
 

L. Iliadis, M. Papazoglou, and K. Pohl (Eds.): CAiSE 2014 Workshops, LNBIP 178, pp. 322–334, 2014. 

© Springer International Publishing Switzerland 2014 

Evolving Computational Intelligence System  

for Malware Detection 

Konstantinos Demertzis and Lazaros Iliadis 

Democritus University of Thrace, Department of Forestry & Management of the  

Environment & Natural Resources, 193 Pandazidou st., 68200 N Orestiada, Greece 

kdemertz@fmenr.duth.gr, liliadis@fmenr.duth.gr 

Abstract. Recent malware developments have the ability to remain hidden 

during infection and operation. They prevent analysis and removal, using 

various techniques, namely: obscure filenames, modification of file attributes, 

or operation under the pretense of legitimate programs and services. Also, the 

malware might attempt to subvert modern detection software, by hiding running 

processes, network connections and strings with malicious URLs or registry 

keys. The malware can go a step further and obfuscate the entire file with a 

packer, which is special software that takes the original malware file and 

compresses it, thus making all the original code and data unreadable. This paper 

proposes a novel approach, which uses minimum computational power and 

resources, to indentify Packed Executable (PEX), so as to spot the existence of 

malware software. It is an Evolving Computational Intelligence System for 

Malware Detection (ECISMD) which performs classification by Evolving 

Spiking Neural Networks (eSNN), in order to properly label a packed 

executable. On the other hand, it uses an Evolving Classification Function 

(ECF) for the detection of malwares and applies Genetic Algorithms to achieve 

ECF Optimization.  

Keywords: Security, Packed Executable, Malware, Evolving Spiking Neural 
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1 Introduction 

Malware is a kind of software used to disrupt computer operation, gather sensitive 

information, or gain access to private computer systems. It can appear in the form of 

code, scripts, active content, or any other. To identify already known malware, 

existing commercial security applications search a computer’s binary files for 

predefined signatures. However, obfuscated viruses use software packers to protect 

their internal code and data structures from detection. Antivirus scanners act like file 

filters, inspecting suspicious file loading and storing activities. Malicious programs 

with obfuscated content, can bypass antivirus scanners. Eventually, they are unpacked 

and executed in the victim’s system [1].  
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Code packing is the dominant technique used to obfuscate malicious code, to 

hinder an analyst’s understanding of the malware’s intent and to evade detection by 

Antivirus systems. Malware developers, transform executable code into data, at a 

post-processing stage in the whole implementation cycle. This transformation uses 

static analysis and it may perform compression or encryption, hindering an analyst's 

understanding. At runtime, the data or hidden code is restored to its original 

executable form, through dynamic code generation using an associated restoration 

routine. Execution then resumes as normal to the original entry point, which marks 

the entry point of the original malware, before the code packing transformation is 

applied. Finally, execution becomes transparent, as both code packing and restoration 

have been performed. After the restoration of one packing, control may transfer 

another packed layer. The original entry point is derived from the last such layer [2].  

Code packing provides compression and software protection of the intellectual 

properties contained in a program. It is not necessarily advantageous to flag all 

occurrences of code packing as indicative of malicious activity. It is advisable to 

determine if the packed contents are malicious, rather than identifying only the fact 

that unknown contents are packed. Unpacking is the process of stripping the packer 

layers off packed executables to restore the original contents in order to inspect and 

analyze the original executable signatures. Universal unpackers, introduce a high 

computational overhead, low convergence speed and computational resource 

requirements. The processing time may vary from tens of seconds to several minutes 

per executable. This hinders virus detection significantly, since without a priori 

knowledge on the nature of the executables to be checked for malicious code all of 

them would need to be run through the unpacker. Scanning large collections of 

executables, may take hours or days. This research effort aims in the development and 

application of an innovative, fast and accurate Evolving Computational Intelligence 

System for Malware Detection (ECISMD) approach for the identification of packed 

executables and detection of malware by employing eSNN. A multilayer ECF model 

has been employed for malware detection, which is based on fuzzy clustering. Finally, 

an evolutionary Genetic Algorithm (GA) has been applied to optimize the ECF 

network and to perform feature extraction on the training and testing datasets. A main 

advantage of ECISMD is the fact that it reduces overhead and overall analysis time, 

by classifying packed or not packed executables.  

1.1 Literature Review 

Dynamic unpacking approaches monitor the execution of a binary in order to extract its 

actual code. These methods execute the samples inside an isolated environment that can 

be deployed as a virtual machine or an emulator [3]. The execution is traced and stopped 

when certain events occur. Several dynamic unpackers use heuristics to determine the 

exact point where the execution jumps from the unpacking routine to the original code. 

Once this point is reached, the memory content is bulk to obtain an unpacked version of 

the malicious code. Other approaches for generic dynamic unpacking have been 

proposed that are not highly based on heuristics such as PolyUnpack [4] Renovo [5], 

OmniUnpack [6] or Eureka [7]. However, these methods are very tedious and time 

consuming, and cannot counter conditional execution of unpacking routines, a technique 

used for anti-debugging and anti-monitoring defense [8]. Another common approach is 
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using the structural information of the executables to train supervised machine-learning 

classifiers to determine if the sample under analysis is packed or if it is suspicious of 

containing malicious code (e.g., PEMiner [9], PE-Probe [10] and Perdisci et al. [11]). 

These approaches that use this method for filtering, previous to dynamic unpacking, are 

computationally more expensive and time consuming and less effective to analyze large 

sets of mixed malicious and benign executables [12] [13] [14].  

Artificial Intelligence and data mining algorithms have been applied as malicious 

detection methods and for the discovery of new malware patterns [15]. In the research 

effort of Babar and Khalid [3], boosted decision trees working on n-grams are found 

to produce better results than Naive Bayes classifiers and Support Vector Machines 

(SVM). Ye et al., [16] use automatic extraction of association rules on Windows API 

execution sequences to distinguish between malware and clean program files. 

Chandrasekaran et al., [17] are using association rules, on honeytokens of known 

parameters. Chouchan et al., [18] used Hidden Markov Models to detect whether a 

given program file is (or is not) a variant of a previous program file. Stamp et al., [19] 

employ profile hidden Markov Models, which have been previously used for 

sequence analysis in bioinformatics. The capacity of neural networks (ANN) to detect 

polymorphic malware is explored in [20]. Yoo [21] employs Self-Organizing Maps to 

identify patterns of behavior for viruses in Windows executable files. These methods 

they have low accuracy as a consequence, packed benign executables would likely 

cause false alarm, whereas malware may remain undetected. 

2 Methodologies Comprising the Proposed Hybrid Approach 

2.1 Evolving Spiking Neural Networks (eSNN)  

eSNN are modular connectionist-based systems that evolve their structure and 

functionality in a continuous, self-organized, on-line, adaptive, interactive way from 

incoming information. These models use trains of spikes as internal information 

representation rather than continuous variables [22]. The eSNN developed and 

discussed herein is based in the “Thorpe” neural model [23]. This model intensifies 

the importance of the spikes taking place in an earlier moment, whereas the neural 

plasticity is used to monitor the learning algorithm by using one-pass learning. In 

order to classify real-valued data sets, each data sample, is mapped into a sequence of 

spikes using the Rank Order Population Encoding (ROPE) technique [24] [25]. The 

topology of the developed eSNN is strictly feed-forward, organized in several layers 

and weight modification occurs on the connections between the neurons of the 

existing layers.  

The ROPE method is alternative to the conventional rate coding scheme (CRCS). It 

uses the order of firing neuron’s inputs to encode information. This allows the mapping 

of vectors of real-valued elements into a sequence of spikes. Neurons are organized into 

neuronal maps which share the same synaptic weights. Whenever the synaptic weight of 

a neuron is modified, the same modification is applied to the entire population of 

neurons within the map. Inhibition is also present between each neuronal map. If a 

neuron spikes, it inhibits all the neurons in the other maps with neighboring positions.  
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This prevents all the neurons from learning the same pattern. When propagating new 

information, neuronal activity is initially reset to zero. Then, as the propagation goes on, 

each time one of their inputs fire, neurons are progressively desensitize. This is making 

neuronal responses dependent upon the relative order of firing of the neuron's afferents 

[24], [26], [27]. 
The aim of the one-pass learning method is to create a repository of trained output 

neurons during the presentation of training samples. After presenting a certain input 

sample to the network, the corresponding spike train is propagated through the eSNN 

which may result in the firing of certain output neurons. It is possible that no output 

neuron is activated and the network remains silent and the classification result is 

undetermined. If one or more output neurons have emitted a spike, the neuron with 

the shortest response time among all activated output neurons is determined. The label 

of this neuron is the classification result for the presented input [26], [27], [28]. 

2.2 Evolving Connectionist Systems (ECOS) 

ECOS [29] are multi-modular, connectionist architectures that facilitate modeling of 

evolving processes and knowledge discovery [26]. An ECOS is an ANN operating 

continuously in time and adapting its structure and functionality through a continuous 

interaction with the environment and other systems according to: (i) a set of 

parameters that are subject to change; (ii) an incoming continuous flow of information 

with unknown distribution; (iii) a goal (rational) criterion (subject to modification) 

applied to optimize the performance of the system. The evolving connectionist 

systems evolve in an open space, using constructive processes, not necessarily of 

fixed dimensions. They learn in on-line incremental fast mode, possibly through one 

pass of data propagation. Life-long learning is a main attribute of this procedure. They 

operate as both individual systems, and as part of an evolutionary population of such 

systems. [26] [30]. ECOS are connectionist structures that evolve their nodes and 

connections through supervised incremental learning from input-output data.  

Their architecture comprises of five layers: input nodes, representing input variables; 

input fuzzy membership nodes, representing the membership degrees of the input values 

to each of the defined membership functions; rule nodes, representing cluster centers of 

samples in the problem space and their associated output function; output fuzzy 

membership nodes, representing the membership degrees to which the output values 

belong to defined membership functions; and output nodes, representing output 

variables [31].  

ECOS learn local models from data through clustering of the data and associating a 

local output function for each cluster. Rule nodes evolve from the input data stream to 

cluster the data, and the first layer W1 connection weights of these nodes represent the 

coordinates of the nodes in the input space. The second layer W2 represents the local 

models (functions) allocated to each of the clusters. Clusters of data are created based 

on similarity between data samples either in the input space, or in both the input space 

and the output space. Samples that have a distance to an existing cluster center (rule 

node) N of less than a threshold Rmax are allocated to the same cluster Nc. Samples 

that do not fit into existing clusters, form new clusters as they arrive in time. Cluster 

centers are continuously adjusted according to new data samples and new clusters are 

created incrementally. The similarity between a sample S = (x, y) and an existing rule 
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node N = (W1, W2) can be measured in different ways, the most popular of them 

being the normalized Euclidean distance given by equation 1, where n is the number 

of the input variables. d(S,N) = 
1

n
ቂ∑ |xi-W1N|n

i=1

2ቃ1

2
 (1).  

ECOS learn from data and automatically create a local output function for each 

cluster, the function being represented in the W2 connection weights, creating local 

models. Each model is represented as a local rule with an antecedent –the cluster area, 

and a consequent– the output function applied to data in this cluster.  

2.3 Evolving Classification Function and Genetic Algorithms 

ECF, a special case of ECOS used for pattern classification, generates rule nodes in 

an N dimensional input space and associate them with classes. Each rule node is 

defined with its centre, radius (influence field) and the class it belongs to. A learning 

mechanism is designed in such a way that the nodes can be generated. The ECF 

model used here is a connectionist system for classification tasks that consists of four 

layers of neurons (nodes). The first layer represents the input variables; the second 

layer – the fuzzy membership functions; the third layer represents clusters centers 

(prototypes) of data in the input space; and the four layer represents classes [30], [26].  

A GA is an evolutionary algorithm in which the principles of the Darwin's theory are 

applied to a population of solutions in order to "breed" better solutions. Solutions, in 

this case the parameters of the ECF network, are encoded in a binary string and each 

solution is given a score depending on how well it performs. Good solutions are 

selected more frequently for breeding and are subjected to crossover and mutation. 

After several generations, the population of solutions should converge on a "good" 

solution. The ECF model and the GA algorithm for Offline ECF Optimization are 

parts from NeuCom software (http://www.kedri.aut.ac.nz/) which is a Neuro-

Computing Decision Support Environment, based on the theory of ECOS [29].  

3 Description of the Proposed Hybrid ECISMD Algorithm 

The proposed herein, hybrid ECISMD methodology uses an eSNN classification 

approach to classify packed or unpacked executables with minimum computational 

power combined with the ECF method in order to detect packed malware. Finally it 

applies Genetic Algorithm for ECF Optimization, in order to decrease the level of 

false positive and false negative rates. The general algorithm is described below: 

Step 1: The train and test datasets are determined and formed, related to n features. The 

required classes (packed and unpacked executables) that use the variable Population 

Encoding are imported. This variable controls the conversion of real-valued data samples 

into the corresponding time spikes. The encoding is performed with 20 Gaussian receptive 

fields per variable (Gaussian width parameter beta=1.5). The data are normalized to the 

interval [-1,1] and so the coverage of the Gaussians is determined by using i_min and 

i_max. For the normalization processing the following function 2 is used:  x1norm
=2* ቀ x1- xmin

xmax- xmin
ቁ -1,    x∈R                                      (2) 
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Algorithm 1: Training an evolving Spiking Neural Network (eSNN) [27] 

Require: ݉௟, ݏ௟, ܿ௟ for a class label l ∈ L 

1:  initialize neuron repository ܴ௟ = {} 

2:  for all samples ܺ(௜) belonging to class l do 

3:    wj

(i)←(ml)
order(j)

  j | j pre-synaptic neuron of i ׊ ,

4:    umax
(i)

 ← ∑ wj

(i)
j (ml)

order(j)
  

5:    θ(i)
 ← clumax

(i)   
6:  if min(d(w(i), w(k))) < sl, w

(k) ∈R
l
 then 

7:     w(k) ← merge w(i) and w(k) according to Equation 7 

8:    θ(k)
 ← merge θ(i)

 and θ(k)
 according to Equation 8 

9:  else 

10:   Rl ← Rl ׫{w(i)} 

11: end if 

12: end for 

 

For each training sample i with class label l ∈ L a new output neuron is created and 

fully connected to the previous layer of neurons resulting in a real-valued weight 

vector ݓ(௜) ݐ݅ݓℎ ݓ௝(௜)  ∈ ܴ denoting the connection between the pre-synaptic neuron j 

and the created neuron i. In the next step, the input spikes are propagated through the 

network and the value of weight ݓ௝(௜) is computed according to the order of spike 

transmission through a synapse j: wj

(i)
=(ml)

order(j)
 .j | j pre-synaptic neuron of i ׊ ,

Parameter ml is the modulation factor of the Thorpe neural model. Differently 

labeled output neurons may have different modulation factors ml. Function order(j) 

represents the rank of the spike emitted by neuron j. The firing threshold ߠ(௜) of the 

created neuron I is defined as the fraction ܿ௟ ∈ R, 0 < ܿ௟ < 1, of the maximal possible 

potential 

umax
(i)  :   θ(i)

 ← clumax
(i)

 (7)   umax
(i)

 ← ∑ wj

(i)
j (ml)

order(j)
                 (8) 

The fraction cl is a parameter of the model and for each class label l ∈ L a different 

fraction can be specified. The weight vector of the trained neuron is compared to the 

weights corresponding to neurons already stored in the repository. Two neurons are 

considered too “similar” if the minimal Euclidean distance between their weight 

vectors is smaller than a specified similarity threshold sl (the eSNN object uses 

optimal similarity threshold s=0.6). All parameters of eSNN (modulation factor ml, 

similarity threshold sl, PSP fraction cl, l ∈ L) included in this search space, were 

optimized according to the Versatile Quantum-inspired Evolutionary Algorithm 

(vQEA) [28]. Both the firing thresholds and the weight vectors were merged 

according to equations 9 and 10:   wj

(k)
 ← 

  w
j
(i)

+Nw
j
(k)

1+N
 j | j pre-synaptic neuron of i                (9) ׊ ,

   θ(k)
 ← 

  θ(i)
+Nθ(k)

1+N
                                            (10) 
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Integer N denotes the number of samples previously used to update neuron k. The 

merging is implemented as the (running) average of the connection weights, and the 

(running) average of the two firing thresholds [27]. After merging, the trained neuron 

i is discarded and the next sample processed. If no other neuron in the repository is 

similar to the trained neuron i, the neuron i is added to the repository as a new output. 

Step 3: If the result is unpacked then the process is terminated and the executable file 

goes to the antivirus scanner. If the result of the classification is packed, the new 

classification process is initiated employing the ECF method. This time the malware 

data vectors are used. These vectors comprise of 9 features and 2 classes malware and 

benign. The learning algorithm of the ECF according to the ECOS is as follows: 

 

 

Fig. 2. The Evolving Spiking Neural Network (eSNN) architecture 

a. If all input vectors are fed, finish the iteration; otherwise, input a vector from the data 

set and calculate the distances between the vector and all rule nodes already created 

using Euclidean distance. b. If all distances are greater than a max-radius parameter, a 

new rule node is created. The position of the new rule node is the same as the current 

vector in the input data space and the radius of its receptive field is set to the min-radius 

parameter; the algorithm goes to step 1; otherwise it goes to the next step. c. If there is a 

rule node with a distance to the current input vector less than or equal to its radius and 

its class is the same as the class of the new vector, nothing will be changed; go to step 1; 

otherwise. d. If there is a rule node with a distance to the input vector less than or equal 

to its radius and its class is different from those of the input vector, its influence field 

should be reduced. The radius of the new field is set to the larger value from the two 

numbers: distance minus the min-radius; min radius. New node is created as in to 

represent the new data vector. e. If there is a rule node with a distance to the input vector 

less than or equal to the max-radius, and its class is the same as of the input vector’s, 

enlarge the influence field by taking the distance as a new radius if only such enlarged 

field does not cover any other rule nodes which belong to a different class; otherwise, 

create a new rule node in the same way as in step 2, and go to step 1 [33]. 

Step 4: To increase the level of integrity the Offline ECF Optimization with GA is used. 

ECF system is an ANN that operates continuously in time and adapts its structure and 

functionality through a continuous interaction with the environment and with other 

systems. This is done according to a set of parameters P that are subject to change 

during the system operation; an incoming continuous flow of information with unknown 

distribution; a goal (rationale) criteria that is applied to optimize the performance. The 

set of parameters P of an ECOS can be regarded as a chromosome of "genes" of the 



330 K. Demertzis and L. 

 

evolving system and evolut

The GA algorithm for offli

and standard operations are 

roulette wheel selection crit

are complex structures and

another during the life of an

many generations. Micro-arr

inputs being the expression 

being the classes. After the E

represent packed or unpacke

 

Fig. 3. G

 
Step 5: If the result of the c

scanner and the process is

malicious, it goes to the un

placed in quarantine and the

4 Data and Result

To prove generalization a

dataset. The full_dataset co

dataset (http://malfease.oar

from a clean installation

applications and 669 pack

parts: 1) a training dataset c

executable and 2,262 pat

unpacked software 2) a test

executables that even the m

These datasets are available

The virus dataset contain

in two parts: 1) a training d

453 patterns related to the b

related to the malware an

Iliadis 

tionary computation can be applied for their optimizati

ine ECF Optimization runs over generations of populati

applied such as: binary encoding of the genes (paramete

terion; multi-point crossover operation for crossover. Ge

 they cause dynamic transformation of one substance i

n individual, as well as the life of the human population o

ray gene expression data can be used to evolve the ECF w

level of a certain number of selected genes and the outp

ECF is trained on gene expression rules can be extracted 

ed [34]. 

Graphical display of the ECISMD Algorithm 

classification is benign, the executable file goes to antivi

s terminated. Otherwise, the executable file is marked

npaker, to the antivirus scanner for verification and fin

e process is terminated. 

ts 

ability of our classification approach we need a relia

mprised of 2,598 packed viruses from the Malfease Proj

rci.net), 2,231 non-packed benign executables collec

n of Windows XP Home plus, several common u

ked benign executables. It was divided randomly in t

containing 2,231 patterns related to the non-packed ben

terns related to the packed executables detected us

ting dataset containing 1,005 patterns related to the pac

most well know unpacked software was not able to det

e at http://roberto.perdisci.googlepages.com/code [11]. 

ning 2,598 malware and 669 benign executables is divi

dataset containing 1,834 patterns related to the malware 

benign executables 2) a test dataset containing 762 patte

nd 218 benign executables. In order to translate e

ion. 

ions 

ers); 

enes 

into 

over 

with 

puts 

that 

 

irus 

d as 

ally 

able 

oject 

cted 

user 

two 

nign 

sing 

cked 

tect. 

ided 

and 

erns 

each 



 Evolving Computational Intelligence System for Malware Detection 331 

 

executable into a pattern vector Perdisci et al [11] they use binary static analysis, to 

extract information such as, the name of the code and data sections, the number of 

writable-executable sections, the code and data entropy. 

In both classifications described below, Training Accuracy reports the average 

accuracy computed over 10-fold cross-validation. Testing Accuracy refers to the 

percentage of packed executables that were correctly detected by each classifier in the 

Packed_Test_Dataset and in the Virus_Test_Dataset respectively. 

In the first classification performed by the ECISMD, the eSNN approach was 

employed in order to classify packed or not packed executables. The results for testing 

are: Classification Accuracy: 99.2% No. of evolved neurons: Class 0/867 neurons - 

Class 1/734 neurons, In order to perform comparison with different learning algorithms 

the Weka software version 3.7 was used (http://www.cs.waikato.ac.nz/ml/weka). Table 

1 reports the results obtained with RBF ANN, Naïve Bayes, Multi Layer Perceptron 

(MLP), Support Vector Machine (LibSVM), k-Nearest-Neighbors (k-NN) and eSNN. 

Table 1. Comparison of various approaches for the Packed dataset 

Packed Dataset 

Classifier Train Accuracy Test Accuracy 

RBFNetwork 98.3085% 98.0859% 

NaiveBayes 98.3975% 97.1144% 

MLP 99.5326% 96.2189% 

LibSVM 99.4436% 89.8507% 

k-NN 99.4436% 96.6169% 

eSNN 99.8% 99.2% 

 

In the 2nd classification performed by the ECISMD the ECF approach was employed 

in order to classify malware or benign executables. The ECF model has the following 

parameter values: MaxField=1, MinField=0.01, number of fuzzy membership functions 

MF=1; number of rule nodes used to calculate the output value of the ECF when a new 

input vector is presented MofN=9 (number of neighbors to consider when evaluating 

nearest node); number of iterations for presenting each input vector Epochs=6. The 

results for the test_dataset are: Classification Accuracy: 95.561%, Correct Samples: 

933/980, Accuracy/Class: 82%/ Class 0 - 98% /Class 1. For the ECF parameter 

optimization during training, the following parameter value ranges were used: Min 

Field: 0.1, Max Field: 0.8, membership function: 9, Value for the m-of-n parameter: 3, 

Generation: 6 and Population: 4. For the optimized value of the ECF, 30% of the data 

was selected for training and 70% for testing. The classification accuracy in test_dataset 

after the optimization was 97.992%. 

Table 2, reports the results obtained with 6 classifiers and optimized ECF network 

(RBF Network, Naïve Bayes, MLP, Lib SVM, k-NN, ECF and optimized ECF). The 

best results on the testing dataset were obtained by using the eSNN classifier, to 

classify packed or not packed executables and the optimized ECF (in the 2nd 

classification) which classifies malware or benign executables. 
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Table 2. Comparison of various approaches for the virus dataset 

Virus Dataset 

Classifier Train Accuracy Test Accuracy 
RBFNetwork 94.4031% 93.0612% 

NaiveBayes 94.0533% 92.3469% 

MLP 97.7551% 97.289% 

LibSVM 94.6218% 94.2857% 

k-NN 98.1198% 96.8367% 

ECF 99.05% 95.561% 

Optimized ECF 99.87% 97.992% 

 

The average time for the classification of a pattern vector on a 3.06GHz Intel P4 

processor was about t = 0.00016 seconds per executable. These results are much 

smaller than the ones of Perdisci et al [11] in which on a 2GHz Dual Core AMD 

Opteron processor was about t=0.001 seconds per executable.  

5 Discussion - Conclusions 

A new Evolving Computational Intelligence System for Malware Detection 

(ECISMD) was introduced. It performs classification using eSNN to properly label a 

packed executable and ECF with GA to detect malware and to optimize itself towards 

better generalization. An effort was made to use minimum computational power and 

resources. The classification performance of the eSNN method and the accuracy of 

the ECF model were experimentally explored based on different datasets. The eSNN 

was applied to an unknown dataset and reported promising results. Moreover the ECF 

model and the genetically optimized ECF network, detects the patterns and classifies 

them with high accuracy and adds a higher degree of integrity to the rest of the 

security infrastructure of ECISMD. As a future direction, aiming to improve the 

efficiency of biologically realistic ANN for pattern recognition, it would be important 

to evaluate the eSNN model with ROC analysis and to perform feature minimization 

in order to achieve minimum processing time. Other coding schemes could be 

explored and compared on the same security task. Finally, the ECISMD could be 

improved towards a better online learning with self-modified parameter values. 
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