

L. Iliadis, M. Papazoglou, and K. Pohl (Eds.): CAiSE 2014 Workshops, LNBIP 178, pp. 322–334, 2014.

© Springer International Publishing Switzerland 2014

Evolving Computational Intelligence System

for Malware Detection

Konstantinos Demertzis and Lazaros Iliadis

Democritus University of Thrace, Department of Forestry & Management of the

Environment & Natural Resources, 193 Pandazidou st., 68200 N Orestiada, Greece

kdemertz@fmenr.duth.gr, liliadis@fmenr.duth.gr

Abstract. Recent malware developments have the ability to remain hidden

during infection and operation. They prevent analysis and removal, using

various techniques, namely: obscure filenames, modification of file attributes,

or operation under the pretense of legitimate programs and services. Also, the

malware might attempt to subvert modern detection software, by hiding running

processes, network connections and strings with malicious URLs or registry

keys. The malware can go a step further and obfuscate the entire file with a

packer, which is special software that takes the original malware file and

compresses it, thus making all the original code and data unreadable. This paper

proposes a novel approach, which uses minimum computational power and

resources, to indentify Packed Executable (PEX), so as to spot the existence of

malware software. It is an Evolving Computational Intelligence System for

Malware Detection (ECISMD) which performs classification by Evolving

Spiking Neural Networks (eSNN), in order to properly label a packed

executable. On the other hand, it uses an Evolving Classification Function

(ECF) for the detection of malwares and applies Genetic Algorithms to achieve

ECF Optimization.

Keywords: Security, Packed Executable, Malware, Evolving Spiking Neural

Networks, Evolving Classification Function, Genetic Algorithm for Offline

ECF Optimization.

1 Introduction

Malware is a kind of software used to disrupt computer operation, gather sensitive

information, or gain access to private computer systems. It can appear in the form of

code, scripts, active content, or any other. To identify already known malware,

existing commercial security applications search a computer’s binary files for

predefined signatures. However, obfuscated viruses use software packers to protect

their internal code and data structures from detection. Antivirus scanners act like file

filters, inspecting suspicious file loading and storing activities. Malicious programs

with obfuscated content, can bypass antivirus scanners. Eventually, they are unpacked

and executed in the victim’s system [1].

 Evolving Computational Intelligence System for Malware Detection 323

Code packing is the dominant technique used to obfuscate malicious code, to

hinder an analyst’s understanding of the malware’s intent and to evade detection by

Antivirus systems. Malware developers, transform executable code into data, at a

post-processing stage in the whole implementation cycle. This transformation uses

static analysis and it may perform compression or encryption, hindering an analyst's

understanding. At runtime, the data or hidden code is restored to its original

executable form, through dynamic code generation using an associated restoration

routine. Execution then resumes as normal to the original entry point, which marks

the entry point of the original malware, before the code packing transformation is

applied. Finally, execution becomes transparent, as both code packing and restoration

have been performed. After the restoration of one packing, control may transfer

another packed layer. The original entry point is derived from the last such layer [2].

Code packing provides compression and software protection of the intellectual

properties contained in a program. It is not necessarily advantageous to flag all

occurrences of code packing as indicative of malicious activity. It is advisable to

determine if the packed contents are malicious, rather than identifying only the fact

that unknown contents are packed. Unpacking is the process of stripping the packer

layers off packed executables to restore the original contents in order to inspect and

analyze the original executable signatures. Universal unpackers, introduce a high

computational overhead, low convergence speed and computational resource

requirements. The processing time may vary from tens of seconds to several minutes

per executable. This hinders virus detection significantly, since without a priori

knowledge on the nature of the executables to be checked for malicious code all of

them would need to be run through the unpacker. Scanning large collections of

executables, may take hours or days. This research effort aims in the development and

application of an innovative, fast and accurate Evolving Computational Intelligence

System for Malware Detection (ECISMD) approach for the identification of packed

executables and detection of malware by employing eSNN. A multilayer ECF model

has been employed for malware detection, which is based on fuzzy clustering. Finally,

an evolutionary Genetic Algorithm (GA) has been applied to optimize the ECF

network and to perform feature extraction on the training and testing datasets. A main

advantage of ECISMD is the fact that it reduces overhead and overall analysis time,

by classifying packed or not packed executables.

1.1 Literature Review

Dynamic unpacking approaches monitor the execution of a binary in order to extract its

actual code. These methods execute the samples inside an isolated environment that can

be deployed as a virtual machine or an emulator [3]. The execution is traced and stopped

when certain events occur. Several dynamic unpackers use heuristics to determine the

exact point where the execution jumps from the unpacking routine to the original code.

Once this point is reached, the memory content is bulk to obtain an unpacked version of

the malicious code. Other approaches for generic dynamic unpacking have been

proposed that are not highly based on heuristics such as PolyUnpack [4] Renovo [5],

OmniUnpack [6] or Eureka [7]. However, these methods are very tedious and time

consuming, and cannot counter conditional execution of unpacking routines, a technique

used for anti-debugging and anti-monitoring defense [8]. Another common approach is

324 K. Demertzis and L. Iliadis

using the structural information of the executables to train supervised machine-learning

classifiers to determine if the sample under analysis is packed or if it is suspicious of

containing malicious code (e.g., PEMiner [9], PE-Probe [10] and Perdisci et al. [11]).

These approaches that use this method for filtering, previous to dynamic unpacking, are

computationally more expensive and time consuming and less effective to analyze large

sets of mixed malicious and benign executables [12] [13] [14].

Artificial Intelligence and data mining algorithms have been applied as malicious

detection methods and for the discovery of new malware patterns [15]. In the research

effort of Babar and Khalid [3], boosted decision trees working on n-grams are found

to produce better results than Naive Bayes classifiers and Support Vector Machines

(SVM). Ye et al., [16] use automatic extraction of association rules on Windows API

execution sequences to distinguish between malware and clean program files.

Chandrasekaran et al., [17] are using association rules, on honeytokens of known

parameters. Chouchan et al., [18] used Hidden Markov Models to detect whether a

given program file is (or is not) a variant of a previous program file. Stamp et al., [19]

employ profile hidden Markov Models, which have been previously used for

sequence analysis in bioinformatics. The capacity of neural networks (ANN) to detect

polymorphic malware is explored in [20]. Yoo [21] employs Self-Organizing Maps to

identify patterns of behavior for viruses in Windows executable files. These methods

they have low accuracy as a consequence, packed benign executables would likely

cause false alarm, whereas malware may remain undetected.

2 Methodologies Comprising the Proposed Hybrid Approach

2.1 Evolving Spiking Neural Networks (eSNN)

eSNN are modular connectionist-based systems that evolve their structure and

functionality in a continuous, self-organized, on-line, adaptive, interactive way from

incoming information. These models use trains of spikes as internal information

representation rather than continuous variables [22]. The eSNN developed and

discussed herein is based in the “Thorpe” neural model [23]. This model intensifies

the importance of the spikes taking place in an earlier moment, whereas the neural

plasticity is used to monitor the learning algorithm by using one-pass learning. In

order to classify real-valued data sets, each data sample, is mapped into a sequence of

spikes using the Rank Order Population Encoding (ROPE) technique [24] [25]. The

topology of the developed eSNN is strictly feed-forward, organized in several layers

and weight modification occurs on the connections between the neurons of the

existing layers.

The ROPE method is alternative to the conventional rate coding scheme (CRCS). It

uses the order of firing neuron’s inputs to encode information. This allows the mapping

of vectors of real-valued elements into a sequence of spikes. Neurons are organized into

neuronal maps which share the same synaptic weights. Whenever the synaptic weight of

a neuron is modified, the same modification is applied to the entire population of

neurons within the map. Inhibition is also present between each neuronal map. If a

neuron spikes, it inhibits all the neurons in the other maps with neighboring positions.

 Evolving Computational Intelligence System for Malware Detection 325

This prevents all the neurons from learning the same pattern. When propagating new

information, neuronal activity is initially reset to zero. Then, as the propagation goes on,

each time one of their inputs fire, neurons are progressively desensitize. This is making

neuronal responses dependent upon the relative order of firing of the neuron's afferents

[24], [26], [27].
The aim of the one-pass learning method is to create a repository of trained output

neurons during the presentation of training samples. After presenting a certain input

sample to the network, the corresponding spike train is propagated through the eSNN

which may result in the firing of certain output neurons. It is possible that no output

neuron is activated and the network remains silent and the classification result is

undetermined. If one or more output neurons have emitted a spike, the neuron with

the shortest response time among all activated output neurons is determined. The label

of this neuron is the classification result for the presented input [26], [27], [28].

2.2 Evolving Connectionist Systems (ECOS)

ECOS [29] are multi-modular, connectionist architectures that facilitate modeling of

evolving processes and knowledge discovery [26]. An ECOS is an ANN operating

continuously in time and adapting its structure and functionality through a continuous

interaction with the environment and other systems according to: (i) a set of

parameters that are subject to change; (ii) an incoming continuous flow of information

with unknown distribution; (iii) a goal (rational) criterion (subject to modification)

applied to optimize the performance of the system. The evolving connectionist

systems evolve in an open space, using constructive processes, not necessarily of

fixed dimensions. They learn in on-line incremental fast mode, possibly through one

pass of data propagation. Life-long learning is a main attribute of this procedure. They

operate as both individual systems, and as part of an evolutionary population of such

systems. [26] [30]. ECOS are connectionist structures that evolve their nodes and

connections through supervised incremental learning from input-output data.

Their architecture comprises of five layers: input nodes, representing input variables;

input fuzzy membership nodes, representing the membership degrees of the input values

to each of the defined membership functions; rule nodes, representing cluster centers of

samples in the problem space and their associated output function; output fuzzy

membership nodes, representing the membership degrees to which the output values

belong to defined membership functions; and output nodes, representing output

variables [31].

ECOS learn local models from data through clustering of the data and associating a

local output function for each cluster. Rule nodes evolve from the input data stream to

cluster the data, and the first layer W1 connection weights of these nodes represent the

coordinates of the nodes in the input space. The second layer W2 represents the local

models (functions) allocated to each of the clusters. Clusters of data are created based

on similarity between data samples either in the input space, or in both the input space

and the output space. Samples that have a distance to an existing cluster center (rule

node) N of less than a threshold Rmax are allocated to the same cluster Nc. Samples

that do not fit into existing clusters, form new clusters as they arrive in time. Cluster

centers are continuously adjusted according to new data samples and new clusters are

created incrementally. The similarity between a sample S = (x, y) and an existing rule

326 K. Demertzis and L. Iliadis

node N = (W1, W2) can be measured in different ways, the most popular of them

being the normalized Euclidean distance given by equation 1, where n is the number

of the input variables. d(S,N) =
1

n
ቂ∑ |xi-W1N|n

i=1

2ቃ1

2
 (1).

ECOS learn from data and automatically create a local output function for each

cluster, the function being represented in the W2 connection weights, creating local

models. Each model is represented as a local rule with an antecedent –the cluster area,

and a consequent– the output function applied to data in this cluster.

2.3 Evolving Classification Function and Genetic Algorithms

ECF, a special case of ECOS used for pattern classification, generates rule nodes in

an N dimensional input space and associate them with classes. Each rule node is

defined with its centre, radius (influence field) and the class it belongs to. A learning

mechanism is designed in such a way that the nodes can be generated. The ECF

model used here is a connectionist system for classification tasks that consists of four

layers of neurons (nodes). The first layer represents the input variables; the second

layer – the fuzzy membership functions; the third layer represents clusters centers

(prototypes) of data in the input space; and the four layer represents classes [30], [26].

A GA is an evolutionary algorithm in which the principles of the Darwin's theory are

applied to a population of solutions in order to "breed" better solutions. Solutions, in

this case the parameters of the ECF network, are encoded in a binary string and each

solution is given a score depending on how well it performs. Good solutions are

selected more frequently for breeding and are subjected to crossover and mutation.

After several generations, the population of solutions should converge on a "good"

solution. The ECF model and the GA algorithm for Offline ECF Optimization are

parts from NeuCom software (http://www.kedri.aut.ac.nz/) which is a Neuro-

Computing Decision Support Environment, based on the theory of ECOS [29].

3 Description of the Proposed Hybrid ECISMD Algorithm

The proposed herein, hybrid ECISMD methodology uses an eSNN classification

approach to classify packed or unpacked executables with minimum computational

power combined with the ECF method in order to detect packed malware. Finally it

applies Genetic Algorithm for ECF Optimization, in order to decrease the level of

false positive and false negative rates. The general algorithm is described below:

Step 1: The train and test datasets are determined and formed, related to n features. The

required classes (packed and unpacked executables) that use the variable Population

Encoding are imported. This variable controls the conversion of real-valued data samples

into the corresponding time spikes. The encoding is performed with 20 Gaussian receptive

fields per variable (Gaussian width parameter beta=1.5). The data are normalized to the

interval [-1,1] and so the coverage of the Gaussians is determined by using i_min and

i_max. For the normalization processing the following function 2 is used: x1norm
=2* ቀ x1- xmin

xmax- xmin
ቁ -1, x∈R (2)

 Evolving Co

The data is classified in

results and Class 1 whic

modulation factor m=0.9, fi

agreement with the vQEA a

am-1 , am } be the ensemble

wm-1,i , wm,i} the weights of

arbitrary modulation factor

equation 3: Activation(i,t)
rank of neuron aj in the ense

By convention, order(a

corresponding term in the

could correspond to a fast s

threshold, it spikes and inh

that only one neuron will r

Hebbian-like learning rule

arrival of the Excitatory Po

the date of discharge of the

If te< ta then dW=a(1-W)

the date of the EPSP and

order of arrival instead of t

potentiation and depression

encoding of continuous

independently by a group

variable n, an interval [ܫ௠௜௡௡
is given by its center μi a

σ= 1
β

 Imax n - Imin
n

M-2
 (6) where

each Gaussian receptive f

variable.

Fig. 1. Population encoding b

Right Figure: Neuron ID

For an input value v=0.7

Gaussian is computed (tria

(right figure) [27].

Step 2: The eSNN is traine

performed with the packe

described in the following A

omputational Intelligence System for Malware Detection

two classes namely: Class 0 which contains the unpac

ch comprises of the packed ones. The eSNN is us

iring threshold ratio c=0.7 and similarity threshold s=0.6

algorithm [28] [27]. More precisely, let A = { a1 , a2 , a

of afferent neurons of neuron i and W = {w1,i , w2,i , w3

f the m corresponding connections; let mod ∈ [0,1] be

r. The activation level of neuron i at time t is given)= ∑ mod
order(aj)

j∈[1,m] wj, i (3) where order(aj) is the fir

emble A.

aj)=+8 if a neuron aj is not fired at time t, sets

above sum to zero. This kind of desensitization funct

shunting inhibition mechanism. When a neuron reaches

hibits neurons at equivalent positions in the other maps

respond at any location. Every spike triggers a time ba

 that adjusts the synaptic weights. Let te be the date

ostSynaptic Potential (EPSP) at synapse of weight W an

postsynaptic neuron.

)e-
|Δο|τ

else dW=-aW e-
|Δο|τ

(4). Δo is the difference betw

the date of the neuronal discharge (expressed in term

time), a is a constant that controls the amount of synap

n [24]. ROPE technique with receptive fields, allow

values [26] [27]. Each input variable is enco

p of one-dimensional receptive fields (figure 1). Fo௡, ܫ௠௔௫௡] is defined. The Gaussian receptive field of neuro

and width σ by equation 6.: μi = Imin n +
2i-3

2
 Imax n - Imin

n

M-2

1≤β ≤2 and the parameter β directly controls the width

field. Figure 1 depicts an encoding example of a sin

based on Gaussian receptive fields. Left Figure: Input Interv

75 (thick straight line) [27] the intersection points with e

angles), which are in turn translated into spike time del

ed with the packed_train dataset vectors and the testin

ed_test vectors. The procedure of one pass learning

Algorithm1 [26] [27].

327

cked

sing

6 in

a3 ...

3,i ...

e an

n by

ring

the

tion

s its

s so

ased

e of

nd ta

ween

m of

ptic

the

ded

or a

on i

 (5)

h of

ngle

val –

each

lays

g is

g is

328 K. Demertzis and L. Iliadis

Algorithm 1: Training an evolving Spiking Neural Network (eSNN) [27]

Require: ݉௟, ݏ௟, ܿ௟ for a class label l ∈ L

1: initialize neuron repository ܴ௟ = {}

2: for all samples ܺ(௜) belonging to class l do

3: wj

(i)←(ml)
order(j)

 j | j pre-synaptic neuron of i ׊ ,

4: umax
(i)

 ← ∑ wj

(i)
j (ml)

order(j)

5: θ(i)
 ← clumax

(i)
6: if min(d(w(i), w(k))) < sl, w

(k) ∈R
l
 then

7: w(k) ← merge w(i) and w(k) according to Equation 7

8: θ(k)
 ← merge θ(i)

 and θ(k)
 according to Equation 8

9: else

10: Rl ← Rl ׫{w(i)}

11: end if

12: end for

For each training sample i with class label l ∈ L a new output neuron is created and

fully connected to the previous layer of neurons resulting in a real-valued weight

vector ݓ(௜) ݐ݅ݓℎ ݓ௝(௜) ∈ ܴ denoting the connection between the pre-synaptic neuron j

and the created neuron i. In the next step, the input spikes are propagated through the

network and the value of weight ݓ௝(௜) is computed according to the order of spike

transmission through a synapse j: wj

(i)
=(ml)

order(j)
 .j | j pre-synaptic neuron of i ׊ ,

Parameter ml is the modulation factor of the Thorpe neural model. Differently

labeled output neurons may have different modulation factors ml. Function order(j)

represents the rank of the spike emitted by neuron j. The firing threshold ߠ(௜) of the

created neuron I is defined as the fraction ܿ௟ ∈ R, 0 < ܿ௟ < 1, of the maximal possible

potential

umax
(i) : θ(i)

 ← clumax
(i)

 (7) umax
(i)

 ← ∑ wj

(i)
j (ml)

order(j)
 (8)

The fraction cl is a parameter of the model and for each class label l ∈ L a different

fraction can be specified. The weight vector of the trained neuron is compared to the

weights corresponding to neurons already stored in the repository. Two neurons are

considered too “similar” if the minimal Euclidean distance between their weight

vectors is smaller than a specified similarity threshold sl (the eSNN object uses

optimal similarity threshold s=0.6). All parameters of eSNN (modulation factor ml,

similarity threshold sl, PSP fraction cl, l ∈ L) included in this search space, were

optimized according to the Versatile Quantum-inspired Evolutionary Algorithm

(vQEA) [28]. Both the firing thresholds and the weight vectors were merged

according to equations 9 and 10: wj

(k)
 ←

 w
j
(i)

+Nw
j
(k)

1+N
 j | j pre-synaptic neuron of i (9) ׊ ,

 θ(k)
 ←

 θ(i)
+Nθ(k)

1+N
 (10)

 Evolving Computational Intelligence System for Malware Detection 329

Integer N denotes the number of samples previously used to update neuron k. The

merging is implemented as the (running) average of the connection weights, and the

(running) average of the two firing thresholds [27]. After merging, the trained neuron

i is discarded and the next sample processed. If no other neuron in the repository is

similar to the trained neuron i, the neuron i is added to the repository as a new output.

Step 3: If the result is unpacked then the process is terminated and the executable file

goes to the antivirus scanner. If the result of the classification is packed, the new

classification process is initiated employing the ECF method. This time the malware

data vectors are used. These vectors comprise of 9 features and 2 classes malware and

benign. The learning algorithm of the ECF according to the ECOS is as follows:

Fig. 2. The Evolving Spiking Neural Network (eSNN) architecture

a. If all input vectors are fed, finish the iteration; otherwise, input a vector from the data

set and calculate the distances between the vector and all rule nodes already created

using Euclidean distance. b. If all distances are greater than a max-radius parameter, a

new rule node is created. The position of the new rule node is the same as the current

vector in the input data space and the radius of its receptive field is set to the min-radius

parameter; the algorithm goes to step 1; otherwise it goes to the next step. c. If there is a

rule node with a distance to the current input vector less than or equal to its radius and

its class is the same as the class of the new vector, nothing will be changed; go to step 1;

otherwise. d. If there is a rule node with a distance to the input vector less than or equal

to its radius and its class is different from those of the input vector, its influence field

should be reduced. The radius of the new field is set to the larger value from the two

numbers: distance minus the min-radius; min radius. New node is created as in to

represent the new data vector. e. If there is a rule node with a distance to the input vector

less than or equal to the max-radius, and its class is the same as of the input vector’s,

enlarge the influence field by taking the distance as a new radius if only such enlarged

field does not cover any other rule nodes which belong to a different class; otherwise,

create a new rule node in the same way as in step 2, and go to step 1 [33].

Step 4: To increase the level of integrity the Offline ECF Optimization with GA is used.

ECF system is an ANN that operates continuously in time and adapts its structure and

functionality through a continuous interaction with the environment and with other

systems. This is done according to a set of parameters P that are subject to change

during the system operation; an incoming continuous flow of information with unknown

distribution; a goal (rationale) criteria that is applied to optimize the performance. The

set of parameters P of an ECOS can be regarded as a chromosome of "genes" of the

330 K. Demertzis and L.

evolving system and evolut

The GA algorithm for offli

and standard operations are

roulette wheel selection crit

are complex structures and

another during the life of an

many generations. Micro-arr

inputs being the expression

being the classes. After the E

represent packed or unpacke

Fig. 3. G

Step 5: If the result of the c

scanner and the process is

malicious, it goes to the un

placed in quarantine and the

4 Data and Result

To prove generalization a

dataset. The full_dataset co

dataset (http://malfease.oar

from a clean installation

applications and 669 pack

parts: 1) a training dataset c

executable and 2,262 pat

unpacked software 2) a test

executables that even the m

These datasets are available

The virus dataset contain

in two parts: 1) a training d

453 patterns related to the b

related to the malware an

Iliadis

tionary computation can be applied for their optimizati

ine ECF Optimization runs over generations of populati

applied such as: binary encoding of the genes (paramete

terion; multi-point crossover operation for crossover. Ge

 they cause dynamic transformation of one substance i

n individual, as well as the life of the human population o

ray gene expression data can be used to evolve the ECF w

level of a certain number of selected genes and the outp

ECF is trained on gene expression rules can be extracted

ed [34].

Graphical display of the ECISMD Algorithm

classification is benign, the executable file goes to antivi

s terminated. Otherwise, the executable file is marked

npaker, to the antivirus scanner for verification and fin

e process is terminated.

ts

ability of our classification approach we need a relia

mprised of 2,598 packed viruses from the Malfease Proj

rci.net), 2,231 non-packed benign executables collec

n of Windows XP Home plus, several common u

ked benign executables. It was divided randomly in t

containing 2,231 patterns related to the non-packed ben

terns related to the packed executables detected us

ting dataset containing 1,005 patterns related to the pac

most well know unpacked software was not able to det

e at http://roberto.perdisci.googlepages.com/code [11].

ning 2,598 malware and 669 benign executables is divi

dataset containing 1,834 patterns related to the malware

benign executables 2) a test dataset containing 762 patte

nd 218 benign executables. In order to translate e

ion.

ions

ers);

enes

into

over

with

puts

that

irus

d as

ally

able

oject

cted

user

two

nign

sing

cked

tect.

ided

and

erns

each

 Evolving Computational Intelligence System for Malware Detection 331

executable into a pattern vector Perdisci et al [11] they use binary static analysis, to

extract information such as, the name of the code and data sections, the number of

writable-executable sections, the code and data entropy.

In both classifications described below, Training Accuracy reports the average

accuracy computed over 10-fold cross-validation. Testing Accuracy refers to the

percentage of packed executables that were correctly detected by each classifier in the

Packed_Test_Dataset and in the Virus_Test_Dataset respectively.

In the first classification performed by the ECISMD, the eSNN approach was

employed in order to classify packed or not packed executables. The results for testing

are: Classification Accuracy: 99.2% No. of evolved neurons: Class 0/867 neurons -

Class 1/734 neurons, In order to perform comparison with different learning algorithms

the Weka software version 3.7 was used (http://www.cs.waikato.ac.nz/ml/weka). Table

1 reports the results obtained with RBF ANN, Naïve Bayes, Multi Layer Perceptron

(MLP), Support Vector Machine (LibSVM), k-Nearest-Neighbors (k-NN) and eSNN.

Table 1. Comparison of various approaches for the Packed dataset

Packed Dataset

Classifier Train Accuracy Test Accuracy

RBFNetwork 98.3085% 98.0859%

NaiveBayes 98.3975% 97.1144%

MLP 99.5326% 96.2189%

LibSVM 99.4436% 89.8507%

k-NN 99.4436% 96.6169%

eSNN 99.8% 99.2%

In the 2nd classification performed by the ECISMD the ECF approach was employed

in order to classify malware or benign executables. The ECF model has the following

parameter values: MaxField=1, MinField=0.01, number of fuzzy membership functions

MF=1; number of rule nodes used to calculate the output value of the ECF when a new

input vector is presented MofN=9 (number of neighbors to consider when evaluating

nearest node); number of iterations for presenting each input vector Epochs=6. The

results for the test_dataset are: Classification Accuracy: 95.561%, Correct Samples:

933/980, Accuracy/Class: 82%/ Class 0 - 98% /Class 1. For the ECF parameter

optimization during training, the following parameter value ranges were used: Min

Field: 0.1, Max Field: 0.8, membership function: 9, Value for the m-of-n parameter: 3,

Generation: 6 and Population: 4. For the optimized value of the ECF, 30% of the data

was selected for training and 70% for testing. The classification accuracy in test_dataset

after the optimization was 97.992%.

Table 2, reports the results obtained with 6 classifiers and optimized ECF network

(RBF Network, Naïve Bayes, MLP, Lib SVM, k-NN, ECF and optimized ECF). The

best results on the testing dataset were obtained by using the eSNN classifier, to

classify packed or not packed executables and the optimized ECF (in the 2nd

classification) which classifies malware or benign executables.

332 K. Demertzis and L. Iliadis

Table 2. Comparison of various approaches for the virus dataset

Virus Dataset

Classifier Train Accuracy Test Accuracy
RBFNetwork 94.4031% 93.0612%

NaiveBayes 94.0533% 92.3469%

MLP 97.7551% 97.289%

LibSVM 94.6218% 94.2857%

k-NN 98.1198% 96.8367%

ECF 99.05% 95.561%

Optimized ECF 99.87% 97.992%

The average time for the classification of a pattern vector on a 3.06GHz Intel P4

processor was about t = 0.00016 seconds per executable. These results are much

smaller than the ones of Perdisci et al [11] in which on a 2GHz Dual Core AMD

Opteron processor was about t=0.001 seconds per executable.

5 Discussion - Conclusions

A new Evolving Computational Intelligence System for Malware Detection

(ECISMD) was introduced. It performs classification using eSNN to properly label a

packed executable and ECF with GA to detect malware and to optimize itself towards

better generalization. An effort was made to use minimum computational power and

resources. The classification performance of the eSNN method and the accuracy of

the ECF model were experimentally explored based on different datasets. The eSNN

was applied to an unknown dataset and reported promising results. Moreover the ECF

model and the genetically optimized ECF network, detects the patterns and classifies

them with high accuracy and adds a higher degree of integrity to the rest of the

security infrastructure of ECISMD. As a future direction, aiming to improve the

efficiency of biologically realistic ANN for pattern recognition, it would be important

to evaluate the eSNN model with ROC analysis and to perform feature minimization

in order to achieve minimum processing time. Other coding schemes could be

explored and compared on the same security task. Finally, the ECISMD could be

improved towards a better online learning with self-modified parameter values.

References

1. Yan, W., Zhang, Z., Ansari, N.: Revealing Packed Malware. IEEE (2007)

2. Cesare, S., Xiang, Y.: Software Similarity and Classification. Springer (2012)

3. Babar, K., Khalid, F.: Generic unpacking techniques. In: Proceedings of the 2nd

International Conference on Computer, Control and Communication (IC4), pp. 1–6. IEEE

(2009)

4. Royal, P., Halpin, M., Dagon, D., Edmonds, R.: Polyunpack: Automating the hidden-code

extraction of unpack-executing malware. In: ACSAC, pp. 289–300 (2006)

5. Kang, M., Poosankam, P., Yin, H.: Renovo: A hidden code extractor for packed

executables. In: 2007 ACM Workshop on Recurring Malcode, pp. 46–53. ACM (2007)

 Evolving Computational Intelligence System for Malware Detection 333

6. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: Fast, generic, and safe

unpacking of malware. In: Proceedings of the ACSAC, pp. 431–441 (2007)

7. Yegneswaran, V., Saidi, H., Porras, P., Sharif, M.: Eureka: A framework for enabling

static analysis on malware, Technical report, Technical Report SRI-CSL-08-01 (2008)

8. Danielescu, A.: Anti-debugging and anti-emulation techniques: Code-Breakers J. (2008)

9. Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: PE-Miner: Mining Structural

Information to Detect Malicious Executables in Realtime. In: Kirda, E., Jha, S., Balzarotti,

D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 121–141. Springer, Heidelberg (2009)

10. Shaq, M., Tabish, S., Farooq, M.: PE-Probe: Leveraging Packer Detection and Structural

Information to Detect Malicious Portable Executables. In: Virus Bulletin Conference

(2009)

11. Perdisci, R., Lanzi, A., Lee, W.: McBoost: Boosting scalability in malware collection and

analysis using statistical classiffication of executables. In: Proceedings of the 2008 Annual

Computer Security Applications Conference, pp. 301–310 (2008) ISSN 1063-9527

12. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the

wild. Journal of Machine Learning Research 7, 2721–2744 (2006)

13. Ugarte-Pedrero, X., Santos, I., Bringas, P.G., Gastesi, M., Esparza, J.M.: Semi-supervised

Learning for Packed Executable Detection. IEEE (2011) 978-1-4577-0460-4/11

14. Ugarte-Pedrero, X., Santos, I., Laorden, C., Sanz, B., Bringas, G.P.: Collective

Classification for Packed Executable Identification. In: ACM CEAS, pp. 23–30 (2011)

15. Gavrilut, D., Cimpoes, M., Anton, D., Ciortuz, L.: Malware Detection Using Machine

Learning. In: Proceedings of the International Multiconference on Computer Science and

Information Technology, pp. 735–741 (2009) ISBN 978-83-60810-22-4

16. Ye, Y., Wang, D., Li, T., Ye, D.: Imds: intelligent malware detection system. ACM (2007)

17. Chandrasekaran, M., Vidyaraman, V., Upadhyaya, S.J.: Spycon: Emulating user activities

to detect evasive spyware, IPCCC. IEEE Computer Society, 502–550 (2007)

18. Chouchane, M.R., Walenstein, A., Lakhotia, A.: Using Markov Chains to filter machine-

morphed variants of malicious programs. In: 3rd International Conference on Malicious

and Unwanted Software, MALWARE 2008, pp. 77–84 (2008)

19. Stamp, M., Attaluri, S.: McGhee S.: Profile hidden markov models and metamorphic virus

detection. Journal in Computer Virology (2008)

20. Santamarta, R.: Generic detection and classification of polymorphic malware using neural

pattern recognition (2006)

21. Yoo, I.: Visualizing Windows executable viruses using self-organizing maps. In:

VizSEC/DMSEC 2004: ACM Workshop (2004)

22. Schliebs, S., Kasabov, N.: Evolving spiking neural network—a survey. Evolving

Systems 4(2), 87–98 (2013)

23. Thorpe, S.J., Delorme, A.: Rufin van Rullen: Spike-based strategies for rapid processing.

Neural Networks 14(6-7), 715–725 (2001)

24. Delorme, A., Perrinet, L., Thorpe, S.J.: Networks of Integrate-and-Fire Neurons using

Rank Order Coding B: Spike Timing Dependant Plasticity and Emergence of Orientation

Selectivity. Published in Neurocomputing 38-40(1-4), 539–545 (2000)

25. Thorpe, S.J., Gautrais, J.: Rank order coding. In: CNS 1997: Proceedings of the 6th

Annual Conference on Computational Neuroscience: Trends in Research, New York, NY,

USA, pp. 113–118. Plenum Press (1998)

26. Kasabov, N.: Evolving connectionist systems: Methods and Applications in

Bioinformatics. In: Yu, P.X., Kacprzyk, P.J. (eds.) Brain Study and Intelligent Machines.

Springer, NY (2002)

334 K. Demertzis and L. Iliadis

27. Wysoski, S.G., Benuskova, L., Kasabov, N.: Adaptive learning procedure for a network of

spiking neurons and visual pattern recognition. In: Blanc-Talon, J., Philips, W., Popescu,

D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 1133–1142. Springer,

Heidelberg (2006)

28. Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated feature and parameter optimization

for an evolving spiking neural network. In: Köppen, M., Kasabov, N., Coghill, G. (eds.)

ICONIP 2008, Part I. LNCS, vol. 5506, pp. 1229–1236. Springer, Heidelberg (2009)

29. Song Q., Kasabov N.: Weighted Data Normalization and Feature Selection. In: Proc. of the

8th Intelligence Information Systems Conference (2003)

30. Huang, L., Song, Q., Kasabov, N.: Evolving Connectionist System Based Role Allocation

for Robotic Soccer. International Journal of Advanced Robotic Systems 5(1), 59–62

(2008) ISSN 1729-8806

31. Kasabov, N.: Evolving fuzzy neural networks for online supervised/ unsupervised,

knowledge–based learning. IEEE Trans. Cybernetics 31(6), 902–918 (2001)

32. Kasabov, N., Song, Q.: DENFIS: Dynamic, evolving neural-fuzzy inference systems and

its application for time-series prediction. IEEE Trans. 10(2), 144–154 (2002)

33. Goh, L., Song, Q., Kasabov, N.: A Novel Feature Selection Method to Improve

Classification of Gene Expression Data. In: 2nd Asia-Pacific IT Conf. vol. 29 (2004)

34. Kasabov, N., Song, Q.: GA-parameter optimization of evolving connectionist systems for

classification and a case study from bioinformatics. In: Neural Information ICONIP 2002

Proceedings of the 9th International Conference on, IEEE ICONIP, 1198128 (2002)

35. http://www.kedri.aut.ac.nz/

36. http://malfease.oarci.net

37. http://roberto.perdisci.googlepages.com/code

38. http://www.cs.waikato.ac.nz/ml/weka

	‎C:\Users\user\Desktop\papers\ECISMD.pdf‎
	G:\Downloads\Desktop\Phd theory\15.Papers\2.CAISE\ECISMD.pdf
	G:\Downloads\Desktop\Phd theory\15.Papers\2.CAISE\My Publications.pdf
	Preface
	First International Workshop on Advanced
Probability and Statistics in Information
Systems (APSIS 2014)

	APSIS 2014 Organization
	Keynote by Magne Jorgensen
	First International Workshop on Advances
in Services Design Based on the Notion
of Capability (ASDENCA 2014)

	ASDENCA 2014 Organization
	Second International Workshop on Cognitive
Aspects of Information Systems Engineering
(COGNISE 2014)

	COGNISE 2014 Organization
	Third Workshops on New Generation Enterprise
and Business Innovation Systems
(NGEBIS 2014)

	NGEBIS 2014 Organization
	4th International Workshop on Information
Systems Security Engineering (WISSE 2014)

	WISSE 2014 Organization
	Table of Contents
	Analysis and Prediction
of Design Model Evolution Using Time Series

	1 Introduction
	2 Usage of Design Models to Capture the Evolution of Java Systems
	3 Sample Project Selection
	4 Time Series
	4.1 ARMA Models
	4.2 Methodology for Time Series Modeling
	4.3 Accuracy of Forecasts

	5 Time Series Models of Changes
	6 Evaluation and Threat to Validity
	7 Related Work
	8 Summary and Conclusion
	References

	An Evolutionary Improvement
of the Mahalanobis � Taguchi Strategy
and Its Application to Intrusion Detection

	1 Introduction
	2 Theoretical Background
	2.1 The Mahalanobis Distance
	2.2 Steps of MT Strategy
	2.3 Genetic Algorithm

	3 Description of the Proposed MT-GA Methodology
	4 Application of MT-GA Method to Intrusion Detection Data
	4.1 Data Set Description � Experimental Design

	4.2 Accuracy Measures
	4.3 Genetic Algorithm Parameters
	4.4 Experimental Results

	5 Conclusions
	References

	Zero-Knowledge Private Computation
of Node Bridgeness in Social Networks

	1 Introduction
	2 Related Work
	3 Graphs and Bridges
	4 Background on �-Zero-Knowledge Privacy

	5 ZKP Mechanism for Bridgeness
	6 Evaluation
	6.1 Parameters Affecting Noise Scale
	6.2 The Noise

	7 Conclusions
	References

	Valuation and Selection of OSS with Real Options
	1 Introduction
	2 Background
	2.1 Software Quality Evaluation
	2.2 Real Options

	3 Proposed Method
	3.1 Quality Assessment
	3.2 Calculate Quality Volatilities
	3.3 Calculating the Value of a Call Option

	4 Applicability
	5 Discussion - Conclusions
	References

	State of the Art in Context Modelling – A Systematic Literature Review
	1 Introduction
	1.1 Notions of Context
	1.2 Definitions of Context

	2 Research Approach
	3 Review Design
	3.1 Literature Sources
	3.2 Paper Selection

	4 Data Analysis
	4.1 Activity in Context Modelling
	4.2 Research Topics and Approaches in Context Modelling
	4.3 Research Paradigms and Research Methods in Context Modelling
	4.4 Further Research Areas in Context Modelling

	5 Conclusion and Outlook
	References

	On the Applicability of Concepts from Variability Modelling in Capability Modelling: Experiences from a Case in Business Process Outsourcing
	1 Introduction
	2 Background
	2.1 Capability Definitions
	2.2 Improvement Needs in Existing Capability Meta-models
	2.3 Variability Modelling in Product Line
Engineering

	3 Industrial Case
	3.1 Business Process Outsourcing of Energy Distribution Companies
	3.2 Business Service MSCONS

	4 Variation Points for Capability Modelling
	4.1 Variation Points and Variation Aspects in Capability Models
	4.2 Context of Business Service Delivery
	4.3 Variation Points in the Industrial Case
	4.4 Discussion

	5 Summary
	References

	Capability Sourcing Modeling
	1 Introduction
	2 Theoretical Background
	3 Solution Approach
	4 Proposed Solution
	5 Conclusion
	References

	Capability-Based Business Model Transformation
	1 Introduction
	2 Related Research
	3 Overview of the Approach
	4 Identifying Organisational Capabilities
	4.1 Applying Capability Resources Types
	4.2 Capability Sub-types

	5 Changing Organisational Capabilities
	5.1 Recursively Analysing the Capabilities

	6 Applying the Approach
	7 Conclusion
	References

	Capability-Driven Development of a SOA Platform: A Case Study*
	1 Introduction
	2 Capability-Driven Development of Information Technology
	3 Research Goal and Methodology
	4 Case Study
	4.1 The Company and the Project
	4.2 The Application of the CDD Methodology
	4.3 Lessons Learned and Open Challenges

	5 Discussion on Validity and Ethical Concerns
	6 Conclusions
	References

	Modeling Enterprise Capabilities with i*:
Reasoning on Alternatives

	1 Introduction
	2 Related Work
	3 Dynamic Capability and Strategic Management
	4 Suitability of i* to Model Enterprise Capabilities

	5 Illustrative Example
	6 Discussion and Conclusion
	References

	Service Functioning Mode in Variability Model
	1 Introduction
	2 Basic Concepts and Related Work
	2.1 Basic Concepts
	2.2 Related Work

	3 Functioning Modes in Feature Model
	4 Practical Example and Discussion
	5 Conclusions
	References

	Towards a Computer-Aided Problem-Oriented Variability Requirements Engineering Method
	1 Introduction
	2 Running Example
	3 Background
	3.1 Orthogonal Variability Modeling
	3.2 Problem Frames

	4 Extending Problem Frames with a Variability Notation
	5 Problem-Oriented SPL Requirements Engineering Method
	5.1 Product Line Requirement Model Creation
	5.2 Deriving a Concrete Product Requirement Model

	6 Related Work
	7 Conclusion
	References

	An Outlook on Patterns as an Aid for Business and IT Alignment with Capabilities
	1 Introduction
	2 Pattern Use in Computer Science
	3 Examples of Pattern Application Cases
	4 Challenges for Pattern Use in Business and IT Alignment
	5 Outlook on Patterns for Capability Delivery

	6 Concluding Remarks and Future Work
	References

	Low�Cost Eye�Trackers:
Useful for Information Systems Research?

	1 Introduction
	2 Eye Movement Analysis
	3 Experimental Design
	4 Results and Discussion
	4.1 Experimental Execution
	4.2 Discussion
	4.3 Limitations

	5 Related Work
	6 Summary and Conclusion
	References

	Supporting BPMN Model Creation with Routing Patterns
	1 Introduction
	2 A Cognitive Perspective of Modeling
	3 Empirical Study
	3.1 Routing Patterns and Decision Support
	3.2 Settings
	3.3 Procedure
	3.4 Measurement and Hypotheses
	3.5 Analysis and Findings

	4 Discussion
	5 Conclusion
	References

	Coupling Elements of a Framework for Cognitive
Matchmaking with Enterprise Models

	1 Introduction
	2 Related Work
	3 Illustrating the Coupling of an Enterprise Model with Cognitive Elements
	4 Benefits of Coupling Enterprise Models with Cognitive Aspects
	5 Conclusions and Future Research
	References

	Investigating Differences between Graphical
and Textual Declarative Process Models

	1 Introduction
	2 Backgrounds
	2.1 Declarative Process Models
	2.2 Mental Effort

	3 Defining and Planning the Empirical Investigation
	4 Execution and Results
	5 Related Work
	6 Summary and Outlook
	References

	Reducing Technical Debt: Using Persuasive Technology for Encouraging Software Developers to Document Code
	1 Introduction
	2 Problem Background and Description
	3 Solution Approach
	4 Research Plan and Method
	References

	Conceptual Understanding of Conceptual
Modeling Concepts: A Longitudinal Study
among Students Learning to Model

	1 Introduction
	2 Method
	3 Results and Discussion
	References

	What Do Software Architects Think They (Should) Do?
	1 Introduction
	2 The Role of the Software Architect
	2.1 Role Definition
	2.2 Responsibilities

	3 Empirical Study
	3.1 Method and Settings

	4 Conclusion
	References

	Towards Semantic Collective Awareness Platforms for Business Innovation
	1 Introduction
	2 Key Enabling Semantic Technologies
	3 Semantic Analysis of Data from Real Environments
	4 Triggering Creativity through Knowledge Routing
	5 Semantics-Based Collaborative Knowledge Creation
	6 Related Works
	7 Conclusions and Future Works
	References

	Leveraging User Inspiration with Microblogging-Driven Exploratory Search
	1 Introduction
	2 Related Work
	3 Creative User Centric Inspirational Search
	4 Walkthrough
	5 Tool Design
	5.1 Term Retrieval, Processing and Visualization
	5.2 Search Path Exploration
	5.3 Resource Diversification

	6 Evaluation
	7 Conclusions
	References

	System Architecture of the BIVEE Platform for Innovation and Production Improvement
	1 Introduction
	2 The BIVEE System Reference Architecture
	3 The BIVEE Platform
	3.1 Production and Innovation Knowledge Repository (PIKR)
	3.2 Raw Data Handler (RDH)

	4 Conclusions
	References

	Cooperative Decision Making in Virtual Enterprises
	1 Introduction
	2 Hybrid Modelling as Enterprise Interoperability Solution
	2.1 Value Production Space Modelling Language

	3 Cooperative Decision Making in Virtual
Enterprises
	4 Realization of Cooperative Decision Making
	5 Conclusion and Outlook
	References

	A Methodology for the Set-Up of a Virtual Innovation Factory Platform
	1 Introduction
	2 Innovation Knowledge Flow, Storage and Monitoring with BIVEE Platform
	3 Virtual Innovation Factory (VIF) Platform
	4 KPI Selection and BIVEE Platform

	5 Conclusions
	References

	Data Mart Reconciliation
in Virtual Innovation Factories

	1 Introduction
	2 Related Work
	3 Typologies of Conflicts
	4 Semantic Multidimensional Model
	5 Conflict Reconciliation
	6 Conclusion
	References

	Requirements Refinement and Exploration
of Architecture for Security and Other NFRs

	1 Introduction
	2 Related Work
	2.1 TPM-SA: Twin Peaks Model for Security Analysis
	2.2 Other Works

	3 Revised TPM-SA: TPM-SA2
	3.1 Steps in TPM-SA2
	3.2 Prioritizing Alternatives with Respect to NFRs

	4 Illustrative Example: Geolocation Service
	4.1 First-Level Requirements
	4.2 Exploring Alternatives
	4.3 TMP-SA in an Alternative
	4.4 Prioritization

	5 Discussion
	6 Conclusion
	References

	Cloud Forensics Solutions: A Review
	1 Introduction
	2 Cloud Forensic Challenges
	3 Current Solutions
	3.1 Access to Evidence in Logs
	3.2 Volatile Data
	3.3 Multi-jurisdiction – Distribution – Collaboration
	3.4 Client Side Identification
	3.5 Dependence on CSP - Trust
	3.6 Service Level Agreement
	3.7 Integrity and Stability – Privacy and Multi-Tenancy
	3.8 Time Synchronization – Reconstruction
	3.9 Internal Staffing
	3.10 Chain of Custody
	3.11 Imaging
	3.12 Forensic Tools
	3.13 Volume of Data
	3.14 Complexity of Testimony
	3.15 Documentation
	3.16 Compliance Issues

	4 Discussion
	References

	Resolving Policy Conflicts - Integrating Policies from Multiple Authors
	1 Introduction
	2 Use Case
	3 Related Works
	4 An Overview of the XACML Policy Combining Algorithm
	5 An Overview of Our Policy Combining Strategy
	6 Policy Creation and Integration Strategy Comparison
	7 Integration of Obligations
	8 Implementation and Testing
	9 Conclusions
	References

	Lightweight Formal Verification in Real World,
A Case Study

	1 Introduction
	2 Related Work
	3 The Case Study
	3.1 webinos Platform

	3.2 Authentication System in webinos

	3.3 Approach
	3.4 Results

	4 Discussion
	4.1 Lesson 1: Choose the Right Tool
	4.2 Lesson 2: Assign the Verification Work to the Testing Group
	4.3 Lesson 3: Focus Only on Crucial Properties
	4.4 Lesson 4: Adopt OpenID over a Self-developed Module

	5 Conclusion and Future Work
	References

	Security Requirements Analysis Using Knowledge in CAPEC
	1 Introduction
	2 Related Work
	3 Method for Eliciting Security Requirements
	3.1 Elicitation Method

	3.2 Preparing Term Maps
	3.3 Example of Applying the Method

	4 Conclusion
	References

	Author Index

	‎C:\Users\user\Desktop\papers\xy Publications_2.pdf‎

