
An Autonomous Self-learning
and Self-adversarial Training Neural

Architecture for Intelligent and Resilient Cyber
Security Systems

Konstantinos Demertzis1(B) and Lazaros Iliadis2

1 School of Science and Technology, Informatics Studies, Hellenic Open University, Patras,
Greece

demertzis.konstantinos@ac.eap.gr
2 Department of Civil Engineering, Faculty of Mathematics Programming and General Courses,

School of Engineering, Democritus University of Thrace, Kimmeria, Xanthi, Greece
liliadis@civil.duth.gr

Abstract. Cybersecurity systems have become increasingly important as busi-
nesses and individuals rely more on technology. However, the increasing com-
plexity of these systems and the evolving nature of cyber threats require innova-
tive solutions to protect against cyber attacks. One promising approach is the idea
of autonomous self-learning and auto-training neural architectures. Autonomous
self-learning refers to the ability of the system to adapt to new threats and learn
from past experiences without human intervention. Auto-training, on the other
hand, refers to the ability of the system to improve its performance over time by
automatically adjusting its parameters and algorithms. This research proposes an
autonomous Self-Learning and Self-Adversarial Training (SLSAT) neural archi-
tecture for intelligent and resilient cyber security systems. It is an extension of
the next-generation Continuous-TimeReservoir Computing (CTRC) that was pro-
posed by the authors recently. TheCTRC is a time-series anomaly detection system
controlled by time-varying differential equations. It uses Reinforcement Learn-
ing (RL) to dynamically fine-tune the reservoir computing parameters in order to
identify the aberrant changes in the data. The proposed method in this research
improves the CTRC’s architecture by including a Conditional Tabular Genera-
tive Adversarial Network (CTGAN). Specifically, including CTGAN allows the
SLSAT architecture to generate synthetic data based on the identified abnormal-
ities to improve the model’s performance and adapt to new and evolving threats
without manual intervention. This, as proved experimentally, helps the model
identify aberrant changes in the data and fend off poison and zero-day attacks.

Keywords: Reservoir Computing · Continuous-Time Reservoir Computing ·
Cyber Defense · Time Series Analysis

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): EANN 2023, CCIS 1826, pp. 461–478, 2023.
https://doi.org/10.1007/978-3-031-34204-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34204-2_38&domain=pdf
https://doi.org/10.1007/978-3-031-34204-2_38

462 K. Demertzis and L. Iliadis

1 Introduction

Cyber security is a constantly evolving field, and the threat landscape is constantly
changing. Attackers are becoming more sophisticated and are constantly developing
new techniques and strategies to bypass traditional security measures [1]. This means
the cybersecurity industry must continually innovate and develop more advanced and
proactive security solutions to stay ahead of attackers. One approach that is gaining pop-
ularity in the cybersecurity industry is using artificial intelligence and machine learning
[2]. Machine learning algorithms can be trained to detect anomalies in network traffic
and identify behavior patterns indicative of an attack. These algorithms can be trained
using large network traffic and attack data datasets and continuously updated to adapt
to new attack techniques. The cybersecurity industry needs to take a proactive security
approach rather than relying on reactive measures. By using advanced technologies such
as artificial intelligence and machine learning [3], sharing threat intelligence, and col-
laborating with other organizations, the industry can stay ahead of the evolving threat
landscape and better protect against cyber-attacks [4, 5].

The proposed approach is an extension of the next-generation Continuous-Time
Reservoir Computing (CTRC) thatwas proposed by the authors recently [6, 7]. Reservoir
computing is amachine learning algorithm that uses the dynamics of a high-dimensional,
randomly connected network to process and learn from input signals. It is an efficient
and powerful technique for solving complex machine-learning tasks, particularly those
involving time-series data. At the heart of the system is a reservoir, which is a randomly
connected network of nodes. The input signal is fed into the reservoir, and the state
vector is fed into a readout layer, which is trained using linear regression or another
simple learning algorithm. Next-generation automated RC is an emerging technology
that has the potential to enhance cyber defense greatly, using the basic principles of
RC to analyze network traffic and identify anomalies indicative of cyberattacks or other
security threats [8, 9].

The CTRC is an extension of the RC paradigm that operates in continuous rather than
discrete time. In a traditional discrete-time reservoir computing system, input signals
are fed into the reservoir at discrete intervals. In a CTRC system, the input signal drives
the reservoir dynamics, producing an output signal. The continuous-time nature of the
system enables the reservoir to process input signals in real-time without discretization,
which is particularly useful in applications where the input signal is a continuous data
stream. However, it can be more difficult to train and optimize than discrete-time RC
due to the complexity of the reservoir dynamics [8, 10]. The proposed CTRC’s system
parameters are optimized using the RL method to overcome these challenges.

This paper extends the above architecture and proposes an autonomous self-healing
neural architecture for cyber security that leverages advanced machine learning tech-
niques to detect, respond to, and mitigate cyber threats automatically. Specifically, the
proposed method enhances the architecture by adding a CTGAN [11] to the CTRC. It
creates a model that can withstand poison and zero-day attacks by enhancing the net-
work’s capacity for self-learning and self-training based on the identified abnormalities.
The STSAT refers to the system’s ability to detect and respond to security incidents with-
out human intervention. This is important in cyber security, where threats can emerge
and spread quickly, making it difficult for human operators to respond quickly.

An Autonomous Self-learning and Self-adversarial Training Neural Architecture 463

2 Methodology

The proposed CTRC system is modelled using continuous-time differential equations,
and the system parameters are optimized using the RL method and, specifically, the
Q-Learning approach. The CTRC system’s architecture comprises input, reservoir, and
output layers. In RC, the connection and input weights are assigned at random. The
Echo State Property (ESP) [12, 13], the condition in which the reservoir is an “echo”
of the complete input history, is ensured by scaling the reservoir weights in a fashion
that does just that. The input u(n) and output y(n) discrete layers of the CTRC follow
the problem’s definitions. The number of hidden layers is grouped in an RC zone [14,
15]. The amount to which the RC’s neurons, x(n), are coupled defines how sparse the
RC will be.

The CTRC system can record temporal and spatial patterns of the network’s data
thanks to differential equations dx1 and dx2, which control how state vectors x1(t) and
x2(t) behave as follows [16, 17]:

While x2(t) represents the state vector that captures the spatial patterns of the data,
x1(t) represents the state vector that captures the temporal patterns of the network traffic
data in equations dx1 and dx2, respectively. The state vectors x1(t) and x2(t) change
over time in response to the input signal u(t) and the reservoir’s current state, as shown
by the differential equations above. A depiction of the CTRC architecture is presented
in Fig. 1.

Fig. 1. CTRC architecture

In order to model the drift phenomenon, identify the abnormal changes in the data,
and adaptively stabilize the learning system, the weight matrices W1, W2, Win1, Win2,
and V are optimized using the Q-Learning algorithm [18, 19] to minimize the difference
between the predicted output of the system and the true labels in a training dataset. The
state space is defined in the first step of the Q-learning algorithm. The state space records
pertinent data about the cyber defense scenario’s current network traffic analysis. The
Q-learning algorithm’s action space is then based on the potential steps the agent could
take to counteract cyberattacks. The agent’s performance in the cyber defense task is

464 K. Demertzis and L. Iliadis

then used as the basis for the reward function for the Q-learning algorithm. The reward
function motivates the agent to counter cyberattacks effectively and dissuades ineffec-
tive or harmful behavior. The Q-table is a lookup table associating expected rewards
with states and actions. The Q-table is updated using the Q-learning algorithm to choose
actions iteratively based on the current state and the values in the Q-table. The Bell-
man equation calculates the expected future reward from the present state and action
and is used to update the Q-table [20]. The Q-table modifies the weight matrices and
bias terms of the CTRC system. The Q-table estimates train the CTRC system to opti-
mize the expected future reward. A test dataset implements the trained CTRC system’s
performance evaluation process. Based on the evaluation outcomes, the parameters of
the CTRC algorithm are adjusted. This entails automatically modifying the group of
parameters that the Q-learning process optimized.

In order to increase the CTRC’s capacity for self-learning and self-training and cre-
ate a model that can thwart poison and zero-day attacks, the proposed method in this
research incorporates a CTGAN into the CTRC’s architecture. CTGAN is a Generative
Adversarial Network (GAN) for generating synthetic tabular data. GAN is a type of deep
learning algorithm used to generate new data by learning the patterns and features in a
given dataset. GANs are composed of twomain components: a generator and a discrimi-
nator. The generator inputs random noise and produces a fake sample that resembles the
original data. The discriminator, on the other hand, is trained to distinguish between real
and fake samples. The generator is trained to fool the discriminator by producing sam-
ples that are indistinguishable from the real ones. The discriminator, in turn, is trained
to identify whether a sample is real or fake correctly.

The training process involves alternating between training the generator to produce
better fake samples and training the discriminator to better distinguish between real and
fake samples. This process continues until the generator can produce samples that are
difficult to distinguish from the real ones. Its objective is to learn the underlying proba-
bility distribution of the input data and then generate new samples that closely resemble
the original data. The CTGAN consists of a generator and discriminator networks, sim-
ilar to GANs. However, CTGAN is conditioned on the values of a subset of the input
features. The generator network takes both a random noise vector and the conditioned
input features as input. The objective function of CTGAN can be expressed as follows
[11, 21]:

where,G is the generator network,D is the discriminator network, x is a real sample from
the input data distribution pdata, z is a noise vector sampled from a prior distribution
pnoise, c is a conditioned subset of the input features sampled from the conditioning
distribution pcondition, condition is a function that maps the input data x to the con-
ditioned subset of input features c, D(x|condition) is the discriminator’s probability of
assigning a real sample x a score of 1 (indicating that it is real) given the conditioning
features condition, G(z, c) is the generator’s output, which is a synthetic sample gener-
ated by the generator network, conditioned on the input features c and 1−D(G(z, c)|c)
is the discriminator’s probability of assigning a synthetic sample G(z, c) a score of 1

An Autonomous Self-learning and Self-adversarial Training Neural Architecture 465

(indicating that it is real), given the conditioning features c. The objective function is
optimized iteratively between the generator and discriminator networks until the gener-
ator produces synthetic samples that are indistinguishable from real samples according
to the discriminator [11, 22]. A depiction of the CTGAN architecture is presented in
Fig. 2.

Fig. 2. CTGAN architecture

Because there is no sufficient defence mechanism capable of fully protecting against
novel attacks, as these lie in the ingenuity of the attackers, this process extends the
so far techniques in a prototype way, protecting not only against zero-day but also
against poison attacks. Including CTGAN allows the SLSAT architecture to generate
synthetic data based on the identified abnormalities. Specifically, as the adversary wants
to find the least possible xadv that is closest to x to generate a contradictory sample,
the proposed mechanism pushes this xadv as far away from the legitimate sample as
possible. In particular, during the training of this particular neural architecture, it learns
to successfully recognize samples that belong to the distribution of the training data.
Still, it recognizes large changes in its outputs for samples at a short distance but outside
the specific distribution. By introducing to the training set patterns that are a linear
combination of the original patterns, the neural network learns to recognize contradictory
disturbances [23]. Specifically for λ ∈ [0, 1] and xi, xj two instances of the training set,
introducing the case xnew to the training set for which applies [22, 24, 25]:

Thus the training set acquires a more generalized distribution, with the result that the
network generalizes better and does not have large changes in points of the input space
outside the distribution of the original training set. The method improves the network’s
performance even on datasets where you expect the classification function to exhibit
significant non-linearities.

The defense method is based on the observation that the aggressive cases do not
belong to the distribution field to which the input data belongs. At the same time, they

466 K. Demertzis and L. Iliadis

are closer to the subfield to which the cases of their true class belong. Considering that
the outputs of the last layers of the neural network are feature vectors that are entered as
inputs to the network, the distribution towhich the feature vectors that result as outputs of
the neural network belong, when real data is present as input, is calculated. Specifically,
suppose Yc is the set of training vectors belonging to class c. In that case, y is the vector
of input features, calculating f̂c(y), which is the estimate of the density of the distribution
of the real features of class c at point y as follows [26, 27]:

f̂c(y) = 1

|Yc|
∑

yi∈Yc
exp

(
−‖y − yi‖22

σ 2

)

where with |Yc| the number of elements of the set Yc.
According to this method, an aggressive input with real class c1, which is recog-

nized as class c2, will hold that f̂c1(x) > f̂c2(x). Extending this consideration, Bayesian
uncertainty can be extracted from a neural network, which has been trained using the
dropout method, so that an input x receives the outputs y1, y2, . . . , yT for T different
sets of parameters of the network. The uncertainty U (x) of the network at point x is
calculated from the equation [28, 29]:

U (x) = 1

T

T∑

i=1

yTi yi −
(
1

T

T∑

i=1

yi

)T(
1

T

T∑

i=1

yi

)

Given the assumption that aggressive inputs appear in regions of the network with
high uncertainty,U (x) is a usefulmetric for determiningwhether an input x is aggressive.
A depiction of the proposed architecture is presented in Fig. 3 (Appendix 1).

3 Dataset and Results

Factry.io and InfluxDB were used to provide a perfect simulation environment [30,
31]. Factry.io is a data collection and visualization platform that enables users to easily
collect, monitor, and analyze data from various sources, such as machines, sensors, and
devices. InfluxDB is a time-series database designed to handle high volumes of time-
stamped data. It supports various data types and formats, including numerical, string,
and Boolean data, and provides a SQL-like query language to access and manipulate
data. The goal was to gather data about the industrial environment using the open-source
OPC-UA collector protocol [32].

Data for one year was gathered from three sensors’ hourly quantifiable values within
a machine condition that runs continuously. There is a tank specifically for raw water
storage, and a valve opens when the sensor detects a level of less than or equal to 0.5
m. This research suggests a trustworthy heuristic approach of selection, based only on
assessment criteria, to identify an ideal threshold for binary class separation (normal
or abnormal). The proposed algorithm calculates the density around each data point to
identify the dynamic threshold. This is achieved by counting the number of points in a
user-defined neighborhood (Eps-Neighbourhood) with the definition of thresholds. The
extra data points are added to the center of the regions if they are densely accessible. The

An Autonomous Self-learning and Self-adversarial Training Neural Architecture 467

neighborhood area of a point p is defined as the set of points for which the Euclidean
distance between the points p, q is smaller than the parameter Eps [33, 34]:

NEps(p) = {q ∈ D|dist(p, q) ≤ Eps}
provided that p = (p1, p2) and q = (q1, q2), the Euclidean distance is defined as:

√
(q1−p1)2 + (q2−p2)2

So, a point p is considered to be reachable from a point q based on a density
determined by the parameters Eps,MinPts if:

p ∈ NEps(q) andNEps (q) ≥ MinPts

Two plots to visualize the dynamic threshold calculation depicted in the following
Fig. 4.

Fig. 4. Dynamic threshold calculation

Samples (outliers) are considered abnormal when the anomaly score departs from
the expected behaviour by applying the dynamic threshold.

In order to easily make a comparison between the real and synthetic data, a visual
evaluation method is used to generate a plot that allows comparing the distributions of
the datasets visually. The plot consists of two panels, one for the real dataset and one for
the synthetic dataset. Each panel shows the dataset’s values distribution using a kernel
density estimate (KDE) plot [11]. The Fig. 5 shows a dataset’s absolute log mean and
standard deviation of each numeric column.

TheKDEplot shows the probability density function of the data,which represents the
relative frequency of values in each interval of the range of the variable. The x-axis of the
plot represents the values of the variable, and the y-axis represents the probability density
of those values. The more similar the distributions of the real and synthetic datasets are,
the more the two KDE plots will overlap. If the two datasets are very similar, the two
KDE plots will overlap significantly. If the two datasets have very different distributions,
the two KDE plots will not overlap much. By comparing the KDE plots for the real and
synthetic datasets, one can understand how similar the two datasets are in their statistical

468 K. Demertzis and L. Iliadis

Fig. 5. Absolute Log Mean and STDs of real and fake data

properties. If the KDE plots are very similar, it suggests that the synthetic dataset has
been generated successfully and has similar statistical properties to the real dataset. If
the KDE plots are very different, it suggests that the synthetic dataset does not represent
the real dataset well may not be suitable for the intended use.

Specifically, the blue line in the left plot represents the absolute log of the mean for
each column. The mean is a measure of central tendency representing the average value
of the data in that column. Taking the absolute value of the log of the mean ensures
that we are looking at differences in magnitude rather than direction, making it easier
to compare the means of columns with different scales. The blue line in the right plot
represents the absolute log of the standard deviation for each column. The standard
deviation is a measure of variability that represents the spread out of the data in each
column. Taking the absolute value of the log of the standard deviation ensures that we are
looking at differences in magnitude rather than direction and makes it easier to compare
the standard deviations of columns with different scales. By looking at the plot, we
can quickly identify columns with significantly different means or standard deviations.
These columnsmay indicate outliers or other issues in the data that should be investigated
further. In addition, columns with very low or zero values may be problematic for some
types of analysis, as their logarithms can be undefined or very large negative numbers.
Overall, the plot provides a quick overview of the numeric columns in the dataset and
can help identify potential issues or areas for further investigation [35]. Figure 6 shows
the cumulative sum of a column over time from 8 features. The plot’s x-axis shows the
time of each value in the column, and the y-axis shows the cumulative sum of those
values up to that point.

The blue line (real data) represents the current cumulative sum values of the column,
and the orange line (fake data) represents the column’s expected feature cumulative sum
values. The expected features cumulative sum values are obtained by shifting the blue
line forward by a certain number of time periods. By comparing the blue and orange
lines, it is easy to see how the cumulative sum of the column is expected to change

An Autonomous Self-learning and Self-adversarial Training Neural Architecture 469

Fig. 6. Cumulative sums per feature (8 features)

over time. If the orange line is significantly higher than the blue line, it suggests that
the cumulative sum of the column is expected to increase rapidly in the future. If the
orange line is significantly lower than the blue line, it suggests that the cumulative sum
of the column is expected to decrease rapidly in the future. The plot provides a way to
visualize the trend of the data over time and how it is expected to change cumulatively
in the future. It can be useful for predicting future trends or identifying patterns in the
data that may be useful for making decisions [36]. Figure 7 shows the distribution per
future time period.

The x-axis of each histogram shows the value of the column, and the y-axis shows the
frequency of each value. The plot consists of multiple histograms, one for each feature
time period. Each histogram shows the distribution of values in the column for that time
period and provides a way to visualize how the distribution of values is expected to
change over time. By comparing the histograms for different time periods, it is easy to
see how the distribution of values in the column is expected to change over time. For
example, if the histograms shift to the right over time, it suggests that the values in the
column are expected to increase in the future. If the histograms shift to the left over time,
it suggests that the values in the column are expected to decrease in the future. If the
histograms remain relatively stable over time, it suggests that the values in the column
are expected to remain relatively constant. The plot provides a way to visualize how the
distribution of values in the column is expected to change over time, and can be useful
for predicting future trends or identifying patterns in the data that may be useful for
making decisions. It can also be used to identify potential outliers or other issues in the
data that may affect its analysis [37].

470 K. Demertzis and L. Iliadis

Fig. 7. Distribution per feature (6 features)

Figure 8 shows the correlation matrices of real and fake data and the differences
between them.

Fig. 8. Correlation matrices of real data, fake data and the differences

This plot concatenates the real and synthetic datasets and computes their difference.
The x-axis and y-axis of each heatmap show the column names of the dataset, and each
cell in the heatmap represents the correlation between a pair of columns. The color of
each cell represents the strength and direction of the correlation, with blue indicating
a negative correlation and red indicating a positive correlation. White cells indicate no
correlation. The first heatmap shows the correlation matrix for the real data, allowing to
see the correlation between pairs of columns in the real data. The second heatmap shows
the correlation matrix for the synthetic data, allowing to see the correlation between
pairs of columns in the synthetic data. Finally, the third heatmap shows the difference

An Autonomous Self-learning and Self-adversarial Training Neural Architecture 471

in correlation matrices between the synthetic and real data, allowing to see where the
synthetic data’s correlation structure deviates from the real data’s correlation structure.
This can be useful for identifying areas where the synthetic data may not accurately
represent the real data [11].

Finally, Fig. 9 shows a scatter plot of the first two principal components of a dataset
using Principal Component Analysis (PCA).

Fig. 9. First two components of PCA

The left plot represents the first principal component (PC1), and the right plot repre-
sents the second principal component (PC2). Each data point in the plot represents a row
in the dataset, and its position on the plot represents its values in the first two principal
component directions. The position of each data point on the plot is determined by the
values of the data in the first two principal component directions, which are calculated
by the PCA algorithm [38, 39]. The plot can be useful for identifying patterns and trends
in the data, as well as for visualizing the similarity and differences between different
data points. Data points that are close together on the plot are similar to each other in
terms of their values in the first two principal component directions, while data points
that are far apart are dissimilar.

The plot can also be used to identify potential outliers or other issues in the data
that may affect its analysis. Outliers may appear as data points that are far away from
the main cluster of data points on the plot and may be worth investigating further to
determine if they represent genuine data points or errors in the data. In summary, the
plot provides a useful visualization of the main directions of variation in the data and
can be a useful tool for exploratory data analysis.

In order to perform analytical tests that will prove the value and capability of the
proposed scheme, three datasets were created. The initial one includes only the real data
where in this case, the last layer of the proposed architecture works, but it is not possible
to evaluate its capabilities in detecting poisoning-induced anomalies. The evaluation
performance metrics in all cases used to compare the anomaly detection algorithms are
Accuracy, RMSE, Precision, Recall (Sensitivity), F-Score, and AUC [35, 36]. Tables 1,
2 and 3 shows the classification accuracy and performance metrics in real, fake and mix

472 K. Demertzis and L. Iliadis

datasets of six different classifiers: SLST, CTRC, One Class SVM, Long Short-Term
Memory (LSTM), Isolation Forest and k-NN.

Table 1. Classification Accuracy and Performance Metrics in real data

Classifier Accuracy RMSE Precision Recall F-Score AUC

SLSAT 97.95% 0.0819 0.980 0.985 0.984 0.9902

CTRC 97.89% 0.0821 0.980 0.980 0.978 0.9887

One Class SVM 93.66% 0.0912 0.937 0.936 0.937 0.9752

LSTM 93.17% 0.0932 0.932 0.933 0.933 0.9703

Isolation Forest 91.38% 0.1007 0.914 0.914 0.913 0.9588

k-NN 87.99% 0.1185 0.880 0.880 0.880 0.9502

From the results of the above Table 1, it is evident that, there is little difference
between the upgradedSLSATscheme and the previousCTRCmethod, as the architecture
remains the same. The slight increase in the classification accuracy of the proposed
model may be related to the increase in the predictive ability of the algorithm based on
the additional samples added to the dataset after finding some anomalies. In addition,
the training processes’ randomness which is used to calculate the density around each
data point to identify the dynamic threshold. This is achieved by counting the number
of points in a user-defined neighbourhood (Eps-Neighbourhood) with the definition of
thresholds. This means that if the algorithm is run multiple times on the same dataset, it
may produce slightly different accuracy scores due to this randomness.

Table 2. Classification Accuracy and Performance Metrics in fake data

Classifier Accuracy RMSE Precision Recall F-Score AUC

SLSAT 94.12% 0.0903 0.941 0.940 0.941 0.9689

CTRC 83.71% 0.1566 0.837 0.838 0.837 0.9124

One Class SVM 86.38% 0.1207 0.865 0.865 0.870 0.9341

LSTM 82.97% 0.1632 0.830 0.830 0.830 0.9108

Isolation Forest 80.26% 0.1981 0.801 0.805 0.805 0.8894

k-NN 81.58% 0.1873 0.816 0.816 0.816 0.8943

From the results of Table 2 above, it is evident that in this particular case, there is
a significant difference between the proposed algorithm and the other methods, which
mostly showed very low performance. This fact is obviously due to the inability of the
other models to cope with the inability to find unknown patterns which, although very
similar to the real ones, differ significantly. The fake data generated by CTGAN contain
noise or uncertainty does not present in the real data. This can be due to several factors,

An Autonomous Self-learning and Self-adversarial Training Neural Architecture 473

including the inherent stochasticity of the generative model, the use of random seeds,
or other sources of variability in the training process. This makes it more difficult for
the machine learning model to accurately distinguish between real and fake examples,
especially if the noise is correlated with the target variable. This can lead to lower
performance on the fake data than the real data. The proposed model uses self-learning
and self-adversarial training to address this issue. The SLSAT model is self-training in
order to distinguish between real and fake examples more accurately. This enhances the
model’s performance to recognize and handle the noise or uncertainty in the fake data
and improves its overall performance on real and fake examples, as proved by results.

Table 3. Classification Accuracy and Performance Metrics in mix data

Classifier Accuracy RMSE Precision Recall F-Score AUC

SLSAT 99.05% 0.0697 0.991 0.991 0.991 0.9938

CTRC 90.15% 0.1123 0.900 0.905 0.905 0.9416

One Class SVM 89.81% 0.1131 0.898 0.898 0.898 0.9409

LSTM 89.76% 0.1136 0.898 0.897 0.897 0.9397

Isolation Forest 90.04% 0.1127 0.905 0.905 0.905 0.9403

k-NN 84.12% 0.1513 0.841 0.841 0.841 0.9073

The enormous superiority of the proposed system is confirmed in the mixed dataset.
The table shows that the SLSAT classifier has the highest accuracy at 99.05% and the
highest AUC at 0.9938. It also has high precision, recall, and F-score. The CTRC, One
Class SVM, LSTM, and Isolation Forest classifiers have similar accuracies ranging from
89.76% to 90.15% and AUCs ranging from 0.9403 to 0.9416. The k-NN classifier has
the lowest accuracy at 84.12% but still has a decent AUC of 0.9073. The reasons for this
superiority could be attributed to the following:

1. Self-LearningCapability: SLSAT incorporates aCTGAN to enhance themodel’s self-
learning capability. By generating synthetic data that mimics real data, SLSAT can
improve its accuracy and generalization capabilities, which makes it better equipped
to identify abnormal behavior in the data.

2. Self-Adversarial Training: The self-adversarial training approach in SLSAT allows
the model to learn from attacks and adapt its defense strategy in real-time. This
capability enables the model to detect and fend off zero-day attacks, a significant
advantage in the current threat landscape.

3. Robustness to Poisoning Attacks: Poisoning attacks are a type of cyber-attack in
which an attacker manipulates the training data to introduce biases or cause the model
to make incorrect predictions. SLSAT’s self-learning and self-adversarial training
capabilities make it more robust to such attacks. By continuously learning from the
data and adapting its defense strategy, SLSAT can detect and mitigate the effects of
poisoning attacks.

4. Reinforcement Learning (RL): SLSAT employs RL to dynamically fine-tune the
parameters of the Continuous-Time Reservoir Computing (CTRC) algorithm. This

474 K. Demertzis and L. Iliadis

allows SLSAT to optimize its performance continuously and adapt to changing
conditions in the data.

5. Robustness: SLSAT is designed to be robust to noise and other perturbations in
the data. By using CTRC, SLSAT can handle time-series data more effectively and
efficiently, making it more robust than other algorithms.

6. Capacity for Self-Learning: Including CTGAN in the SLSAT architecture allows it
to self-learn, meaning it can learn from data without supervision. This is particularly
useful in cyber security applications, where anomalies can be hard to define or may
change over time. SLSAT’s ability to learn without supervision gives it an advantage
over other algorithms that rely on labeled data.

7. Ability toDetect andHandleComplexPatterns: SLSAT’s architecture,which includes
CTRC and CTGAN, enables it to detect and handle complex patterns in the data.
This is important in cyber security applications where anomalies may not be easily
discernible or hidden within the noise of the data. SLSAT’s ability to handle complex
patterns gives it an advantage over other algorithms that may struggle to identify such
anomalies.

These features enable the model to learn continuously, adapt to new threats, and per-
form well in various conditions, making it an effective tool for detecting and mitigating
cyber threats.

4 Conclusion

The paper proposes an autonomous SLSAT neural architecture for intelligent and
resilient cyber security systems. The proposed architecture extends the CTRC algo-
rithm, incorporating a CTGAN to increase the network’s capacity for self-learning and
self-adversarial training. The proposed method allows for real-time adaptation to new
and evolving cyber threats. The SLSAT model, as proved experimentally, outperforms
other competitor algorithms in all performance metrics, including accuracy, RMSE, pre-
cision, recall, F-score, andAUC.Themodel’s self-learning and self-adversarial approach
enables it to detect and fend off zero-day and poison attacks, making it a valuable tool
for next-generation cyber security applications [40].

Furthermore, the SLSAT architecture’s capacity for self-learning and robustness to
poisoning attacks make it a powerful tool for handling complex patterns in the data,
which is crucial for detecting and mitigating advanced persistent cyber threats.

While the proposed SLSAT model has demonstrated superior performance in the
current research, further development could be made in several areas:

1. Scalability: The current research evaluates the SLSAT model on a specific dataset.
Future research could investigate the model’s scalability and performance on larger
datasets with a broader range of cyber threats.

2. Real-time Performance: The SLSAT model’s ability to adapt to new and evolving
threats in real time is a significant advantage. However, future research could further
explore optimizing the model in streaming data performance.

3. Robustness: While the SLSAT model is designed to be robust to noise and other
perturbations in the data, future research could further investigate ways to improve

An Autonomous Self-learning and Self-adversarial Training Neural Architecture 475

its robustness. For instance, they are exploring new adversarial training techniques or
enhancing the CTGAN’s capacity to generate synthetic data that mimics rare events
or evolving complex patterns in the data.

4. Explainability:While the SLSATmodel’s superior performance is clear, it is essential
to understand how it arrives at its conclusions. Future research could investigate ways
to make the model’s decision-making process more transparent and interpretable,
especially for regulatory compliance.

5. Deployment: The SLSAT model’s real-world deployment raises several challenges,
such as integrating itwith existing cyber security infrastructure,managing themodel’s
computational resources, and ensuring data privacy and security. Future research
could address these deployment challenges to make the model more practical and
useful in real-world applications.

6. The proposedSLSATmodel has demonstrated excellent performance in cybersecurity
applications. It is a significant contribution to the field of cyber defense, as it provides
an intelligent and resilient solution for detecting and mitigating cyber threats in real
time.

Appendix 1

Fig. 3. The autonomous self-learning and self-adversarial training neural architecture

References

1. Alhasan, S., Abdul-Salaam, G., Bayor, L., Oliver, K.: Intrusion detection system based on
artificial immune system: a review. In: 2021 International Conference on Cyber Security
and Internet of Things (ICSIoT), pp. 7–14, September 2021. https://doi.org/10.1109/ICSIoT
55070.2021.00011

2. Elmrabit,N., Zhou, F., Li, F., Zhou,H.: Evaluation ofmachine learning algorithms for anomaly
detection. In: 2020 International Conference on Cyber Security and Protection of Digital
Services (Cyber Security), pp. 1–8, June 2020. https://doi.org/10.1109/CyberSecurity49315.
2020.9138871

3. Demertzis, K., Iliadis, L.S., Anezakis, V.-D.: An innovative soft computing system for smart
energy grids cybersecurity. Adv. Build. Energy Res. 12(1), 3–24 (2018). https://doi.org/10.
1080/17512549.2017.1325401

https://doi.org/10.1109/ICSIoT55070.2021.00011
https://doi.org/10.1109/CyberSecurity49315.2020.9138871
https://doi.org/10.1080/17512549.2017.1325401

476 K. Demertzis and L. Iliadis

4. Alromaihi, S., Elmedany, W., Balakrishna, C.: Cyber security challenges of deploying IoT
in smart cities for healthcare applications. In: 2018 6th International Conference on Future
Internet of Things and Cloud Workshops (FiCloudW), pp. 140–145, December 2018. https://
doi.org/10.1109/W-FiCloud.2018.00028.

5. Coulter, R., Han, Q.-L., Pan, L., Zhang, J., Xiang, Y.: Data-driven cyber security in perspec-
tive—intelligent traffic analysis. IEEE Trans. Cybern. 50(7), 3081–3093 (2020). https://doi.
org/10.1109/TCYB.2019.2940940

6. Hart, A.: Generalised synchronisation for continuous time reservoir computers. Rochester,
NY, 17 December 2021. https://doi.org/10.2139/ssrn.3987856

7. Bala, A., Ismail, I., Ibrahim, R., Sait, S.M.: Applications of metaheuristics in reservoir com-
puting techniques: a review. IEEE Access 6, 58012–58029 (2018). https://doi.org/10.1109/
ACCESS.2018.2873770

8. Cuchiero, C., Gonon, L., Grigoryeva, L., Ortega, J.-P., Teichmann, J.: Discrete-time signatures
and randomness in reservoir computing. IEEE Trans. Neural Netw. Learn. Syst. 33(11),
6321–6330 (2022). https://doi.org/10.1109/TNNLS.2021.3076777

9. Demertzis, K., Iliadis, L., Pimenidis, E.: Geo-AI to aid disaster response by memory-
augmented deep reservoir computing. Integr. Comput.-Aided Eng. 28(4), 383–398 (2021).
https://doi.org/10.3233/ICA-210657

10. Al Jallad, K., Aljnidi, M., Desouki, M.S.: Anomaly detection optimization using big data and
deep learning to reduce false-positive. J. Big Data 7(1), 68 (2020). https://doi.org/10.1186/
s40537-020-00346-1

11. Xu, L., Skoularidou,M., Cuesta-Infante,A., Veeramachaneni, K.:Modeling tabular data using
conditional GAN. arXiv, 27 October 2019. https://doi.org/10.48550/arXiv.1907.00503

12. Abu, U.A., Folly, K.A., Jayawardene, I., Venayagamoorthy, G.K.: Echo State Network (ESN)
based generator speed prediction of wide area signals in a multimachine power system. In:
2020 International SAUPEC/RobMech/PRASA Conference, pp. 1–5, January 2020. https://
doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041236

13. Manjunath, G.: An echo state network imparts a curve fitting. IEEE Trans. Neural Netw.
Learn. Syst. 33(6), 2596–2604 (2022). https://doi.org/10.1109/TNNLS.2021.3099091

14. Wang, Z., Yao, X., Huang, Z., Liu, L.: Deep echo state network with multiple adaptive
reservoirs for time series prediction. IEEE Trans. Cogn. Dev. Syst. 13(3), 693–704 (2021).
https://doi.org/10.1109/TCDS.2021.3062177

15. Whiteaker, B., Gerstoft, P.: Memory in echo state networks and the controllability matrix
rank. In: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3948–3952, February 2022. https://doi.org/10.1109/ICA
SSP43922.2022.9746766.

16. Kidger, P.: On neural differential equations. arXiv, 4 February 2022. https://doi.org/10.48550/
arXiv.2202.02435

17. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differ-
ential equations. J. Comput. Phys. 378, 686–707 (2019). https://doi.org/10.1016/j.jcp.2018.
10.045

18. Shi, Y., Rong, Z.: Analysis of Q-Learning like algorithms through evolutionary game dynam-
ics. IEEE Trans. Circuits Syst. II Express Briefs 69(5), 2463–2467 (2022). https://doi.org/10.
1109/TCSII.2022.3161655

19. Yin, Z., Cao, W., Song, T., Yang, X., Zhang, T.: Reinforcement learning path planning based
on step batch Q-learning algorithm. In: 2022 IEEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA), June 2022, pp. 630–633. https://doi.org/
10.1109/ICAICA54878.2022.9844553

https://doi.org/10.1109/W-FiCloud.2018.00028
https://doi.org/10.1109/TCYB.2019.2940940
https://doi.org/10.2139/ssrn.3987856
https://doi.org/10.1109/ACCESS.2018.2873770
https://doi.org/10.1109/TNNLS.2021.3076777
https://doi.org/10.3233/ICA-210657
https://doi.org/10.1186/s40537-020-00346-1
https://doi.org/10.48550/arXiv.1907.00503
https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041236
https://doi.org/10.1109/TNNLS.2021.3099091
https://doi.org/10.1109/TCDS.2021.3062177
https://doi.org/10.1109/ICASSP43922.2022.9746766
https://doi.org/10.48550/arXiv.2202.02435
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1109/TCSII.2022.3161655
https://doi.org/10.1109/ICAICA54878.2022.9844553

An Autonomous Self-learning and Self-adversarial Training Neural Architecture 477

20. Huang, D., Zhu, H., Lin, X., Wang, L.: Application of massive parallel computation based
Q-learning in system control. In: 2022 5th International Conference on Pattern Recognition
and Artificial Intelligence (PRAI), pp. 1–5, December 2022. https://doi.org/10.1109/PRAI55
851.2022.9904213

21. Habibi,O.,Chemmakha,M., Lazaar,M.: Imbalanced tabular datamodelization usingCTGAN
and machine learning to improve IoT Botnet attacks detection. Eng. Appl. Artif. Intell. 118,
105669 (2023). https://doi.org/10.1016/j.engappai.2022.105669

22. Chauhan, R., Heydari, S.S.: Polymorphic adversarial DDoS attack on IDS using GAN. In:
2020 International Symposium on Networks, Computers and Communications (ISNCC),
pp. 1–6, July 2020. https://doi.org/10.1109/ISNCC49221.2020.9297264

23. Demertzis,K., Tziritas,N.,Kikiras, P., Sanchez, S.L., Iliadis, L.: The next generation cognitive
security operations center: adaptive analytic lambda architecture for efficient defense against
adversarial attacks. Big Data Cogn. Comput. 3(1), Article no. 1, March 2019. https://doi.org/
10.3390/bdcc3010006

24. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision:
a survey. IEEE Access 6, 14410–14430 (2018). https://doi.org/10.1109/ACCESS.2018.280
7385

25. Demertzis, K., Iliadis, L., Kikiras, P.: A Lipschitz - shapley explainable defense methodology
against adversarial attacks. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds.) AIAI 2021.
IAICT, vol. 628, pp. 211–227. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
79157-5_18

26. Dong, Y., et al.: Benchmarking adversarial robustness on image classification. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 318–328,
June 2020. https://doi.org/10.1109/CVPR42600.2020.00040

27. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level
domain adaptation with generative adversarial networks. arXiv, 23 August 2017. https://doi.
org/10.48550/arXiv.1612.05424

28. Han, K., Li, Y., Xia, B.: A cascade model-aware generative adversarial example detection
method. Tsinghua Sci. Technol. 26(6), 800–812 (2021). https://doi.org/10.26599/TST.2020.
9010038

29. Mahmood, K., Nguyen, P.H., Nguyen, L.M., Nguyen, T., Van Dijk, M.: Besting the Black-
Box: barrier zones for adversarial example defense. IEEE Access 10, 1451–1474 (2022).
https://doi.org/10.1109/ACCESS.2021.3138966

30. InfluxDB Times Series Data Platform, InfluxData, 15 January 2022. https://www.influxdata.
com/home/. Accessed 28 Feb 2023

31. Industrial IoT (IIoT) solutions for smart industries – Factry, Factry - Open Manufacturing
Intelligence. https://www.factry.io/. Accessed 28 Feb 2023

32. Nguyen, Q.-D., Dhouib, S., Chanet, J.-P., Bellot, P.: Towards a web-of-things approach for
OPC UA field device discovery in the industrial IoT. In: 2022 IEEE 18th International Con-
ference on Factory Communication Systems (WFCS), pp. 1–4, April 2022. https://doi.org/
10.1109/WFCS53837.2022.9779181

33. Wang, H., Wang, Y., Wan, S.: A density-based clustering algorithm for uncertain data. In:
2012 International Conference on Computer Science and Electronics Engineering, vol. 3,
pp. 102–105, March 2012. https://doi.org/10.1109/ICCSEE.2012.91

34. Khan, M.M.R., Siddique, Md.A.B., Arif, R.B., Oishe, M.R.: ADBSCAN: adaptive density-
based spatial clustering of applications with noise for identifying clusters with varying den-
sities. In: 2018 4th International Conference on Electrical Engineering and Information &
Communication Technology (iCEEiCT), pp. 107–111, September 2018. https://doi.org/10.
1109/CEEICT.2018.8628138

https://doi.org/10.1109/PRAI55851.2022.9904213
https://doi.org/10.1016/j.engappai.2022.105669
https://doi.org/10.1109/ISNCC49221.2020.9297264
https://doi.org/10.3390/bdcc3010006
https://doi.org/10.1109/ACCESS.2018.2807385
https://doi.org/10.1007/978-3-030-79157-5_18
https://doi.org/10.1109/CVPR42600.2020.00040
https://doi.org/10.48550/arXiv.1612.05424
https://doi.org/10.26599/TST.2020.9010038
https://doi.org/10.1109/ACCESS.2021.3138966
https://www.influxdata.com/home/
https://www.factry.io/
https://doi.org/10.1109/WFCS53837.2022.9779181
https://doi.org/10.1109/ICCSEE.2012.91
https://doi.org/10.1109/CEEICT.2018.8628138

478 K. Demertzis and L. Iliadis

35. Botchkarev, A.: Performance metrics (Error Measures) in machine learning regression, fore-
casting and prognostics: properties and typology. Interdiscip. J. Inf. Knowl. Manag. 14,
045–076 (2019). https://doi.org/10.28945/4184

36. Koyejo, O.O., Natarajan, N., Ravikumar, P.K., Dhillon, I.S.: Consistent binary classification
with generalized performance metrics. In: Advances in Neural Information Processing Sys-
tems, vol. 27 (2014). https://papers.nips.cc/paper/2014/hash/30c8e1ca872524fbf7ea5c519ca
397ee-Abstract.html. Accessed 24 Oct 2021

37. Liu, Y., Zhou, Y., Wen, S., Tang, C.: A strategy on selecting performance metrics for classifier
evaluation. Int. J. Mob. Comput. Multimed. Commun. IJMCMC 6(4), 20–35 (2014). https://
doi.org/10.4018/IJMCMC.2014100102

38. Li, X.: Fault data detection of traffic detector based on wavelet packet in the residual subspace
associated with PCA. Appl. Sci. 9(17), 3491 (2019). https://doi.org/10.3390/app9173491

39. Shamili, A.S., Bauckhage, C., Alpcan, T.: Malware detection on mobile devices using dis-
tributed machine learning. In: 2010 20th International Conference on Pattern Recognition,
pp. 4348–4351, December 2010. https://doi.org/10.1109/ICPR.2010.1057

40. Demertzis,K.,Kikiras, P., Tziritas,N., Sanchez, S.L., Iliadis, L.: The next generation cognitive
security operations center: network flow forensics using cybersecurity intelligence. Big Data
Cogn. Comput. 2(4), Article no. 4, December 2018. https://doi.org/10.3390/bdcc2040035

https://doi.org/10.28945/4184
https://papers.nips.cc/paper/2014/hash/30c8e1ca872524fbf7ea5c519ca397ee-Abstract.html
https://doi.org/10.4018/IJMCMC.2014100102
https://doi.org/10.3390/app9173491
https://doi.org/10.1109/ICPR.2010.1057
https://doi.org/10.3390/bdcc2040035

	An Autonomous Self-learning and Self-adversarial Training Neural Architecture for Intelligent and Resilient Cyber Security Systems
	1 Introduction
	2 Methodology
	3 Dataset and Results
	4 Conclusion
	Appendix 1
	References

