system achieved accuracy rates of at least 94.2%. The
value of this percentage can increase taking into account the
training method of the OSELM algorithm which is gradu-
ally trained, using network traffic data bundles received in

123

Vietnam J Comput Sci

Table 4 The final TTID feature vector after the feature selection process

ID Feature name Interpretation

1 srcip The source IP address of the flow

2 srcport The source port number of the flow

3 dstip The destination IP address of the flow

4 dstport The destination port number of the flow

5 total_fpackets The total number of packets travelling in the forward direction

6 total_bpackets The total number of packets travelling in the backward direction

7 min_fpktl The minimum packet length (in bytes) from the forward direction

8 max_fpktl The maximum packet length (in bytes) from the forward direction

9 min_bpktl The minimum packet length (in bytes) from the backward direction

10 max_bpktl The maximum packet length (in bytes) from the backward direction

11 min_fiat The minimum interarrival time (in microseconds) between two packets

12 max_fiat The maximum interarrival time (in microseconds) between two packets

13 min_biat The minimum interarrival time (in microseconds) between two packets

14 max_biat The maximum interarrival time (in microseconds) between two packets

15 duration The time elapsed (in microseconds) from the first packet to the last packet

16 min_active The minimum duration (in microseconds) of a sub-flow

17 max_active The maximum duration (in microseconds) of a sub-flow

18 min_idle The minimum time (in microseconds) the flow was idle

19 max_idle The maximum time (in microseconds) the flow was idle

20 sflow_fpackets The average number of forward travelling packets in the sub-flows

21 sflow_fbytes The average number of bytes, travelling in the forward direction

22 sflow_bpackets The average number of backward travelling packets in the sub-flows

23 sflow_bbytes The average number of bytes, travelling in the backward direction

24 fpsh_cnt The number of times the PSH flag was set for packets travelling in the forward direction

25 bpsh_cnt The number of times the PSH flag was set for packets travelling in the backward direction

26 furg_cnt The number of times the URG flag was set for packets travelling in the forward direction

27 burg_cnt The number of times the URG flag was set for packets travelling in the backward direction

28 total_fhlen The total header length (network and transport layer) of packets travelling in the forward direction

29 total_bhlen The total header length (network and transport layer) of packets travelling in the backward direction

30 dscp Differentiated services code point, a field in the IPv4 and IPv6 headers

real time. The analytical values of the classification effi-
ciency of the algorithm and the comparison with the other
six approaches are presented in Tables 5, 6 and 7. The vali-
dation metrics used are the following: accuracy (ACC), root
mean square error (RMSE), precision, recall, F-score and
receiver operating characteristic (ROC) (Table 8).

Classification accuracy is the number of correct predic-
tions made divided by the total number of predictions made,
multiplied by 100 to turn it into a percentage. Precision is
the number of true positives divided by the number of true
positives and false positives. Recall is the number of true
positives divided by the number of true positives and the
number of false negatives. The F-score is the 2 × ((precision
× recall)/(precision+recall)). The true-positive rate (sensi-
tivity) and false-positive rate (specificity) vary across the
different threshold and the sensitivity is inversely related with

specificity. Then, the plot of sensitivity versus 1-specificity is
called receiver operating characteristic (ROC) curve and the
ROC area is an effective measure of accuracy. The RMSE
represents the sample standard deviation of the differences
between predicted values and observed values.

The precision measure shows what percentage of posi-
tive predictions were correct, whereas recall measures what
percentage of positive events were correctly predicted. The
F-score can be interpreted as a weighted average of the preci-
sion and recall. Therefore, this score takes both false positives
and false negatives into account. Intuitively it is not as easy
to understand as accuracy, but F-score is usually more useful
than accuracy and it works best if false positives and false
negatives have similar cost, in this case. Finally, the ROC
curve is related in a direct and natural way to cost/benefit anal-
ysis of diagnostic decision making. The very high sensitivity

123

Vietnam J Comput Sci

Table 5 Classification accuracy
(ACC) and performance metrics
for the MLDataset

Classifier MLDataset

ACC (%) RMSE Precision (%) Recall F-score (%) ROC Evaluation

OSELM 98.2 0.3284 0.981 0.982 0.982 0.990 20 × 20

RF 97.3 0.3607 0.973 0.973 0.973 0.981 Tenfold CV

k-NN 92.7 0.5349 0.927 0.927 0.927 0.936 Tenfold CV

SVM 97.5 0.3542 0.975 0.975 0.975 0.975 Tenfold CV

FFNN 93.7 0.5172 0.939 0.940 0.940 0.962 Tenfold CV

GMDH 94.4 0.5017 0.944 0.944 0.945 0.955 Tenfold CV

PANN 90.9 0.5633 0.909 0.910 0.910 0.914 Tenfold CV

Table 6 Classification accuracy
(ACC) and performance metrics
for the NTCDataset

Classifier NTCDataset

ACC (%) RMSE Precision (%) Recall F-score (%) ROC Evaluation

OSELM 99.6 0.2951 0.996 0.997 0.997 0.998 20 × 20

RF 98.4 0.3112 0.984 0.983 0.983 0.990 Tenfold CV

k-NN 95.8 0.4603 0.958 0.958 0.958 0.961 Tenfold CV

SVM 98.3 0.3217 0.983 0.983 0.983 0.987 Tenfold CV

FFNN 96.9 0.4489 0.970 0.969 0.970 0.972 Tenfold CV

GMDH 97.8 0.3983 0.978 0.978 0.978 0.978 Tenfold CV

PANN 96.6 0.4512 0.967 0.966 0.966 0.967 Tenfold CV

Table 7 Classification
Accuracy (ACC) & Performance
Metrics for the TTIDataset

Classifier TTIDataset

ACC (%) RMSE Precision (%) Recall F-score (%) ROC Evaluation

OSELM 94.2 0.5018 0.942 0.942 0.942 0.950 20 × 20

RF 92.9 0.5206 0.923 0.929 0.923 0.931 Tenfold CV

k-NN 90.1 0.5437 0.901 0.901 0.901 0.910 Tenfold CV

SVM 93.5 0.5173 0.935 0.936 0.935 0.946 Tenfold CV

FFNN 92.4 0.5212 0.924 0.924 0.924 0.925 Tenfold CV

GMDH 88.8 0.5831 0.889 0.888 0.888 0.890 Tenfold CV

PANN 87.3 0.5937 0.873 0.873 0.873 0.874 Tenfold CV

rates, which represent the true malicious traffic identification
cases (true positive rate), are typical and indicative of the
quality of the process. This is also shown by the size of the
ROC curves. This comparison generates very encouraging
expectations for the recovery and identification of OSELM,
as a robust model for such a complex real-time problem.

7 Discussion and conclusions

This research effort, presented a timely, innovative, small
footprint and highly effective security system which relies
on advanced methods of computational intelligence and
it greatly enhances the android OS security mechanisms.
The android OS was chosen as the application environ-
ment, due to its popularity that makes it one of the main
attack targets of cyber criminals, especially for banking
applications. The computational intelligence anti-malware

framework (CIantiMF) uses two advanced extensions run-
ning under the ART JVM. The CIantiMF is able to recognize
whether the java classes of an android application are benign
or malicious. It performs network traffic analysis to identify
the Tor-based Botnets.

The performance of the proposed system was tested on a
novel dataset of high complexity, which emerged after exten-
sive research of how the SSL protocol operates and after
performing comparisons inspections and tests of independent
variables which give the maximum precision, while requiring
minimal computational resources.

The very high accuracy results obtained significantly
enhance the overall methodology followed. The evaluation
of the proposed architecture was based on a comparative
analysis with six corresponding computational intelligence
methods, with very promising output. Proposals for devel-
opment and future enhancements of this system should be
targeted to optimize the parameters of the ELM algorithm

123

Vietnam J Comput Sci

Table 8 The initial parameters
of compared algorithms

Algorithm Parameter Value

OSELM Hidden neurons 25

Activation function RBF kernel

Chunk size 20 × 20

RF MaxDepth Unlimited

BagSize 100

Number of iterations 100

k-NN Number of neighbours 1

Search algorithm Linear search (euclidean distance)

SVM Loss 0.1

Eps 0.01

Gamma 1/max_index

Cost 1.0

Kernel RBF

FFNN Hidden layers 12

Max iterations 1000

Learning rate 0.1

GMDH Number of neurons in a layer 15

Layers 4

Selection pressure (in layers) 0.6

Train ratio 0.85

PANN Number of neurons in a layer 10

Layers 3

Train ratio 0.85

used, so as to achieve even more efficient, more accurate and
faster classification.

Also it would be important for the proposed framework to
be expanded with automatic extraction methods of network
traffic characteristics, with semi- and unsupervised learning,
so that it would fully automate the process of identifying
malicious applications.

Finally, an additional element that could be studied
towards the future expansion of this approach is to create an
additional extension that can detect algorithmically gener-
ated malicious domains names, so that even more protection
would be offered towards newest methods of malicious
attacks.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. https://source.android.com/security/index.html

2. Danisevskis, J.: Uncloaking rootkits on mobile devices with a
hypervisor-based detector. Information Security and Cryptology-
ICISC 2015, vol. 9558. Springer, Berlin (2016)

3. Rudd, E., et al.: A survey of stealth malware: attacks, mitiga-
tion measures, and steps toward autonomous open world solutions
(2016). arXiv:1603.06028

4. Hayes, J.: Traffic confirmation attacks despite noise (2016).
arXiv:1601.04893

5. Backes, M., et al.: Provably secure and practical onion routing. In:
Computer Security Foundations Symposium (CSF), 2012 IEEE
25th. IEEE, New York (2012)

6. Bansal, D., Priya, S., Shipra, K.: Secure socket layer and its security
analysis. Netw. Commun. Eng. 7(6), 255–259 (2015)

7. Huang, Guang-Bin, Qin-Yu, Z., Chee-Kheong, S.: Extreme learn-
ing machine: theory and applications. Neurocomputing 70(1–3),
489–501 (2006)

8. Demertzis, K., Iliadis, L.: A hybrid network anomaly and intru-
sion detection approach based on evolving spiking neural network
classification (2014). Commun Comput Inf Sci 441, 11–23 (2014).
doi:10.1007/978-3-319-11710-2_2

9. Demertzis, K., Iliadis, L.: Evolving computational intelligence sys-
tem for malware detection. Lect. Notes Bus. Inf. Process. 178,
322–334 (2014)

10. Demertzis, K., Iliadis L.: Bio-inspired hybrid artificial intelligence
framework for cyber security. In: Proceedings of 2nd CryptAAF
(Cryptography and Its Applications in the Armed Forces), 2
April 2014, Athens, Greece. Computation, Cryptography, and Net-
work Security. Computation, Cryptography, and Network Security.
Springer International Publishing, Berlin, pp. 161–193. doi:10.
1007/978-3-319-18275-9_7

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://source.android.com/security/index.html
http://arxiv.org/abs/1603.06028
http://arxiv.org/abs/1601.04893
http://dx.doi.org/10.1007/978-3-319-11710-2_2
http://dx.doi.org/10.1007/978-3-319-18275-9_7
http://dx.doi.org/10.1007/978-3-319-18275-9_7

Vietnam J Comput Sci

11. Demertzis K., Iliadis L.: Bio-Inspired Hybrid Intelligent Method
for Detecting Android Malware Proceedings of 9th International
Conference on Knowledge, Information and Creativity Support
Systems (KICSS 2014). ISBN: 978-9963-700-84-4 (“KICSS’2014
Proceedings”)

12. Demertzis, K., Iliadis, L.: Evolving smart URL filter in a zone-
based policy firewall for detecting algorithmically generated mali-
cious domains. Statistical learning and data sciences. In: Series
Lecture Notes in Computer Science. Third International Sympo-
sium, SLDS 2015, Egham, UK, April 20–23, 2015, Proceedings,
vol. 9047, pp. 223–233. Springer International Publishing, Berlin.
doi:10.1007/978-3-319-17091-6_17

13. Schmidt, A.D., Schmidt, H.G., Batyuk, L., Clausen, J.H., Camtepe,
S.A., Albayrak, S., Yildizli, C.: Smartphone malware evolution
revisited: android next target? In: Proceedings of the 4th IEEE
International Conference on Malicious and Unwanted Software,
pp. 1–7. IEEE, New York (2009)

14. Schmidt, A.D., Bye, R., Schmidt, H.G., Clausen, J., Kiraz, O., Yük-
sel, K., Camtepe, A., Albayrak, S.: Static analysis of executables
for collaborative malware detection on android. In: IEEE Interna-
tional Congress on Communication (ICC) (2009)

15. Enck, W., Ongtang, M., McDaniel, P.: Understanding android secu-
rity. IEEE Secur. Priv. 7(1), 50–57 (2009)

16. Shabtai A., Fledel, Y., Elovici, Y.: Securing android powered
mobile devices using selinux. IEEE Security and Privacy, vol. 99
(2009). (PrePrints)

17. Scandariato, R., Walden, J.: Predicting vulnerable classes in an
android application (2012)

18. Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis
for classifying android applications using machine learning. CIS.
Conf. IEEE 2010, 329–333 (2010)

19. Chin, E., Felt, A., Greenwood, K., Wagner, D.: Analyzing inter-
application communication in android. In: 9th Conference on
Mobile Systems, Applications, and Services. ACM, New York,
pp. 239–252 (2011)

20. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid:
behavior-based malware detection system for android. In: 1st ACM
Workshop on on SPSM. ACM, New York, pp. 15–26 (2011)

21. Glodek, W., Harang, R.R.: Permissions-based detection and anal-
ysis of mobile malware using random decision forests. In: IEEE
Military Communications Conference (2013)

22. Zhang, J., et al.: An effective network traffic classification method
with unknown flow detection. IEEE Trans. Netw. Serv. Manag.
10(2), 133–147 (2013)

23. Gardiner, J., Shishir, N.: On the reliability of network measurement
techniques used for malware traffic analysis. Secur. Protoc. XXII,
321–333 (2014)

24. Wang, H.T., et al.: Real-time fast-flux identification via localized
spatial geolocation detection. In: Computer Software and Applica-
tions Conference (COMPSAC). IEEE, New York (2012)

25. Tu, T.D., Cheng, G., Liang, Y.X.: Detecting bot-infected machines
based on analyzing the similar periodic DNS queries. In: 2015
International Conference on Communications, Management and
Telecommunications (ComManTel). IEEE, New York (2015)

26. Sangroudi, A.A., Seyed, J.M.: Botnets detection for keeping the
security of computer systems based on fuzzy clustering. Ind. J.
Sci. Technol. 8(28), 1 (2015)

27. Soltanaghaei, E., Kharrazi, M.: Detection of fast-flux botnets
through DNS traffic analysis. Scientia Iranica. Trans D Comput
Sci Eng Electr 22(6), 2389 (2015)

28. Wright, M.K., Adler, M., Levine, B.N., Shields, C.: An analysis
of the degradation of anonymous protocols. In: Proceed. of the
Network and Distributed Security Symposium (2002)

29. Shmatikov, V., Wang, M.H.: Timing analysis in low-latency
mixnetworks: attacks and defenses. In: Proceedings of ESORICS
(2006)

30. Cheng, C., Peng, T.W., Guang-Bin, H.: Extreme learning machines
for intrusion detection: IJCNN. In: International Joint Conference
(2012). doi:10.1109/IJCNN.2012.6252449

31. Hsu, C.H., Huang, C.Y., Chen, K.T.: Fast-flux bot detection in real
time. In: 13th International Conference on Recent Advances in
Intrusion Detection, ser. RAID’10 (2010)

32. Haffner, P., Sen, S., Spatscheck, O., Wang, D.: ACAS: auto-mated
construction of application signatures. In: Proceedings of the ACM
SIGCOMM, pp. 197–202 (2005)

33. Alshammari, R., Zincir-Heywood, N.A.: A flow based approach
for SSH traffic detection. In: IEEE International Conference on
Cybernetics, ISIC, pp. 296–301 (2007)

34. Holz, T., Gorecki, C., Rieck, K., Freiling, F.: Measuring and detect-
ing fast-flux service networks. In: NDSS ’08: Proceedings of the
Network & Distributed System Security (2008)

35. Apvrille, A., Strazzere, T.: Reducing the window of opportunity
forandroid malware: Gotta catch ’em all. J. Comput. Virol. 8(1–2),
61–71 (2012)

36. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid:
behavior-based malware detection system for android. In: ACM
Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM) (2011)

37. Afonso, V.M., de Amorim, M.F., Gr’egio, A.R.A., Junquera, G.B.,
de Geus, P.L.: Identifying android malware using dynamically
obtained features. J. Comput. Virol. Hack. Techniq. (2014)

38. Dini, G., Martinelli, F., Saracino, A., Sgandurra, D.: MADAM: a
multi-level anomaly detector for android malware. In: Proceedings
of 6th MMM-ACNS, St. Petersburg, Russia (2012)

39. Wu, W.-C., Hung, S.-H.: DroidDolphin: a dynamic androidmal-
ware detection framework using big data and machine learning.
In: Conference on Research in Adaptive and Convergent Systems
(RACS) (2014)

40. Chakravarty, S., Barbera, M.V., Portokalidis, G., Polychronakis,
M., Keromytis, A.D.: On the effectiveness of traffic analysis against
anonymity networks using flow records. In: Proceedings on 15th
International Conference, PAM 2014, pp 247–257, Springer, Berlin
(2014)

41. Almubayed, A., Hadi, A., Atoum, J.: A model for detecting tor
encrypted traffic using supervised machine learning, I. J. Comput.
Netw. Inf. Secur. 7, 10–23 (2015)

42. Chaabane, A., Manils, P., Kaafar, M.A.: Digging into anonymous
traffic: a deep analysis of the tor anonymizing network. In: 4th
International Conference on Network and System Security (NSS),
pp. 167–174 (2010)

43. Chakravarty, S., Stavrou, A., Keromytis, A.D.: Traffic analysis
against low-latency anonymity networks using available bandwidth
estimation. In: Proceedings of the 15th European Conference on
Research in Computer Security, Ser. ESORICS’10, pp. 249–267.
Springer, Berlin (2010)

44. Chakravarty, S., Stavrou, A., Keromytis, A.D.: Identifying proxy
nodes in a tor anonymization circuit. In: Proceedings of the 2nd
Workshop on Security and Privacy in Telecommunications and
Information Systems (SePTIS), December 2008, pp. 633–639

45. Demertzis, K., Lazaros I.: SAME: An Intelligent Anti-Malware
Extension for Android ART Virtual Machine, Computational Col-
lective Intelligence, pp. 235–245. Springer, Berlin (2015)

46. Liang, N.-Y., Huang, G.-B., Saratchandran, P., Sundararajan, N.:
A fast and accurate on-line sequential learning algorithm for feed-
forward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423
(2006)

47. Cambria, E., Guang-Bin, H.: Extreme learning machines. IEEE
InTeLLIGenT SYSTemS 541-1672/13 (2013)

48. Huang G.-B., Liang N.-Y., Rong H.-J., Saratchandran P., Sun-
dararajan N.: On-line sequential extreme learning machine,
IASTED (2005)

49. http://malware-traffic-analysis.net/

123

http://dx.doi.org/10.1007/978-3-319-17091-6_17
http://dx.doi.org/10.1109/IJCNN.2012.6252449
http://malware-traffic-analysis.net/

Vietnam J Comput Sci

50. Haining, W., Danlu, Z., Kang, G.S.: Detecting SYN flooding
attacks, proceedings on INFOCOM 2002. Twenty-First Annu. Joint
Conf. IEEE Comput. Commun. Soc. 3, 1530–1539 (2002)

51. http://www.netresec.com/?page=PcapFiles
52. Arndt, D.J., Zincir-Heywood, A.N.: 2011 IEEE Symposium on A

Comparison of Three Machine Learning Techniques for Encrypted
Network Traffic Analysis, Computational Intelligence for Security
and Defense Applications (CISDA), pp. 107–114

53. http://contagiodump.blogspot.gr/
54. Iliadis, L.: Intelligent Information Systems and Applications in

Risk Estimation. ISBN: 978-960-6741-33-3 A. Stamoulis Publica-
tion, Thessaloniki (2008)

55. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F.,
Nazario, J.: Automated classification and analysis of internet mal-
ware. In: KrÃijgel, C., Lippmann, R., Clark, A. (eds.). RAID
of Lecture Notes in Computer Science, vol. 4637, pp. 178–197.
Springer, Berlin (2007)

56. Desai, A., Jadav, P.M.: An empirical evaluation of adaboost exten-
sions for cost-sensitive classification. Int. J. Comput. Appl. 44(13),
34–41 (2012)

123

http://www.netresec.com/?page=PcapFiles
http://contagiodump.blogspot.gr/

	‎C:\Users\user\Desktop\papers\CIantiMF.pdf‎
	G:\Downloads\Desktop\Phd theory\15.Papers\15.Special_Issue_ICCCI_15\10.1007_s40595-017-0095-3.pdf
	G:\Downloads\Desktop\Phd theory\15.Papers\15.Special_Issue_ICCCI_15\My Publications.pdf

	‎C:\Users\user\Desktop\papers\xy Publications_2.pdf‎

