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Abstract. According to the Greek mythology, Typhon was a gigantic monster
with one hundred dragon heads, bigger than all mountains. His open hands were
extending from East to West, his head could reach the sky and flames were
coming out of his mouth. His body below the waste consisted of curled snakes.
This research effort introduces the “Cyber-Typhon” (CYTY) an Online Multi-
Task Anomaly Detection Framework. It aims to fully upgrade old passive
infrastructure through an intelligent mechanism, using advanced Computational
Intelligence (COIN) algorithms. More specifically, it proposes an intelligent
Multi-Task Learning framework, which combines On-Line Sequential Extreme
Learning Machines (OS-ELM) and Restricted Boltzmann Machines (RBMs) in
order to control data flows. The final target of this model is the intelligent
classification of Critical Infrastructures’ network flow, resulting in Anomaly
Detection due to Advanced Persistent Threat (APT) attacks.

Keywords: Deep content inspection � Anomaly detection �
Multi-task learning � Online learning � Restricted Boltzmann Machine �
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1 Introduction

Information generated by complex environments such as the Internet of Things
(IOT) ecosystem, has increased exponentially. The result is the inefficient management
and storage of the total volume of generated information. This requires the adoption of
complex data mining and analysis architectures [1]. These architectures should
incorporate specialized processing algorithms, that dynamically adapt to new standards
or data, or to scaled data production as a equation of time [2].
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Although mining Data Streams (DAST) is an emerging area, it poses enormous
challenges to the data mining community. High transmission speed, change of data
distribution, and high volume, raise the following issues that should be addressed [3]:

• High Velocity: Online DAST, arrive at a very high speed. Thus, it has become
almost practically infeasible to scan all of them. This is also the case for the offline
ones.

• Concept Drift: Frequent Patterns (FREP) keep changing, as data streams are time
varying in nature. During the mining process, as new incoming data is added to the
existing ones, some FREP may change their status to become infrequent and vice
versa. This issue is known as the Concept Drift (CDR) problem.

• Unbounded Size (UNS): DAST are unbounded in size. Their size is unknown to the
user in advance unlike the static data.

• Enormous Space Requirement (ESR): Huge amount of data are generated both in
online and offline applications. There might not be enough space to store the data
stream before processing.

• Unsteady Analysis Results (UAR): High speed as well as varying data distribution,
may affect the analyzed results, due to which the mining outcome may be declined.
In order to cope with this, DAST mining must be an incremental process.

Anomaly Detection [4] over multiple data streams, is initially determined by the
observation of a single (multi-variable) time series frequency, which constitutes the
systems’ quantitative performance parameters.

A data stream si may be coming from a system of sensors, and it consists of
numerical values, where si(t) stands for the data stream flow value at the time t, and
t 2 [0, +∞]. If sensors’ flows are synchronized periodically to report their values, the
whole of the multi-variable information at each time t is represented with the following
frame vector shown in Eq. 1, [5].

DPt ¼ s1 tð Þ; s2 tð Þ; . . .; sn tð Þ 2 Rnð Þ ð1Þ

In practice, each flow forms a one-dimensional time series, while the frame vector flow
(FVF) represents a multi-variable time series. Event detection on DAST is intended to
determine the values si(t), which represent abrupt changes within an FVF.

Particularly, each FVF of length is converted to a binary vector of the same length,
where each value represents a possible change in the corresponding sensor flux. Such
deviations from the normal behavior are called events, and binary vectors are called
event vectors. An event may be an observation that does not conform to an expected
standard in the data set (anomaly). Incidents may have been caused by a variety of
reasons, like sensor failure or malequation, or deviations and substantial changes that
may affect the system’s behavior, such as Cyber Attacks (CYA) [7]. Therefore, a vector
of events in time t is represented by Eq. 2 below [3, 5].

DRt ¼ et1; e
t
2; . . .; e

t
nÞ 2

�
0; 1½ � ð2Þ

20 K. Demertzis et al.



where eti ¼ ei tð Þ is the binary value which represents the occurrence of an abnormal
flow behavior, and its value is si(t) = 1 in time t. The values of si(t) must be in an
interval {0, 1}.

The error is calculated at each iteration, as data characteristics can change drasti-
cally and in an unpredictable way changing the typical, normal behavior. An object that
may be considered abnormal, can then be included in the set of normal observations
due to rapid developments in the data stream. Due to the fact that the data volume is
unlimited, data mining is performed on a subset of the flow, called a sliding window,
which obviously contains a small but recent percentage of the observations. The goal of
the data flow processing algorithms is to minimize the cumulative error for all
iterations, that can be calculated by the following Eq. 3 [3, 5].

In w½ � ¼
Xn

j¼1

V w; xj
� �

; yj
� �

¼
Xn

j¼1

xTj w� yj

� �2
ð3Þ

where xj 2 Rd;w 2 Rd and yj 2 R. We consider that Xi� d is a data matrix and Yi� 1
is a matrix with target values, after the arrival of the first i data points. Assuming that

the covariance matrix Ri ¼ XTX is reversible, the optimal solution f � xð Þ ¼ w�; xh i is
given by the following Eq. 4 [3, 5].

w� ¼ XTX
� ��1

XT� ¼ R�1
i

Xi

j¼1

xjyj ð4Þ

First the covariance table is calculated by using the following Eq. 5

Ri ¼
Xi

j¼1
xjx

T
j ð5Þ

The initial time complexity (CM) is calculated to be of O id2ð Þ order; but after we

inverse the XTX d � dð Þ table, it increases to O d3ð Þ; while the rest of the required

multiplications have an O d2ð ÞCM: This produces an overall CM of O id2 þ d3ð Þ [3, 5]
(d is the size of the window).

It is conceivable that robust systems ensuring reliability and high accuracy rates
without requiring high availability of resources are required to safely approach prob-
lems stemming from knowledge mining processes. The above argument is further
supported as follows: Let’s suppose that the size of data points is equal to n and after
the arrival of each new data point i = 1, 2, …, n, the recalculation of the solution is

required. In this case the total time complexity would be equal to O n2d2 þ nd3ð Þ [5].
The Multi-Task Learning (MTL) is a robust method in order to face some of the

most challenge of the Big Data Streams processing with Online Learning algorithms.
MTL is a subfield of Machine Learning (ML) in which multiple learning tasks are
solved at the same time, utilizing common elements or differences arising from the
multiple tasks included in the case study [6, 7]. More general MTL is an inductive
transfer method which generates many generalization features. The common features or
differences that arise between distributed tasks during the training process are
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transferred or shared as guaranteed and unambiguous knowledge in subsequent rele-
vant or unrelated tasks, maximizing the accuracy of the model. MTL is efficient
because regularization induced by requiring an algorithm to perform well on a related
task can be superior to regularization that prevents overfitting by penalizing all com-
plexity uniformly. The following approaches are characteristic cases of MTL [6, 7]:

• Task grouping and overlapping, where tasks are grouped or provided in an over-
lapping way so that there is relevance, capable to lead in the use of cognitive or
learning relationships.

• Exploiting unrelated tasks, where the common learning of non-relevant tasks using
the same input data, can be beneficial for learning main tasks of an application field.

• Transfer of knowledge, where transfer of relevant knowledge is carried out to
achieve learning from correspondingly trained models.

• Group online adaptive learning, where transfer of previous experience or knowl-
edge into continually changing environments takes place.

2 Literature Review

Chen and Abdelwahed [8] have applied autonomous computing technology, to monitor
SCADA system performance. Their approach proactively estimates upcoming attacks
for a given system model of a physical infrastructure. Soupionis et al. [9] have pro-
posed a combinatorial method for automatic detection and classification of faults and
cyber-attacks occurring on the power grid system when there is limited data from the
power grid nodes due to cyber implications.

In addition, Zhu et al. [10] have described the network attack knowledge, based on
the theory of the factor expression of knowledge. They have studied the formal
knowledge theory of SCADA network from the factor state space and equivalence
partitioning. This approach utilizes the Factor Neural Network (FNN) theory which
contains high-level knowledge and quantitative reasoning, used to establish a predic-
tive model including analytic FNN and analogous FNN. This model abstracts and
builds an equivalent and corresponding network attack and a defense knowledge
factors system.

Finally [11] has introduced a new European Framework-7 project Cockpit CI
(Critical Infrastructure) and roles of intelligent machine learning methods to prevent
SCADA systems from cyber-attacks. Also, existing multi-task learning methods can be
categorized into two main categories: learning with feature covariance and learning
with task relations [12]. Different from prior solutions to distributed multi-task learn-
ing, which are focused on the former category [13], our proposed multi-task learning
falls into the latter category. On the other hand, distributed machine learning has
attracted more and more interests recently [14].

There have been tremendous efforts done on different machine learning problems.
Also, online multi-task learning assumes instances from different tasks arrive in a
sequence and adversarial chooses task to learn. Cavallanti et al. [15] exploited online
multi-task learning with a given task relationship encoded in a matrix, which is known
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beforehand. Parallel multi-task learning aims to develop parallel computing algorithms
for multi-task learning in a shared-memory computing environment.

Recently, Zhang [7] proposed a parallel multi-task learning algorithm named
PMTL. In this work, dual forms of three losses are presented and accelerated proximal
gradient method is applied to make the problem decomposable, and thus possible to be
solved in parallel. Finally, distributed multi-task learning is an area that has not been
much exploited.

Wang et al. [13] proposed a distributed algorithm for multi-task learning by
assuming that different tasks are related through shared sparsity. In another work [6],
asynchronous distributed multi-task learning method is proposed for multi-task
learning with shared subspace learning or shared feature subset learning. Different from
the above-mentioned approaches, our method aims at solving multi-task learning by
learning task relationships from data, which can be positive, negative, or unrelated, via
a task-covariance matrix.

3 The Proposed Cyber-Typhon Framework

This research proposes the Cyber-Typhon model, which combines the algorithmic
power of OS-ELM and RBM in a hybrid mode. It is an innovative Multi-Task Learning
approach [16], that performs control of network traffic in Critical Infrastructures [17–
19]. The final target is the detection of vulnerabilities that are usually due to APT
attacks [20–22].

More specifically, the Cyber-Typhon initially exports features related to network
traffic, which are used as input to an OS-ELM neural network. The OS-ELM has been
trained with proper data, in order to be able either to classify traffic as normal or (in the
opposite case) to identify the threat or the attack type. Obviously, it performs Multi-
class classification in order to identify one of the following eight (8) classes: Normal,
Naïve Malicious Response Injection (NMRI), Complex Malicious Response Injection
(CMRI), Malicious State Command Injection (MSCI), Malicious Parameter Command
Injection (MPCI), Malicious Equation Code Injection (MFCI), Denial of Service
(DoS) and Reconnaissance (Recon).

If the network traffic is normal further communication is allowed. In the opposite
case, the type of anomaly is determined and the data flow is redirected to a proper
absolutely specialized and dedicated Restricted Boltzmann Machine. If the first RBM
does not recognize the specific anomaly for which it is specialized, the data is redi-
rected to the next RBM responsible for the detection of another anomaly and so on till
the successful identification is achieved. If detection cannot be done by any of the
trained RBM (which are as many as the types of the known anomalies) the network
flow data return to the initial OS-ELM, which can perform online sequential learning.
Thus, the classification effort can be re-adjusted. The following Fig. 1 presents the
architecture of the Cyber-Typhon.

The proposed ELM is a Single-Hidden Layer Feed Forward Neural Network
(SHLF2N2) [23] with N hidden neurons, randomly selected input weights and random
values of bias in the hidden layer. The output weights are calculated with a single
vector matrix multiplication [13]. Hidden nodes or hidden level parameters can be
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randomly created before seeing the training data, while it is remarkable that non-
differential activation equations can be handled, and known Neural Network problems
such as stopping criterion, learning rate and learning epochs are not addressed.
Specifically, the input data is mapped to a random L-dimensional space with a discrete

training set N, where xi; tið Þ; i 2 1;N½ �½ � with xi 2 Rd and ti 2 Rc: The specification
output of the network is given by the following Eq. 6 [23]:

fL xð Þ ¼
XL

i¼1
bihi xð Þ ¼ h xð Þb i 2 1;N½ �½ � ð6Þ

Vector matrix b ¼ b1; . . .; bL½ �T is the output of the weight vector matrix connecting
hidden and output nodes. On the other hand, h xð Þ ¼ g1 xð Þ; . . .; gL xð Þ½ � is the output of
the hidden nodes for input x, and g1 xð Þ is the output of the ith neuron. Based on a

training set xi; tið Þf gNi¼1, the ELM can solve the Learning Problem Hb ¼ T; where

Fig. 1. Graphic representation of the Cyber-Typhon
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T ¼ t1; . . .; tN½ �T are the target labels and the output vector matrix of the Hidden Layer
H is given by the following Eq. 7 [23]:

H xj; bj; xi
� �

¼

g x1x1 þ b1ð Þ � � � g xlx1 þ blð Þ

.

.

.
.
.

.
.
.
.

g x1xN þ b1ð Þ � � � g xlxN þ blð Þ

2
64

3
75
N�l

ð7Þ

The input weight vector matrix of the hidden layer x (before training) and the bias
vectors b are created randomly in the interval [−1, 1], by employing Eqs. 8a and 8b.

xj ¼ xj1;xj2; . . .;xjm

� 	T
ð8aÞ

and

bj ¼ bj1; bj2; . . .; bjm
� 	T

ð8bÞ

The output weight vector matrix of the hidden layer H is calculated by the use of the
activation equation in the training dataset, based on Eq. 9a and the output weights b are
calculated based on Eq. 9b.

H ¼ g xxþ bð Þ ð9aÞ

b ¼
I

C
þHTH


 ��1

HTX ð9bÞ

where H ¼ h1; . . .; hN½ � is the output vector matrix of the hidden layer and X ¼
x1; . . .; xN½ � is the input vector matrix of the hidden layer. Indeed, b can be calculated by
the following Eq. 10:

b ¼ H þ T ð10Þ

where H þ is the generalized inverse Moore-Penrose vector for matrix H [23]. The
Cyber-Tyfon employs the ELM algorithm, which employs the kernel of the following
Gaussian Radial Basis Equation K(u, v) = exp(−c||u − v||2) (5).

The number of the hidden neurons k is equal to 20 and the assigned random input
weights are wi where bi, i = 1, …, N are the bias. The calculation of the hidden layer
output matrix H has been done by employing Eq. 11 below [23].

H hð Þ ¼

h x1ð Þ

.

.

.

h xNð Þ

2
64

3
75 ¼

h1 x1ð Þ � � � hL x1ð Þ

.

.

.
.
.
.

h1 xNð Þ � � � hL xNð Þ

2
64

3
75 ð11Þ

where h(x) = [h1(x), …, hL(x)] is the output (row) vector of the hidden layer with
respect to the input x. Also, h(x) maps the data from the D-dimensional input space to
the L-dimensional hidden-layer feature space (ELM feature space) H. Thus, h(x) is
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indeed a feature mapping. ELM aims to minimize the training error ||Hb − T||2 as well
as the norm ||b|| of the output weights:

where H is the hidden-layer output matrix of the Eq. 11.
Minimization of the norm of the output weights ||b|| is actually achieved by

maximizing the distance of the separating margins of the two different classes in the
ELM feature space 2/||b||. To calculate the output weights b we used Eq. 12 [23].

b ¼
I

C
þHTH


 ��1

HTT ð12Þ

where the value of C (a positive constant) and the value of T are obtained from the
Equation Approximation of the SHLF2N2 with additive neurons (see Eq. 13 below).

ti ¼ ti1; ti2; . . .; tim½ �T 2 Rm;T ¼

tT1
.
.
.

tTN

2
64

3
75 ð13Þ

The OS-ELM [16] is an alternative technique for large-scale computing and machine
learning approaches that used when data becomes available in a sequential order to
determine a mapping from data set corresponding labels.

The main difference between online learning and batch learning techniques is that
in online learning the mapping is updated after the arrival of every new data point in a
scale fashion, whereas batch techniques are used when one has access to the entire
training data set at once. It is a versatile sequential learning algorithm because of the
training observations are sequentially (one-by-one or chunk-by-chunk with varying or
fixed chunk length) presented to the learning algorithm. At any time, only the newly
arrived single or chunk of observations (instead of the entire past data) are seen and
learned. A single or a chunk of training observations is discarded as soon as the
learning procedure for that particular (single or chunk of) observation(s) is completed.
The learning algorithm has no prior knowledge as to how many training observations
will be presented. Unlike other sequential learning algorithms which have many control
parameters to be tuned, OS-ELM only requires the number of hidden nodes to be
specified [23].

The proposed OS-ELM algorithm consists of two main phases namely:
The Boosting (BPh) and the Sequential Learning (SLPh).
The BPh is used to train the SLFNs by applying basic ELM, with a batch of

training data in the initialization stage. The boosting training data are discarded as soon
as BPh is completed. The volume of the required training data vectors is very small,
and it can be equal to the number of hidden neurons. A detailed description of the OS-
ELM classifier is done below, where Eqs. 9a and 9b are employed.
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Phase 1 (BPh)

The BPh for a small initial training set N ¼ xi; tið Þjxi 2 Rn; ti 2 Rm; i ¼ 1; � � � ; eN
� 


is

the following:

(a) Assign arbitrary input weights wi and biases bi or centers µi and their corre-

sponding impact widths ri, i ¼ 1; � � � eN , where eN is the number of hidden neurons
used by the RBF kernel for a specific application.

(b) Calculate the initial hidden layer output matrix H0 ¼ h1; � � �; heN
h iT

where

hi ¼ g w1 � xi þ b1ð Þ; � � � ; g weN � xi þ beN
� �h iT

, i ¼ 1; � � � ; eN , and g is the activation

equation or the RBF kernel.

(c) Estimate the initial output weight b 0ð Þ ¼ M0H
T
0 T0, where M0 ¼ HT

0H0

� ��1
and

T0 ¼ t1; . . .; teN
h iT

.

(d) Set k ¼ 0.

Phase 2 (SLPh)

In the second SLPh, the OS-ELM algorithm learns the train data one-by-one, or chunk-
by-chunk, and all of the training data are discarded once the learning procedure on
them is completed. The actual steps of this phase (for each incoming observation
xi; t1ð Þ), are described below.

(a) Calculate the hidden layer output vector h kþ 1ð Þ ¼ g w1 � xi þ b1ð Þ; � � � ;½

g weN � xi þ beN
� �

�T.

(b) Calculate the latest output weight b kþ 1ð Þ by employing the Recursive Least-

Squares (RLS) algorithm where b̂ ¼ HTHð Þ
�1
HTT .

(c) Set k ¼ kþ 1, where xi 2 Rn, ti 2 Rm and i ¼ eN þ 1; eN þ 2; eN þ 3: xi 2 Rn, ti 2

Rm and i ¼ eN þ 1; eN þ 2; eN þ 3.

Obviously, if the network flow is classified as normal, it is allowed to continue. In
the opposite case, there are 7 RBMs, as many as the abnormal classes, where each one
of them has been trained to perform One-Class Classification (OCC) in order to
exclusively recognize one specific network attack [24].

The OCC also known as Unary Classification Method (UCM), implements intel-
ligent categorization of cases belonging to a specific class, among an existing set of
records. OCC is learning from a training set that contains only records of one specific
class. Usually in this method the negative class is absent because it is not sampled.
Thus, the division boundaries are determined effectively only with the knowledge of
the positive class.

This process is much more difficult than a traditional binary or multiclass classifier
[25], as it is trained to accept target objects and to reject the ones that have significant
deviation. Minimizing the errors is also a difficult process, because in this type of
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categorization, cross validation is unavailable since there is no data from the other
classes. Finally, it should be stressed that one class problem-solving technique is inverse
to the generalization approaches that are pursued in other machine learning problems, as
it tends to provide a fully defined configuration of parameters. This can exponentially
increase the complexity of the classifier, trying to correctly classify target data. The more
complex the model, the smaller the rank range in the target data range, and the less likely
it is for the outliers to be categorized correctly. In practice, one can create a complex
model by setting all its possible parameters without being at risk from overfitting.

In this sense, the OCC is the most appropriate approach for detecting abnormalities
and identifying patterns or trends, in a set of data that displays divergent behaviors than
expected. OCC achieves high levels of successful detection, while maintaining low
false error rates (false alarm) [24, 25].

The RBM [26] belong to the family of energy-based models, where each config-
uration of the variables of interest corresponds to a finite scalar energy value used for
training. The learning process is performed by modifying the energy equation (ENF),
so that its shape has desirable.

Specifically, RBM is a symmetric graphical model. The units of one layer are
connected (and thus dependent) only with units of the next one. The proposed
RBM ENF with V visible units and H hidden ones is defined as follows Eq. 14 [26]:

E v; hð Þ ¼ �
XV

i¼1

XH

j¼1
vihjwij �

XV

i¼1
vib

v
i �

XV

j¼1
hjb

h
j ð14Þ

where v and h are binary vectors related to the state of visible units, and to the state of
hidden units respectively. Moreover, vi and hj correspond to the individual state of each
visible unit (VU) i, and each hidden unit (HU) j respectively, and wij is the weight

assigned to their connection. Finally, bvi and b
h
j is the bias of the VU i and the HU j. The

reserved probability p vjhð Þ is given by the following Eq. 15:

p vjhð Þ ¼
e�E v;hð Þ

P
g e

�E g;hð Þ
ð15Þ

In the specific case of examining a unit i of the visible level, the assigned reserved
probability distribution (if we know the status of the hidden layer h), is calculated by
Eq. 16:

p vk ¼ 1jhð Þ ¼
1

1þ e
�
PH

j¼1
hjwkj þ bv

k

ð16Þ

The reserved probabilities p hjvð Þ and p hk ¼ 1jvð Þ are defined by Eqs. 17 and 18:

p hjvð Þ ¼
e�E v;hð Þ

P
g e

�E v;gð Þ
ð17Þ

and
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p hk ¼ 1jvð Þ ¼
1

1þ e�
PV

i¼1
viwkj þ bh

k

ð18Þ

These relations express the independence of the units of the two levels from the units of
the same level. The training process of the RBM is the process of finding values for its
parameters, that maximize the mean logarithmic probability of the occurrence of set C
(Eq. 19).

XC

c¼1
logp

P
g e

�E vc;gð Þ

P
u

P
g e

�E u;gð Þ
ð19Þ

The following Eq. 20 estimates the cost equation to wij that represents the renewal of
the weights:

@

@wij

XC

c¼1
logp vcð Þ ¼

@

@wij

XC

c¼1
log

X
g
e�E vc;gð Þ � log

X
u

X
g
e�E u;gð Þ ð20Þ

The first term calculates the average values of vci ; gj when the visible level of RBM
is leaded by the data vcð Þ, whereas the second term corresponds to the values of vi; gj
when the data are “produced” by the model. An equivalent way of formulating, would
suggest that every weight wij should change to become equal to Dwij (Eq. 21):

Dwij ¼ ew Edata vihj
� 	

� Emodel vihj
� 	� �

ð21Þ

The RBM model in this case starts approaching the actual values of the data. The first

term Edata vihj
� 	

can be calculated easily, since knowing the values of the units at the

visible level, we can, by means of the above equations, calculate the reserved proba-
bility for each unit at the hidden level. Calculation of the second term, which pre-
supposes the existence of samples from the model itself, is more difficult. In this paper
we use optimization through Contrastive Divergence (CD) [27]. The steps that we used
to procedure a single sample can be summarized as follows:

1. Take a training sample v, compute the probabilities of the hidden units and sample a
hidden activation vector h from this probability distribution.

2. Compute the outer product of v and h and call this the positive gradient.
3. Use h, to sample a reconstruction v′ of the visible units, and then resample the

hidden activations h′. (Gibbs sampling step)
4. Compute the outer product of v′ and h′ and call this the negative gradient.
5. Let the update to the weight matrix W be the positive gradient minus the negative

gradient, times some learning rate: DW ¼ e uhT � u0h0Tð Þ.
6. Update the biases a and b analogously: Da ¼ e u� u0ð Þ;Db ¼ e h� h0ð Þ:
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The CD method gives lower energy to the actual data and much higher energy to the
“reconstructions” resulting from them. This helps the model approach the actual data
distribution.

Also, the Typhon employs the Multi-Task Grouping and Overlap Learning
approach, combined with the optimal use of the OS-ELM and RBMs methodologies.
The sliding windows (SLIW) [28] are used to partition the data stream. Using the
SLIW technique, the system estimates a table of indices, after accepting the data flow
vectors as input.

The data are divided in partitions of 1,000 samples with 400 of them overlapping
between adjoining windows. This enables continuous and unintentional scanning of the
data, which results in faster and more accurate control results. This happens because a
small SLIW is much more likely to be more uniform than a larger one, and therefore it
is more predictable. Each new sample is checked by the OS-ELM algorithm and force
it in the appropriate RBM. Once the optimal model has been created, it is then applied
to the control window of the SLIW. This process is followed until the input data of
each window is completed. The total knowledge of the entire window is stored in MM1
(the first window). The MM1 is transferred in the window 2 as MLT, which means that
the total knowledge of the first window is transferred to the second window. The
process continues for all the data in window 2, and so on for all other windows, until
the full analysis of the data flow is done. The full representation of the proposed
process is presented in Fig. 2 below.

When the OS-ELM classification detects an attack type, the network flow data are
directed to the corresponding RBM. If it is a false positive case, the data are directed to
the next RBM and so on. If the output is a false alarm, then the traffic is redirected to
the initial OS-ELM, which has the online learning potential and it re-examines the
dataflow from the beginning as if it was a new one.

This architecture has been chosen due to the fact that in multi parametric and high
complexity problems related to big data (like the one examined herein) the classifi-
cation results are unstable especially regarding the analysis and the incorporation of the
data flows.

The introduced architecture is a serious method of a hybrid combined resolution of
the APT attacks. The system is flexible and effective and it not only offers a robust

Fig. 2. The proposed Multi-Task Grouping and Overlap Learning approach
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approach but it also offers a faster convergence of the overall model. Finally, the
proposed architecture can exploit the multi-tasking learning in order to enhance gen-
eralization. Each one of the developed RBMs is totally dedicated to the specific
problem, which can result in bias and variance reduction. This can result in overfitting
elimination and it offers a robust framework capable of coping with high complexity
problems.

4 Datasets

Appropriate datasets were chosen that closely simulate Industrial Control System
(ICS) communication and transaction data. They were used in the development and
evaluation of the proposed model. Contained preprocessed network transaction data
and preprocessed to strip lower layer transmission data, were used (e.g. TCP, MAC)
[29]. Specifically, the Gas_Dataset that was chosen for the purpose of this research
includes 26 independent parameters and 210,770 instances, from which 61,156 normal
and 149,614 abnormal (7 categories of attacks: Naïve Malicious Response Injection
(NMRI) 16,578, Complex Malicious Response Injection (CMRI) 15,466, Malicious
State Command Injection (MSCI) 28,152, Malicious Parameter Command Injection
(MPCI) 30,548, Malicious Equation Code Injection (MFCI) 20,628, Denial of Service
(DoS) 11,022 and Reconnaissance (Recon) 27,220). The following Fig. 3 offers a
graphical representation of the abnormal class distribution in the final Gas_Dataset.

The dataset is determined and normalized in the interval [−1, 1] in order to phase the
problem of prevalence of features with wider range over the ones with a narrower range,
without being more important. Also, the outliers and the extreme values spotted were
removed based on the Inter Quartile Range technique [30]. The reader can find details
regarding the dataset and the data collection and assessment methodology in [29].

Fig. 3. Abnormal class distribution
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4.1 Training the RBMs

The RBMs were trained based on an innovative application of the One Class Classi-
fication methodology. More specifically, according to this approach the system is
exclusively trained with data related to a vulnerability of the network, in order to be
able to identify the specific behavior – anomaly that has a potential relation with APT
attacks. This is achieved by estimating the RBMs Reconstruction Error (RER), which is
a basic criterion for the safe determination of the classes. It is calculated by using a
threshold which is unique for each class and which emerged after several trial and error
attempts, aiming in the optimal output of the system. If the error is higher than this
predefined limit (which is characteristic for each class) then it is rejected as an unknown
class and the data are redirected to the next RBM.

5 Results

In data cases using a machine learning classifier, for estimating the real error during
training, the full probability density of both categories should be known. The classi-
fication performance is estimated by the development of a Confusion Matrix (CM),
where the main diagonal values (top left corner to bottom right) correspond to correct
classifications and the rest of the numbers correspond to very few cases that were
misclassified. The following Table 1 presents the CM results of the OS-ELM:

All of the performance metrics in this testing, were estimated based on the One
Versus ALL approach, because it is a Multi-Class Classification case.

The numbers of misclassifications are related to the False Positive (FP) and False
Negative (FN) indices appearing in the confusion Matrix. The True Positive rate
(TPR) also known as Sensitivity the True Negative rate also known as Specificity
(TNR) and the False Positive Rate (FPR) are defined by using Eqs. 22, 23, and 24
respectively [31].

TPR ¼
TP

TPþ FN
ð22Þ

Table 1. Confusion Matrix of the OS-ELM

Normal ΝΜRI CMRI MSCI ΜPCI ΜFCI DoS Recon

59,826 428 93 289 453 2 65 0

632 15,944 0 2 0 0 0 0

40 0 15,426 0 0 0 0 0

264 0 0 27,888 0 0 0 0

503 0 0 0 29,900 125 20 0

2 0 0 0 157 20,469 0 0

139 0 0 1 24 0 10,858 0 

0 0 0 0 0 0 0 2,220
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TNR ¼
TN

TNþ FP
ð23Þ

FPR ¼
FP

FPþTN
¼ 1� TNR ð24Þ

The Precision (PRE) the Recall (REC), the F-Score and the Total Accuracy
(TA) indices are defined as in Eqs. 25, 26, 27 and 28 respectively [31]:

PRE ¼
TP

TPþ FP
ð25Þ

REC ¼
TP

TPþ FN
ð26Þ

F� Score ¼ 2�
PRE� REC

PRE þREC
ð27Þ

TA ¼
TPþTN

N
ð28Þ

The following Table 2 present the analytical results of the proposed method.

The 10-fold cross validation (10_FCV) is employed to obtain performance indices.
Cross-validation is a technique to evaluate predictive models by partitioning the
original sample into a training set to train the model, and a test set to evaluate it.

Table 2. Classification Accuracy and Performance Metrics

Classifier Fold TA RMSE Precision Recall F-Score AUC

OS-ELM 1st 98.51% 0.0548 0.980 0.980 0.9800 0.998

2nd 98.63% 0.0541 0.990 0.990 0.9900 0.999

3rd 97.96% 0.0482 0.976 0.976 0.9760 0.989

4th 98.63% 0.0543 0.990 0.990 0.9900 0.996

5th 98.98% 0.0578 0.989 0.989 0.9890 0.997

6th 98.00% 0.0490 0.981 0.981 0.9810 0.995

7th 98.60% 0.0549 0.986 0.986 0.9860 0.999

8th 98.75% 0.0560 0.987 0.987 0.9870 0.999

9th 98.28% 0.0567 0.986 0.986 0.9860 0.999

10th 98.30% 0.0536 0.985 0.985 0.9850 0.999

Avg 98.46% 0.0539 0.985 0.985 0.985 0.997
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6 Discussion and Conclusions

This research introduces a highly innovative, reliable and effective anomaly detection
system, which is based on advanced computational intelligence approaches [32–34].
The Cyber-Typhon performs a series of sophisticated anomaly detection equations, by
using Multi-Task Learning and by effectively combining On-Line Sequential Extreme
Learning Machines with Restricted Boltzmann Machines.

It ensures (in the most effective and intelligent way) the safe network communi-
cation among the interacting devices in a critical infrastructure environment. The
proposed system, significantly enhances the security mechanisms of the Critical
Infrastructures, which are a constant target due to their high importance. Also, this
architecture offers the potential of developing a safe platform that can control and
integrate network transactions. This can be done without the need for human intelli-
gence or for a central authority. Also, it has been proven that collective intelligence
technologies offer a smart solution for the determination of digital security and for
monitoring of assets related to critical infrastructure.

The development of the model was based on the extremely effective OS-ELM
algorithm, and on the multi-task learning method, which can perform transfer of
knowledge between relative processes that are executed in parallel.

The training process was based on the employment of the RBMs that were trained
based on the Unary Classification method. This was done by using specific datasets,
each one of them corresponding to the behavior of a certain attack, in order to ensure
the absolute reliability of the classifier.

The performance of the proposed system was tested on a multidimensional dataset
of high complexity. This has resulted after an extensive research into the operation of
critical infrastructure control systems and after comparisons, audits and tests. The target
was the identification of the most appropriate limits, which express and realistically
represent the classes they represent. The high accuracy of the results has greatly
enhanced the validity of the general methodology.

It is important to mention that this particular model is presented for the first time in
the literature. It constitutes an important guideline in further exploitation of intelligent
technologies in the automations that compose industrial networks.

Proposals for the development and future improvements of this system, should
focus on further optimizing the parameters of the RBMs used in order to achieve an
even more efficient, accurate and quicker classification, capable of dividing even more
precisely the boundaries between the situations of systems.

It would be important to study the equation-extension of the proposed algorithm
with meta-learning methods. This could further improve the anomaly detection process.
Finally, the introduced model can employ adaptive learning in order to gain self-
improvement potentials. This would automate 100% the whole process.
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