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ABSTRACT

During the last few decades, climate change has increased air pollutant concentrations with a direct 
and serious effect on population health in urban areas. This research introduces a hybrid computational 
intelligence approach, employing unsupervised machine learning (UML), in an effort to model the 
impact of extreme air pollutants on cardiovascular and respiratory diseases of citizens. The system is 
entitled Air Pollution Climate Change Cardiovascular and Respiratory (APCCCR) and it combines the 
fuzzy chi square test (FUCS) with the UML self organizing maps algorithm. A major innovation of the 
system is the determination of the direct impact of air pollution (or of the indirect impact of climate 
change) to the health of the people, in a comprehensive manner with the use of fuzzy linguistics. The 
system has been applied and tested thoroughly with spatiotemporal data for the Thessaloniki urban 
area for the period 2004-2013.
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INTRoDUCTIoN

The increase of primary air pollutants (CO, NO, NO
2
, SO

2
) or secondary ones (O

3
), has caused serious 

degradation in the quality of life of urban areas’ residents. Moreover, changes in the heating methods 
of Greek houses due to the financial crisis, has influenced the concentration of Particulate Matter 
(PM) in the cities. Extended exposition of the urban population to high concentrations of pollution, 
increase the percentages of morbidity and mortality due to Cardiovascular (CARD) and Respiratory 
(RES) problems. Especially, people who live in areas with high levels of air pollution are phasing not 
only risks of cardiological and respiratory problems, but they are also risking narrowing the arteries 
and specifically the carotid one. This fact increases the possibility of stroke due to low levels of brain 
oxygen. Patients with severe disease history and young children or elder population (sensitive groups) 
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are more vulnerable to atmospheric pollution (APO) and they should avoid transportation in the city 
during the days with high concentration of pollutants.

The combination of meteorological conditions and APO levels plays a major role for the 
determination of Morbidity and Mortality Risk index (MOMORI). The fluctuation of the MOMORI 
in an urban center, is mainly influenced by the meteorological conditions that favor the development 
of smog (CO, SO

2
, PM

x
) during the winter and the development of Photochemical Cloud (PHOC) 

in the summer (NO
x
, O

3
). The topography of an area, the hours of the population’s employment in 

external activities and the percent of the people who live near industrial zones are crucial for the 
level of risk estimation.

The analysis and continuous monitoring of the APO levels as well as timely forecasting of the 
conditions that can cause high concentrations, result to the impose of preemptive actions and thus 
to an effective management of the problem and to the estimation of the impact on related diseases.

This research paper presents the Air Pollution and Climate Change Cardiovascular and 

Respiratory Modeling (APCCCR) hybrid intelligent system. APCCCR considers the effect of 
atmospheric pollution parameters to Cardiovascular-Respiratory hospitalization incidents and it 
determines the interdependencies between them in the wider Thessaloniki urban area.

The system is developed in two discrete phases. The first one uses the UML Self Organizing Maps 
algorithm (SOM) to cluster the values of the involved features and to determine the meteorological 
values that directly affect the pollutants’ concentrations which have a serious effect on the considered 
diseases. The second phase uses the Fuzzy Chi-Square Test (FUCS) to determine the interdependency 
between the parameters in a rational and comprehensive mode by using proper Linguistics. This is 
achieved by fuzzifying the P-Value of the Chi-Square test. This process produces Linguistics that 
express Low, Medium or High dependency by employing fuzzy Membership functions (FMF).

The FUCS application is performed for each cluster in order to determine which atmospheric 
parameters determine the level of the hospital treatment incidents in the prefecture of Thessaloniki. 
The testing of the APCCCR was based on a comparative performance analysis between four UML 
algorithms namely: Self-Organizing Maps, Expectation Maximization, Sequential Information 
Bottleneck, and Simple K-Means.

Wide use of this approach can enforce the mechanisms of civil protection authority by acting 
as a means of warning the public hospitals regarding the days of bad meteorological conditions that 
favor high pollutants’ concentrations.

Literature Review-Related work
To the best of our knowledge, the Sequential Information Bottleneck algorithm has not been used in 
modeling and assessment of environmental risks. The Expectation Maximization algorithm, Self-
Organizing Maps and Simple k-Means have been used for the classification of meteorological and 
air quality data. The following lines present some cases of classification met in the literature.

(Hernawati, Insani, Bambang, Nur Hadi, & Sahid, 2017) used an unsupervised SOM approach. 
They considered data related directly or indirectly to pollution (e.g. demographic and social data, 
air pollution water and soil pollution levels) as well as the geographical situation of each province.

(Štrbová, Štrba, Raclavská, & Bilek, 2018) used SOM to find association between PM 
concentrations, elevation, selected meteorological variables, and GPS location coordinates.

(Cortina-Januchs, Quintanilla-Dominguez, Andina, & Vega-Corona, 2012) used a Multilayer 
Perceptron Neural Network (MPNN) to make the prediction of pollutant concentrations for the next 
hour. A database used to train the ANN based on historical time series of meteorological variables 
and air pollutant concentrations of SO

2
. Before the prediction, Fuzzy C-Means (FCM) and k-Means 

Clustering (k-MC) algorithms were employed in order to find relationship among pollutant and 
meteorological variables.

The EM, SOM and SKM Algorithms have been used in the literature to cluster and correlate the 
cardiovascular and respiratory (CARE) health problems with air pollution.
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(Almeida et al., 2013) performed a robust data mining approach for cardiac risk patterns 
identification. Eight classifiers were tested. As for clustering procedures, k-MC and EM were 
the chosen algorithms. The clustering techniques were used for the analysis of a dataset that 
represent different risk groups in terms of cardiovascular function. (Pearce et al., 2015) applied 
SOM on daily air quality data for 10 pollutants, to define a collection of multipollutant day 
types. Next, they conducted an epidemiologic analysis of ambient air quality and daily counts 
of emergency department (ED) visits for asthma or wheeze among children aged 5 to 17 as the 
health endpoint. They estimated rate ratios for the association of multipollutant day types and 
pediatric asthma ED visits using a Poisson generalized linear model controlling for long-term, 
seasonal, and weekday trends and weather. (Basara &Yuan, 2008) used the intrinsic distributions 
of 92 environmental variables to classify 511 communities into five clusters. SOM determined 
clusters were reprojected to geographic space and compared with the distributions of several 
health outcomes. (Requia, Koutrakis, Roig, Adams, & Santos, 2016) assessed the association 
between vehicle emissions and cardiorespiratory disease risk in Brazil and its modification by 
spatial clustering of socio-economic conditions.

According to the international literature review, multiple statistical models have been used that 
reveal the existence of correlations between the meteorological conditions, the level of atmospheric 
pollution and the consequences in public health (Kalantzi et al., 2011; Xie et al., 2015). However, 
the use of hybrid approaches and supervised or unsupervised Machine Learning is capable to model 
multiparametric environmental problems and it also offers optimization mechanisms in order to 
produce reliable results (Anezakis, Demertzis, Iliadis, & Spartalis, 2016a, 2017; Iliadis, 2007; Iliadis 
& Papaleonidas, 2016).

Machine Learning algorithms and hybrid approaches have been used in the literature to model 
air pollution in Athens (Anezakis, Dermetzis, Iliadis, & Spartalis, 2016b; Bougoudis, Dermetzis, & 
Iliadis, 2016a; Bougoudis, Dermetzis, & Iliadis, 2016b; Bougoudis, Demertzis, Iliadis, Anezakis, 
& Papaleonidas, 2017; Bougoudis, Iliadis, & Papaleonidas, 2014; Iliadis, Bougoudis, & Spartalis, 
2014). Also, important research efforts have been carried out during the last ten years related to 
the modeling and air pollution forecasting in Thessalonki (Karatzas & Kaltsatos, 2007; Kyriakidis, 
Karatzas, Papadourakis, Ware, & Kukkonen, 2012; Voukantsis et al., 2011)

Regarding the FUCS test it has been published in the literature recently (Grzegorzewski & 
Szymanowski, 2015; Lin, Wu, & Watada, 2012) but it has not been used for this purpose.

INNoVATIoN oF THe PRoPoSeD MeTHoDoLoGy

From the literature review, it is clearly shown that there is lack of an integrated approach 
to the environmental problem, rather than fragmentary. Specifically, there is a serious gap 
in the development of periodic classifications related to health risks due to the combination 
of meteorological and air pollution data. The innovation of this research is mainly based on 
the development of an intelligent information system using unsupervised Machine learning 
algorithms, to cluster atmospheric and air pollution data, related to public health. More 
specifically, the proposed system provides important information on the dependency of extreme 
atmospheric and pollution conditions with the morbidity and mortality of the residents of the 
Thessaloniki city wider area. The clustering of available data accurately attributes the values   
of the atmospheric parameters that maximize or minimize the Cardiovascular and Respiratory 
diseases incidents in public hospitals.

The main objective of this research is to inform hospitals in time about potential serious negative 
effects of the combination “air pollution-meteorological data” in public health. This could lead to 
better management of increased cardiovascular and respiratory incidents and more generally, hospitals 
or civil protection authority could reach sound decisions regarding public safety.
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DATA

The clustering of atmospheric conditions was based on 3270 daily meteorological and daily air 
pollution data from the wider urban area (2004-2013). In particular, we have obtained data from 12 
air pollution stations of the city whereas the meteorological data were collected from the Thessaloniki 
Airport station.

Totally the following eight meteorological parameters have been measured: Max Temperature 
(MaxT), Average Temperature (AvT), Min Temperature (MinT), Average Relative Humidity (AvRH), 
Rainfall (R), Atmospheric Pressure (AP), Wind Speed (WS), Sunshine Hours (SUN).

Also, data have been obtained for seven air pollutants, namely: Carbon Monoxide (CO), Nitrogen 
Monoxide (NO), Nitrogen Dioxide (NO

2
), Ozone (O

3
), Sulfur Dioxide (SO

2
), Particulate Matter 

(PM
10

) and (PM
2.5

).
The extreme meteorological and pollution values are very important as they significantly contribute 

to the maximization of MOMO incidents, so they were not excluded from our dataset. It should be 
clarified that the circulatory system diseases (I00-I99) and the respiratory ones (J00-J99) were 
categorized on the basis of the 10th review of the International Statistical Classification of Diseases 
and Related Health Problems (ICD-10) (http://apps.who.int/classifications/icd10/browse/2016/en#).

Cardiovascular Hospitalization (CH) and Respiratory Hospitalization (RH) data were 
gathered from all public hospitals of Thessaloniki city. At prefecture level, the collection of 
Cardiovascular Deaths (CD) and Respiratory Deaths (RD) data was conducted by the Hellenic 
Statistical Authority (ELSTAT).

THeoReTICAL BACKGRoUND

Self-organizing Maps
Self-Organizing Maps is an algorithm of competitive learning developed by Kohonen (Haykin, 2009). 
A SOM includes the input layer and the competing neurons layer, which are organized in a 2-D lattice 
like in Figure 1. Each one of them is characterized by a weight vector W w w

i il id

T
= ( ,..., ) . When an 

input vector X x x x R
i d

T
= ∈( ,..., )

1
 is introduced, the lattice neurons compete each other and the 

winning neuron (WINE) m is obtained. Its vector W
m

 appears to have the highest similarity with 

vector X
i
. Thus, SOM depict an input X

i
 of dimension d, at the coordinates of the grid 

R z z
m m m

T
= ( , )

1 2
 (Haykin, 2009; Kohonen, 1989).

In order to group the data, a self-organization map is formed, initializing the weights 
W w w
i il id

T
= ( ,..., ) with small values randomly produced by a random number generator function. 

The next algorithmic steps follow:

• Competition: For each training sample X
n

 the lattice neurons estimate the respective value of 

the similarity function using the Euclidean distance between the input vector X x x x R
i d

T
= ∈( ,..., )

1
 

and the weight vector W w w
i il id

T
= ( ,..., )  of the competing neurons. The neuron with the highest 

similarity is the winner.
• Cooperation: The WINE i  delimits its topological neighborhood h

j i,
 (around the surrounding 

neurons) which is a function of d
j i,

which is the distance between the winning neuron i and 

neuron j . The neighborhood is symmetric to the WINE.

The following Gaussian function 1 is used to perform the clustering:
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where σ is the effective width of the topological neighborhood which determines the extent to which 
the neurons in the neighborhood of the winner are involved in the process. This parameter is reduced 
exponentially in every epoch n, based on the following function 2.

σ σ
τ

( ) exp , , , ,...n
n
n= −












=

0

1

0 1 2  (2)

The parameter σ
0

 is the initial value of the active width and the value of τ
1
 is given by the 

following equation 3:

τ

σ
1

0

0

=













n

ln( )
 (3)

Considering a 2-D lattice, we have assigned the value of its radius to the initial value of the active 
width σ

0
 whereas

τ

σ
1

0

1000
=











log( )
 (4)

Figure 1. Flowchart of the proposed model Self-Organizing Map with d inputs and 2-dimensions lattice m1 x m2
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• Synaptic Adaption: At this last stage of the training process, we have been updating the weights 
of neurons on the competitive level. The change metric is given by equation 5:

∆wj h x w
j i x j

= −η
, ( )
( )  (5)

The index i  is used to denote the winner and j  is a neuron in its neighborhood. Given the weight 
vector W n

j
( )  for a certain point in time n , we estimated the new vector for the time stamp n +1  

from the following function 6:

w n w n n n h n x n w n
j j j i x j
( ) ( ) ( ) ( )( ( ) ( ))

, ( )
+ = + −1  (6)

From the above relationship it follows that the learning rate n starts from a value around 0.1 and 
decreases gradually to the value of 0.01. These values were achieved according to the function 7 below:

n n
n
n( ) exp , , ,...,= −












=η

τ
0

2

0 1 2 with η
0
0 1= . and τ

2
1000=  (7)

It should be stated that τ
2

is given by equation 8 accordingly:

τ

η
2

0

0
100

=
n

ln( * )
 (8)

where n
0
 is the number of iterations of the layout phase η

0
 is the initial learning rate and σ

0
 is given 

by the following equation 9.

σ
0

2 2
= +w h  (9)

It should be clarified that w and h are the length and the height of the 2-D lattice respectively.

Chi-Square Test and Fuzzy Chi-Square Test
The Chi-Squared hypothesis-testing is a non-parametric statistical test in which the sampling 
distribution of the test statistic is a chi-square distribution when the null hypothesis is true. The null 
hypothesis H0

 usually refers to a general statement or default position that there is no relationship 
between two measured phenomena, or no difference among groups. The H

0
 is assumed to be true 

until evidence suggest otherwise (Corder & Foreman, 2014). The statistical control index used for 
this assessment is the test statistic Χ2.

X

f f

f

e

e

2 0

=

−( )
∑  (10)

where fe is the expected frequency and fo the observed one.
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The degrees of freedom are estimated as follows (based on the rXc table of labeled categories). 
The degrees of freedom are calculated based in equation 11. The value of the degrees of freedom for 
the selected Confidence Interval (C_INT) is calculated from the statistical Chi-Square Test.

df r c= −( )× −( )1 1  (11)

For the H
0
 the critical values for the test statistic Χ2 are estimated by the Χ2 distribution after 

considering the degrees of freedom. If the result of the test statistic is less than the value of the Chi-
Square distribution, then we accept H

0
 otherwise we reject it.

The produced p-values include the potential error magnitude in the range [0, 1]. Every error 
value is multiplied by 10-6. The p-values are fuzzified by the use of FCST, according to the specified 
C_INT and to the significance level. The p-value a=0.05 (in the Confidence interval 0.95 with selected 
significance level a=0.05) is considered as critical for the dependence or independence of the variables. 
Variable dependence is determined with a p value a− <  and the independence with p value a− > .

The construction of the FIS-Mamdani membership functions for p values a− <  in the interval 
[ , . )0 0 05  represent the dependence Linguistics of the two variables. Strong dependence with 
membership values (MV) close to 1 is assigned to p-values more distant from 0.05 approaching 0. 
On the other hand, p-values close to 0.05 (but never equal to it) exhibit Lower dependence and their 
MV will be close to 0. Totally 50,000 values were fuzzified all included in the interval [ , . * )0 0 05 10 6− . 

Every p-value was multiplied by 10 6− . In Table 1 we present the Dependency MV of chosen p-values 
and their classification in dependency Linguistics with the corresponding MV. The characteristic 
Lower and Higher Boundary p-values (LBV

i
 and HBV

i
) of the Fuzzy High Dependency Linguistic 

are LBV
1
 =0 and HBV

1
 =0.01250 where for the Medium and Low Dependency Linguistics they are 

LBV
2
 =0.1245 and HBV

2
 =0.0375 LBV

3
 =0.0365 HBV

3
 =0.0500 respectively, leaving space for 

overlapping as it is always the case in fuzzy logic approaches.
The p values a− >  are fuzzified in the interval [ . , ]0 05 1  by constructing membership functions 

to calculate the MV of the independent variables and their inclusion in classes of independence 
Linguistics. P-values close to 1, (the largest possible error) indicate that the variables will be 
independent with a MV equal to 1 (strongly independent) whereas for p-values close to 0.05 MV will 
be close to zero and the independence of the variables will decrease (Low independence).

Table 1. Sample of MV of the Dependency Linguistics for p-values<a

P-Value Linguistics

High Dependence 

Degree of 

Membership

Medium 

Dependence Degree 

of Membership

Low Dependence 

Degree of 

Membership

0 High 1 0 0

0.000010 High 0.999450 0 0

0.012499 High 0.375050 0.374950 0

0.012501 Medium 0.3749500 0.375050 0

0.030000 Medium 0 0.750000 0

0.035000 Medium 0 0.500000 0.2500125

0.037499 Medium 0 0.375050 0.3749680

0.037500 Low 0 0.375000 0.3750187

0.049999 Low 0 0 1
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We have fuzzified 950,000 p values−  (the values that are independent in the interval [ . , ]0 05 1 . 
The characteristic LBV

i
 and HBV

i
 of the Fuzzy High Independence Linguistic are LBV

1
 =0.05 and 

HBV
1
 =0.287551 where for the Medium and Low Independence Linguistics they are LBV

2
 =0.28755 

and HBV
2
 = 0.76252 LBV

3
 =0.762517 HBV

3
 =1 respectively, leaving space for overlapping as it is 

always the case in fuzzy logic approaches (see Table 2).
The FUCS is a hybrid methodology where the degree of dependency between two parameters 

is defined with accuracy by employing Soft Computing. The proposed model has been created by 
the authors aiming to fuzzify the P-values and to provide the Linguistic expression of the level of 
dependency (Anezakis, Demertzis, Iliadis et al., 2017; Anezakis, Iliadis, Demertzis et al., 2017; 
Dimou, Anezakis, Demertzis et al., 2017).

DeSCRIPTIoN oF THe PRoPoSeD MeTHoDoLoGy

The basic modeling methodology includes clustering of the considered features using the SOM 
algorithm. The choice of SOM was done after a comparison with four other unsupervised ML 
approaches. The SOM produced 4 clusters, EM 5 clusters, whereas both SIB and SKM gave 4. The 
SOM was chosen as the more appropriate for this case because its clusters were more homogeneous 
and more accurate.

In this research SOM was used to cluster the values of the smog and the photochemical cloud. 
Moreover, this approach has isolated in an outlier cluster the values of the atmospheric features 
that maximize the morbidity and mortality levels. Also, for each cluster obtained by the SOM, the 
FUCS test was applied to determine the degree of dependency between the fuzzy linguistics of the 
atmospheric parameters and the corresponding linguistics of the Cardiovascular and Respiratory 
MOMO indices. The whole algorithm includes 4 distinct steps described below.

(Anezakis, Iliadis, Demertzis, & Mallinis, 2017) have recently shown that the combined effect of 
low Temperatures with high Humidity values and low hours of Sunshine, compose the Meteorological 
Smog Index (MSMI). This increases the concentration of all air pollution indices except of O

3
. 

Similarly, during the summer months, the PHOC risk is influenced by the effect of high temperatures 
together with the low humidity values and the high hours of sunshine. This leads to the maximization of 
O

3
 concentrations. It is a fact that during Spring and Autumn the meteorological conditions contribute 

significantly either to the development of Smog (SM) or to the production of PHOC.

Table 2. Sample of Membership Values of Independence Linguistics in the interval [0.05-1]

P-Value Linguistics

Low Independence 

Degree of 

Membership

Medium 

Independence 

Degree of 

Membership

High Independence 

Degree of 

Membership

0.050001 Low 1 0 0

0.050010 Low 0.999970 0 0

0.287550 Low 0.374871 0.374868 0

0.287551 Medium 0.374868 0.374871 0

0.430100 Medium 0 0.750000 0

0.715050 Medium 0 0.500000 0.250131

0.762518 Medium 0 0.375051 0.375047

0.762519 High 0 0.375048 0.375050

1 High 0 0 1
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Step 1: Clustering Data Parameters (with Various Algorithms) 
That Favor Smog and Photochemical Clouds
EM, SIB, SKM and SOM clustering was performed. However, the SOM approach has offered the 
most meaningful clear and comprehensive results and conclusions. So, the discussion will focus 
mainly in the analysis and interpretation of the SOM output, although a comparative presentation of 
the results obtained by all four algorithms will be done in the following tables.

The training process of the SOM has employed the trainbu (trains a network with weight and bias 
learning rules with batch updates) and the learnsomb (employs batch self-organizing map weights) 
learning functions. The basic principle was the use of less complicated Maps. Thus, the SOM that 
have been developed consist of 2X2 neurons creating 4 clusters. The results, their analysis and their 
interpretation, are presented below in the following paragraphs.

Figure 2 shows the number of records that have been assigned (won) to each neuron. In this 
image, cluster4 with the fewest records (440) is the most important, since it contains the most extreme 
values. The numbering starts at the lower left corner (the cluster with 1264 cases is the first). The 
correct direction to follow is from left to right as we go up (the cluster containing 649 records is 2nd, 
the one comprising of 917 is 3rd. It is completed to the top right corner with the most extreme group 
of 440 entries.

Figure 3 shows the distances between the clusters. This figure plays a very important role in 
identifying the ones containing extreme values. Bright colors show close distances, whereas dark 
colors show long ones (data vectors located away from the majority). Thus, clusters 2 and 4 that 
use dark connections and contain the smallest number of records are the ones who contain high and 
extreme values.

In this step, the Morbidity and Mortality indices related to CARD and RES diseases were fuzzified 
by using Triangular membership functions (TRIMF). The values greater than or equal to Average+2σ 

Figure 2. SOM_Sample_Hits_4Clusters
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(where σ is the standard deviation) were considered as extreme. The profile of each cluster was built 
based on the number of cases that were assigned the high and extremely high fuzzy Linguistics.

For all of the used algorithms, the meteorological conditions that favor Smog (NO, NO
2,
 SO

2C,
 

PM
10,

 PM
2.5,

 CO) were distinguished properly from the ones that contribute towards the Photochemical 
cloud (Ο

3
) by using two clusters (Tables 3 and 4). The Kohonen SOM has shown that the Smog cloud 

(cluster 4 comprising of 440 records) is favored by low or moderate daily temperatures, high daily 
moisture, few hours of sunshine, and very high daily concentrations of primary pollutants’ emissions 
NO, NO2, SO2, PM10, PM2.5, CO. It corresponds to the period October to April. SOM has revealed 
that cluster 4 contains 224 incidents of high risk due to meteorological conditions (HRMC) and 59 
cases of extreme Death risk due (EXDR) to Cardiovascular and Respiratory diseases. Cluster 1 (which 
contains 1264 records and is related to the period March to November) is characterized by high daily 
temperatures, low daily moisture values and many hours of sunshine. These conditions result in very 
high concentrations of O

3
 and in Photochemical Cloud. Herein, the combination of atmospheric 

features has contributed to 384 records of HRMC and to 54 ones of EXDR (Tables 3 and 4).
Table 5 illustrates the most extreme cases of cardiovascular and respiratory Morbidity and 

Mortality for each month from 2004 to 2013. Each obtained cluster is related to a major subset 
which corresponds to a specific seasonal period. All four algorithms have proven that the most risky 
meteorological conditions that favor the development of the Smog and the most EXDR due to CARD/
RES diseases are observed during January.

Also, all algorithms have shown that June is the month that favors the PHOC. June has the highest 
number (10 according to SOM) of extreme (CARD and RES) Morbidity risk values. In contrast, all 
algorithms agree that the most extreme Cardiovascular and Respiratory Mortality risk exists in July. 
The SOM algorithm recorded 11 extreme values in July. Table 6 presents the clusters: (EM-Cl2, 
SIB-Cl2, SKM-Cl3, SOM-Cl2) having the highest number of recorded extreme MOMO values (e.g. 
59 of them only for March, according to SOM).

Figure 3. SOM_Neighbor weight Distances
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Step 2: Clustering Data Features Based on High Rainfall and High windspeed
In the clusters of Table 6 we can see that the highest daily rainfall value (131.6 mm) is connected 
to the appearance of high daily wind speed (32.5 knots). Maximization of the values of the above 
parameters causes dispersion and diffusion of air pollutants. Cluster 3 that has been produced by SOM 
(September to May) is characterized by high or moderate temperatures and high levels of moisture. 
SOM has detected 304 incidents of high MOMO risk and 51 records of extreme risk due to CARD/
RES diseases. This is mainly due to the seasonal unfavorable meteorological conditions (high levels 
of rainfall and wind speed).

Step 3: Clustering Data Based on the Highest and extreme MoMo Rates
Step 3 has produced the following results. Cluster 2 of SOM (649 records) has proven to be the 
most appropriate for the Morbidity and Mortality study, because it includes the high risky (477) and 
extremely risky (196) incidents (see Tables 7 and 8). This is very useful information for civil protection 

Table 3. Meteorological-CARD Hospitalization/Deaths-RES Hospitalization/Deaths Range for each cluster

MaxT 

daily 

interval

AvT 

daily 

interval

MinT 

daily 

interval

AvRH 

daily 

interval

SUN 

daily 

interval

CH 

daily 

interval / 

Linguistics

RH 

daily 

interval / 

Linguistics

CD 

daily 

interval / 

Linguistics

RD 

daily 

interval / 

Linguistics

EM-Smog 
Cloud-Cluster3 
October-April 
2004-2013

-1.4-25.6
-2.95-
21.65

-7.8-18
45.66-
97.65

0-10.9

3-96 
High =65 
Extreme 
=21

0-53 
High =84 
Extreme 
=23

0-12 
High =88 
Extreme 
=16

0-5 
High =23 
Extreme =9

EM-
Photochemical 
Cloud-Cluster0 
April -October 
2004-2013

21.6-44
16.55-
34.7

0.2-27.1
28.25-
76.29

2.9-14

1-90 
High =82 
Extreme 
=19

0-46 
High =73 
Extreme 
=10

0-13 
High =147 
Extreme 
=18

0-5 
High =48 
Extreme 
=11

SIB-Smog 
Cloud-Cluster0 
October-April 
2004-2013

-1.4-24.6
-3.5-
19.8

-7.8-17.6
39.74-
97.65

0-12

0-108 
High =73 
Extreme 
=34

0-54 
High =94 
Extreme 
=36

0-13 
High =123 
Extreme 
=22

0-5 
High =40 
Extreme 
=15

SIB- 
Photochemical 
Cloud-Cluster1 
March-
November 
2004-2013

10.4-40.3
5.25-
32.85

0.2-27.1
28.25-
82.38

0-14

1-90 
High =64 
Extreme 
=12

0-46 
High =68 
Extreme 
=8

0-14 
High =181 
Extreme 
=20

0-5 
High =51 
Extreme 
=13

SKM-Smog 
Cloud-Cluster0 
October- April 
2004-2013

-1.4-24.4
-2.95-
19.8

-7.8-15.4
52.46-
97.65

0-10.2

3-96 
High =61 
Extreme 
=22

0-62 
High =67 
Extreme 
=25

0-12 
High =91 
Extreme 
=15

0-5 
High =24 
Extreme =9

SKM-
Photochemical 
Cloud-Cluster1 
April-November 
2004-2013

17.2-44
14.7-
34.7

0.2-27.1
28.25-
82.38

1-14

1-90 
High =89 
Extreme 
=25

0-46 
High =90 
Extreme 
=12

0-14 
High =176 
Extreme 
=22

0-5 
High =54 
Extreme 
=14

SOM-Smog 
Cloud-Cluster4 
October-April 
2004-2013

2-25.6
-2.45-
20.45

-7.8-17.6 48.4-97.65 0-10.4

4-96 
High =56 
Extreme 
=16

0-53 
High =66 
Extreme 
=19

0-12 
High =81 
Extreme 
=14

0-5 
High =21 
Extreme 
=10

SOM-
Photochemical 
Cloud-Cluster1 
March-
November 
2004-2013

8-40.3
4.3-
32.85

-0.6-27.1
28.25-
82.11

0-14

1-90 
High =66 
Extreme 
=13

0-46 
High =75 
Extreme 
=11

0-13 
High =187 
Extreme 
=16

0-5 
High =56 
Extreme 
=14

* Max Temperature (MaxT), Average Temperature (AvT), Min Temperature (MinT), Average Relative Humidity (AvRH), Sunshine Hours (SUN), Cardio-
vascular Hospitalization (CH), Respiratory Hospitalization (RH), Cardiovascular Deaths (CD), Respiratory Deaths (RD)
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authority. It can help towards the design of emergency readiness plans for hospitals. It has been shown 
that the CARD/RES MOMO risk in cluster 2 is mainly influenced by meteorological parameters and 
by air pollution concentrations PM

10
, PM

2.5,
 O

3
 for the period September-June.

Figure 4 shows the influence of each parameter to the determination of the SOM. The open colors 
show high weights and dependency from the corresponding input parameter whereas the dark ones 
the opposite. Yellow colors express the highest level of dependency and they show which cluster is 
depended on which parameter. Totally the following 19 input features were used.

Input 1: Max Temperature (MaxT), Input2: Average Temperature (AvT), Input3: Min Temperature 
(MinT), Input4: Average Relative Humidity (AvRH), Input5: Rainfall (R), Input6: Sunshine Hours 
(SUN), Input7: Wind Speed (WS), Input8: Atmospheric Pressure (AP), Input9: Sulfur Dioxide (SO2), 

Table 4. Range for Air Pollutants and CARD/RES diseases for each cluster

CO 

daily 

interval

NO 

daily 

interval

NO
2
 

daily 

interval

O
3
 

daily 

interval

SO
2
 

daily 

interval

PM
10

 

daily 

interval

PM
2.5

 

daily 

interval

CH 

daily 

interval / 

Linguistics

RH 

daily 

interval / 

Linguistics

CD 

daily 

interval / 

Linguistics

RD 

daily 

interval / 

Linguistics

EM-Smog 
Cloud-
Cluster3 
October-April 
2004-2013

0.6-3.37
14.43-
199.9

24.53-
93.4

13-73.3
2.57-
70.9

23.28-
203

11-
121.5

3-96 
High =65 
Extreme 
=21

0-53 
High =84 
Extreme 
=23

0-12 
High =88 
Extreme 
=16

0-5 
High =23 
Extreme 
=9

EM-
Photochemical 
Cloud-
Cluster0 April 
-October 
2004-2013

0.25-
1.18

4.2-43.6
4.83-
65.51

43.53-
127.9

1-20.4
13.77-
126

7-64

1-90 
High =82 
Extreme 
=19

0-46 
High =73 
Extreme 
=10

0-13 
High =147 
Extreme 
=18

0-5 
High =48 
Extreme 
=11

SIB-Smog 
Cloud-
Cluster0 
October-April 
2004-2013

0.5-2.75
9.44-
199.9

15.27-
93.4

12.94-
74.46

1.33-
70.9

16.35-
203

11-
121.5

0-108 
High =73 
Extreme 
=34

0-54 
High =94 
Extreme 
=36

0-13 
High 
=123 
Extreme 
=22

0-5 
High =40 
Extreme 
=15

SIB- 
Photochemical 
Cloud-
Cluster1 
March-
November 
2004-2013

0.25-
2.89

4.2-
39.23

4.83-
58.78

43.53-
127.9

1-20.4
13.45-
74.28

6-60

1-90 
High =64 
Extreme 
=12

0-46 
High =68 
Extreme 
=8

0-14 
High 
=181 
Extreme 
=20

0-5 
High =51 
Extreme 
=13

SKM-Smog 
Cloud-
Cluster0 
October- April 
2004-2013

0.66-
2.75

30.3-
199.9

24.6-
93.4

13-
63.01

2.62-
70.9

28.83-
195

12-
121.5

3-96 
High =61 
Extreme 
=22

0-62 
High =67 
Extreme 
=25

0-12 
High =91 
Extreme 
=15

0-5 
High =24 
Extreme 
=9

SKM-
Photochemical 
Cloud-
Cluster1 
April-
November 
2004-2013

0.25-
1.21

4.2-
51.29

4.83-
67.2

41.37-
127.9

1-22.4
13.45-
158.6

6-64

1-90 
High =89 
Extreme 
=25

0-46 
High =90 
Extreme 
=12

0-14 
High =176 
Extreme 
=22

0-5 
High =54 
Extreme 
=14

SOM-Smog 
Cloud-
Cluster4 
October-April 
2004-2013

0.66-
2.75

33.99-
199.9

24.6-
93.4

12.94-
73.3

2.6-70.9
29.4-
203

13-
121.5

4-96 
High =56 
Extreme 
=16

0-53 
High =66 
Extreme 
=19

0-12 
High =81 
Extreme 
=14

0-5 
High =21 
Extreme 
=10

SOM-
Photochemical 
Cloud-
Cluster1 
March-
November 
2004-2013

0.25-
2.89

4.21-
42.2

4.83-
58.8

50.69-
127.9

1-21
12.66-
68.15

6-57

1-90 
High =66 
Extreme 
=13

0-46 
High =75 
Extreme 
=11

0-13 
High 
=187 
Extreme 
=16

0-5 
High =56 
Extreme 
=14

* Cardiovascular Hospitalization (CH), Respiratory Hospitalization (RH), Cardiovascular Deaths (CD), Respiratory Deaths (RD)
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continued on following page

Table 5. Distribution of extreme hospitalization incidents and CV RES deaths over months

Extreme CH incidents 

per month

Extreme RH incidents 

per month

Extreme CD incidents 

per month

Extreme RD incidents 

per month

EM-Smog Cloud-

Cluster3

October-April

2004-2013

November: Extreme =4 
December: Extreme =3 
January: Extreme =9

February: Extreme =3 
March: Extreme =1

November: Extreme =3 
December: Extreme =1 
January: Extreme =9

February: Extreme =8 
March: Extreme =2

November: Extreme =3 
December: Extreme =2 
January: Extreme =7

February: Extreme =3 
March: Extreme =1

November: Extreme =2 
December: Extreme =1 
January: Extreme =5

February: Extreme =1 
March: Extreme =0

EM-Photochemical 

Cloud

-Cluster0

April -October

2004-2013

April: Extreme =3 
May: Extreme =6 
June: Extreme =4

July: Extreme =2 
August: Extreme =0 
September: Extreme =2

April: Extreme =2 
May: Extreme =1 
June: Extreme =5

July: Extreme =2 
August: Extreme =0 
September: Extreme =0

April: Extreme =0 
May: Extreme =2 
June: Extreme =4 
July: Extreme =7

August: Extreme =3 
September: Extreme =2

April: Extreme =0 
May: Extreme =1 
June: Extreme =2 
July: Extreme =3

August: Extreme =4 
September: Extreme =1

EM-Cluster2-

The most extreme risk 

incidents

September-May

2004-2013

September: Extreme =1 
October: Extreme =5 
November: Extreme =3 
December: Extreme =4 
January: Extreme =9 
February: Extreme =9 
March: Extreme =12

April: Extreme =3 
May: Extreme =1

September: Extreme =0 
October: Extreme =4 
November: Extreme =1 
December: Extreme =3 
January: Extreme =9 
February: Extreme =9 
March: Extreme =20

April: Extreme =5 
May: Extreme =2

September: Extreme =1 
October: Extreme =0 
November: Extreme =2 
December: Extreme =3 
January: Extreme =3 
February: Extreme =6 
March: Extreme =10

April: Extreme =3 
May: Extreme =1

September: Extreme =0 
October: Extreme =1 
November: Extreme =1 
December: Extreme =1 
January: Extreme =1 
February: Extreme =6 
March: Extreme =5

April: Extreme =1 
May: Extreme =1

SIB-Smog Cloud-

Cluster0

October-April

2004-2013

November: Extreme =3 
December: Extreme =5 
January: Extreme =15

February: Extreme =8 
March: Extreme =3

November: Extreme =3 
December: Extreme =2 
January: Extreme =15

February: Extreme =10 
March: Extreme =6

November: Extreme =3 
December: Extreme =3 
January: Extreme =11

February: Extreme =4 
March: Extreme =1

November: Extreme =2 
December: Extreme =2 
January: Extreme =6

February: Extreme =3 
March: Extreme =2

SIB- Photochemical 

Cloud-

Cluster1

March-November

2004-2013

March: Extreme =0 
April: Extreme =1 
May: Extreme =3 
June: Extreme =5

July: Extreme =2 
August: Extreme =0 
September: Extreme =0 
October: Extreme =1

March: Extreme =1 
April: Extreme =0 
May: Extreme =1 
June: Extreme =4

July: Extreme =2 
August: Extreme =0 
September: Extreme =0 
October: Extreme =0

March: Extreme =1 
April: Extreme =1 
May: Extreme =3 
June: Extreme =3 
July: Extreme =7

August: Extreme =3 
September: Extreme =1 
October: Extreme =0

March: Extreme =0 
April: Extreme =0 
May: Extreme =1 
June: Extreme =2 
July: Extreme =4

August: Extreme =4 
September: Extreme =2 
October: Extreme =0

SIB-Cluster2-

The most extreme risk 

incidents

September-May

2004-2013

September: Extreme =4 
October: Extreme =10 
November: Extreme =5 
December: Extreme =2 
January: Extreme =3 
February: Extreme =10 
March: Extreme =14

April: Extreme =8 
May: Extreme =7

September: Extreme =0 
October: Extreme =5 
November: Extreme =1 
December: Extreme =2 
January: Extreme =4 
February: Extreme =9 
March: Extreme =24

April: Extreme =10 
May: Extreme =5

September: Extreme =3 
October: Extreme =0 
November: Extreme =2 
December: Extreme =0 
January: Extreme =0 
February: Extreme =3 
March: Extreme =8

April: Extreme =2 
May: Extreme =1

September: Extreme =0 
October: Extreme =1 
November: Extreme =0 
December: Extreme =0 
January: Extreme =0 
February: Extreme =4 
March: Extreme =3

April: Extreme =1 
May: Extreme =2

SKM-Smog Cloud-

Cluster0

October- April

2004-2013

October: Extreme =1 
November: Extreme =4 
December: Extreme =2 
January: Extreme =11

February: Extreme =4 
March: Extreme =0

October: Extreme =0 
November: Extreme =3 
December: Extreme =1 
January: Extreme =11

February: Extreme =9 
March: Extreme =1

October: Extreme =0 
November: Extreme =3 
December: Extreme =1 
January: Extreme =8

February: Extreme =3 
March: Extreme =0

October: Extreme =0 
November: Extreme =2 
December: Extreme =1 
January: Extreme =5

February: Extreme =1 
March: Extreme =0

SKM-Photochemical 

Cloud-

Cluster1

April-November

2004-2013

April: Extreme =3 
May: Extreme =6 
June: Extreme =7

July: Extreme =2 
August: Extreme =0 
September: Extreme =3 
October: Extreme =4

April: Extreme =2 
May: Extreme =2 
June: Extreme =5

July: Extreme =2 
August: Extreme =0 
September: Extreme =2 
October: Extreme =1

April: Extreme =0 
May: Extreme =3 
June: Extreme =5 
July: Extreme =7

August: Extreme =4 
September: Extreme =3 
October: Extreme =0

April: Extreme =0 
May: Extreme =2 
June: Extreme =2 
July: Extreme =4

August: Extreme =4 
September: Extreme =1 
October: Extreme =1
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Table 6. Clustering of the data based on the high rainfall values and on high wind speed

R 

daily 

interval

WS 

daily 

interval

MaxT 

daily 

interval

AvT 

daily 

interval

MinT 

daily 

interval

AvRH 

daily 

interval

CH daily 

Interval / 

Linguistics

RH daily 

Interval / 

Linguistics

CD daily 

Interval / 

Linguistics

RD daily 

Interval / 

Linguistics

EM-
Cluster1 
September-
June 
2004-2013

0.1-
131.6

0-32.5 0.8-25.8
-3.5-
25.5

-4.8-
19.6

45.3-
97.4

1-82 
High =37 
Extreme 
= 17

1-51 
High =52 
Extreme= 
17

0-16 
High =72 
Extreme 
=12

0-5 
High =27 
Extreme =5

SIB-
Cluster3 
September- 
June 
2004-2013

0-131.6 0-32.5 1.8-30.2 0.7-25.5 0-20.6
33.4-
97.4

1-82 
High =22 
Extreme 
=10

0-51 
High =38 
Extreme 
=9

0-19 
High =98 
Extreme=15

0-5 
High =28 
Extreme=8

SKM-
Cluster2 
September-
June 
2004-2013

0-131.6 0-22.88 1-28.4
-3.5-
25.6

-4.8-
22.4

36.4-
97.4

1-91 
High =83 
Extreme 
=31

0-59 
High =110 
Extreme 
=25

0-16 
High =131 
Extreme=20

0-5 
High =38 
Extreme=11

SOM-
Cluster3 
September-
May 
2004-2013

0-131.6 0-26.5 1-30.2 -3.5-26 -6-22
33.4-
97.3

0-69 
High =31 
Extreme 
=4

0-51 
High =82 
Extreme 
=10

0-19 
High =147 
Extreme=24

0-7 
High =44 
Extreme=13

* Rainfall (R), Wind Speed (WS), Max Temperature (MaxT), Average Temperature (AvT), Min Temperature (MinT), Average Relative Humidity (AvRH), 
Cardiovascular Hospitalization (CH), Respiratory Hospitalization (RH), Cardiovascular Deaths (CD), Respiratory Deaths (RD)

Extreme CH incidents 

per month

Extreme RH incidents 

per month

Extreme CD incidents 

per month

Extreme RD incidents 

per month

SKM-Cluster3-

The most extreme risk 

incidents

September-June

2004-2013

September: Extreme =1 
October: Extreme =5 
November: Extreme =1 
December: Extreme =4 
January: Extreme =7 
February: Extreme =6 
March: Extreme =12

April: Extreme =4 
May: Extreme =2

September: Extreme =0 
October: Extreme =4 
November: Extreme =1 
December: Extreme =3 
January: Extreme =7 
February: Extreme =8 
March: Extreme =21

April: Extreme =5 
May: Extreme =3

September: Extreme =0 
October: Extreme =0 
November: Extreme =1 
December: Extreme =0 
January: Extreme =3 
February: Extreme =6 
March: Extreme =9

April: Extreme =2 
May: Extreme =1

September: Extreme =1 
October: Extreme =0 
November: Extreme =0 
December: Extreme =1 
January: Extreme =0 
February: Extreme =5 
March: Extreme =4

April: Extreme =1 
May: Extreme =1

SOM-Smog Cloud

Cluster4

October-April

2004-2013

October: Extreme =1 
November: Extreme =3 
December: Extreme =3 
January: Extreme =8

February: Extreme =1 
March: Extreme =0 
April: Extreme =1

October: Extreme =0 
November: Extreme =3 
December: Extreme =0 
January: Extreme =10

February: Extreme =5 
March: Extreme =1 
April: Extreme =0

October: Extreme =0 
November: Extreme =3 
December: Extreme =2 
January: Extreme =7

February: Extreme =2 
March: Extreme =0 
April: Extreme =0

October: Extreme =0 
November: Extreme =2 
December: Extreme =1 
January: Extreme =5

February: Extreme =2 
March: Extreme =0 
April: Extreme =0

SOM-Photochemical 

Cloud-

Cluster1

March-November

2004-2013

March: Extreme =0 
April: Extreme =1 
May: Extreme =1 
June: Extreme =6

July: Extreme =2 
August: Extreme =0 
September: Extreme =0 
October: Extreme =1

March: Extreme =2 
April: Extreme =2 
May: Extreme =2 
June: Extreme =4

July: Extreme =2 
August: Extreme =0 
September: Extreme =0 
October: Extreme =0

March: Extreme =0 
April: Extreme =1 
May: Extreme =1 
June: Extreme =2 
July: Extreme =7

August: Extreme =2 
September: Extreme =1 
October: Extreme =0

March: Extreme =0 
April: Extreme =0 
May: Extreme =3 
June: Extreme =2 
July: Extreme =4

August: Extreme =4 
September: Extreme =1 
October: Extreme =0

SOM-Cluster2-

The most extreme risk 

incidents

August-June

2004-2013

August: Extreme =0 
September: Extreme =4 
October: Extreme =9 
November: Extreme =6 
December: Extreme =4 
January: Extreme =12 
February: Extreme =16 
March: Extreme =18

April: Extreme =9 
May: Extreme =8 
June: Extreme =1

August: Extreme =0 
September: Extreme =1 
October: Extreme =5 
November: Extreme =1 
December: Extreme =2 
January: Extreme =9 
February: Extreme =14 
March: Extreme =28

April: Extreme =8 
May: Extreme =5 
June: Extreme =1

August: Extreme =2 
September: Extreme =3 
October: Extreme =0 
November: Extreme =0 
December: Extreme =1 
January: Extreme =2 
February: Extreme =3 
March: Extreme =9

April: Extreme =1 
May: Extreme =1 
June: Extreme =3

August: Extreme =0 
September: Extreme =0 
October: Extreme =1 
November: Extreme =0 
December: Extreme =0 
January: Extreme =1 
February: Extreme =1 
March: Extreme =4

April: Extreme =1 
May: Extreme =2 
June: Extreme =0

Table 5. Continued
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Input10: Particulate Matter (PM
10

) Input11: Particulate Matter (PM
2.5

), Input12: Carbon Monoxide 
(CO), Input13: Nitrogen Monoxide (NO), Input14: Nitrogen Dioxide (NO2), Input15: Ozone (O3), 
Input16: Cardiovascular Hospitalization (CH), Input17: Respiratory Hospitalization (RH), Input18: 
Cardiovascular Deaths (CD), Input19: Respiratory Deaths (RD).

The following conclusions are obtained regarding the data clustering after analyzing te results 
presented in Figure 4.

Table 7. Range for Meteorological values and CARD/RES MOMO rates for each cluster

MaxT 

daily 

interval

AvT 

daily 

interval

MinT 

daily 

interval

AvRH 

daily 

interval

SUN 

daily 

interval

R 

daily 

interval

WS 

daily 

interval

CH 

daily 

interval / 

Linguistics

RH 

daily 

interval /

Linguistics

CD 

daily 

interval /

Linguistics

RD 

daily 

interval /

Linguistics

EM-
Cluster2 
September-
May 2004-
2013

1.8-31.4 2-26.4 -6.8-21
33.38-
94.74

0-12.5 0
0.5-
27.75

0-108 
High =112 
Extreme 
= 49

0-62 
High =124 
Extreme 
= 53

0-19 
High =144 
Extreme 
= 29

0-7 
High =51 
Extreme 
=17

SIB-
Cluster2 
September-
May 2004-
2013

2.4-44 1.9-34.7 0-25.4
30.94-
96.27

0-13.9 0-8.3
0.5-
27.75

5-91 
High =174 
Extreme 
=64

0-62 
High =182 
Extreme 
= 61

0-13 
High =110 
Extreme 
= 22

0-7 
High =43 
Extreme 
=11

SKM-
Cluster3 
September-
June 2004-
2013

0.8-28.4
-2.15-
22.3

-6.8-19
33.38-
89.89

2.4-12.3 0-15.7 1.6-32.5

0-108 
High =100 
Extreme 
=42

2-60 
High =115 
Extreme 
= 52

0-19 
High =114 
Extreme 
=22

0-7 
High =46 
Extreme 
= 13

SOM-
Cluster2 
September-
June 2004-
2013

-1.4-44
-2.95-
34.7

-6.8-
25.4

30.94-
96.27

0-13.9 0-35.9
0.67-
27.75

9-108 
High = 
180 
Extreme 
=87

3-62 
High = 
159 
Extreme 
=74

0-14 
High = 97 
Extreme 
=25

0-4 
High =41 
Extreme 
=10

* Max Temperature (MaxT), Average Temperature (AvT), Min Temperature (MinT), Average Relative Humidity (AvRH), Sunshine Hours (SUN), Rainfall 
(R), Wind Speed (WS), Cardiovascular Hospitalization (CH), Respiratory Hospitalization (RH), Cardiovascular Deaths (CD), Respiratory Deaths (RD)

Table 8. Range for Air Pollutants and CARD/RES MOMO rates for each cluster

CO daily 

interval

NO 

daily 

interval

NO
2
 

daily 

interval

O
3
 

daily 

interval

SO
2
 

daily 

interval

PM 

10
 daily 

intervals

PM 
2.5

 

daily 

interval

CH daily 

interval / 

Linguistics

RH daily 

interval / 

Linguistics

CD daily 

interval / 

Linguistics

RD daily 

interval / 

Linguistics

EM-
Cluster2 
September-
May 2004-
2013

0.41-2.23
5.62-
86.05

7.65-
71.4

21.35-
99.44

1.4-
41.6

11.18-
85.53

2-60

0-108 
High =112 
Extreme 
= 49

0-62 
High =124 
Extreme 
= 53

0-19 
High 
=144 
Extreme 
= 29

0-7 
High =51 
Extreme 
=17

SIB-
Cluster2 
September-
May 2004-
2013

0.32-3.37
5.79-
90.35

8.1-71.4
20.65-
105.83

1-43.36
11.27-
158.6

6-67.66

5-91 
High =174 
Extreme 
=64

0-62 
High =182 
Extreme 
= 61

0-13 
High 
=110 
Extreme 
= 22

0-7 
High =43 
Extreme 
=11

SKM-
Cluster3 
September-
June 
2004-2013

0.32-3.37
5.51-
90.35

9.88-
73.6

30.01-
93.18

1.4-
35.27

11.03-
86.04

2-57

0-108 
High =100 
Extreme 
=42

2-60 
High =115 
Extreme 
= 52

0-19 
High 
=114 
Extreme 
=22

0-7 
High =46 
Extreme 
= 13

SOM-
Cluster2 
September-
June 2004-
2013

0.32-2.23
5.68-
71.6

9.08-
71.4

23-
105.8

1.4-
43.4

15.26-
158.6

10.5-
100

9-108 
High = 
180 
Extreme 
=87

3-62 
High = 
159 
Extreme 
=74

0-14 
High = 97 
Extreme 
=25

0-4 
High =41 
Extreme 
=10

* Cardiovascular Hospitalization (CH), Respiratory Hospitalization (RH), Cardiovascular Deaths (CD), Respiratory Deaths (RD)
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• Cluster 1: The maximum, moderate and minimum temperatures, the sunshine hours, the wind 
speed and O

3
 are characterizing mainly the 1st cluster. For the records of cluster1, clustering of 

the atmospheric data is related to the PHOC.
• Cluster 2: The maximum and minimum temperatures, ΝΟ

2,
 Ο

3
 and Cardiovascular 

Mortality are the 2nd most important group of characteristics of the 2nd cluster, whereas 
CARD/RES hospitalization and RES Mortality are the members of the most characteristic 
vector. This cluster has the most recorded high and extreme MOMO values related to 
the above diseases.

• Cluster 3: Rainfall has the highest influence in cluster#3 whereas wind speed and 
average moisture are second. This cluster is characterized mostly by the above 
mentioned two parameters.

• Cluster 4: In cluster#4 average moisture, SO2, PM10, PM2.5, CO, NO, NO2 and CARD 
Hospitalization constitute the vector of the most inf luential parameters whereas 
meteorological data and Ozone are not related. This is due to the fact that this cluster is 
mainly related to the Smog.

The following Tables 9 and 10 present the profile of each cluster and the range of their parameters.

Step 4: Fuzzy Chi Square Test
The fuzzy chi square test (described in a previous chapter) is performed and applied for all four 
clusters, in the fourth step in order to determine the level of dependence between the atmospheric 
features and the CARD/RES MOMO indices at confidence interval of 95%. The basic principles of 
the algorithm have already been presented. The results of the FUCS are discussed thoroughly in the 
following chapter (Table 11) in order to enhance the final conclusions. Figure 5 shows the flowchart 
of the proposed model.

Figure 4. SOM Input Planes of the 4 Clusters
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ReSULTS AND DISCUSSIoN

After extensive testing has been done on all SOM algorithm clusters, we have examined all possible 
cases of dependence between the Linguistics assigned to the atmospheric parameters and to the 
CARD/RES MOMO indices. The most important dependences and the highest correlations for each 
cluster of the SOM algorithm are presented below.

Table 9. Range of the meteorological factors based on the SOM cluster

MaxT 

daily 

interval

AvT 

daily 

interval

MinT 

daily 

interval

AvRH 

daily 

interval

SUN 

daily 

interval

R 

daily 

interval

WS 

daily 

interval

CH 

daily 

interval / 

Linguistics

RH 

daily 

interval 

/Linguistics

CD 

daily 

interval /

Linguistics

RD 

daily 

interval /

Linguistics

SOM-
Photochemical 
Cloud-Cluster1 
March-
November 
2004-2013

8-40.3
4.3-
32.85

-0.6-
27.1

28.25-
82.11

0-14 0-23
1.75-
32.5

1-90 
High =66 
Extreme 
=13

0-46 
High =75 
Extreme 
=11

0-13 
High =187 
Extreme 
=16

0-5 
High =56 
Extreme 
=14

SOM-The most 
extreme risk 
incidents-
Cluster2 
September-June 
2004-2013

-1.4-44
-2.95-
34.7

-6.8-
25.4

30.94-
96.27

0-13.9 0-35.9
0.67-
27.75

9-108 
High = 
180 
Extreme 
=87

3-62 
High = 
159 
Extreme 
=74

0-14 
High = 97 
Extreme 
=25

0-4 
High =41 
Extreme 
=10

SOM-based on 
the high rainfall 
values and 
on high wind 
speed-Cluster3 
September-
May 
2004-2013

1-30.2 -3.5-26 -6-22
33.4-
97.3

0-11.9 0-131.6 0-26.5

0-69 
High =31 
Extreme 
=4

0-51 
High =82 
Extreme 
=10

0-19 
High =147 
Extreme=24

0-7 
High =44 
Extreme=13

SOM-Smog 
Cloud-Cluster4 
October-April 
2004-2013

2-25.6
-2.45-
20.45

-7.8-
17.6

48.4-
97.65

0-10.4 0-28 0-15

4-96 
High =56 
Extreme 
=16

0-53 
High =66 
Extreme 
=19

0-12 
High =81 
Extreme 
=14

0-5 
High =21 
Extreme 
=10

Table 10. Range of the air pollution factors based on the SOM cluster

CO 

daily 

interval

NO 

daily 

interval

NO
2
 

daily 

interval

O
3
 

daily 

interval

SO
2
 

daily 

interval

PM 

10
 daily 

interval

PM 
2.5

 

daily 

interval

CH daily 

interval / 

Linguistics

RH daily 

interval / 

Linguistics

CD daily 

interval / 

Linguistics

RD daily 

interval / 

Linguistics

SOM-
Photochemical 
Cloud-Cluster1 
March-
November 
2004-2013

0.25-
2.89

4.21-
42.2

4.83-
58.8

50.69-
127.9

1-21
12.66-
68.15

6-57

1-90 
High =66 
Extreme 
=13

0-46 
High =75 
Extreme 
=11

0-13 
High =187 
Extreme 
=16

0-5 
High =56 
Extreme 
=14

SOM-The most 
extreme risk 
incidents-
Cluster2 
September-June 
2004-2013

0.32-
2.23

5.68-
71.6

9.08-
71.4

23-
105.8

1.4-43.4
15.26-
158.6

10.5-
100

9-108 
High = 
180 
Extreme 
=87

3-62 
High = 
159 
Extreme 
=74

0-14 
High = 97 
Extreme 
=25

0-4 
High =41 
Extreme 
=10

SOM-Cluster3- 
based on the 
high rainfall 
values and 
on high wind 
speed-
September-May 
2004-2013

0.33-
3.37

5.63-
89.2

7.49-
62.9

11.9-
74.9

1-41.6
11.03-
72.2

2-56

0-69 
High =31 
Extreme 
=4

0-51 
High =82 
Extreme 
=10

0-19 
High =147 
Extreme=24

0-7 
High =44 
Extreme=13

SOM-Smog 
Cloud-Cluster4 
October-April 
2004-2013

0.66-
2.75

33.99-
199.9

24.6-
93.4

12.94-
73.3

2.6-70.9
29.4-
203

13-
121.5

4-96 
High =56 
Extreme 
=16

0-53 
High =66 
Extreme 
=19

0-12 
High =81 
Extreme 
=14

0-5 
High =21 
Extreme 
=10
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Cluster 1: Clustering the atmospheric parameters that create the Photochemical Cloud

The conditions related to the development of the PHOC belong to the season March to November 
(2004-2013). The linguistics of the minimum temperature (MinT) have high dependency (HIDE) 
(MV= 0.645) with the linguistics of the CARD Mortality (CAMO). Also, MinT has significant 
dependency (SIGDE) to the RES Hospitalizations (RESHO). The PM10

 have HIDE to the RESHO 
and to the CAMO. During photochemical reactions the NOx participate in the development of the 
PHOC (O3

). The linguistics of NO have Moderate dependency MV= 0.455 with the Respiratory 
hospitalizations. NO

2
 has very high dependency (MV=0.995) to the RES hospitalizations. A previous 

research of (Anezakis, Iliadis, Demertzis, & Mallinis, 2017) has shown that the Pollution due to PHOC 
(Ο

3
) is high depended (MV=0.83575) with the Cardiovascular deaths on the same day.

Table 11. Fuzzy chi square test application between involved features in SOM algorithm

Parameters-Diseases-

Cluster
Statistic Test P-Value Linguistics of P-Value

Degree of 

membership of 

linguistics

MinT-CH Cluster1 13.424 0.0094 High Dependence 0.53

MinT-CD Cluster1 9.901 0.0071 High Dependence 0.645

MinT-RD Cluster1 7.945 0.0188 Medium Dependence 0.69

PM10
-CH Cluster1 9.447 0.0089 High Dependence 0.555

PM
10

-CD Cluster1 6.455 0.0111 High Dependence 0.445

NO-RH Cluster1 4.400 0.0359 Medium Dependence 0.455

NO
2
-RH Cluster1 19.142 0.0001 High Dependence 0.995

MinT-CH Cluster2 21.221 0.0017 High Dependence 0.915

MinT-CD Cluster2 13.189 0.0042 High Dependence 0.79

R-CD Cluster2 11.875 0.0078 High Dependence 0.61

WS-CH Cluster2 20.606 0.0022 High Dependence 0.89

WS-RH Cluster2 13.103 0.0414 Low Dependence 0.57

AP-RH Cluster2 18.375 0.0054 High Dependence 0.73

AP-RD Cluster2 8.184 0.0423 Low Dependence 0.615

SO
2
-CD Cluster2 8.749 0.0328 Medium Dependence 0.61

PM
10

-CH Cluster2 18.073 0.0061 High Dependence 0.695

NO
2
-CH Cluster2 16.645 0.0107 High Dependence 0.465

NO
2
-RH Cluster2 14.944 0.0207 Medium Dependence 0.785

NO
2
-RD Cluster2 11.001 0.0117 High Dependence 0.415

O
3
-RH Cluster2 13.934 0.0075 High Dependence 0.625

AvRH-RH Cluster3 45.664 <0.00001 High Dependence 1

R-CH Cluster3 9.374 0.0247 Medium Dependence 0.985

SO
2
-CD Cluster3 12.883 0.0449 Low Dependence 0.745

O
3
- RH Cluster3 7.377 0.025 Medium Dependence 1

CO-CH Cluster4 20.408 0.0023 High Dependence 0.885

SO
2
-CH Cluster4 19.927 0.0029 High Dependence 0.855
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Cluster 2: Clustering of the atmospheric parameters that are related to the fuzzy Linguistics of High 
and Extreme CARD/RES MOMO

We have performed clustering of data related to linguistics of high and extreme Cardiovascular 
- Respiratory hospitalization risk. This data belongs to the season September to June 2004-2013. In 
cluster 2 the atmospheric parameters are significantly influencing the CARD/RES Morbidity/Mortality. 
There is high dependency between minimum temperature and wind speed linguistics to MOMO due 
to Cardiovascular diseases (MV equal to 0.915 and 0.89 respectively). Also, there is an influence of 
Atmospheric Pressure to RES Morbidity (MV=0.73). Finally, the RES MOMO is depended to ΝΟ

2
 

concentrations and SΟ
2
 plays a moderate role (MV=0.61) to CARD Mortality whereas Ο

3
 has an 

influence in respiratory morbidity (high with MV=0.625).
(Anezakis, Iliadis, Demertzis, & Mallinis, 2017) have proven that SO

2
, CO, PM

10
, PM

2.5
, O

3
 have 

a high contribution (MV=0.9916) to the CARD hospitalizations of the same day, in spring time.

Cluster 3: Clustering of the atmospheric parameters based on high rainfall and high wind speed

Figure 5. Flowchart of the proposed model
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Data clustering related to high levels of rainfall and high wind speed belongs to the period 
September to May 2004-2013. A main attribute of this cluster is the lack of high and extreme pollution 
values (moderate ones are included).

AvRH linguistics are influencing (MV=1) the Respiratory Morbidity and they also had a moderate 
influence (MV=0.985) to CARD Morbidity. Linguistics related to Ο

3
 had a moderate influence 

(MV=1) to RES Morbidity.

Cluster 4: Clustering of the atmospheric parameters responsible for Smog

In cluster 4 (related to winter period) the hospitalizations of CARD had a high dependency to 
the fuzzy linguistics of CO and SO

2
 (MV=0.855). (Anezakis, Iliadis, Demertzis, & Mallinis, 2017) 

have shown that during the winter the Smog index (CO, SO
2
, PM

10
, PM

2.5
) highly influences the 

Cardiovascular deaths of the same day.

CoNCLUSIoN

This research proposes a hybrid computational intelligence approach, employing Unsupervised Machine Learning, 
which combines the SOM learning algorithm for clustering data. At the same time the innovative FUCS algorithm 
determines the degree of dependence/independence of air pollution and meteorological parameters under 
consideration, to the number of serious Cardiovascular/Respiratory hospitalizations or deaths. The wider urban 
area of Thessaloniki city has been chosen for the selection of data and for the application of the proposed system.

The validity of the SOM algorithm was confirmed by in-depth testing and comparisons with four unsupervised 
Machine Learning algorithms in order to select the algorithm that best responds to the nature of the problem.

Summarizing the profile and characteristics of each cluster we can propose the following:
It has been proven that in cluster1 (related to the Photochemical cloud) the minimum temperature 

and PM
10

 linguistics have a serious influence to the MOMO of Cardiovascular diseases. Also, 
Respiratory incidents are significantly depended on NO and NO

2
.

Cluster2 is characterized by the highest fuzzy linguistics of RES/CARD risk which is influenced 
by minimum temperature and SO

2
. Linguistics of Ο

3
 and NO

2
 are contributing to the serious increase 

of respiratory incidents.
In cluster 3 (which is related to high rainfall and wind speed) (AvRH) and O

3
 have a significant 

contribution to Res Morbidity. On the other hand, SO
2
 does not have a serious influence to the 

Cardiovascular deaths for this season.
In cluster4 (related to the Smog favoring data) CARD hospitalization incidents are depended on 

SO
2
 and CO concentrations.
This research aims to trace the specific role of each air pollutant in the Morbidity and Mortality 

of the citizens of a major urban center. The intelligent information system that has been developed, 
can be a very useful tool in the hands of civil protection. It can provide warnings that can contribute 
towards the better management of the hospitals, when the conditions are critical. Also, for every 
season the authorities would expect specific types of threats to human health (depending on the 
cluster) and they will be able to impose proper actions (e.g. alerting hospitals or advising people to 
avoid traveling depending on their health problem. Overall, the system has the potential to contribute 
towards the improvement of the quality of life in urban areas.
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