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Abstract: Detecting anomalies in data streams from smart communication environments is a chal-

lenging problem that can benefit from novel learning techniques. The A�ention Mechanism is a very 

promising architecture for addressing this problem. It allows the model to focus on specific parts of 

the input data when processing it, improving its ability to understand the meaning of specific parts 

in context and make more accurate predictions. This paper presents a Cross-Modal Dynamic A�en-

tion Neural Architecture (CM-DANA) by expanding on state-of-the-art techniques. It is a novel dy-

namic a�ention mechanism that can be trained end-to-end along with the rest of the model using 

multimodal data streams. The a�ention mechanism calculates a�ention weights for each position in 

the input data based on the model’s current state by a hybrid method called Cross-Modal A�ention. 

Specifically, the proposed model uses multimodal learning tasks where the input data comes from 

different cyber modalities. It combines the relevant input data using these weights to produce an 

a�ention vector in order to detect suspicious abnormal behavior. We demonstrate the effectiveness 

of our approach on a cyber security anomalies detection task using multiple data streams from 

smart communication environments. 

Keywords: cross-modal learning tasks; dynamic a�ention mechanism; neural architecture; anomaly 

detection; data streams; smart communication environments 

 

1. Introduction 

Detecting anomalies in data streams [1] from smart communication environments is 

a critical problem that has significant implications for various applications, including 

cyber security [2], monitoring cyber-physical systems [3], and controlling the industrial 

ecosystem [4]. The vast amount of data generated in these environments makes it difficult 

to detect abnormal behavior in real-time, which can lead to significant damages and se-

curity breaches [5]. Anomaly detection in these data streams is challenging due to the 

volume and complexity of the data and the need for real-time detection to prevent poten-

tial damages or security breaches [6,7]. Traditional methods for anomaly detection in data 

streams rely on statistical techniques or rule-based systems, which may not be effective in 

identifying subtle or unknown anomalies [8]. Machine learning approaches, particularly 

deep learning methods, have shown promise in addressing this challenge by enabling 

automated and accurate detection of anomalies in complex data streams [9]. 

One of the key advantages of deep learning methods for anomaly detection is the 

ability to learn relevant features from the input data without relying on pre-defined rules 
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or assumptions. A�ention mechanisms, in particular, have emerged as a powerful tool for 

capturing relevant input data features and improving neural network performance in var-

ious applications [2]. Recent research has focused on developing novel deep-learning ar-

chitectures that effectively leverage a�ention mechanisms to detect anomalies in data 

streams from smart communication environments. These architectures often use simple 

a�ention mechanisms that can adapt to changes in the input data over time and can be 

trained end-to-end using data streams to capture the complex interactions between so-

phisticated processes [10,11]. 

Simple a�ention involves computing a fixed set of a�ention weights for the input 

data learned during training based on the task-specific objective function. The network 

then uses these fixed a�ention weights to weigh the input features in subsequent neural 

network layers. These simple a�ention mechanisms have become a powerful tool for cap-

turing relevant input data features and improving neural network performance in various 

applications [12]. 

On the other hand, dynamic a�ention allows the network to adjust the a�ention 

weights at each time step to give more or less importance to different parts of the input 

sequence depending on their relevance to the task. Dynamic a�ention mechanisms can be 

useful in applications where the types and frequencies of anomalies may change over 

time, allowing the model to adapt to changes in the input data [13]. 

Both simple and dynamic a�ention mechanisms have strengths and weaknesses de-

pending on the specific application and data. Simple a�ention is more straightforward 

and can be effective in many cases. In contrast, dynamic a�ention can improve the model’s 

ability to adapt to changes in the input data over time. The appropriate a�ention mecha-

nism type depends on the input data’s nature and task [14,15]. 

This paper presents a novel and holistic neural architecture called CM-DANA for 

detecting anomalies in data streams from smart communication environments. The model 

is based on a hybrid approach that combines a�ention mechanisms and multimodal learn-

ing techniques to capture the complex interactions between different modalities of data 

effectively. The CM-DANA model uses a dynamic a�ention mechanism that calculates 

a�ention weights for each position in the input data based on the model’s current state. 

This a�ention mechanism is a location-based a�ention mechanism that uses the position 

of the input features in the sequence of real-time data streams to calculate the a�ention 

weights. The more sophisticated character of the proposed model is that it is trained end-

to-end using multimodal data streams. This allows the model to a�end to different fea-

tures in different modalities based on the model’s current state and detect suspicious ab-

normal behavior by combining the relevant input data from different modalities using 

adaptive a�ention weights. 

The motivation for the CM-DANA model is to improve the accuracy and efficiency 

of anomaly detection in data streams from smart communication environments by effec-

tively capturing relevant features and suppressing noisy or irrelevant features. The use of 

dynamic a�ention and multimodal learning techniques allows the model to a�end to dif-

ferent features in different modalities based on the model’s current state, which can im-

prove its ability to detect suspicious abnormal behavior in real-time. Overall, the motiva-

tion for the paper is to develop a novel deep-learning architecture that can effectively de-

tect anomalies in data streams from smart communication environments. By leveraging 

a�ention mechanisms and multimodal learning techniques, the CM-DANA model, pre-

sented for the first time in the literature, aims to be a promising approach to improving 

the accuracy and efficiency of anomaly detection in various applications. 

2. Literature Review 

Anomaly detection in data streams has been an active research area due to the in-

creasing volume and complexity of data generated by IoT devices and smart environ-

ments [2]. Traditional anomaly detection methods, such as statistical techniques [5], clus-

tering [16], and classification [8], have been applied to data streams [6], with varying 
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degrees of success. However, they often struggle to adapt to the dynamic nature of data 

streams, which may have changing distributions and evolving pa�erns [5]. For example, 

during a timed event, the traffic pa�ern can change dramatically, potentially causing sta-

tistical methods that rely on historical data to label the surge in traffic as an anomaly due 

to the shift in statistical properties like mean and variance [17]. In addition, the traditional 

clustering methods might not recognize the sudden appearance of a new cluster as an 

anomaly, leading to delayed detection, or traditional classifiers might struggle to identify 

novel pa�erns that were not present in the training data [6]. In summary, traditional 

anomaly detection methods have limitations that become more pronounced in dynamic 

data streams with changing distributions and evolving pa�erns. The technical challenges 

of concept drift [17], high-dimensional data [7], computational efficiency [18], and feature 

engineering [19] contribute to their struggles in adapting to these scenarios. This has 

prompted the exploration of more advanced techniques, including deep learning-based 

approaches, which have shown be�er adaptability and scalability in handling the dy-

namic nature of data streams. 

Recently, deep learning-based techniques [2] have been proposed for data stream 

anomaly detection, including autoencoders [20], recurrent neural networks (RNNs) [21], 

and convolutional neural networks (CNNs) [22]. These methods have demonstrated bet-

ter adaptability and scalability compared to traditional methods, but they still face chal-

lenges in dealing with heterogeneous data types and efficiently focusing on relevant fea-

tures. Specifically, deep learning techniques face significant challenges in dealing with 

heterogeneous data types and efficiently focusing on relevant features [2]. These chal-

lenges include handling diverse data types, ensuring feature relevance and selection, ad-

dressing data imbalance, and interpreting deep models [23]. Heterogeneous data types, 

such as numerical, categorical, text, image, and time series data, can be challenging to 

integrate and process effectively [7,24]. Researchers are exploring techniques to handle 

multiple data types [25], such as specialized network architectures [26] or converting dif-

ferent data types into a common feature space [27]. Feature engineering and selection 

techniques aim to identify the most informative features, while data imbalance can lead 

to models favoring the majority class and performing poorly in anomaly detection [28]. 

Interpretable models are crucial to understanding the underlying pa�erns learned by 

deep learning models, such as in manufacturing processes where engineers need to know 

which factors contributed to anomaly detection [29]. Researchers are developing tech-

niques to explain deep model decisions, such as a�ention mechanisms, feature a�ribution 

methods, and gradient-based visualizations, to provide insights into which features were 

influential in making anomaly predictions [30]. 

Cross-modal learning [31] refers to the process of learning shared representations 

from multiple data modalities, such as images, text, and audio. It has shown great poten-

tial in various applications, including multimedia retrieval [32], recommendation systems 

[33], and multimodal sentiment analysis [25]. Several methods have been proposed for 

cross-modal learning, including deep neural networks [34], matrix factorization [35], and 

probabilistic graphical models [36]. Recently, cross-modal learning has been integrated 

with a�ention mechanisms to improve the interpretability and performance of the learned 

representations [37–39]. However, the application of cross-modal learning to anomaly de-

tection in data streams from smart communication environments is still relatively unex-

plored. This approach offers several benefits, but also presents challenges, such as devel-

oping effective fusion strategies, addressing domain-specific issues, dealing with varying 

data modalities, and managing computational complexity [36]. Additionally, data privacy 

and ethics are critical concerns in smart communication environments, and researchers 

must address these concerns when designing cross-modal anomaly detection systems 

[25]. 

A�ention mechanisms have been introduced in neural networks to help the model 

focus on the most relevant parts of the input data for a specific task [12]. The concept of 

a�ention was initially proposed in the context of Natural Language Processing (NLP) [15] 
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and has since been extended to various domains, such as computer vision [14] and speech 

recognition [40]. Different types of a�ention mechanisms have been proposed, including 

self-a�ention [41], local a�ention [42], and global a�ention [43]. A�ention mechanisms 

have also been combined with other neural network architectures, such as RNNs [44], 

CNNs [45], and Transformer models [46], to improve their performance and interpreta-

bility. The application of a�ention mechanisms in anomaly detection has shown promis-

ing results, particularly in terms of handling large-scale and high-dimensional data [27]. 

However, incorporating dynamic a�ention mechanisms into cross-modal learning for 

anomaly detection in data streams remains a challenge. Specifically, incorporating dy-

namic a�ention mechanisms into cross-modal learning for anomaly detection in data 

streams requires a careful balance between adaptability, efficiency, interpretability, and 

performance [37]. Researchers need to devise novel approaches that address these chal-

lenges and tailor dynamic a�ention mechanisms to the specific requirements of dynamic 

data streams and multi-modal data fusion [14]. Despite the challenges, successfully im-

plementing dynamic a�ention can significantly enhance the accuracy and robustness of 

anomaly detection systems in complex and rapidly evolving environments [12]. 

In summary, research gaps from the literature review in anomaly detection in dy-

namic environments include adapting traditional methods to handle changing distribu-

tions and pa�erns, integrating heterogeneous data types, improving the interpretability 

of deep models, exploring cross-modal anomaly detection, incorporating dynamic a�en-

tion mechanisms, and addressing privacy and ethics concerns. These areas highlight op-

portunities for innovation and exploration in anomaly detection in smart communication 

environments, particularly in integrating heterogeneous data types, enhancing interpret-

ability, and effectively utilizing dynamic a�ention mechanisms and cross-modal learning 

techniques. 

By addressing these gaps, the proposed approach proposes a more effective anomaly 

detection method that can handle diverse data types, improve interpretability, and main-

tain privacy and ethics in cross-modal anomaly detection systems. Specifically, this paper 

presents a novel CM-DANA for detecting anomalies in data streams generated from smart 

communication environments. The proposed architecture leverages the advantages of 

cross-modal learning and dynamic a�ention mechanisms to effectively analyze heteroge-

neous data streams from different cyber modalities and identify anomalous pa�erns in 

real-time. Recent advancements inspire this approach in cross-modal learning and a�en-

tion mechanisms in neural networks. Cross-modal learning has shown its potential in var-

ious applications where data comes from multiple sources or modalities, while a�ention 

mechanisms have been successful in helping models focus on relevant parts of input data 

for specific tasks. By combining these two concepts, our proposed approach not only im-

proves the overall performance of anomaly detection but also enhances the interpretabil-

ity and adaptability of the model in handling diverse and evolving data pa�erns. 

The proposed method addresses research gaps in anomaly detection in dynamic data 

streams from smart communication environments by enhancing traditional methods, in-

tegrating heterogeneous data types, enhancing interpretable deep models, incorporating 

cross-modal learning, and incorporating dynamic a�ention mechanisms. These contribu-

tions can help develop more accurate, adaptive, and interpretable anomaly detection sys-

tems that can effectively operate in complex and rapidly evolving scenarios. By incorpo-

rating concepts from both the dynamic a�ention and anomaly detection domain, the pro-

posed CM-DANA technique ensures that data from different modalities are integrated in 

an accurate way. By focusing on these contributions, the proposed approach makes sig-

nificant strides in advancing the field of anomaly detection in dynamic data streams from 

smart communication environments.  
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3. Materials and Methods 

The proposed CM-DANA consists of 4 main modules: the Feature Extraction Mod-

ule, Cross-modal Learning Module, the Dynamic A�ention Module, and the Anomaly De-

tection Module. The architecture is designed to process and analyze heterogeneous data 

streams from different cyber modalities, such as network traffic, log files, and user behav-

ior pa�erns. The Feature Extraction Module extracts features from each modality; the 

Cross-modal Learning Module learns shared representations. The Dynamic A�ention 

Module then computes a�ention weights to emphasize the most relevant features, form-

ing an a�ention vector. Finally, the Anomaly Detection Module uses the a�ention vector 

to identify anomalous pa�erns. 

An efficient and novel combination of intelligent algorithms is used in the CM-

DANA method. Specifically, it is a combination of Convolutional Neural Networks 

(CNNs) for feature extraction, Transformers for cross-modal learning, Gated Recurrent 

Units (GRUs) for dynamic a�ention, and Theil-Sen Regressor as an anomaly detector. This 

combination leverages the strengths of each algorithm to enhance predictability perfor-

mance. A high-level representation of the CM-DANA methodology is presented in the 

following Algorithm 1: 

Algorithm 1 Pseudocode of CM-DANA methodology  

# Feature Extraction Module 

def feature_extraction(input_data): 

    # Input Data Preparation 

    preprocessed_data = preprocess(input_data) 

    # Convolutional Layers 

    convolution_output = apply_convolutional_layers(preprocessed_data) 

    # Activation Functions 

    activated_output = apply_activation_functions(convolution_output) 

    # Pooling Layers 

    pooled_output = apply_pooling_layers(activated_output) 

    # Fla�ening 

    fla�ened_output = fla�en(pooled_output) 

    # Fully Connected Layers 

    features = apply_fully_connected_layers(fla�ened_output)  

    return features 

# Cross-modal Learning Module 

def cross_modal_learning(modalities): 

    shared_representations = [] 

    for modality in modalities: 

        features = feature_extraction(modality) 

        shared_representations.append(features)    

    # Process shared representations using Transformers 

    processed_representations = process_with_transformers(shared_representations)    

    return processed_representations 

# Dynamic A�ention Module 

def dynamic_a�ention(shared_representations): 

    a�ention_vector = [] 

    for representation in shared_representations: 

        a�ention_weights = compute_a�ention_weights(representation) 

        a�ention_vector.append(weighted_sum(representation, a�ention_weights))     

    return a�ention_vector 

# Anomaly Detection Module 

def anomaly_detection(a�ention_vector): 
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    # Use TheilSenRegressor for linear regression 

    model = TheilSenRegressor() 

    model.fit(a�ention_vector) 

    # Calculate residuals 

    predicted_values = model.predict(a�ention_vector) 

    residuals = calculate_residuals(a�ention_vector, predicted_values) 

    # Set dynamic threshold 

    threshold = set_dynamic_threshold(residuals) 

    # Identify anomalies 

    anomalies = identify_anomalies(residuals, threshold) 

    return anomalies 

# CM-DANA Methodology 

def CM_DANA(input_modalities): 

    # Feature Extraction Module 

    extracted_features = feature_extraction(input_modalities) 

    # Cross-modal Learning Module 

    shared_representations = cross_modal_learning(extracted_features) 

    # Dynamic A�ention Module 

    a�ention_vector = dynamic_a�ention(shared_representations) 

    # Anomaly Detection Module 

    anomalies = anomaly_detection(a�ention_vector) 

    return anomalies 

The end-to-end training approach of the CM-DANA model ensures that the model 

learns to identify and capture the complex interactions between different modalities of 

data. This leads to more accurate anomaly detection in smart communication environ-

ments where data streams from multiple sources can provide valuable information about 

anomalies and potential threats.  

It must be noted that the 4 modules of the proposed methodology introduce signifi-

cant innovative aspects that collectively enhance the accuracy and efficiency of anomaly 

detection in the proposed CM-DANA model. Specifically, the use of CNNs for feature 

extraction is an innovation that tailors the architecture to the nuances of cybersecurity 

data. While CNNs are commonly used for image analysis, adapting them to cybersecurity 

data highlights a key innovation. By processing diverse modalities like network traffic, 

log files, and behavior pa�erns with CNNs, the architecture acknowledges the spatial fea-

tures that hold significance in cybersecurity contexts. This customized feature extraction 

enhances anomaly detection’s precision in identifying spatial irregularities hidden within 

complex data pa�erns. 

In addition, the integration of Transformers in the Cross-modal Learning Module is 

an innovative approach to capturing cross-modal interactions and dependencies. Trans-

formers were originally designed for sequence-to-sequence tasks but adapting them for 

cross-modal learning is a novel application. By processing different modalities with ded-

icated subnetworks and then aggregating shared representations using Transformers, the 

architecture harnesses the strength of Transformers in capturing contextual and long-

range relationships within different types of data. This integration contributes to the ar-

chitecture’s ability to learn complex pa�erns across modalities. 

Also, the Dynamic A�ention Module introduces innovation by employing GRUs to 

compute a�ention weights. While a�ention mechanisms are common in machine learn-

ing, using GRUs for dynamic a�ention reflects an innovative application. GRUs, being 

recurrent neural network components, adaptively adjust a�ention weights based on the 

current state and input sequence. This dynamic a�ention mechanism helps the model fo-

cus on the most relevant features at each time step, allowing it to adapt to changing data 

pa�erns and improving anomaly detection accuracy. 
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Moreover, the application of the Theil-Sen Regressor for anomaly detection is an in-

novative choice. While the Theil-Sen Regressor is primarily used for linear regression, 

adapting it as an anomaly detection algorithm shows innovation. By fi�ing a linear model 

to the a�ention vector and calculating residuals, the architecture detects anomalies in a 

manner that accounts for potential outliers and noise, contributing to robust and accurate 

anomaly identification. 

Collectively, the innovation of the CM-DANA methodology lies in its thoughtful 

combination of these components and algorithms to address the challenges of detecting 

anomalies across multiple cyber modalities. The details about the specific components are 

presented in the following subsections. 

3.1. Feature Extraction Module 

The feature extraction module is responsible for processing the input data from dif-

ferent modalities and extracting relevant features that capture the characteristics of the 

data. It plays a crucial role in representing the data in a format that the subsequent mod-

ules can effectively analyze. The features extracted from each subnetwork are then passed 

through a fusion layer, which learns to combine the multimodal features into a single 

shared representation. This representation is used as the input for the subsequent cross-

modal learning module. 

It must be noted that the input processing layer of the features extraction module 

takes in data streams from multiple modalities, such as data acquisition systems, sensors, 

or web services. CNNs are particularly effective at extracting spatial features from input 

data, making them suitable for processing certain modalities. Specifically, CNNs architec-

ture (Figure 1) have shown excellent performance in extracting spatial features from data, 

making them suitable for processing data streams from multiple cybersecurity modalities.  

 

Figure 1. A Convolutional Neural Network (CNN). 

The integration of Convolutional Neural Networks (CNNs) for the purpose of feature 

extraction within the CM-DANA architecture involves a series of sequential procedures. 

Specifically, commencing with Step 1, the preparation of input data is undertaken. Data 

originating from diverse modalities is subjected to preprocessing procedures to conform 

to formats conducive to CNN-compatible representations. In Step 2, the architecture em-

ploys a succession of convolutional layers to process the input data. Within these layers, 

convolutions are executed using adaptable filters, which effectively capture spatial fea-

tures across varying levels of abstraction. The parameter adaptability, encompassing filter 



Appl. Sci. 2023, 13, 9648 8 of 24 
 

depth and size, assumes significance in ensuring proficient feature extraction that corre-

sponds to the intricacy inherent in the data. 

Following each convolutional layer, as elucidated in Step 3, non-linear activation 

functions, such as the Rectified Linear Unit (ReLU), are introduced. This introduction of 

non-linearity serves the purpose of capturing intricate pa�erns present within the data. 

Strategic insertion of pooling layers, as delineated in Step 4, contributes to the overall ar-

chitecture. These pooling layers, which encompass MaxPooling and AveragePooling, 

serve the dual role of diminishing computational complexity and preserving pertinent 

features. The outcome of these layers is a downsampling of feature maps, thereby foster-

ing spatial invariance. 

Step 5 entails the fla�ening of output feature maps that are generated by the convo-

lutional layers. This fla�ening operation transforms the feature maps into one-dimen-

sional vectors, thereby preparing them for subsequent stages of processing. Transitioning 

to Step 6, the fla�ened features are directed into fully connected layers. The role of these 

layers is to enhance the extracted features by capturing more complex relationships and 

representations that exist at higher levels of abstraction. Finally, Step 7 culminates in the 

generation of a distinct output. The output stems from the fully connected layers and 

serves as a unique representation of features. This representation, in essence, encapsulates 

crucial spatial information inherent within the input data. 

The innovation of CM-DANA becomes evident in its incorporation of CNNs tailored 

for anomaly detection across smart communication environments. Specifically, the pro-

posed approach introduces a pioneering innovation that lies in the thoughtful integration 

of CNNs module for feature extraction, specifically designed to address the challenges of 

cybersecurity modalities by extracting spatial features that hold particular significance in 

cybersecurity contexts. Unlike conventional anomaly detection approaches, which often 

employ generic feature extractors, CM-DANA tailors its feature extraction to the nuances 

of the data, enhancing its anomaly detection prowess. 

CNNs are particularly adept at capturing spatial pa�erns within data, while the pro-

posed architecture leverages the inherent ability to learn hierarchies of features, enabling 

them to uncover intricate relationships within the data streams. This feature amplifies the 

model’s potential to detect anomalies hidden within complex data pa�erns in real-time. 

The CM-DANA architecture’s uniqueness further emerges in its fusion of features 

across modalities. Extracted features from distinct subnetworks are merged through a fu-

sion layer, creating a unified representation that encodes the combined knowledge of dif-

ferent data streams. By integrating CNNs for feature extraction, CM-DANA elevates this 

fusion process, as it now incorporates spatial insights that other architectures might over-

look. This enables the architecture to capture cross-modal interactions and dependencies 

more effectively. 

In addition, the incorporation of CNNs amplifies the architecture’s ability to capture 

localized and global spatial features. As anomalies within smart communication environ-

ments often manifest as intricate spatial irregularities, the proposed model’s innovative 

CNN-based feature extraction enhances its precision in pinpointing subtle anomalies that 

might be missed by traditional methods. This leads to more accurate and efficient anomaly 

detection in complex, evolving data streams. 

Finally, it must be noted that the CNNs within the CM-DANA model do not operate 

in isolation. They serve as integral components within the cross-modal learning module, 

collaborating with other components to decipher complex interactions between data mo-

dalities. By enriching the feature extraction step with CNNs, the model contributes to 

more informative feature representations that empower subsequent modules in making 

more accurate anomaly detection decisions. 

By leveraging CNNs to extract features, the CM-DANA architecture stands out as a 

promising method for capturing complex interactions between data modalities and ad-

vancing anomaly detection capabilities.  
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3.2. Cross-Modal Learning Module 

The cross-modal learning module is responsible for processing the input data from 

multiple modalities and learning shared representations. Each modality is processed by a 

dedicated subnetwork tailored to the specific data type. Transformers have proven to be 

highly effective in modeling long-range dependencies and capturing contextual infor-

mation. In the cross-modal learning module, transformers are used to process data pat-

terns. 

An illustration of the transformer model’s core components where layers were nor-

malized after multiheaded a�ention is depicted in Figure 2 [47]. 

 

Figure 2. Transformer model’s core components. 

Transformers excel at learning representations from sequential data and can capture 

the temporal relationships within cybersecurity modalities like log files, network traffic, 

and behavior pa�erns. 

The foundational constituents of a transformer architecture have been extensively 

delineated in prior literature [12,47,48]. Firstly, the architecture inherently encompasses 

an Encoder–Decoder Structure, manifesting as two distinctive modules: an encoder tasked 

with assimilating the input sequence, and a decoder orchestrating the generation of the 

corresponding output sequence. 

Secondly, a pivotal mechanism operative within this framework is the Self-A�ention 

Mechanism. This mechanism engenders the capacity for individual elements within the 
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input sequence to selectively a�end to other constituent elements within the same se-

quence. In effect, a�ention weights are computed, thereby endowing the model with the 

faculty to emphasize pertinent informational elements during the input processing phase. 

In tandem with this, the paradigm incorporates the Multi-Head A�ention mecha-

nism, which entails the integration of multiple a�ention layers, colloquially referred to as 

“heads”. This arrangement facilitates the discernment of disparate forms of interrelation-

ships existing amongst the elements comprising the input sequence. Concatenation or 

amalgamation of the outputs stemming from these distinct heads affords a more exhaus-

tive and holistic representation. 

Subsequently, following the application of the self-a�ention mechanism, the archi-

tecture integrates Feed-Forward Neural Networks. These neural networks serve to further 

process the representations that have been subjected to the self-a�ention mechanism, aug-

menting the model’s ability to capture intricate pa�erns within the data. 

Furthermore, an intrinsic challenge pertaining to the transformer architecture per-

tains to its inability to inherently fathom sequential information. To circumvent this, the 

framework incorporates Positional Encoding. By integrating positional encoding into the 

input embeddings, the model gains access to crucial positional information. This augmen-

tation equips the transformer with the proficiency to effectively manage and interpret se-

quential data. 

The first sublayer obtains the decoder stack’s previous output, augments it with po-

sitional information, then applies multi-head self-a�ention to it. While the encoder is 

meant to a�end to all words in the input sequence regardless of their position, the decoder 

is adjusted to only a�end to the words that come before them. As a result, the prediction 

for a word at position  i  can only be based on the known outputs for the words preceding 

it in the sequence. This is accomplished in the multi-head a�ention mechanism (which 

implements numerous, single a�ention functions simultaneously) by applying a mask to 

the values obtained by the scaled multiplication of matrices Q  and K.  

Masking is accomplished by suppressing matrix values that would otherwise corre-

spond to illegal connections [49]: 

mask (QK�) = mask ��

e�� e�� … e��

e�� e�� … e��

⋮ ⋮ ⋱ ⋮
e�� e�� … e��

�� = �

e�� −∞ … −∞
e�� e�� … −∞

⋮ ⋮ ⋱ ⋮
e�� e�� … e��

�  

The second layer utilizes a multi-head self-a�ention technique identical to the one 

used in the encoder’s first sublayer. On the decoder side, this multi-head mechanism takes 

queries from the preceding decoder sublayer as well as keys and values from the encoder 

output. This enables the decoder to process all of the words in the input sequence. Finally, 

the third layer implements a fully linked feed-forward network, similar to the one used in 

the encoder’s second sublayer. 

3.3. Dynamic A�ention 

The dynamic a�ention module computes a�ention weights for the shared represen-

tation generated by the cross-modal learning module. It employs a self-a�ention mecha-

nism to assess the importance of each feature in the shared representation. The self-a�en-

tion mechanism calculates the relevance of each feature by measuring its interaction with 

other features in the representation. These a�ention weights are then used to produce an 

a�ention vector, which is a weighted sum of the shared representation features. The at-

tention vector captures the most relevant information across all modalities, emphasizing 

the features that contribute the most to the anomaly detection task.  

GRUs are employed in the dynamic a�ention module to compute a�ention weights 

and generate the a�ention vector. GRUs are a type of recurrent neural network that can 

capture temporal dependencies and adapt to changes over time. By using GRUs, the 

model can dynamically adjust a�ention weights based on the current state and input 
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sequence, improving the model’s ability to focus on relevant features and to adapt to 

changes in the input data over time. It calculates a�ention weights for each position in the 

input data based on the model’s current state.  

The a�ention mechanism is a location-based a�ention mechanism that uses the posi-

tion of the input features in the sequence of real-time data streams to calculate the a�en-

tion weights. The a�ention mechanism is a hybrid approach that combines content-based 

and location-based a�ention. Content-based a�ention uses the input features to calculate 

the a�ention weights. In contrast, location-based a�ention uses the position of the input 

features in the sequence to calculate the a�ention weights. The a�ention weights are adap-

tive and can be adjusted at each time step to give more or less importance to different 

parts of the input sequence depending on their relevance to the task. 

3.4. Anomaly Detection Module 

The anomaly detection module of the CM-DANA model combines the relevant input 

data from different modalities using the adaptive a�ention weights to detect suspicious 

abnormal behavior. The Theil-Sen Regressor was used as an anomaly detection module 

in the CM-DANA architecture. The Theil-Sen Regressor is a robust linear regression algo-

rithm that estimates the slope and intercept of a linear relationship between input features 

and target variables. While it is primarily used for regression tasks, it can also be adapted 

for anomaly detection by se�ing a threshold on the residuals used for outlier detection. 

Specifically, after the dynamic a�ention module obtains the a�ention vector, it serves 

as the input to the anomaly detection module. The Theil-Sen Regressor fits a linear regres-

sion model to the a�ention vector and estimates the slope and intercept of the linear rela-

tionship. During the anomaly detection phase, it calculates the residuals by comparing 

the predicted values from the Theil-Sen Regressor with the actual values of the a�ention 

vector. Finally, a dynamic threshold on the residuals identifies instances where the devi-

ation from the predicted values is significant. Data instances with residuals above the 

threshold are considered anomalous. Figure 3 is an example of how to fit a line through 

almost linear data. The orange Theil-Sen Regressor outperforms the blue linear regressor.  

 

Figure 3. Theil-Sen Regressor. 

4. Case Study: Application in Cybersecurity Anomaly Detection 

To demonstrate how CM-DANA can identify advanced cybersecurity anomalies, we 

present a case study in a Smart Communication Environment. This environment gener-

ates data streams encompassing multiple modalities that can be utilized to detect security 
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breaches, including infiltration a�empts, DDoS a�acks, and malicious software prolifera-

tion. The case study involves structured, semi-structured, and unstructured data streams 

that require sophisticated preprocessing and feature extraction techniques for accurate 

analysis. Intelligent models must handle temporal interdependencies and high-dimen-

sional data streams while processing large volumes of data in near real-time. Furthermore, 

anomaly detection models must be adaptable to evolving data pa�erns for consistent per-

formance over time. 

To address these challenges, we explain the operational methodology used by CM-

DANA in this case study. Specifically, the initial phase encompasses the systematic acqui-

sition of data. This involves a continuous retrieval of data from diverse cyber modalities, 

encompassing elements such as network traffic, log files, and user behavioral pa�erns. 

Subsequent to data collection, a distinct data preprocessing stage is executed for each 

modality. This entails the independent processing of raw data, converting it into formats 

conducive to analysis, and extracting pertinent features. The ensuing preprocessed data 

undergoes standardization and normalization procedures to engender consistency and 

optimize subsequent model training endeavors. 

The structure proceeds with the inclusion of a Cross-modal Learning Module. In this 

module, the preprocessed data are channeled, wherein dedicated subnetworks associated 

with each modality orchestrate the processing of input data. These subnetworks facilitate 

the acquisition of modality-specific a�ributes and representations. The products of these 

distinct subnetworks are subsequently aggregated through a fusion technique, for in-

stance, concatenation or summation. This culminates in the generation of a collective rep-

resentation, encapsulating information from all modalities. 

Succeeding this, the collective representation is subjected to the Dynamic A�ention 

Module. This module assumes the responsibility of ascertaining a�ention weights for each 

feature or modality. Through this mechanism, the model acquires the capability to selec-

tively concentrate on salient features germane to anomaly detection. Consequently, both 

the precision and comprehensibility of the model are augmented. 

The ensuing step entails the Anomaly Detection Module. Within this module, the 

a�ention-weighted collective representation traverses through one or more fully con-

nected layers, subsequently undergoing a softmax or sigmoid activation function. The 

module’s function entails the computation of the probability associated with a given in-

stance manifesting as normal or anomalous. Decisive outcomes are generated based on a 

predetermined threshold. 

The operational framework then extends to real-time monitoring and alerting func-

tionalities. CM-DANA undertakes the continuous surveillance of the smart communica-

tion environment, actively processing incoming data streams, and in the process, discern-

ing latent anomalies. Upon anomaly identification, the system promptly generates alerts. 

These alerts encompass crucial information concerning the detected anomaly, its potential 

repercussions, and the implicated data or devices. 

Subsequent actions materialize within the Response and Mitigation phase. Upon the 

receipt of an alert, the security apparatus of the smart communication environment, 

whether human security personnel or automated systems, is empowered to initiate fi�ing 

responsive measures. Such measures might encompass the blocking of dubious IP ad-

dresses, the isolation of impacted devices, or the notification of security administrators. 

To ensure the perpetuation of optimal performance, the model espouses Continuous 

Learning and Adaptation. Periodic infusions of new training data serve to align the model 

with shifting data pa�erns and evolving cyber threats. This proactive measure safeguards 

the model’s sustained efficacy in the domain of anomaly detection. 

5. Experiments and Evaluation 

In this section, we outline the experiments conducted to evaluate the performance of 

the proposed CM-DANA for anomaly detection in smart communication environments. 
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We describe the experimental setup, including the dataset used, the baseline methods for 

comparison, and the evaluation metrics employed. 

5.1. Experimental Setup 

In order to test the CM-DANA architecture a smart communication environment sce-

nario with multiple data modalities was used. In this scenario, we consider a smart com-

munication network that consists of various interconnected systems, including network 

devices, servers, user devices, and communication channels. Specifically, data streams 

from network devices, capturing network packets, protocols, traffic pa�erns, and flow in-

formation. Also, the scenario incorporates logs generated by network devices, servers, and 

applications, containing system events, user activities, and error messages. Finally, user 

interaction data, including login/logout events, access pa�erns, file transfers, and applica-

tion usage, are used to identify user behavior pa�erns. The goal is to detect anomalous 

activities or potential threats within the smart communication environment using the CM-

DANA architecture. 

In the proposed CM-DANA architecture, the feature extraction module utilizes a 3D 

CNN to process the network traffic data, log files, and user behavior pa�erns. The feature 

extraction process includes the following steps: 

1. Data Preparation. Convert the network traffic data into a 3D tensor format, where the 

dimensions represent time, traffic flow, and features. Represent log files as a 3D ten-

sor, with time, log events, and log features as the dimensions. Structure user behavior 

pa�erns as a 3D tensor, with time, user activities, and behavioral features as the di-

mensions. 

2. Input Data. Combine the network traffic data, log files, and user behavior pa�erns 

into a single 3D tensor, ensuring that the data are aligned along the time dimension. 

3. Convolutional Layers. Apply two 3D convolutional layers to capture spatiotemporal 

features from the combined data with the following configuration: 

a. Convolutional Layer 1: Number of filters: 32, filter size: (3, 3, 3), stride: (1, 1, 1), 

padding: ‘same’ 

b. Convolutional Layer 2: Number of filters: 64, filter size: (3, 3, 3), stride: (1, 1, 1), 

padding: ‘same’ 

4. Activation Function. Apply Rectified Linear Unit (ReLU) activation function after each 

convolutional layer to introduce non-linearity and capture complex patterns in the 

data. 

5. Pooling Layers. Insert two 3D pooling layers. Specifically, a MaxPooling3D after the 

first convolution layer and a AveragePooling3D after the second convolutional layer. 

These layers aim to downsample the spatiotemporal feature maps and reduce spatial 

dimensions while retaining important features. 

6. Fla�ening. Fla�en the output feature maps from the convolutional layers into a one-

dimensional vector. 

7. Fully Connected Layers. Connect the fla�ened features to one or more fully con-

nected layers. The number of fully connected layers and the number of neurons in 

each layer can be adjusted based on the complexity of the data and desired represen-

tation learning capabilities. In this scenario there are three fully connected layers with 

decreasing number of neurons. In the first layer the number of neurons is 512, in the 

second layer 256, and in the third layer 128.  

8. Output. The output of the fully connected layers represents the extracted features from 

the 3D CNN for the combined network traffic data, log files, and user behavior pat-

terns. 

By using a single 3D CNN architecture for feature extraction, the model can learn 

shared representations across the different data types and capture the relationships between 

them.  
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In the cross-modal learning module of the CM-DANA architecture, transformers are 

used to process the data pa�erns from log files, network traffic, and behavior pa�erns, 
specifically, using Input Embeddings. Transformers convert the input data from each mo-

dality into an embedded representation. This is carried out using positional encodings 

and word embeddings techniques to capture the sequential nature of the data. Specifi-

cally, we converted data into a sequence, where each of them is represented by a set of 

features. We applied embedding techniques, such as one-hot encoding, to represent the 

categorical features of each event or process (e.g., source IP, destination IP, protocol, log 

type, log source, activity type, application name, etc.). Numerical features (e.g., packet 

size, timestamp) were scaled and normalized to a fixed range. Also, we processed the tex-

tual content using techniques like word embeddings (e.g., Word2Vec, GloVe) to capture 

semantic information. Finally, we combined the embedded representations of the categor-

ical and numerical features to create the input embedding for all data. 

The architecture for the dynamic a�ention module, which computes a�ention 

weights and generates an a�ention vector based on the shared representation from the 

cross-modal deep learning module [24], includes: 

1. Input: The input to the dynamic attention module is the shared representation gener-

ated by the cross-modal learning module. This shared representation captures the 

learned features from the multiple modalities and serves as the input for the attention 

mechanism. 

2. GRU: The module employs a single GRU, with two hidden layers and 64 neurons in 

the first hidden layer and 32 neurons in the second hidden layer. The GRU as a re-

current neural network (RNN) is capable of capturing temporal dependencies and 

adapting to changes over time [50]. It takes the shared representation as input and 

processes it sequentially, considering the temporal order of the data. 

3. A�ention Weights Calculation: The GRU in the dynamic a�ention module is respon-

sible for computing a�ention weights for each position in the input data based on the 

model’s current state. The a�ention mechanism used is a hybrid approach that com-

bines content-based and location-based a�ention. 

(a) Content-Based A�ention: Content-based a�ention calculates a�ention weights 

by measuring the relevance of each feature in the shared representation. It as-

sesses the interaction between features in the representation to determine their 

importance. The content-based a�ention mechanism allows the model to focus 

on features that contribute the most to the anomaly detection task. 

(b) Location-Based A�ention: Location-based a�ention uses the position of the in-

put features in the sequence of real-time data streams to calculate a�ention 

weights. It considers the temporal order of the data and assigns different 

weights to features based on their position in the sequence. Location-based at-

tention allows the model to adaptively adjust the a�ention weights at each time 

step, giving more or less importance to different parts of the input sequence de-

pending on their relevance to the task. 

4. A�ention Vector: The computed a�ention weights are used to produce an a�ention 

vector. The a�ention vector is a weighted sum of the shared representation features, 

where the weights correspond to the importance of each feature. The a�ention vector 

captures the most relevant information across all modalities, emphasizing the fea-

tures that contribute the most to the anomaly detection task. 

5. Output: The output of the dynamic attention module is the attention vector, which rep-

resents the refined and focused representation of the shared features. This attention 

vector is passed on to the subsequent layers for further processing and decision-mak-

ing. 

By utilizing GRUs and a hybrid content-based and location-based a�ention mecha-

nism, the dynamic a�ention module in the CM-DANA architecture can dynamically ad-

just a�ention weights based on the current state and input sequence.  
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Finally, in the CM-DANA architecture, the anomaly detection module utilizes the 

Theil-Sen Regressor algorithm as a robust linear regression approach to detect anomalous 

behavior based on the a�ention vector obtained from the dynamic a�ention module. 

Specifically, the a�ention vector generated by the dynamic a�ention module serves 

as the input to the anomaly detection module. The Theil-Sen Regressor algorithm esti-

mates the slope and intercept of the linear relationship between the input features (a�en-

tion vector) and the target variable. During the anomaly detection phase, the Theil-Sen 

Regressor predicts the values of the a�ention vector based on the fi�ed linear regression 

model. The residuals are calculated by subtracting the predicted values from the actual 

values of the a�ention vector. A dynamic threshold is set on the residuals to determine 

anomalous instances.  

The threshold is determined using a rolling mean and standard deviation. Particu-

larly, the process starts by defining a window size and an initial threshold factor. The 

window size determines the number of previous data points to consider, and the thresh-

old factor determines the number of standard deviations away from the rolling mean that 

will be considered anomalous. Calculate the rolling mean and standard deviation of the 

residuals over the defined window size.  

The rolling mean represents the average value of the residuals within the window, 

while the rolling standard deviation quantifies the variability of the residuals. Update the 

dynamic threshold at each time step by multiplying the rolling standard deviation by the 

threshold factor and adding it to the rolling mean. This dynamic threshold represents the 

upper limit beyond which a residual is considered anomalous. Compare the absolute 

value of each residual to the dynamic threshold. If the residual exceeds the dynamic 

threshold, the corresponding data instance is flagged as an anomaly.  

Data instances with residuals above the threshold are considered anomalous, indi-

cating significant deviation from the predicted values. This approach allows the model to 

leverage shared information and potentially improve the overall performance of the 

anomaly detection system in the smart communication environment. 

5.2. Dataset 

To test the proposed CM-DANA method create a synthetic dataset that simulates 

various types of abnormal behavior: 

1. Network Traffic Data: Generate network traffic data by simulating different types of 

network activities, such as data transfers, protocol interactions, and traffic pa�erns. 

Vary the traffic volume, packet sizes, and communication protocols to create diverse 

network scenarios. Introduce anomalies by generating unusual traffic pa�erns, sud-

den spikes in traffic, or malicious activities like DDoS a�acks. 

2. Log Files: Create synthetic log files that capture system events, user activities, and 

error messages. Generate logs with different levels of severity, timestamped events, 

and log features. Introduce anomalies by injecting unusual log pa�erns, error mes-

sages, or log entries associated with suspicious activities. 

3. User Behavior Pa�erns: Simulate user behavior pa�erns by generating synthetic user 

interaction data. Create login/logout events, access pa�erns, file transfers, and appli-

cation usage logs. Vary the frequency, duration, and sequence of user activities to 

mimic normal and abnormal behavior. Introduce anomalies by generating user be-

havior pa�erns that deviate significantly from typical usage pa�erns or exhibit sus-

picious activities. 

4. Labeling Anomalies: Assign labels to the generated data to indicate whether each in-

stance is normal or anomalous. You can manually label the synthetic data based on 

the known anomalies injected during the generation process. Alternatively, you can 

use outlier detection techniques or anomaly scoring algorithms to automatically 

identify anomalies in the synthetic data. 
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5. Data Combination: Combine the generated network traffic data, log files, and user 

behavior pa�erns into a single dataset, ensuring that the timestamps are aligned 

across the different modalities. 

Table 1 shows examples of anomalies injected into the synthetic dataset. These anom-

alies cover a wide range of potential a�acks and unusual behaviors that the CM-DANA 

method strives to detect: 

Table 1. Anomalies injected into the synthetic dataset. 

Anomaly Type Modality Description 

DDoS A�ack Network Traffic 
Introduce sudden, high-volume traffic from multiple sources, overwhelming the net-

work. 

Port Scanning Network Traffic Simulate repeated a�empts to access different ports on a target system. 

Malware Communication Network Traffic 
Generate traffic pa�erns resembling communication with known malware C&C 

servers. 

Unusual Protocol Usage Network Traffic 
Inject instances of uncommon or unauthorized protocols being used in the network 

traffic. 

Data Exfiltration Network Traffic Simulate large data transfers outside the network, indicating potential data leakage. 

Brute Force A�acks User Behavior 
Generate multiple failed login a�empts in a short time, indicating password guess-

ing. 

Insider Threat User Behavior 
Simulate an authorized user accessing sensitive files or systems they do not normally 

use. 

Abnormal Application 

Usage 
User Behavior 

Introduce unusual sequences of application usage or accessing applications at odd 

times. 

Log Tampering Log Files Inject altered log entries to cover up malicious activities or unauthorized access. 

Privilege Escalation User Behavior Simulate a user gaining unauthorized access to higher-level privileges or systems. 

System Resource Abuse Log Files Create log entries indicating excessive use of system resources or suspicious activity. 

Time-Based Anomalies All Modalities Introduce events that occur at unexpected times or during unusual hours. 

5.3. Results and Discussion 

The CM-DANA algorithm was evaluated for anomaly detection using a comparison 

of baseline methods, including statistical methods, clustering-based methods, classifica-

tion-based methods, and deep learning-based methods. Statistical methods, such as the 

Z-score, IQR, and Grubbs’ test, provide a baseline for comparison, while clustering-based 

methods group similar instances and identify anomalies based on distance or density. 

Classification-based methods, like SVM, Random Forests, and k-NN, aim to learn a deci-

sion boundary between normal and anomalous instances. Deep learning-based methods, 

like Autoencoders, Recurrent Neural Networks, and CNNs, have shown promising re-

sults in anomaly detection tasks, but their performance is affected by architecture, activa-

tion functions, and optimization techniques. 

We present the experimental results, comparing the performance of the CM-DANA 

model and the baseline methods across all evaluation metrics. The results demonstrate 

that the proposed model outperforms the baseline methods in most, if not all, of the met-

rics, showcasing its effectiveness in detecting anomalies in data streams from smart com-

munication environments. The use of cross-modal learning and dynamic a�ention mech-

anisms enables the CM-DANA model to adapt to the diverse and evolving nature of the 

data, providing timely and accurate anomaly detection. Table 2 presents a performance 

comparison of anomaly detection methods. 
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Table 2. Performance Comparison of Anomaly Detection Methods. 

Method Accuracy Precision Recall F1 Score AUC-ROC AUC-PR Time (s) 

Z-score 0.76 0.62 0.78 0.69 0.78 0.65 10.5 

IQR 0.80 0.65 0.80 0.71 0.82 0.67 11.2 

Grubbs’ test 0.74 0.58 0.76 0.66 0.75 0.62 12.8 

k-means 0.82 0.69 0.82 0.74 0.83 0.70 45.6 

DBSCAN 0.78 0.63 0.78 0.70 0.79 0.68 62.3 

LOF 0.79 0.65 0.79 0.71 0.81 0.69 53.9 

SVM 0.85 0.76 0.85 0.80 0.86 0.75 132.4 

Random Forest 0.86 0.78 0.86 0.82 0.87 0.76 243.7 

k-NN 0.81 0.71 0.81 0.75 0.80 0.70 76.2 

Autoencoder 0.88 0.82 0.88 0.85 0.88 0.78 180.6 

RNN 0.89 0.85 0.89 0.87 0.89 0.80 215.3 

CNN 0.87 0.80 0.87 0.83 0.86 0.76 198.9 

CM-DANA 0.92 0.88 0.92 0.90 0.92 0.85 315.2 

Here are the bar plots comparing all evaluation metrics (Figure 4): 

 

Figure 4. Bar plots comparing all evaluation metrics. 

This comprehensive comparison demonstrates the advantages of the proposed CM-

DANA in handling heterogeneous and dynamic data streams. Specifically, we can observe 

that traditional statistical methods such as Z-score, IQR, and Grubbs’ test have lower per-

formance compared to machine learning algorithms like k-means, DBSCAN, SVM, Ran-

dom Forest, k-NN, Autoencoder, RNN, and CNN. However, CM-DANA outperforms all 

the methods, including these machine learning algorithms, in terms of all the evaluation 

metrics (Accuracy, Precision, Recall, F1 Score, AUC-ROC, and AUC-PR). 
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The CM-DANA model is trained end-to-end using multimodal data streams. This 

allows the model to a�end to different features in different modalities based on the 

model’s current state and detect suspicious abnormal behavior by combining the relevant 

input data from different modalities using adaptive a�ention weights. 

To handle the input data as a stream of data in sliding windows, we apply a mask to 

the a�ention scores to ignore encoder outputs that are outside of the current window. This 

allows the a�ention mechanism to focus only on the relevant parts of the input data as the 

window slides over the input stream. Also, the use of cross-modal learning and dynamic 

a�ention mechanisms enables the CM-DANA model to adapt to the diverse and evolving 

nature of the data, providing timely and accurate anomaly detection. 

The CM-DANA model’s ability to integrate diverse data modalities is a significant ad-

vantage over the baseline methods, which typically focus on single modalities. By leverag-

ing the complementary information present in different modalities, the CM-DANA model 

can achieve better performance in detecting anomalies. Also, the dynamic attention module 

allows the CM-DANA model to focus on the most relevant features for anomaly detection, 

which contributes to its improved performance compared to the baseline methods.  

This mechanism also enhances the model’s interpretability, as it provides insights 

into which features or modalities are most important for identifying anomalies. The ex-

perimental results, in addition, indicate that the CM-DANA model can effectively handle 

real-time data processing, making it a suitable choice for real-world applications. It must 

be noted that the CM-DANA model’s capacity for continuous learning and adaptation 

ensures that its performance remains consistent over time, despite evolving data pa�erns 

and emerging cybersecurity threats. This feature sets the model apart from the baseline 

methods, which may struggle to adapt to changing data and threat landscapes. 

The following threshold plot (Figure 5) is a graphical representation that helps un-

derstand the performance of the binary classification approach (anomaly or not) at differ-

ent decision thresholds. The dynamic threshold indicates if the predicted probability of 

an instance is classified as an anomaly. The threshold plot helps visualize how perfor-

mance metrics like accuracy, precision, recall, and F1-score dynamically change as the de-

cision threshold is adjusted. As the threshold is moved, the model may show a trade-off 

between false positives and false negatives in predictions. Higher thresholds result in in-

creased precision but decreased false negatives, while lower thresholds lead to increased 

true positives but decreased precision. 
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Figure 5. Threshold Plot of CM-DANA. 

In addition, the following validation curve (Figure 6) is a graphical representation 

that visualizes the CM-DANA model’s performance changes with different hyperparam-

eter values. This process aims to find the hyperparameters leading to the best model gen-

eralization. 

 

Figure 6. Validation Curve Plot of CM-DANA. 

The following lift curve (Figure 7) graphically represents the CM-DANA model for 

anomaly detection performance evaluation. It compares the model’s effectiveness against 

a baseline approach and helps understand its ranking of positive outcomes. 
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Figure 7. Lift Curve Plot of CM-DANA. 

The Lift Curve is closely related to the Cumulative Gains Curve (Figure 8) which 

provides a way to evaluate the effectiveness of the predictive model by analyzing how 

well it identifies positive instances as it moves through different percentages of the da-

taset. 

 

Figure 8. Cumulative Gains Curve Plot of CM-DANA. 

The following Kolmogorov–Smirnov (KS) statistic plot (Figure 9) is a graphical rep-

resentation used to evaluate the CM-DANA model’s probability predictions. It measures 

the maximum vertical distance between cumulative distribution functions (CDFs) of the 

two classes (anomaly or not). A higher KS statistic indicates be�er separation between 

predicted probabilities, suggesting the model’s calibration and discrimination capabili-

ties.  
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Figure 9. Kolmogorov–Smirnov (KS) Statistic Plot of CM-DANA. 

In conclusion, the results and discussion of the experiments demonstrate the effec-

tiveness of the CM-DANA model in detecting anomalies in smart communication envi-

ronments, highlighting its advantages over the baseline methods in terms of cross-modal 

learning, dynamic a�ention, real-time processing, and adaptability. These findings vali-

date the potential of the CM-DANA model as a valuable tool for anomaly detection in 

various smart communication environments and applications. 

6. Conclusions and Future Work 

A CM-DANA was proposed in the paper, a novel and promising approach for de-

tecting anomalies in data streams from smart communication environments. The model 

extends the state-of-the-art a�ention mechanism by using a hybrid method called cross-

modal a�ention, which combines a�ention weights for different modalities to capture 

complex interactions between them be�er.  

The proposed model is trained end-to-end using multimodal data streams, allowing 

it to learn to a�end to different features in different modalities based on the model’s cur-

rent state. This enables the model to detect suspicious abnormal behavior effectively by 

combining the relevant input data from different modalities using a�ention weights.  

The paper demonstrates the effectiveness of the CM-DANA model in detecting cy-

bersecurity anomalies using multiple data streams from smart communication environ-

ments. This is a challenging task due to the diversity and complexity of the data streams. 

Still, the model achieves high accuracy by a�ending to relevant features and suppressing 

noisy or irrelevant features. This approach has the potential to significantly improve the 

accuracy and efficiency of anomaly detection in a variety of applications. 

While the CM-DANA has shown promising results in detecting anomalies, there are 

some limitations and areas for future research. Specifically, while the model employs a 

cross-modal a�ention mechanism to capture interactions between modalities, interpreting 

the exact nature of these interactions is challenging. Future research should aim to en-

hance the model’s interpretability by providing clearer insights into how and why certain 

modalities contribute to anomaly detection decisions. 

Also, the hybrid cross-modal a�ention approach, while beneficial for capturing intri-

cate relationships between modalities, introduces additional complexity to the model. 

This results in increased computational load during training and inference. Future re-

search studies should explore optimization techniques to mitigate this challenge and en-

sure efficient real-time processing, especially for large-scale environments. 
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In addition, the model’s effectiveness in detecting anomalies must test it in more so-

phisticated data streams from various domains without distinct characteristics. In this 

point of view, future work should focus on enhancing the model’s adaptability and trans-

ferability across diverse large-scale environments. Also, it should explore strategies to ad-

dress data limitations, such as data augmentation or domain adaptation techniques and 

the model’s ability to capture anomalies with longer-term pa�erns. 

The model’s dynamic a�ention mechanism allows it to adapt to changing data pat-

terns. However, in highly dynamic scenarios, there is a risk of overfi�ing to short-term 

fluctuations. Balancing adaptability with stability is crucial, and further investigations 

should focus on preventing overfi�ing while maintaining responsiveness to evolving 

anomalies. Moreover, striking the right balance between accuracy and interpretability 

while maintaining high performance remains an ongoing challenge. 

Finally, the most challenging aim is transitioning the proposed model from research 

to real-world deployment. This might pose challenges related to model maintenance, 

adaptability to new environments, and integration into existing systems. Future studies 

should address these challenges to ensure successful practical application. 

By addressing these limitations and exploring future research directions, the CM-

DANA model can be further improved and refined, ensuring its effectiveness and adapt-

ability in a wide range of smart communication environments and anomaly detection sce-

narios. 
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