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through the years till 2100, based on the variance of aver-
age monthly temperature and average rain height (due to 
climate change) for the months May–October based on var-
ious climate models. Historical data for the period 1984–
2004 were used to test the system for the areas of Chania 
and Ilia.

Keywords Fuzzy Chi Square test · Fuzzy cognitive 
maps · Correlation analysis · Forest fires · Climate change 
models

1 Introduction

1.1  The evolving nature of the proposed system

Greece has a very important forest capital, as 50% of its 
territory is covered by woodland. About 25% of it is char-
acterized by high vegetation coniferous and broadleaf 
high biodiversity, the remaining of low trees and shrubs 
near inhabited areas. Also there are approximately 2  mil-
lion acres of rangelands. Based on historical data of the 
Greek Ministry of Environment and Energy for the years 
1980–2008, the average annual burned areas in the country 
are more than 48,000 acres as a result of 1600 forest fires 
(http://www.ypeka.gr).

The precise quantification of future burnt areas using 
climate change models primarily requires a detailed spati-
otemporal analysis of historical data of the study area and 
the search for correlations between the involved parameters 
that create and maximize the problem.

This research effort proposes an innovative forest fire 
modeling system, based on hybrid Soft Computing and Sta-
tistical methods. The system’s core is built on the dynamic 
assessment of the dependences between the parameters 
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associated with the burned areas, through the employment 
of Fuzzy cognitive maps (FCM). The evolutionary nature 
of the model is due to the dynamic nature of the climate 
change phenomenon. Modeling the constant temporal vari-
ation of climatic factors through the years, presupposes the 
development and adoption of an Evolving approach and 
a respective Information System, capable to evaluate all 
kinds of effects on the burned area problem over time. The 
produced FCM manage to dynamically capture the extent 
of the problem and the degrees of dependences through 
sliding spatiotemporal windows.

1.2  Literature review

The contribution of the meteorological parameters, drought, 
topography and vegetation in forest fire risk assessment has 
been widely studied and supported by many research efforts 
(Fang et al. 2015; Stagl and Weidinger 2016; Jellouli et al. 
2016; Scasta et  al. 2016; Holsinger et  al. 2016; Fidanova 
and Marinov 2016; Armenteras et  al. 2016; Eberle et  al. 
2015; Calviño-Cancela et al. 2017).

Correlation analysis is a common approach for the 
determination of the feature vectors that determine and 
maximize forest fire risk (Hamadeh et al. 2017; Shan et al. 
2017). More specifically, Hamadeh et al. 2017 used correla-
tion methods such as statistical regression, Pearson, Spear-
man and Kendall’s Tau correlation to identify the most 
affecting parameters on fire ignition during the last 6 years 
in north Lebanon. The correlations of these attributes 
with fire occurrence were studied in order to develop the 
fire danger index. Shan et  al. (2017) used a linear regres-
sion model to analyze linear trends between climate and 
fire weather indices with time treated as an independent 
variable. Moreover correlation analysis was used to detect 
correlations between fire frequency, areas burned, and fire 
weather indices. Dugan and Baker (2015) reconstructed 
and compared tree recruitment pulses evident in forest age 
structures within plots with tree ring reconstructions of 
pluvials, drought, forest fires and fire quiescence (longer 
fire-free periods). They used Chi Square (ChiSq) analysis 
to test for sequential contingency of combinations and per-
mutations of pulse influences. Pasquet et al. (2015) evalu-
ated changes in species composition using the Sørensen 
dissimilarity index in species frequency, with Chi Square 
goodness-of-fit tests and in species cover using one-sample 
t-tests. Schoennagel et al. (2011) argued that the proportion 
of total tree and sapling establishment was significantly 
different among equal time periods based on a Chi Square 
test, with highest tree and sapling establishment during the 
pre-fire-suppression period (1835–1919).

Anezakis et  al. (2016a) proposed an Intelligent Soft 
Computing multivariable analysis system, to determine 
effective wild fire risk indices. More specifically they 

employed a Takagi–Sugeno–Kang rule based fuzzy infer-
ence system that produced partial risk indices (PRI) per 
factor and per subject category. These PRI were unified 
by using fuzzy conjunction operations (T-Norms) (Iliadis 
2007; Iliadis and Papaleonidas 2016) in order to develop 
pairs of risk indices (PARI). The system determined 
which PARI were closely related to the actual burned 
areas. Through Chi Square hypothesis testing, plus classi-
fication of the PARI and forest fire burned areas (in three 
classes).

Many research efforts have employed climate change 
models produced by the CMIP5 and CORDEX programs, 
in an effort to perform short term forest fire risk and burned 
areas forecast (Miao and Tian 2016; Kerr et al. 2016; Wang 
et al. 2017). Meteorological and topographic data related to 
historical periods, have been used for this purpose.

Also Davis et  al. (2017) modeled the normal fire envi-
ronment for occurrence of large forest wildfires for the 
Pacific Northwest Region of the US. Large forest wildfire 
occurrence data from the recent climate normal period 
(1971–2000) was used as the response variable and fire 
season precipitation, maximum temperature, slope, and 
elevation were used as predictor variables. A projection 
of their model onto the 2001–2030 climate normal period 
showed strong agreement between model predictions and 
the area of forest burned by large wildfires from 2001 to 
2015 (independent fire data). They then used downscaled 
climate projections for two greenhouse gas concentration 
scenarios and over 30 climate models to project changes 
in environmental suitability for large forest fires over the 
twenty-first century.

Moreover Tian et al. (2016) established a forest fire risk 
assessment model and index system based on the clas-
sic natural disaster risk model and available data, and the 
model was used to assess the forest fire risks in past and 
future. The future climate scenario data included outputs 
from five global climate models for RCPs respectively. 
Each component index of Fire Weather Index (FWI) system 
was calculated daily for each grid in 1987–2050 for the his-
torical observations and future climate scenarios according 
to the maximum temperature, minimum relative humidity, 
wind speed and daily precipitation.

According to the literature, there is a serious gap in the 
use of FCM for the determination of the parameters influ-
encing forest fire risk.

Štula et  al. (2011) developed a FCM providing aid in 
image post-processing decision support, aiming towards 
the false alarm reduction in a forest fire monitoring system. 
It has been shown that FCM based post processing deci-
sion support, can greatly improve the overall system per-
formance and diminish the false alarms rate. Carvalho et al. 
(2006) focused on the modeling and simulation of forest 
fire propagation using Dynamic Cognitive Map Cellular 
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Automata. Rule Based Fuzzy cognitive maps were used to 
represent the evolution of burning areas in Voronoi region.

Taheri et  al. (2016) extended the classical methods of 
analysis of a two-way contingency table to the fuzzy envi-
ronment. The α-cuts approach was used to extend the usual 
concepts of the test statistic, resulting in the use of fuzzy 
test statistic and fuzzy p values. In addition, some measures 
of association were extended to the fuzzy version in order 
to evaluate the dependence in such contingency tables.

Lin et al. (2012) used a Chi Square test of homogeneity 
to determine whether the cell probabilities of a multinomial 
are equal. This process of testing hypotheses was based 
on the assumption of two-valued logic. Huang (2012) 
compared ethnic majority and ethnic minority students’ 
perception in secondary school. This research used fuzzy 
statistical analysis as a research tool. Taheri and Hesamian 
(2011) tested the hypothesis of independence using a novel 
method of decision making based on the concept of fuzzy 
p value. Grzegorzewski and Szymanowski (2015) proposed 
a method for constructing a generalized version of the Chi 
Square test of homogeneity on fuzzy data. According to 
Gil et  al. (1988) if the hypothetical distribution involved 
unknown parameters, the extension of the Chi Square test 
required the estimation of those parameters from fuzzy 
data. Moreover, they proved that under certain assump-
tions the minimum inaccuracy principle of estimation from 
fuzzy observations provides a suitable method.

The above review clearly shows that there are efforts in 
the literature towards the fuzzification of the statistical Chi 
Square test. However to the best of our knowledge, such 
hybrid approaches have not been used in environmental 
risk modeling and more specifically for the case of forest 
fire risk.

1.3  General description and innovation elements

Given that the Chi Square test offers a bivalent logic esti-
mate regarding Independence or Dependence (InD/Dep) 
between the examined variables and it is unable to give the 
exact degree of dependence or independence, we propose 
a novel method to cover this gap and go one step further. 
As it has already been mentioned the proposed Fuzzy Chi 
Square test (FChiSq) fuzzifies the p values by producing 
proper Linguistics which express Low Medium or High 
degree of InD/Dep. In this way we go much further than 
binary results in a wider spectrum of outcomes. This is 
a big improvement in the approach which becomes more 
flexible and rational.

This research proposes an innovative system for the 
recording, analysis and study of the features related to 
forest fires. In this way it achieves a medium and long 
term forecasting of the extent of burned areas. More 
specifically, the system performs a symbolic descriptive 

representation and visualization of complex positive 
or negative correlations between meteorological, topo-
graphic and vegetation data to the severity of forest fires, 
with the development of Fuzzy cognitive maps. This is 
achieved by using historical data of the Ilia and Chania 
prefectures for the period 1984–2004.

Moreover, the output degree of positive or negative 
influence of the involved features is used to determine the 
fuzzy weights during the design of the FCM.

The model introduces a sophisticated method for the 
forecasting of burnt areas. This is done by consider-
ing the fluctuation of the average–minimum–maximum 

monthly temperature and average monthly rainfall values, 
as they are estimated by the climate models of the late 
project Coupled Model Inter-comparison Project Phase5 
(CMIP5) in the four climate change scenarios. The tem-
poral window was the long period up to the year 2100.

All of the data features included in the following 
Table 1 regarding the season (May–October 1984–2004) 
were introduced to obtain the FCM. More specifically, 
the data used to be connected, included the meteoro-
logical, topographic and vegetation values recorded at 
the site of each forest fire incident and additionally the 
monthly average values of the meteorological parameters. 
The aim was the determination of the relative changes in 
the connected features (reflecting changes in the values 
of the burned areas) caused by the differentiation of the 
meteorological parameters’ values.

The examination of various change scenarios related 
to the monthly meteorological parameters using climate 
models, contributed to the calculation of the burned areas 
extent for each climate change scenario applied. In this 
way we can estimate the future relative changes in all of 
the parameters affecting forest fire spread. This projection 
can be done based on monthly meteorological values till 
the year 2099. Thus, we can have a clear assessment of 
the changes in parameter values and burned areas every 
6  months (May–October) for each application scenario, 
based on the historical recorded fire incidents.

Table 1  Factors affecting fire behavior on a daily basis

Flammability of vegetation Monthly rainfall until the 
record of the rainfall day

Canopy density Previous month rainfall

Vegetation density Altitude

Air temperature Slope

Relative humidity Ground orientation

Wind speed Exposure

Daily rainfall Minimum monthly temperature

Average monthly temperature
Monthly rainfall

Maximum monthly temperature
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An investigation of all interactions between the fac-
tors affecting the behavior of forest fires was performed, 
in order to assess the association of them with the level of 
destructiveness of such incidents.

Initially, correlation analysis was employed for the 
determination of all potential positive and negative rela-
tions between the involved parameters. Moreover, Fuzzy χ2 
test was used to estimate real numbers corresponding to the 
degree of dependences among the independent features and 
the burned forest areas.

Additionally, previous research efforts of our team 
(Anezakis et  al. 2016a) have introduced four partial risk 
indices (PRI) derived from the fuzzy aggregation of 12 
parameters and leading to meaningful relationships and 
rules of correlations between them. More specifically, the 
Weather Risk Index (WRI) was constructed from the con-
tribution of temperature, humidity and wind speed. Corre-
spondingly the drought index (DRI) comprises of the daily 
plus the monthly precipitation and of the precipitation in 
the previous month. The topographic Risk index (TRI) is 
related to the slope to the altitude and to the exposure. The 
vegetation Risk index (VRI) is defined by the flammabil-
ity of forest species, the canopy density and the vegetation 
density. Our research has discovered correlations between 
the four above indices and the actual burned areas. Aneza-
kis et al. (2016a) has used data, originating from the period 
1984 to 2004 from the prefectures of Chania, Ilia and 
Kefalonia. The data related to the period 1984–2004 were 
collected from the forest inspections and from the Hellenic 
National Meteorological service. According to our research 
efforts (Anezakis et  al. 2016a) the following factors have 

been identified as playing a key role in the problem of for-
est fires in Greece.

It is quite supportive to mention that the work of Kailidis 
(Kailidis 1990) one of the most important scientists regard-
ing the forest fire problem in Greece is in total agreement 
with our feature model. Utilizing and analyzing in-depth 
studies in the raw meteorological, topographical and veg-
etative data of the areas concerned, the following catego-
ries were obtained (Bougoudis et al. 2015, 2016a, b). The 
results can be seen in the following Table 2.

Ilia (prefecture in Peloponnese) and Chania (prefecture 
in Crete island) have been chosen as the areas of interest. 
They have rich vegetation, they have protected areas (under 
Natura network) and their climate is dry and hot with low 
rain height.

Also, Chania is characterized by high touristic develop-
ment and growth with high land value. On the other hand, 
ancient Olympia is located in Ilia prefecture. Thus, it is an 
area of high cultural and touristic value. During the period 
1984–2014, totally 1397 wild fires occurred in Ilia, and 857 
in Chania.

We have employed fuzzy sets (Linguistics) for most of 
the involved features to properly determine their classes. 
This is a flexible, rational and effective way of representing 
real world concepts. However this approach was not pos-
sible for the parameters wind, slope and ground orienta-

tion exposure, due to the fact that they were classified and 
stored by using crisp boundaries in the initial database of 
the Greek Ministry of Environment and Energy. Thus it 
was not possible to obtain fuzzy sets. This particularity did 
not have a serious impact on the research carried out since 

Table 2  Classification of the involved parameters

Parameters Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Unified meteorological index Wind (bf) 0–l 1.1–4 4.1–7 7.1–9 >9.1

Air temperature

Relative humidity

Minimum monthly tempera-
ture

Low risk Medium risk High risk

Maximum monthly tempera-
ture

Monthly rainfall

Unified Topographic index Slope (%) 0–20 21–40 41–60 61–80 81–100 >100

Ground orientation exposure Unspecified North South East West

Altitude Low Medium High

Canopy density Absent Rare Full

Vegetation index Vegetation density Absent Rare canopy <0.4 Dense canopy >0.4

Flammability of vegetation Low risk Medium risk High risk

Drought index Rainfall (daily, monthly. previ-
ous month)

Monthly rainfall until the 
record of the

Low Medium High
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each class contains different boundary values and distinct 
characteristics. For example, class 1 contains the small-
est wind intensity values and class 5 the highest ones. The 
form of these classes does not pose a problem as we assign 
the Linguistic very low risk to Class 1 and very high risk to 
class 5.

Each class related to the Ground Orientation Exposure 
feature, indicates a different degree of forest fire risk where 
southern exposures being considered as the most dangerous 
one.

The Fire Ignition Indicator (FIGI) which emerges by 
combining the effect of temperature and humidity and the 
Spread Index which considers the effect of wind and slope 
(SPRI) have been used to produce significant evidence of 
forest fire risk. In a previous research effort of our team 
Anezakis and Iliadis (2015) have found that the SPRI is 
“High” in the 30–50% of the cases, whereas the FIGI has 
shown smaller high and medium hazard rates.

than the value of the Chi Square distribution then we accept 
 H0 otherwise we reject it Greenwood and Nikulin (1996).

The calculated p value prices include the possibility of 
error in the range [0–1]. Each error value is multiplied 
by 10, raised to the negative sixth power 

(

pvalue × 10
−6
)

. The p value equal to a is considered as boundary and 
it cannot determine the dependence or independence 
between the variables. The dependence is defined with p 
values <a, whereas the independence with p values >a.

In the next step the p values are fuzzified by the use of 
Fuzzy Chi Square test, according to the specified confi-
dence interval and to the significance level. This process of 
course requires proper Fuzzy Membership functions (FMF) 
which were developed for the dependence (p value <a) in 
the closed interval [0–0.049999] and for the independ-
ence (p value >a) in the closed interval [0.050001–1]. This 
was done to produce the proper Linguistics. The following 
MATLAB commands were used to enhance the above for 
the Linguistics Low, Medium and High (Table 3).

HighDependence =trimf (dependence, [−0.020000 0.000000 0.020000])

MediumDependence =trimf (dependence, [0.005000 0.025000 0.045000])

LowDependence =trimf (dependence, [0.030000 0.049999 0.070000])

LowIndependence =trimf(independence, [−0.329900 0.050001 0.430001])

MediumIndependence =trimf(independence, [0.145100 0.525100 0.905000])

HighIndependence =trimf(independence, [0.620000 1.000000 1.380000]),

Table 3  Indicative degrees of membership of the dependency lin-
guistics (Interval [0–0.049999])

p value Linguistics High Medium Low

0 High 1 0 0

0.00001 High 0.99945 0 0

0.012499 High 0.37505 0.37495 0

0.0125 High/medium 0.375 0.375 0

0.012501 Medium 0.37495 0.37505 0

0.03 Medium 0 0.75 0

0.035 Medium 0 0.5 0.2500125

0.037499 Medium 0 0.37505 0.374968

0.0375 Low 0 0.375 0.3750187

0.049999 Low 0 0 1

2  Theoretical frameworks and methodology

2.1  Chi Square Test and Fuzzy Chi Square test

The Chi Squared hypothesis-testing is a non-parametric 
statistical test in which the sampling distribution of the test 
statistic is a Chi Square distribution when the null hypoth-
esis is true. The null hypothesis  H0 usually refers to a gen-
eral statement or default position that there is no relation-
ship between two measured phenomena, or no difference 
among groups. The  H0 is assumed to be true until evidence 
suggest otherwise (Corder and Foreman 2014; Greenwood 
and Nikulin 1996). The statistical control index used for 
this assessment is the test statistic χ2.

where  fe is the expected frequency and  fo the observed one. 
The degrees of freedom are estimated as follows (based on 
the rXc table of labeled categories):

For the  H0 the critical values for the test statistic χ2 
are estimated by the χ2 distribution after considering the 
degrees of freedom. If the result of the test statistic is less 

(1)�
2 =

∑

(fo − fe )
2

fe ,

(2)df = (r − 1)(c − 1),

It should be specified that trimf is the MATLAB com-
mand for the Triangular fuzzy membership function 
(Table 4).

2.2  Correlation analysis

In order to test the level of linear relationship between 
meteorological parameters and air pollutants, the typical 
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relativity analysis was performed, using the parametric 
correlation coefficient of Pearson (r). The Pearson linear 
correlation coefficient between two parameters X and Y 
is defined based on a sample of n pairs of observations 
(xi, yi) i = 1,2,…,n, and it is denoted as r (X, Y) or more 
briefly as r. The variables x̄ and ȳ are the averages of  (xi, 
 yi). The r is the covariance (CovX,Y) of the two varia-
bles divided by the product of their standard deviations 
(sx,sy). It is given by the following Eq. (1):

The correlation coefficient (Rodgers and Nicewander 
1988) is a pure number in the interval [−1, 1]. More spe-
cifically, when 0 < r ⩽ 1,then Χ, Υ are linearly positively 
correlated and when −1 < r < 0, then Χ, Υ are negatively 
correlated. When r = 0 or close to zero there is no correla-
tion between them.

2.3  Fuzzy cognitive maps

FCM are fuzzy-graph structures. In the model of a fuzzy 
cognitive map, the nodes are linked together by edges and 
each edge connecting two nodes describes the change in the 
activation value. The direction of the edge implies which 
node affects the other. The sign of the causality relationship 
is positive if there is a direct influence, negative if there 
is an inverse influence relation and zero if the two nodes 
are uncorrelated. The causal relationships are described by 
the use of fuzzy linguistics and they are fuzzified by using 
membership functions taking values in the closed interval 

(3)

r =

sxy

sxsy

=

∑v

i=1

�

xi − x̄
��

yi − ȳ
�

�

∑v

i=1

�

xi − x̄
�2

�

∑v

i=1

�

yi − ȳ
�2

=

∑v

i=1
xiyi − vx̄ȳ

�

∑v

i=1
x2

i
− vx̄2

�

∑v

i=1
y2

i
− vȳ2

.

[−1, 1] (Papageorgiou and Salmeron 2013; Salmeron and 
Froelich 2016; Vidal et al. 2015).

Unlike the majority of complex dynamic systems, char-
acterized by nonlinearity and high uncertainty, the Fuzzy 
cognitive maps use advanced learning techniques in order 
to choose appropriate weights for the causal connections 
between the examined variables. This is done in order to 
reflect the examined problem with absolute realism.

Combining the theoretical background of fuzzy logic, 
FCM cover the comparison and characterization purpose 
of the reference sets, towards modeling and solving com-
plex problems for which there is no structured mathemati-
cal model. The FCM constitute a very strong tool towards 
modeling multi-parametric environmental risk cases like 
air pollution or even climate change (Anezakis et al. 2016b; 
Anezakis 2015).

2.4  Climate change scenarios used

Climate change is the most important environmental risk 
globally. Our team has already modeled complex systems 
related to climate change and its direct impacts includ-
ing increased air pollutants concentrations in the atmos-
phere (Bougoudis et  al. 2014, 2015, 2016a, b; Aneza-
kis et  al. 2016b; Anezakis 2015; Iliadis et  al. 2014). The 
Intergovernmental named “Committee International Panel 
on Climate Change” (IPCC) which deals with the assess-
ment of climate change is an international scientific body 
which until today has published five reports. The aim of 
the program (CMIP5) that was defined in the Fifth Assess-
ment Report on Climate Change (IPCC-AR5, Assessment 
Report 5) was the design of climate models, aiming to esti-
mate future climatic changes both in the short and in the 
long range. This objective is achieved by using Earth Sys-
tem Models (ESM) and global climate ocean–atmosphere 
coupling models “Atmospheric-Ocean General Circulation 
Models” (AOGCMs).

The latest report (AR5) finds significant improvement 
in the models to analyze mechanisms of temperature and 
precipitation, in the study of anthropogenic impact on the 
environment and in the study of the biochemical cycles. 
According to the report, four future scenarios of Green-

House Gases (GHGs) concentration in the atmosphere have 
been developed. These scenarios are known in the literature 
under the RCPs acronym (Representative Concentration 
Pathways).

In the RCP2.6 scenario, a small increase in the emis-
sions of greenhouse gases till the mid of the decade, would 
result in an increase of the solar radiation (SR) as high 
as 3 W/m2 by 2050 and then in a decrease to the level of 
2.6 W/m2 by 2100.

Table 4  Indicative degrees of membership of the independency lin-
guistics (Interval [0.050001–1])

p value Linguistics Low degree 
of member-
ship

Medium 
degree of 
membership

High degree 
of member-
ship

0.050001 Low 1 0 0

0.05001 Low 0.99997 0 0

0.287550 Low 0.374871 0.374868 0

0.287551 Medium 0.374868 0.374871 0

0.4301 Medium 0 0.75 0

0.71505 Medium 0 0.5 0.25013157

0.762518 Medium 0 0.375051 0.375047

0.762519 High 0 0.375048 0.375050

1 High 0 0 1
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In the scenarios RCP4.5 and RCP6.0, a moderate 
increase in the greenhouse gases emissions, would result 
in the increase of SR. In RCP4.5 the solar radiation values 
stabilize at about 4.5 W/m2 before 2100 and respectively in 
the RCP6.0 they are stabilized at 6.0 W/m2 after 2100.

Finally, in the most extreme scenario (RCP8.5) with 
rapid and continuous increase of the GHGs the SR rises as 
high as 8.5 W/m2 and continues to rise after 2100. The cli-
mate models bcc_csm1_1, bcc_ csm1_1_m, ccsm4, cesm1_

cam5, csiro_mk3_6_0, fio_esm, gfdl_cm3, gfdl_esm2m, 

giss_e2_h, giss_e2_r, ipsl_cm5a_mr, miroc_esm, miroc_

esm_chem, miroc5, mri_cgcm3, noresm1_m of the CMIP5 
project were employed in this research, as the most modern 
and reliable for finding changes in temperature and precipi-
tation for the time period 2020–2099 Scafetta and Wilson 
(2014).

3  Description of the proposed methodology

The basic proposed modeling methodology of the forest 
fires problem is based on the determination of the corre-
lations between the independent and depended variables 
that influence the break and favor the spread of forest fires. 
It employs and proposes a hybrid Fuzzy Chi Square test 
approach, which calculates the degree of correlation of two 
variables, based on the fuzzy membership grades of the p 
values to properly designed fuzzy sets.

Moreover, various climate models obtained by the pro-
ject (CMIP5) were used for the forecasting of the burned 
areas values till 2100. This projection is performed by 
using Fuzzy cognitive maps. The entire algorithmic process 
involves seven distinct stages in each study area (Ilia and 
Chania), which are discussed below. In all of the follow-
ing steps data for the period May–October 1984–2004 were 
used.

Step 1: Initially, 16 parameters related to wildfires are 
evaluated. It should be clarified that each distinct parameter 
has a significant influence in the extent of the burned areas. 
A hybrid fuzzy Chi Square statistical approach is employed, 
aiming to determine the actual degree of dependence or 
degree of independence of the features, by fuzzifying the p 
value values in the closed interval [0, 1].

The fuzzification of the p values is performed after the 
statistical test (Test Statistic). The hybrid Fuzzy Chi Square 
test indicates the degree membership of the p values to 
the Linguistics Low, Medium, High. In this flexible way, 
we can obtain a more accurate judgment of the degree of 
dependence or independence.

Correlation analysis has been performed between the 
variables under consideration: humidity (H), air tempera-
ture (AT), wind (W), daily rainfall (DR), previous month 
rainfall (PMR), monthly rainfall until the record of the 

rainfall day (MRRRD), altitude (A), slope (S), ground ori-
entation exposure (GOE), canopy density (CD), vegeta-
tion density (VD), flammability of vegetation (FV), burned 
areas (BA), minimum monthly temperature (MINMT), 
maximum monthly temperature (MAXMT), average 
monthly temperature (AMT), monthly rainfall (MR). 
https://ams.confex.com/ams/7firenortheast/webprogram/
Paper126829.html.

Through this fuzzy process, we have managed not only 
to model the Linguistics of Positive or Negative correlation 
but we have obtained the level of correlation as well. This 
approach determines the level of influence between the 
involved parameters. Finally, the correlation values (posi-
tive or negative) were used as fuzzy weights in the design 
of the FCM.

Step 2: Partitioning of the variables with negative corre-
lation from the ones with positive correlation is performed 
with the use of the assigned Linguistics over the initial 
crisp values. Three successive and overlapping triangular 
membership functions are employed in order to classify 
the correlations to the corresponding fuzzy sets (Linguis-
tics) “Low”, “Medium” and “High”. The following Table 5 
presents clearly the fuzzification of the correlation results 
(assignment of the corresponding Linguistics).

Step 3: All of the associated parameters are added and 
named and then they are interconnected by synapses to 
create the causal positive or negative correlations. The 
design of the FCM following the input and the intercon-
nection of all correlated variables, based on the Linguistics 
that emerged after the fuzzification of the crisp numerical 
values.

The fuzzification of the correlations, i.e. the descrip-
tion of each interface in verbal common terms was accom-
plished by selecting six Linguistics namely: three positive 
scales [low positive (+), middle positive (++), high posi-
tive (+++)]. Three negative scales [low negative (−), mid-
dle negative (−−), high negative (−−−)] corresponding to 
fuzzy weights (Table 6).

The algorithm simulating the interactions between two 
nodes of the FCM was implemented by performing a repet-
itive calculation of the new link value corresponding to 
each node. This value depends on the weight of the node 
from which an edge begins and also on the weight of the 
edge joining the two nodes. The transfer function estimates 
the new value of each node and the weight of each con-
nection. The negative type of influence is depicted with 
an orange color and the positive with a blue color. The 
degree of influence depends on the thickness of each line 
(Table 7). The higher the influence the thicker the line, as 
you can see in the Fig. 1.

The degree of influence between some variables 
depicted in the Fig. 1.
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Step 4: The changes in the values of temperature and 
precipitation due to climate change (CC) for the period 
2020 till 2099 are fuzzified in order to obtain the corre-
sponding linguistics. The whole process includes extended 
testing of various scenarios (RCP2.6, RCP4.5, RCP6.0, 
RCP8.5) for the months May to October for the period 
1984 till 2004.

Step 5: Partitioning of the scenarios variables, based 
on the changes in minimum-average-maximum monthly 
temperature and monthly precipitation, according to the 
16 climate models. Moreover, the obtained crisp numeri-
cal values are fuzzified, with the use of eight triangular 

fuzzy membership functions (FMF) and 16 semi-triangu-
lar fuzzy membership functions (S-FMF). Two of FMF 
and four of S-FMF are related to Average Monthly tem-
perature changes in the closed interval [−1.79, +9.83] °C. 
The first S-FMF, the FMF and the last S-FMF cover the 
reduction in the interval [−1.79, 0]. These FMF corre-
spond to the fuzzy sets: low negative (−), middle nega-
tive (−−), high negative (−−−), whereas the linguistic 
high negative (−−−) contains values close to the highest 
estimated change. The next S-FMF, the FMF and the last 
S-FMF were used for the increase of the average monthly 
temperature. These FMF correspond to the low positive 
(+), middle positive (++), high positive (+++), with the 
high positive (+++) being close to the maximum temper-
ature change. In the same way, two FMF and four S-FMF 
were developed for the other parameters (Tables 8, 9, 10, 
11, 12, 13).

Step 6: It includes extended testing of various scenar-
ios based on the potential changes in the temperature and 
precipitation and moreover its influence in the burned 
areas of Ilia and Chania. The fuzzy Linguistics produced 
by the use of climate change scenarios are defuzzified in 

Table 5  Fuzzification of the parameters correlation for the prefecture of Ilia

H AT W DR PMR MRRRD A S GOE CD VD FV BA MINMT MAXMT AMT MR

H 1 −− − + + + − + − + + + − − − − +

AT −− 1 + − −− − − + − + − − + ++ ++ ++ −

W − + 1 + − + + + − − + − + − − − +

DR + − + 1 + + + − − + − + − − − − +

PMR + −− − + 1 + + + + + + + − −− −− −− +

MRRRD + − + + + 1 − − + + + − − − − − +

A − − + + + + 1 + + − − − + − − − +

S + + + − + − + 1 + + + + + + + + −

GOE − − − − + + + + 1 + + + + − + − +

CD + + − + + + − + + 1 ++ + + + − + −

VD + − + − + + − + + ++ 1 + + − − − −

FV + − − + + − − + + + + 1 + − − - −

BA − + + − − − + + + + + + 1 + + + −

MINMT − ++ − − −− − − + − + − − + 1 +++ +++ −−

MAXMT − ++ − − −− − − + + − − − + +++ 1 +++ −−

AMT − ++ − − −− − − + − + − − + +++ +++ 1 −−

MR + − + + + + + − + − − − − −− −− −− 1

Table 6  Effect and value of six 
linguistics which corresponding 
to fuzzy weights

Effect Value

High positive (+++) 1

Middle positive (++) 0.5

Low positive (+) 0.25

Low negative (−) −0.25

Middle negative (−−) −0.5

High negative (−−−) −1

Table 7  The degree of 
influence between some 
variables for Chania area 
(Crete)

BA MINMT MAXMT AMT MR

Burned areas (BA) 1 + + + +

Minimum monthly temperature (MINMT) + 1 +++ +++ −−

Maximum monthly temperature (MAXMT) + +++ 1 +++ −−

Average monthly temperature (AMT) + +++ +++ 1 −−

Monthly rainfall (MR) + −− −− −− 1
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Fig. 1  A FCM between average 
monthly temperature, monthly 
rainfall, minimum monthly 
temperature, maximum monthly 
temperature and burned areas 
for Chania Prefecture

Fig. 2  Flowchart of proposed methodology

Table 8  FMF and S-FMF 
boundaries of average monthly 
temperature, and monthly 
rainfall for Ilia area

Fuzzy sets corresponding to average monthly 
temperature and monthly rainfall changes

FMF and S-FMF boundaries 
in the closed interval
[−1.79, +9.83] °C

FMF and S-FMF 
boundaries in the closed 
interval
[−12.68, +33.71] mm

−−− (S-FMF) −1.79 −1.074 −12.68 −7.608

−− (FMF) −1.611 −0.895 −0.179 −11.41 −6.34 −1.268

− (S-FMF) −0.716 0 −5.072 0

+ (S-FMF) 0 3.932 0 13.48

++ (FMF) 0.983 4.915 8.847 3.376 16.86 30.34

+++ (S-FMF) 5.898 9.83 20.23 33.71

Author's personal copy
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order to obtain the forecast of the potential future crisp 
values of the burned areas. In this way we perform a pro-
jection in the distant future for the problem of environ-
mental degradation due to forest fires.

For the defuzzification the centroid function was used 
which estimates the center of gravity of the fuzzy set distribu-
tion (Van Leekwijck and Kerre 1999; Madau and Feldkamp 
1996).

Step 7: The index of the magnitude of change in the 
burned areas is calculated based on the amount of relative 
change of each parameters value (Bennett and Briggs 2005; 
Törnqvist et al. 1985) (Fig. 2).

(4)x =
∫ x ⋅ �(x)dx

∫ �(x)dx
.

(5)
FinalValue − InitialValue

InitialValue
.

4  Results and discussion

For the Ilia prefecture, it was discovered that the burned 
areas (BUAR) have a clear dependence from the tempera-
ture and the Ground Orientation exposure. On the other 
hand, they were highly independent from the moisture, 
daily and monthly rain height (till the exact rainy day) 
and flammability. The highest dependence with degree 
of membership (DOM) equal to 1 was recorded between 
BUAR, wind and exposition. The highest independence 
with DOM equal to 0.998326 was found between BUAR 
and daily rainfall.

For the Chania prefecture, there has proven to be a 
high dependence between the BUAR and moisture, wind, 
slope and exposition, whereas burned areas were highly 
independent from daily rain height (till the day of the 
rainfall) monthly rain height, rain height of the previous 
month, altitude and flammability of vegetation.

Table 9  FMF and S-FMF 
boundaries of Minimum 
monthly temperature and 
Maximum monthly temperature 
for Ilia area

Fuzzy sets corresponding to minimum monthly 
temperature and maximum monthly temperature 
changes

FMF and S-FMF 
boundaries in the closed 
interval
[−2.66, +14.99] °C

FMF and S-FMF 
boundaries in the closed 
interval
[−6.04, +8.85] °C

−−− (S-FMF) −2.66 −1.596 −6.04 −3.624

−− (FMF) −2.394 −1.33 −0.2652 −5.436 −3.02 −0.6004

− (S-FMF) −1.064 0 −2.416 0

+ (S-FMF) 0 5.996 0 3.54

++ (FMF) 1.499 7.495 13.5 0.885 4.425 7.97

+++ (S-FMF) 8.994 14.99 5.31 8.85

Table 10  FMF and S-FMF 
boundaries of average monthly 
temperature, and monthly 
rainfall for Chania area

Fuzzy sets corresponding to average monthly 
temperature and monthly rainfall changes

FMF and S-FMF boundaries 
in the closed interval
[−2.05, +6.97] °C

FMF and S-FMF 
boundaries in the closed 
interval
[−4.37, +13.66] mm

−−− (S-FMF) −2.05 −1.23 −4.37 −2.622

−− (FMF) −1.845 −1.025 −0.2038 −3.933 −2.185 −0.4345

− (S-FMF) −0.82 0 −1.748 0

+ (S-FMF) 0 2.788 0 5.464

++ (FMF) 0.697 3.485 6.277 1.366 6.83 12.3

+++ (S-FMF) 4.182 6.97 8.196 13.66

Table 11  FMF and S-FMF 
boundaries of minimum 
monthly temperature and 
maximum monthly temperature 
of Chania area

Fuzzy sets corresponding to minimum monthly 
temperature and maximum monthly temperature 
changes

FMF and S-FMF 
boundaries in the closed 
interval
[−0.69, +9.93] °C

FMF and S-FMF 
boundaries in the closed 
interval
[−6.28, +4.00] °C

−−− (S-FMF) −0.69 −0.414 −6.28 −3.768

−− (FMF) −0.621 −0.345 −0.0687 −5.652 −3.14 −0.6255

− (S-FMF) −0.276 0 −2.512 0

+ (S-FMF) 0 3.972 0 1.6

++ (FMF) 0.993 4.965 8.941 0.4 2 3.602

+++ (S-FMF) 5.958 9.93 2.4 4
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The highest dependency with DOM equal to 1 was 
obtained for wind and Ground Orientation exposure. The 
highest independency with DOM as high as 0.999874, was 
obtained between BUAR and daily rainfall.

It is worth mentioning that in both areas the burned 
areas were mostly related to the wind and to the slope.

4.1  Future climate projections in the examined areas

After applying various CC scenarios (including vari-
ous potential changes in minimum–average–maximum 
monthly temperature and monthly rainfall) under the 16 
climate models for Ilia and Chania, the forecasted Relative 

Table 12  Fuzzy Chi Square test application between burned areas and involved features in Ilia area

Statistic test p value Linguistics of p value Degree of 
membership of 
linguistics

Burned areas—humidity 2.7615 0.838125 High independence 0.574013

Burned areas—air temperature 22.2546 0.001089 High dependence 0.94555

Burned areas—wind 33.1424 <0.00001 High dependence 1

Burned areas—daily rainfall 0.3255 0.999364 High independence 0.998326

Burned areas—monthly rainfall until the record of the 
rainfall day

0.3491 0.999222 High independence 0.997953

Burned areas—previous month rainfall 1.2839 0.732965 Medium independence 0.452843

Burned areas—altitude 6.1051 0.411521 Medium independence 0.701108

Burned areas—slope 7.7055 0.260484 Low independence 0.446097

Burned areas—ground orientation exposure 47.606 <0.00001 High dependence 1

Burned areas—canopy density 5.8013 0.121691 Low independence 0.811342

Burned areas—vegetation density 6.39 0.094105 Low independence 0.883937

Burned areas—flammability of vegetation 2.3163 0.888439 High independence 0.706418

Burned areas—minimum monthly temperature 7.7063 0.26042 Low independence 0.446266

Burned areas—maximum monthly temperature 9.6061 0.142251 Low independence 0.757237

Burned areas—monthly rainfall 1.2592 0.97386 High independence 0.931211

Burned areas—average monthly

Temperature 9.2173 0.161722 Low independence 0.705997

Table 13  Fuzzy Chi Square test application between burned areas and involved features in Chania area

Statistic test p value Linguistics of p value Degree of 
membership of 
linguistics

Burned areas—humidity 31.267 0.000023 High dependence 0.99885

Burned areas—air temperature 15.8513 0.014575 Medium dependence 0.47875

Burned areas—wind 38.7908 <0.00001 High dependence 1

Burned areas—daily rainfall 0.1347 0.999952 High independence 0.999874

Burned areas—monthly rainfall until the record of the 
rainfall day

0.3615 0.948081 High independence 0.863371

Burned areas—previous month rainfall 0.1798 0.980783 High independence 0.949429

Burned areas—altitude 1.2228 0.975746 High independence 0.936174

Burned areas—slope 17.5168 0.00756 High dependence 0.622

Burned areas—ground orientation exposure 80.7685 <0.00001 High dependence 1

Burned areas—canopy density 2.8219 0.419915 Medium independence 0.723197

Burned areas—vegetation density 3.5055 0.320046 Medium independence 0.460384

Burned areas—flammability of vegetation 2.9897 0.810144 High independence 0.500379

Burned areas—minimum monthly temperature 5.0471 0.537781 Medium independence 0.96662

Burned areas—maximum monthly temperature 4.0712 0.667042 Medium independence 0.62637

Burned areas—monthly rainfall 11.4782 0.074674 Low independence 0.935071

Burned areas—average monthly temperature 7.012 0.319735 Medium independence 0.459566
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Changes (RC) in the burned areas were obtained. Finally, 
512 scenarios were developed by the combination of 
minimum–average–maximum monthly temperature and 
monthly rainfall for Ilia and Chania. In addition, a number 
of scenarios have been used to reduce the uncertainties due 
to the different configurations used by the distinct climatic 
models and to the uncertainty of greenhouse gas concentra-
tions in the future.

The results of a set of simulations of different climate 
models combined with various scenarios of greenhouse gas 
emissions were used to verify the reliability of temperature 
and rainfall changes.

The climate models of the CMIP5 program provide a 
specific set of simulations aiming in the following:

1. The assessment of the results of the various established 
models, for the estimation of the present climate condi-
tions.

2. The short term or long term future climate changes 
estimations.

3. Understanding the factors responsible for the differ-
ences between the models’ results.

The experiments used are related to long term simula-
tions which cover periods of centuries and they accept 
results of coupled ocean–atmosphere models (AOGCMs) 

as input. In this way they reach safe and reliable 
conclusions.

The relative change in the values of the burnt areas and 
other interconnected parameters was calculated based on 
historical data for the years 1984–2004, which were used 
as the initial values required by Eq. (5). The application of 
various climate models and scenarios helped in finding the 
variations of monthly climatic parameters (MCLIP) for the 
period 1984–2100. These changing values of the MCLIP 
were the final ones used by Eq. (5). Knowing the initial and 
the final values of the MCLIP we have obtained the frac-
tion of Eq.  (5) which represents the degree of the relative 
change. All relative changes of the involved features were 
calculated based on the positive or negative causal links in 
the Fuzzy Cognitive Map modeling process and also by the 
final output of Eq. (5) which produces the positive or nega-
tive variation of each feature from its initial value.

Attempting a thorough presentation of the most signifi-
cant changes observed in the prefecture of Ilia from May to 
October to 2100 (Table 14), it is evident that a high increase 
of the maximum (+8.85  °C), minimum (+14.99  °C) and 
average (+9.83  °C) monthly temperature, in combination 
with a middle reduction (−6.34 mm) of the monthly rain-
fall, contributes significantly to the increase of the burned 
areas (ID12).

Table 14  Relative changes of burned areas for Ilia based on the climate change scenarios

ID Average monthly tem-
perature

Minimum monthly 
temperature

Maximum monthly 
temperature

Monthly rainfall H AT W DR BA

1 High negative 
(−1.79 °C)

Low positive (0 °C) High negative 
(−6.04 °C)

High positive 
(+33.71 mm)

0.42 −0.61 0.23 0.45 −0.36

2 Medium negative 
(−0.895 °C)

Low positive (0 °C) High negative 
(−6.04 °C)

High positive 
(+33.71 mm)

0.39 −0.58 0.21 0.42 −0.32

3 Medium negative 
(−0.895 °C)

Low positive (0 °C) Medium negative 
(−3.02 °C)

Medium positive 
(+16.86 mm)

0.39 −0.58 0.21 0.41 −0.32

4 High negative 
(−1.79 °C)

Low positive (0 °C) Medium negative 
(−3.02 °C)

High positive 
(+33.71 mm)

0.39 −0.58 0.21 0.41 −0.32

5 High negative 
(−1.79 °C)

Low positive (0 °C) High negative 
(−6.04 °C)

Medium positive 
(+16.86 mm)

0.4 −0.59 0.2 0.42 −0.32

6 High positive 
(+9.83 °C)

Medium positive 
(+7.49 °C)

Medium positive 
(4.425 °C)

Low negative (0 mm) 0.01 −0.02 −0.01 0 0

7 Medium positive 
(+4.915 °C)

Low positive (0 °C) High positive (8.85 °C) Medium negative 
(−6.34 mm)

0.01 −0.05 −0.01 0 0.01

8 Medium positive 
(+4.915 °C)

Medium positive 
(+7.495 °C)

Low positive (0 °C) High negative 
(−12.68 mm)

0.04 −0.09 −0.02 0.01 0.01

9 High positive 
(+9.83 °C)

Medium positive 
(+7.495 °C)

Medium positive 
(4.425 °C)

Medium negative 
(−6.34 mm)

−0.01 0 −0.02 −0.02 0.02

10 Medium positive 
(+4.915 °C)

Medium positive 
(+7.495 °C)

Medium positive 
(4.425 °C)

High negative 
(−12.68 mm)

0.01 −0.04 −0.03 −0.01 0.02

11 Medium positive 
(+4.915 °C)

Low positive (0 °C) High positive (8.85 °C) High negative 
(−12.68 mm)

−0.02 −0.01 −0.04 −0.04 0.03

12 High positive 
(+9.83 °C)

High positive 
(+14.99 °C)

High positive (8.85 °C) Medium negative 
(−6.34 mm)

−0.1 0.13 −0.07 −0.1 0.06
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More specifically, the application of the most extreme 
scenario (ID12) for the period 2080–2099 produces an 
important increase of the daily maximum temperature by 
+0.13 a simultaneous decrease of the average moisture and 
rainfall by −0.1 and a monthly rainfall reduction till the day 
of the next rainy day by −0.11. The increase of the daily 
temperature by 0.13 is interpreted as the degree of the rela-
tive change of the daily temperature between the historical 
period 1984–2004 and the future one of 2080–2099.

The highest increase in the burned areas (ID12) was 
based in the application of two climate models namely, 
miroc_esm and miroc_esm_chem for the period 2080–2099 
for the most extreme case (RCP8.5).

Based on the scenarios (ID7–ID12) the increase of the 
burned areas is produced by the following combinations:

C1: Moderate (+4.915 °C) or high (+9.83 °C) increase 
of the average monthly temperature.

C2: Low (0  °C), average (+7.495  °C) or high 
(+14.99 °C) increase of the minimum monthly temperature.

C3: Low (0  °C), average (4.425  °C) or high increase 
(+8.85 °C) of the maximum monthly temperature.

C4: Average (−6.34 mm) or high (−12.68 mm) decrease 
of the monthly rainfall.

On the other hand, a high decrease of the average and 
maximum monthly temperature by −1.79 C and −6.04 °C 
respectively, combined with a minor increase by (0.001 °C) 
of the minimum monthly temperature and with a high 

increase of the monthly rainfall by +33.71 mm would result 
in the highest reduction of the burned areas (ID1).

The highest reduction of the burned areas by (−0.36) is 
directly related to the important decrease of the daily aver-
age temperature by (−0.61) and it is also seriously con-
nected to the moisture increase by (+0.42) and to the daily 
rainfall by (+0.45 giss_e2_h) climate model appeared to 
have the highest decrease of the burned areas for the period 
2040–2059 and 2080–2099. The same thing also happened 
for the model giss_e2_r for the time interval 2060–2079. 
It should be mentioned that both models had the highest 
reduction, based on the most moderate climate change sce-
nario which is the RCP2.6.

Based on the scenarios (ID1–ID5) the highest reduction 
of the burned areas is related to the following combinations:

C1:  Medium (−0.895 °C) or high (−1.79 °C) decrease of 
the average monthly temperature.

C2:  Low (0.001  °C) increase of the minimum monthly 
temperature.

C3  Medium (−3.02 °C) or high (−6.04 °C) decrease of 
the maximum monthly temperature

C4  Medium (+16.86 mm) or high (33.71 mm) increase 
of the monthly rainfall

Tables  14 and 15 presents the most important of the 
forecasted values which are Humidity (H), Air Temperature 

Table 15  Relative changes of burned areas for Chania based on the climate change scenarios

ID Average monthly tem-
perature

Minimum monthly 
temperature

Maximum monthly 
temperature

Monthly rainfall H AT W DR BA

1 High negative 
(−2.05 °C)

High negative 
(−0.69 °C)

Medium negative 
(−3.14 °C)

Low positive (0 mm) 0.22 −0.45 0.07 0.21 −0.14

2 High negative 
(−2.05 °C)

Low positive (0 °C) High negative 
(−6.28 °C)

Low negative (0 mm) 0.15 −0.33 0.05 0.14 −0.12

3 High negative 
(−2.05 °C)

Medium negative 
(−0.345 °C)

Medium negative 
(−3.14 °C)

Low positive (0 mm) 0.2 −0.39 0.06 0.19 −0.12

4 Low positive (0 °C) Medium positive 
(+4.965 °C)

Medium negative High positive 
(+13.66 mm)

0.1 −0.15 0.04 0.09 −0.01

5 Medium positive 
(+3.485 °C)

Medium positive 
(+4.965 °C)

Low negative (0 °C) Low positive (0 mm) 0 −0.03 0 0 −0.01

6 Medium positive 
(+3.485 °C)

Medium positive 
(+4.965 °C)

Low negative (0 °C) Medium positive 
(+6.83 mm)

0.02 −0.04 0.01 0.02 −0.01

7 High positive 
(+6.97 °C)

High positive 
(+9.93 °C)

High positive (4 °C) High negative 
(−4.37 mm)

−0.32 0.23 −0.19 −0.22 −0.01

8 medium positive 
(+3.485 °C)

Medium positive 
(+4.965 °C)

Medium negative 
(−3.14 °C)

Medium positive 
(+6.83 mm)

0.04 −0.08 0.02 0.04 −0.01

9 Medium positive 
(+3.485 °C)

Medium positive 
(+4.965 °C)

Low negative (0 °C) Low positive (0 mm) 0 −0.03 0 0 −0.01

10 Medium positive 
(+3.485 °C)

High positive 
(+9.93 °C)

Low negative (0 °C) Medium positive 
(+6.83 mm)

−0.02 0.02 0 −0.02 0

11 Medium positive 
(+3.485 °C)

High positive 
(+9.93 °C)

Medium positive (2 °C) Low negative (0 mm) −0.16 0.14 −0.08 −0.11 0
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(AT), Wind (W), Daily Rainfall (DR) and Burned areas 
(BA).

In the Chania prefecture (Crete) there were minor 
changes in the number of burned areas. (Table  15). The 
highest reduction (ID1) of the burned area by (−0.14) came 
from the application of the following conditions

C1:  High reduction (−2.05  °C) of the average monthly 
temperature

C2:  High reduction (−0.69 °C) of the minimum monthly 
temperature

C3:  Moderate reduction (−3.14  °C) of the maximum 
monthly temperature

C4:  Minor increase (0.001 mm) of the monthly rainfall

More specifically, the application of this scenario 
resulted in the significant increase of the daily moisture 
by (+0.22) in the increase of the daily and monthly rain-
fall till the next rainy day by (+0.21) and (+0.31) respec-
tively, whereas the daily temperature dropped by (−0.45). 
The above relative changes were obtained by the applica-
tion of the ipsl_cm5a_mr climate model under the RCP2.6 
and RCP6 scenarios for the temporal period 2020–2039. 
It should be mentioned that there was not increase in 
the burned area for the period till 2100 and in both most 
extreme scenarios the wild fires were estimated to burn the 
same as for the period 1984–2004.

In this scenario (using two different climate models) 
the relative changes of the burned areas were equal to 
zero. In the first case, modeling was performed accord-
ing to the climate model miroc_esm_chem on the most 
extreme climate change scenario (RCP8.5) for the time 
period 2060–2079.

More specifically, the burned areas were at the levels 
of the period 1984–2004, under the following conditions 
(ID10)

C1:  Moderate increase (+3.485  °C) of the average 
monthly temperature

C2:  High increase (+9.93  °C) of the minimum monthly 
temperature

C3:  Small decrease (0  °C) of the highest monthly 
temperature

C4:  Moderate increase (+6.83  mm) of the monthly 
rainfall

According to this scenario there was decrease of the 
daily moisture and rainfall, decrease of the monthly rainfall 
and increase of the daily temperature. This scenario had the 
smallest fluctuations for the involved parameters compared 
to the rest scenarios.

The zero relative change in the total burned areas was 
also obtained by the use of a second scenario based on the 
climate model miroc5 applied on the most extreme cli-
mate change scenario (RCP8.5) for the period 2080–2099 
(ID11). This application was based on the following 
changes in the monthly climatic parameters:

C1:  Moderate increase (+3.485  °C) of the average 
monthly temperature

C2:  High increase (+9.93  °C) of the minimum monthly 
temperature

C3:  Moderate increase (+4 °C) of the maximum monthly 
temperature

C4:  Minor decrease (0 mm) of the monthly rainfall

Specifically this scenario significantly changed the val-
ues of the meteorological parameters, highly contributing 
in the reduction of the daily moisture by (−0.11) and of the 
rainfall by (−0.24) and on the other hand in the increase of 
the temperature by (+0.14).

Table  16 refers to the most extreme scenario and it 
presents the estimated values of the following involved 

Table 16  Parameters forecasted values based on the more extreme scenarios

Period H AT W DR PMR MRNRD BA

1984–2004 ILIA (INITIAL VALUES) 48.99 27.07 2.7 0.29 13.48 3.7 402,515

Extreme Scenario (ILIA)-(ID12) −0.1 +0.13 −0.07 −0.1 −0.14 −0.11 +0.06

2080–2099 (FINAL VALUES) 44.091 30.5891 °C 2.511 0.261 11.5928 3,293 426,665.9

Exterme Scenario (ILIA)-(ID1) +0.42 −0.61 +0.23 +0.45 +0.56 +0.42 −0.36

2040–2059, 2080–2099 (FINAL VALUES) 69.57 10.56 °C 3.32 0.41 21.04 5.25 257,609.6

1984–2004 CHANIA(INITIAL VALUES) 40.8768 25.9857 3.314 0.084 3.898 1.43 335,852

Extreme Scenario (CHANIA) –(ID1) +0.22 −0.45 +0.07 +0.21 +0.26 +0.31 −0.14

2020–2039 (FINAL VALUES) 49.8697 14.2922 3.546 0.102 4.91 1.873 288,832.72

Exterme Scenario (CHANIA)-(ID11) −0.16 +0.14 −0.08 −0.11 −0.1 −0.24 0

2080–2099 (FINAL VALUES) 34.3365 29.6237 3.0493 0.075 3.508 1.087 335,852

Exterme Scenario (CHANIA)-(ID10) −0.02 +0.02 0 −0.02 −0.02 −0.02 0

2060–2079 (FINAL VALUES) 40.0592 26.5054 3.314 0.082 3.82 1.401 335,852
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meteorological parameters: humidity (H), air tempera-
ture (AT), wind (W), daily rainfall (DR), previous month 
rainfall (PMR), monthly rainfall until the next rainy day 
(MRNRD).

Since the projections are going far to the future (as far 
as 2100) and the feedback of the system is produced by cli-
mate change scenarios, there is no way to verify or reject 
the produced output. However this research is very impor-
tant and innovative. Its aim is not to specify with accuracy 
the consequences of the forest fires in the next 100 years, 
but it is twofold. First it aims to offer the scientists a very 
strong and useful tool to make projection in the future 
regarding the consequences of natural disasters in the next 
century, as they will be influenced by the climate change 
that has already started. So depending on the scenario, this 
hybrid and intelligent model can accept climate change 
input and it is capable to output the flora destruction due 
to natural disasters in a scale of 100 years based on best, 
average and worst case scenarios. So the scientists and the 
societies will have a compass for the future that can define 
and influence current decisions and activities. The most 
important is that this model can be adjusted with minimum 
effort to operate under other natural disasters cases with 
new parameters. The areas of Ilia and Chania in Greece 
were chosen just to demonstrate the actual application of 
the model, its flexibility and its potentials.

5  Conclusions‑future work

This research initially proposes an innovative approach for 
the analysis and modeling of the relationships between the 
main parameters that define the severity of a forest fire, 
under several climate change scenarios. It is a hybrid Soft 
Computing approach which employs Fuzzy cognitive maps 
(FCM) and the Fuzzy Chi Square test (FChiSq). Addition-
ally this model uses feedback from the first part to forecast 
the fluctuation level of the total burned areas for specific 
pilot prefectures of Greece, based on climate change sce-
narios and climate models. The projection is done in a wide 
temporal scale.

This is achieved by the use of sophisticated Compu-
tational Intelligence hybrid methods. More specifically, 
Fuzzy cognitive maps are used to capture the correlation 
of meteorological, topographic and vegetation features that 
determine the extent of the wild fire burned area. Two pre-
fectures that are considered as high risky in terms of wild 
fires namely Chania and Ilia were used as pilot case studies 
for the period 1984–2004. Various climate change scenar-
ios were produced by choosing 16 climate models obtained 
by the CMIP5 project.

Moreover the model performed estimation of the 
increase/decrease of the burned areas based on the 

estimated fluctuation of various climate indicators as they 
are formed based on the chosen climate models for the 
period till 2100.

The obtained scenario presented significant forecasts not 
only on the future forest fire risk but also on the fluctua-
tions of the rest parameters that specify the severity of wild 
fires (ignition and spread).

Based on the results it is clear that according to the 
most extreme scenario for the Ilia prefecture, the average 
daily temperature will significantly increase with a parallel 
reduction of the daily moisture and rainfall levels (ID12). 
This application estimated an increase of the burned areas 
by 24,151 Ha for the period 2080–2099 for the Ilia prefec-
ture, compared to the period 1984–2004. This increase by 
(+0.06) corresponds to the degree of relative change (see 
Table 16). For the Chania prefecture the most extreme sce-
narios related to the periods 2060–2079 and 2080–2099 
produced an increase of the average daily temperature and 
a decrease of the average daily moisture and rainfall. The 
total burned areas did not appear any fluctuations but they 
remained exactly in the same levels as for the historical 
period 1984–2004.

As future research the model can use different confi-
dence levels for the Chi Square test. Additionally a signifi-
cant step would be the monthly and seasonal application 
which can offer a much more clear consideration of the 
problem. Finally, evolutionary genetic algorithms can be 
applied to potentially enhance the efficiency of the model. 
Finally more climate models might be employed in more 
wider areas with high level of vulnerability to wild fires 
and moreover socioeconomic features can be inserted in the 
Fuzzy cognitive maps.
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