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Abstract Mining hidden knowledge from available data-

sets is an extremely time-consuming and demanding pro-

cess, especially in our era with the vast volume of high-

complexity data. Additionally, validation of results

requires the adoption of appropriate multifactor criteria,

exhaustive testing and advanced error measurement tech-

niques. This paper proposes a novel Hybrid Fuzzy Semi-

Supervised Forecasting Framework. It combines fuzzy

logic, semi-supervised clustering and semi-supervised

classification in order to model Big Data sets in a faster,

simpler and more essential manner. Its advantages are

clearly shown and discussed in the paper. It uses as few

pre-classified data as possible while providing a simple

method of safe process validation. This innovative

approach is applied herein to effectively model the air

quality of Athens city. More specifically, it manages to

forecast extreme air pollutants’ values and to explore the

parameters that affect their concentration. Also it builds a

correlation between pollution and general climatic condi-

tions. Overall, it correlates the built model with the mal-

functions caused to the city life by this serious

environmental problem.

Keywords Air quality � Air pollution � Fuzzy logic � Semi-

supervised learning � Semi-supervised clustering � Semi-

supervised classification

1 Introduction

1.1 Effect of air pollution to the climate change

Apart from the natural processes, a main cause of climate

change is pollution of the atmosphere by human activities

that contribute to the increase in the greenhouse gases

concentration. Therefore, the radiation increases and heat is

trapped in the atmosphere, resulting in the enhancing of the

natural greenhouse effect.

Air pollution is the presence of air pollutants in quantity,

concentration or duration, which can cause deterioration of

the structure, composition and characteristics of the

atmospheric air. Human activities are related to the

excessive use of fossil resources such as coal, lignite, oil

and natural gas, the combustion of which releases vast

amounts of CO2 into the atmosphere. Overall transport is

responsible for approximately 50% of the total emissions

followed by industries and power plants [1]. Totally, 40%

of the pollutants’ concentration is related to CO2, while the

remaining 10% consists of other gases, mainly O3 and CO.

Moreover, the continuous deforestation contributes to the

increase in greenhouse gases by 15% [1]. The production
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and use of synthetic chemical substances has disturbed

irreparably the balance in the CO2 cycle. These effects alter

the natural protective shield covering the Earth, thereby

retaining more and more energy which, in turn, increases

the global average temperature, while the speed at which

this increase occurs is substantially greater than any natural

process. The result is the inability of natural systems to

adapt to the new circumstances.

Air pollution in urban and industrial areas in Greece is a

major environmental problem as it is associated mainly

with population growth in cities, uncontrolled urban

expansion and growth trends in industrial production.

The problem of air pollution in the Attica basin and

particularly in the urban center of Athens–Piraeus is

directly related to overpopulation, to industrial-craft

activities and to the unfavorable topography. The yellow–

brown photochemical cloud of Athens comprises smog,

CO, SO2, NOx PM10, PM2.5 and O3. Financial crisis is an

additional air charge reason during the last 7 years, and it is

related to the use of alternative heating methods, such as

fireplaces and pellet burners.

An assessment of the effects of atmospheric pollution

and also a thorough and comprehensive investigation that

would lead to the forecasting of the extreme pollutants’

values requires the analysis of the conditions that favor

high concentrations, based on rational approaches. This

research effort proposes an innovative analytical soft

computing model toward estimation of the pollutants

concentrations. More specifically, it manages to forecast

extreme air pollutants’ values only with the usage of

temporal and meteorological parameters as inputs. As a

result, meaningful information can be extracted for the

conditions under which these extreme pollution cases

occur. The proposed approach will apply the FuSSFFra

model for this purpose. It combines fuzzy logic, semi-su-

pervised clustering and semi-supervised classification in

order to label efficiently Big Data with a minimum pre-

labeled dataset, predict extreme values of pollutants with-

out any other pollutant as input and evaluate the labeling

procedure in a novel semi-supervised way. The biggest

advantage of this research effort though is that the pro-

posed algorithm as a whole can be applied to any case as an

evaluation method for unsupervised learning, indepen-

dently of the environmental problem that it is implemented

here to deal with.

1.2 Semi-supervised learning

The main disadvantage of the classical supervised machine

learning methods is that they presuppose the existence of a

large number of pre-classified data to properly train a

model with adequate accuracy. Building the training-vali-

dation sets manually is a tedious and time-consuming

process, especially intangible when we are dealing with a

huge dataset. On the other hand, building a model by

employing semi-supervised learning (SSL) involves train-

ing with a minimum number of pre-classified data records.

This approach can potentially be quite more rational and

suitable for many timely cases. This method focuses on the

classification of the distribution of unlabeled data and on

the parallel correction of misclassification errors based in

already known available classes. The unlabeled data pro-

vide useful information for the exploration of the overall

dataset, whereas the classified ones contribute to the

learning process. Moreover, taking into account the sub-

stantial particularities of the most real-world problems, the

success of learning with partial supervision depends on

some basic assumptions imposed by each case, which can

be modeled by proper SSL algorithms. This fact adds

substantial merit and rationality to the SSL methods.

2 Related research

In an earlier research of our team [2], we have made an

effort to get a clear and comprehensive view of air quality

in the wider urban center of Athens and also in the Attica

basin. This study was based on data that were selected from

nine air pollution-measuring stations of the area during the

temporal periods (2000–2004, 2005–2008 and 2009–2012).

This method was based on the development of 117 partial

ANNs, while their performance was averaged by using an

ensemble learning approach. The system used also fuzzy

logic in order to forecast more efficiently the concentration

of each pollutant. The results showed that this approach

outperforms the other five ensemble methods.

Also, in previous work [3], we used one unsupervised

learning method (self-organizing maps), in order to cluster

our pollutants in groups. Our ultimate goal was to find the

most isolated group, where we hoped that all the extreme

values of pollutants were gathered. This specific group is

the most important, as it contains vital information about

the hazardous pollutants: the meteorological and chrono-

logical conditions under which the extreme pollutants

occur. Moreover, we tried to evaluate the clustering above,

using pattern recognition. In order to produce the groups

above, we only used the pollutants as inputs. In the clas-

sification, we used every input we had for each record: 5

chronological inputs, 7 meteorological and 5 pollutants.

We used classification because we wanted to see whether

the clustering above is suitable for future use.

In addition, in [4], the EHF innovating forecasting sys-

tem, which allows the prediction of extreme air pollutant

values, was introduced and tested with real data records. Its

main advantage is that though it takes no pollutants as

inputs it manages to operate quite efficiently. Moreover, it
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uses a small number of inputs (7), which comprises 4

temporal inputs, air temperature, a station identification

code (was determined automatically by geolocation-based

services) and a cluster identification code. In order to

produce the EHF model, we have used four unsupervised

learning algorithms namely: SOM, neural gas ANN, fuzzy

C-means and a fully unsupervised SOM algorithm. For

every algorithm, we have searched for the most extreme

cluster, which contained the most hazardous pollutant

values EXPV. Thereafter, we gathered all the records from

the extreme clusters, in order to create four datasets, one

for each algorithm. These four datasets were used as inputs

to the EHF model, which has given promising results in

forecasting pollutants’ concentrations. Bougoudis et al. [5]

proposed a novel and flexible hybrid machine learning

system that combines semi-supervised classification and

semi-supervised clustering, in order to realize prediction of

air pollutants outliers and to study the conditions that favor

their high concentration.

Bougoudis et al. [6] proposed an innovative hybrid

system of combined machine learning algorithms. They

presented an ensemble system using combination of

machine learning algorithms capable of forecasting the

values of air pollutants. This approach improved the

accuracy of existing forecasting models by using unsu-

pervised machine learning to cluster the data vectors and

trace hidden knowledge.

In some machine learning applications, using soft labels

is more useful and informative than crisp labels. Soft labels

indicate the degree of membership of the training data to

the given classes. Often, only a small number of labeled

data are available while unlabeled data are abundant.

Therefore, it is important to make use of unlabeled data.

Semi-supervised learning makes use of both labeled and

unlabeled samples. Semi-supervised learning addresses the

classification problem by using large amount of unlabeled

data, together with the labeled data, to build better classi-

fiers. It tries to overcome the need for a large labeled

training set to learn accurate classifiers.

Krithara et al. [7] investigated a new extension of the

probabilistic latent semantic analysis (PLSA) model for

text classification where the training set was partially

labeled. The proposed approach iteratively labels the

unlabeled documents and estimates the probabilities of its

labeling errors. These probabilities are then taken into

account in the estimation of the new model parameters

before the next round.

Ashfag et al. [8] proposed a novel fuzziness-based semi-

supervised learning approach by utilizing unlabeled sam-

ples assisted with supervised learning algorithm to improve

the classifier’s performance for the IDSs. A single hidden

layer feedforward neural network (SLFN) was trained to

output a fuzzy membership vector, and the sample

categorization (low, mid and high fuzziness categories) on

unlabeled samples was performed using the fuzzy quantity.

Yan and Chen [9] proposed the use of labeled data, and

the exploration of the constraints generated from the labels

during the clustering process. They formulated the clus-

tering process as a constrained optimization problem and

proposed a novel semi-supervised fuzzy co-clustering

algorithm which was incorporated with a few category

labels to handle large overlapping text corpus. Zheng and

Luo [10] presented a novel semi-supervised fuzzy SVM

clustering framework where the spatial distribution infor-

mation of the unlabeled samples and the prompted infor-

mation of the labeled samples were integrated to obtain

better results. Le et al. [11] proposed a semi-supervised

learning method, fuzzy entropy semi-supervised SVDD

(FS3VDD), to extend SVDD to cope with partially labeled

datasets. The learning model employed fuzzy membership

and fuzzy entropy to help the labeling of the unlabeled

data. Yan et al. [12] presented a new method, called semi-

supervised fuzzy relational classifier, which combined

semi-supervised clustering and classification together. In

the proposed semi-supervised fuzzy relational classifier,

they employed the semi-supervised pair wise-constrained

competitive agglomeration (PCCA) to replace FCM to

obtain clusters fitting the user expectations without speci-

fying the exact cluster number. In addition, they incorpo-

rated the fuzzy class labels of unlabeled data into the

classification mechanism to improve its performance.

Benbrahim [13] proposed a fuzzy semi-supervised sup-

port vector machines (FSS-SVM) algorithm. It tried to

overcome the need for a large labeled training set to learn

accurate classifiers. For this, it used both labeled and

unlabeled data for training. It also modulated the effect of

the unlabeled data in the learning process. Empirical

evaluations showed that by additionally using unlabeled

data, FSS-SVM required less labeled training data than its

supervised version, support vector machines to achieve the

same level of classification performance. Also, the incor-

porated fuzzy membership values of the unlabeled training

patterns in the learning process had positively influenced

the classification performance in comparison with its crisp

variant.

El-Zahnar and El-Gayar [14] proposed an approach for

Fuzzy-Input Fuzzy-Output classification in which the

classifier can learn with soft-labeled data and can also

produce degree of belongingness to classes as an output for

each pattern. They investigated two semi-supervised mul-

tiple classifier frameworks for this classification purpose.

Results showed that semi-supervised multiple classifiers

can improve the performance of fuzzy classification by

making use of the unlabeled data. Finally, Jamalabadi et al.

[15] proposed a new reasoning method for fuzzy classifiers

referred to as competitive interaction reasoning (CIR), that
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employs the cumulative information provided by all fuzzy

rules and adjusts the decision boundaries as if the mem-

bership functions are directly modified. The proposed CIR

significantly improves classification accuracy without

compromising interpretability of the fuzzy classifier.

Cordeiro et al. [16] presented a new semi-supervised

segmentation algorithm based on the modification of the

GrowCut algorithm to perform automatic mammographic

image segmentation once a region of interest is selected by

a specialist. They used fuzzy Gaussian membership func-

tions to modify the evolution rule of the original GrowCut

algorithm, in order to estimate the uncertainty of a pixel

being object or background. Yan et al. [17] proposed a new

semi-supervised fuzzy kernel clustering algorithm (SFKC)

based on some modifications of the fuzzy clustering

methods. In Tanaka et al. [18], the virtual sample approach

was adopted in semi-supervised fuzzy co-clustering. The

goal was to reveal object-item pairwise cluster structures

from co-occurrence information among them. Honda et al.

[19] proposed a novel framework for performing fuzzy co-

clustering of co-occurrence information with partial

supervision, which was induced by multinomial mixture

concept. Jensen et al. [20] proposed a novel approach for

semi-supervised fuzzy-rough feature selection where the

object labels in the data may only be partially present. The

approach also has the appealing property that any gener-

ated subsets are also valid when the whole dataset is

labeled. Le et al. [21] showed how to apply the fuzzy

theory to the proposed semi-supervised one-class classifi-

cation method for efficiently handling noises and outliers.

Diaz-Valenzuela et al. [22] introduced fuzzy HSS, a semi-

supervised hierarchical clustering approach that uses fuzzy

instance-level constraints. These constraints are external

information on the shape of fuzzy must-link and fuzzy

cannot-link restrictions. They allow uncertainty when

indicating whether two instances of a dataset belong to the

same group.

Bchir et al. [23] proposed a novel method of learning

nonlinear distance functions with side information while

clustering the data. The proposed algorithm learns the

underlying cluster-dependent dissimilarity measure while

finding compact clusters in the given dataset.

3 Theoretical background

FuSSFFra applies a hybrid model, which employs well-

established algorithms, optimally combined in order to

create a faster and more flexible integrated fuzzy semi-

supervised learning system. The most important innovation

and advantage of the proposed approach is the easy vali-

dation of the classification process for a first time seen

dataset, based on robust measurable factors. The theoretical

background of the system’s core is presented in the next

paragraphs.

3.1 Naive Bayes classifiers

The Naive Bayes classifier is a practical learning method

based on a probabilistic representation of a data structure,

representing a set of random variables and their hypothet-

ical independence, in which complete and combined

probability distributions are substantiated. The objective of

the algorithm is to classify a sample X in one of the given

categories C1,C2,…,Cn using a probability model defined

according to the theory of Bayes. These classifiers make

probability assessment rather than forecasting, which is

often more useful and effective. Here the projections have

a score, and the purpose is the minimization of the

expected cost. Each category is represented by a prior

probability. We make the assumption that each sample X

belongs to a class Ci and based on the Bayes theory we

estimate the posteriori probability. The quantity P

describing a Naive Bayes classifier for a set of samples

expresses the probability that c is the value of the depen-

dent variable C, based on the prices x = (x1, x2,…, xn) of

the properties X = (X1, X2,…, Xn), and it is given by

relation (1) where the characteristics xi are considered as

independent:

P cjxð Þ ¼ P cð Þ �
Yn

i

P xijcð Þ 1ð Þ ð1Þ

The estimation of the above quantity for a set of N

examples is done by using relations 2, 3 and 4:

P cð Þ ¼ N cð Þ
N

ð2Þ

P xijcð Þ ¼ N xi; cð Þ
N cð Þ ð3Þ

For a characteristic xi with discrete values, the proba-

bility is estimated by Eq. 4.

P xijcð Þ ¼ g xi; lc; rc2ð Þ ð4Þ

where N(c) is the number of examples that have the value c

for the depended variable, N(xi,c) is the number of cases

that have the values xi and c for the characteristic Xi and

the depended parameter, respectively, and g(xi, lc, rc2) is
the Gaussian probability density function with an average

value lc and variance rc for the characteristic xi.

3.2 Collective classification

Collective classification [24] is a combinatorial optimiza-

tion problem, in which we are given a set of nodes,

V = {V1,…,Vn} and a neighborhood function N, where
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Ni ( V\{Vi}. Each node in V is a random variable that can

take a value from an appropriate domain. V is further

divided into two sets of nodes: X, the nodes for which we

know the correct values (observed variables) and Y, the

nodes whose values need to be determined. Our task is to

label the nodes Yi [ Y with one of a small number of labels,

L = {L1,…,Lq}; we will use the shorthand yi to denote the

label of node Yi.

3.3 Fuzzy clustering

According to Zadeh [25–27], every element ‘‘x’’ of the

Universe of discourse ‘‘X’’ belongs to a fuzzy set (FS) with

a degree of membership in the closed interval [0,1]. Thus,

function 5 is the mathematical foundation of a FS.

S ¼ fðx; lsðxÞ=lsf½0; 1� : xglsðxÞg: ð5Þ

Function 6 is an example of a typical Triangular Fuzzy

Membership Faction (FMF). It must be clarified that the

‘‘a’’ and ‘‘b’’ parameters have the values of the lower and

upper bounds of the raw data, respectively.

ls Xð Þ ¼

0 if X\a
X � að Þ= c� að Þ if X 2 a; cÞ½
b� Xð Þ= b� cð Þ if X 2 c; bÞ½
0 if X[ b

8
>><

>>:
ð6Þ

According to the typical (crisp) classification methods,

each sample can be assigned only to one class. Thus, the

class membership value is either 1 or 0. In general, clas-

sification methods reduce the dimensionality of a complex

dataset by grouping the data into a set of classes.

In fuzzy classification, a sample point can be assigned to

many classes with a different degree of membership.

The fuzzy c-means clustering algorithm initially gives

random values to the cluster centers, and then it assigns all

of the data points to all of the clusters with varying degrees

of membership (DOM) by measuring the Euclidean

distance.

TheEuclidean distanceof eachdata point xi from the center

of each cluster c1… cj is calculated based on Eq. 7 [28].

dji ¼k xi � cj k2 ð7Þ

where dji is the distance of xi from the center of the cluster

cj.

Then the DOM of each data point to each cluster is

estimated based on Eq. 8

lj xið Þ ¼
1
dji

� � 1
m�1

Pp
k¼1

1
dki

� � 1
m�1

ð8Þ

where m is the fuzzification parameter with values in the

interval [1.25, 2] [28]. The values of m specify the degree

of overlapping between the clusters. The default value of m

is equal to 1.2. The algorithm has the following direct

restriction in the DOM of each point [28]. See Eq. 9.

Xp

j¼1

lj xið Þ ¼ 1 i ¼ 1; 2; 3; . . .k ð9Þ

where p is the number of the clusters, k is the number of the

data points, xi is the ith point and lj (xi) is a function that

returns the degree of membership of point xi in the jth

cluster i = 1,2,…k.

Then the centers are estimated again. Eq. 10 is used for

the re-estimation of the values of new cluster centers [28].

cj ¼
P

i lj xið Þ
� �m

xi

Ri lj xið Þ
� �m ð10Þ

where cj is the center of the jth cluster with (j = 1,2…p),

and xi is the ith point [28]. This is an iterative algorithm,

and the whole process is repeated till the centers are

stabilized.

4 The proposed system

4.1 The FuSSFFra algorithm

The FuSSFFra is an innovative hybrid algorithm based on

the combination of soft computing approaches. It is

described herein for the first time in the literature.

Let us consider a supervised learning case with a

training set of size N {X,Y} = xi; yif gNi¼1, where xi [ R
ni and

yi is a binary vector of size no. It must be clarified that i and

no are the dimensions of the input and output, respectively.

The FuSSFFra initially performs semi-supervised clus-

tering (SSC). This means that cluster assignments may be

already known for some subset of the data. The final aim is

the classification of the unlabeled observations to the

appropriate clusters, using the known assignments for this

subset of the data. At the same time, the algorithm pro-

duces the degree of membership of each record to its

cluster.

The clustering validation process is performed by

employing the ‘‘classes to clusters’’ (CL_A_U) method

that adopts SSC. Originally, a minimum data sample is

used comprising of the clusters derived from the SSC

process (labeled data). The remaining unlabeled data are

used to dynamically form and adjust the classes based on

their DOM.

Actually, the CL_A_U approach assigns classes to the

clusters, based on the majority value of the class attribute

within each cluster. The class attribute is treated like any

other attribute, and it is a part of the input to the clustering

algorithm.
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The objective is to determine whether the selected

clusters match the specified class data. In the CL_A_U

evaluation, the system is informed on which attribute is a

predetermined ‘‘class.’’ Then this is removed from the data

before passing to the SSC algorithm. The CL_A_U eval-

uation finds the minimum error of mapping classes to

clusters (where only the class labels that correspond to the

instances in a cluster are considered) with the constraint

that a class can only be mapped to one cluster. Figures 1

and 2 presents an overall description of the FuSSFFra

system.

The 10-fold cross-validation (10_FCV) is employed in

this stage in order to obtain performance indices. The idea

behind k_FCV (where k is a positive integer) is to create a

number of k partitions (folds) of the sample observations.

Then the model is trained on k–1-folds, and the test error is

predicted on the left-out partition (LOP). The process is

repeated k times (after interchanging the LOP), and the

result is averaged. The process is referred to as leave-one-

out cross-validation. Taking the average of the k accuracy

scores is a macro-average.

The emerged classes are fuzzified by assigning them

proper Linguistics, in order to obtain a realistic coherence

between the associated values of the dataset under study.

The whole process is presented in details in Algorithm 1

below.

Fig. 1 The proposed FuSSFFra
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Algorithm 1. The FuSSFFra Algorithm
Inputs: Input labeled data Dl, clusters of the labeled data Ll and a set of unlabeled 
data Du

Step 1: % Initialization of clusters
Identify the discrete number of clusters based on Ll
For every cluster, create matrices with the mean and standard deviation of all 

Dl
Step 2: % Calculate the new centers of the clusters

For every cluster, recreate these matrices, based on the testing data Du 
Calculate a variable, based on the formula below:
x =(1./(2*pi*ns.^2)).*exp(-((test-nm).^2)./(2.*sn.^2))
where ns is the new standard deviation matrix, nm is the new mean matrix 

and test Du
Sum all these variables for each cluster

Step 3: % Calculate the winner cluster for each record
For every testing data Du, find the minimum value of the summary 

calculated before.
% Calculate the fuzzy membership values for every cluster for every 

record
For every testing data Du and for every class, divide the mean matrix with 

the sum of the
values calculated before (normalization probability – membership value)

Outputs: Winner cluster for each testing data Du, Cu and fuzzy membership values 
for every cluster 

for every testing data Du, F_M_Vu,j (j the number of clusters)
Step 5: % Validation of the clustering process 

Repeat Steps 1 – 3 from the previous part, only this time from Du  Dl, 
using Cu as labels
Output: Winner cluster for each testing data Dl, L2l

Step 6: 
For every initially labeled data Dl: 
Compare the initial label Ll with L2l

Create confusion matrix based on these comparisons
Step 7: 

Repeat Steps 5 - 6 for every Dw of Du
% Generalization of the amount of the extreme cases, based on the fuzzy 

membership values
Inputs: The winner class for every record (Cu) and the fuzzy membership values for 
each record

(F_M_Vu,j) 
Step 8: 

For every record:
If max(F_M_Vu,j) = A AND  F_M_Vu,A – max2(F_M_Vu,j) <= threshold, then
% max2(F_M_Vu,k) = k, the second biggest  membership value
Change the winner class for this record to k (Cu = k) 

Outputs: Updated winner cluster for each record Cu
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5 The case of the air pollution in Athens

The FuSSFFra proposed herein offers a novel and suit-

able modeling approach for complex cases like air pollu-

tion of an urban center. It is important to examine the

dependencies of this case, on the assumptions and char-

acteristics of both the prevailing weather conditions and the

overall timing in relation to the area concerned.

In fact, this research effort refers to the modeling and

forecasting of extreme air pollutants’ values for the city of

Athens, which is a problem of high complexity [2–6, 29].

The data used are related to 14 years (2000–2013). They

come from the ‘‘Athinas’’ station, which is located in the

heart of the city, and it offers a typical city center air pol-

lution image. More specifically, this station counts hourly

measures of CO, NO, NO2, O3 and SO2. Co is measured in

mg/m3, whereas for all other pollutants lg/m3 is used.

The proposed semi-supervised modeling approach was

used for the years 2000–2012, whereas the 2013 data were

used for testing the efficiency of the developed model.

Additionally, each record contains the following data: year,

month, day, hour and temperature. Table 1 presents

descriptive statistics of the 2000–2012 measurements.

Fig. 2 Graphical representation

of the Formula methodology

Table 1 Statistical analysis for the period 2000–2012

2000–2012 (89364) CO NO NO2 O3 SO2

Max 21.4 908 377 253 259

Min 0.1 1 1 1 2

Mode 0.8 8 60 3 2

Count_mode 4941 2358 1508 6649 10451

Average 1.83 59.31 63.57 32.94 9.64

SD 1.48 90.06 27.11 28.67 9.39

Table 2 Statistical analysis for the year 2009

2012 (8728) CO NO NO2 O3 SO2

Max 10.4 660 323 174 56

Min 0.1 1 6 1 2

Mode 0.8 1 69 3 4

Count_mode 619 323 167 986 2173

Average 1.50 52.62 66.46 32.59 6.29

SD 1.06 80.39 25.10 26.94 3.53
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Tables 2, 3, 4 and 5 have the same statistics for the years

2009 and 2013. The year 2009 was chosen for the deter-

mination of the initial classes because it contains the

highest number of data records. The year 2013 as we have

already mentioned was selected to be used for the testing

process. The brackets in the first left square of all

tables contain the number of the available data records.

It should be noted that after the procedure followed by

the use of the FuSSFFra algorithm, the prediction was

made by the Formula, a heuristic variable subset of pre-

dictors, which was proposed and presented in a previous

research of our team [4].

5.1 Brief description of the Formula subset

of predictors

Typical pollutants forecasting procedures require mea-

surements at the level of independent variables, which are

usually derived from monitoring stations or specialized

hardware such as sensors.

In a previous research effort of our group [4], we have

introduced a model that considers a special set of data

named Formula, in order to offer to the society the capacity

of being warned on extreme air pollution cases by using

cheap hardware like mobile devices, without requiring real-

time feedback of data.

The Formula is a particularly effective variable subset

of predictors used to forecast extreme pollutants’ values, in

which the independent variables do not require continuous

measurements from specialized hardware or software. The

employment of Formula requires low resources, shorter

training times and enhanced generalization by reducing

chances for overfitting [4]. This subset comprises the fol-

lowing independent variables: year, month, day, hour,

airtemp and Cluster_Id. In [4], the model was developed

with Formula data for the years 2000–2012 and then it was

tested to predict the values for Formula for 2013.

Indicatively, it should be mentioned that the value of R2

was 0.76 in testing for CO, 0.90 for NO and 0.71 for O3 by

using the neural gas algorithm for the two first cases and

the self-organizing maps for the third [4].

Herein, the proposed semi-fuzzy algorithm is employed

to assign a Cluster_Id to each record of the available

dataset. The Cluster_Id value is used to characterize each

record as extreme or not, in terms of the primary or sec-

ondary air pollutants’ values. After this successful clus-

tering, the Formula dataset is formed and it can be used.

This is a very special and clearly useful innovation,

which allows the free adoption and use of the Formula

dataset by low-cost devices (e.g., smartphones). This subset

of the initial available data (after a proper processing) can

be used to forecast potential extreme values of CO, NO,

NO2, O3, SO2, without the input of any other pollutants’

values coming from sensors. Figure 1 presents the

methodology.

5.2 Athens air pollution modeling

with the FuSSFFra

Once the grouping has been completed with the application

of FuSSFFra, each record acquired an extra variable cor-

responding to its class, based on the pollutants’ values.

Totally, three Cluster_IDs were formed namely:

Cluster Id ¼ 0 fornegligible values of pollutants

Cluster Id ¼ 1 for extreme values of the primary

pollutants ðCO; NO; NO2; SO2Þ

Cluster Id ¼ 2 for extreme values of the

secondary pollutants ðO3Þ

Table 3 Statistical analysis for the year 2013

2013 (8146) CO NO NO2 O3 SO2

Max 10.2 539 118 151 39

Min 0.2 1 2 1 2

Mode 0.7 6 37 3 5

Count_mode 682 327 212 496 1668

Average 1.35 41.06 42.75 36.61 6.77

SD 0.96 62.54 16.18 26.71 2.93

Table 4 Statistical analysis of the extreme fuzzy semi-dataset

2000–2012 (Cluster 1)

2000–2012 (21635) CO NO NO2 O3 SO2

Max 21.4 908 377 139 259

Min 0.1 1 4 1 2

Mode 2.7 52 76 3 9

Count_mode 756 159 444 4908 979

Average 3.62 160.50 88.48 9.77 19.06

SD 1.911 133.81 28.77 12.38 13.53

Table 5 Statistical analysis of the extreme fuzzy semi-dataset

2000–2012 (Cluster 2)

2000–2012 (28003) CO NO NO2 O3 SO2

Max 3.1 33 153 253 35

Min 0.1 1 3 11 2

Mode 0.7 7 34 49 2

Count_mode 3357 2109 787 514 5942

Average 0.86 9.73 42.29 63.12 6.04

SD 0.38 5.28 15.35 25.68 4.40
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So, according to steps 7 and 8 of the FuSSFFra algo-

rithm, the records that were classified as ‘‘negligible’’

(when class 0 was prevalent) but their DOM to class 0

differed by their DOM to the next one (1 for primary or 2

for secondary) B0.2 were converted to extreme (value 1 or

value 2, depending on the occasion). The 0.2 value was

assigned based on the fact that the value 1 is the absolute

degree to which a record can belong to a class. Thus, the

0.2 value is the highest 20% limit for this record to be a

member of the second class. The same boundary has been

used in similar cases in the literature several times [30, 31].

In this research, class A (Cluster_Id = 0) included the

non-extreme cases, class B (Cluster_Id = 1) included the

records with extreme values for the primary pollutants

(CO, NO, NO2, SO2), and class C (Cluster_Id = 2)

included the extreme values of the secondary pollutants

(O3). As a result, because we wanted our model to gener-

alize based on the fuzzy algorithm it includes, we com-

pared the difference between the membership value of each

record to class A to its second highest membership value; if

the subtraction result was\=0.2, then we changed the class

of this record to 1 or 2, making it extreme. This resulted in

the addition of 1406 extreme records in our dataset.

Thus, the records having Cluster_Id equal to 1 or 2

formed the extreme dataset, from which we extracted only

the values corresponding to the Formula features namely:

year, month, day, hour, airtemp and Cluster_Id (Demertzis

et al. 2015). The Formula dataset is comprised of 49,638

records for the years 2000–2012 more than half of the

initial ones. Then after creating a model for the period

2000–2012, we used it to forecast the extreme pollutants’

values for 2013. We have employed the semi-supervised

sub-clustering algorithm (SSSCA) to confirm the validity

of clustering. The following tables support the results of

this effort.

In the next step, we have used the semi-supervised

classification algorithm (classes to clusters evaluation) to

support the validity of this method. The algorithm works as

follows: After running the semi-clustering sub-algorithm

SSSCA which assigned clusters to all the records for all of

the years, the semi-supervised sub-algorithm was used to

estimate the class of each record on an annual basis. The

input was all the records and their classes for the previous

years.

After its execution, it compared its output with the ones

of the semi-clustered sub-algorithm that was initially

applied and its output for each year was not presented.

Table 6 shows the comparison of the results between the

two approaches.

The following overall confusion matrix presents the

effectiveness of the above approach for all 14 years. It is

obvious that the number of correct classifications is very

high and the method proves to be very promising Table 7.

6 Results and comparative analysis

6.1 Results

After the class assignment to each record, we tried to test

the application of the Formula dataset, which was devel-

oped by our group in previous work [4], for predicting

extreme pollutant values. The same features were used as

described in the previous chapter. According to [4], these

parameters should be enough to model efficiently the

extreme air pollutants’ values. Feedforward artificial neural

networks (FFNNs) were employed for this purpose.

A FFNN was used for each pollutant. The input is com-

prised of the parameters of the Formula set. The hidden

neurons were ten in a single layer, whereas the Tansig

transfer function was used with the Trainlm training

Table 6 Total confusion matrix for the assignment of the classes

Year

(instances)

Correct assignments

(Percentage)

Incorrect assignments

(Percentage)

2000 (5884) 5663 (96.2) 221 (3.75)

2001 (8053) 7763 (96.3) 290 (3.6)

2002 (6543) 6282 (96.0) 261 (3.9)

2003 (1238) 1158 (93.5) 80 (6.4)

2004 (3811) 3669 (96.2) 142 (3.7)

2005 (7787) 7504 (96.3) 283 (3.6)

2006 (7744) 7425 (95.8) 319 (4.1)

2007 (7036) 6770 (96.2) 266 (3.7)

2008 (8464) 8179 (96.6) 285 (3.6)

2009 (8728) 8605 (98.5) 123 (1.4)

2010 (6916) 6705 (96.9) 211 (3)

2011 (8473) 8096 (95.5) 377 (4.4)

2012 (8687) 8440 (97.1) 247 (2.8)

2013 (8146) 7912 (79.1) 234 (2.8)

Table 7 Overall confusion matrix for the assignment of the classes

Confusion matrix 97510 instances (0 normal values)

(1 extreme primary) (2 extreme O3)

A (0) B (1) C (2)

41356 426 1031

975 21466 5

901 1 31349
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function and the Learngdm learning one. Root-mean-

square error (RMSE) was used as a metric for convergence.

Table 8 presents the training results for each pollutant

separately.

Additionally, another overall FFNN was used with the

same input features and with 13 hidden neurons, in order to

estimate the extreme values of all the pollutants; thus, it

had five output neurons. In both cases, the ANN was

trained for the period 2000–2012 and they were tested for

2013 without seeing the actual output for 2013. Table 9

presents the testing results.

6.2 Comparative analysis

From the above, we conclude that the combination of our

fuzzy semi-algorithm with the employment of the Formula

dataset gives satisfactory results toward the development of

a reliable, easy to use, fast and cheap low resource

predictive model, thus enhancing our effort to anticipate

future extreme pollutant values for everyday use by people,

without the presence of other pollutants as inputs.

In this point, it was considered useful to compare the

results of this effort with results obtained from previous

similar research of our team [4, 5], where we have used

other clustering algorithms which provided reliable results,

but they did not offer a comprehensive validation approach.

The difference with these approaches is that they used data

from four measuring stations and thus they had one addi-

tional feature as input, namely the station_id).

The algorithm proposed herein offers an innovative

approach compared to the previous ones (see [4]) as it

considers only 10% of the data already assigned to classes

in order to classify the rest of them. Also the method

proposed in this research is more flexible compared to the

one of [5] as it uses fuzzy logic in order to estimate not

only the proper class for each record but to calculate its

degree of membership. This offers a better generalization

degree.

Tables 10 and 11 offer a comparison between this

approach and the ones described in [4] and [5] for the

estimation of the extreme values.

Looking at the above tables, we see that the fuzzy–semi-

algorithm offers similar results with the algorithm that was

used in [4]. However, herein the incorporation of fuzzy

logic offers flexibility that enables better generalization

capacity. Totally, 49,638 records were considered as

extreme for the period 2000–2012 in a total of 89,364 ones.

Tables 12, 13 and 14 shows the total number of extreme

records for each algorithm for the city center and for the

whole city of Athens (overall).

6.3 Fuzzy linguistics

The obtained results were fuzzified to correspond to proper

Risk Linguistics (RL). More specifically, the predicted

pollutants’ values for the year 2013 were fuzzified in four

RL namely: low, medium, high and extreme and it was

checked whether the obtained RL was compatible with the

Table 8 Training results

Training (2000–2012) 49638 instances R2 RMSE

CO 0.8 0.81

NO 0.79 52.40

NO2 0.83 12.91

O3 0.90 10.70

SO2 0.77 5.37

ALL 0.73 33.47

Table 9 Testing results

Testing (2013) 5059 instances R2 RMSE

CO 0.78 0.54

NO 0.84 31.43

NO2 0.50 13.50

O3 0.69 15.48

SO2 0.13 3.34

ALL 0.84 16.48

Table 10 Comparison between extreme datasets (training)

Training comparison (2000–2012) CO NO NO2 O3 SO2 ALL

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

SOM 0.86 0.75 0.92 36 0.74 19.2 0.86 14 0.71 15.7 0.88 23

Gas 0.90 0.7 0.94 33 0.74 17.6 0.83 17.5 0.62 13.7 0.92 19.5

Fuzzy 0.88 0.62 0.92 30.27 0.72 15.4 0.83 15.4 0.64 10.7 0.92 17.12

Unsuper SOM 0.42 1.29 0.37 76.39 0.54 23.63 0.9 10.27 0.34 16.23 0.62 37.23

Semi 0.82 0.81 0.78 55.5 0.84 12.1 0.91 10.07 0.75 5.38 0.74 31.96

Fuzzy–semi 0.8 0.81 0.79 52.4 0.83 12.91 0.90 10.70 0.77 5.37 0.73 33.47
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ones of the clusters. In this effort, four fuzzy sets were built

to classify the pollutants’ values using triangular mem-

bership functions (TFMF).

The characteristic three values a, b, c for the TFMF were

obtained by using statistical analysis. The limits of the

extreme values were determined by calculating the aver-

age ? 3 standard deviations (AVG ? 3r) value. It is well
known in statistics that approximately 99.7% of the data

values fall within three standard deviations of the mean.

All others are extreme [32]. Thus, the values that were

greater than or equal than the AVG ? 3r were definitely

characterized as extreme ones where the rest of them were

assigned the low, medium or high linguistics based on the

TFMF. For each pollutant, semi-triangular FMF was

employed to assign the linguistics low and high.

After performing fuzzification of the gas emissions

values for 2013, it was found that in most of the cases, the

values of NO2 were characterized as high risky, whereas in

the majority of the cases for NO extremely risky values

were obtained.

7 Discussion

The research effort presented in this paper manages to

predict future values of air pollutants without the usage of

other pollutants as inputs to the proposed model. The main

Table 11 Comparison between extreme datasets (testing)

Testing comparison (2013) CO NO NO2 O3 SO2 ALL

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Som 0.77 0.53 0.83 40 0.48 17.9 0.71 33.3 0.13 6.88 0.86 25.5

Gas 0.76 0.62 0.9 30.1 0.49 16.2 0.4 36.9 0.14 6.69 0.66 20.1

Fuzzy 0.76 0.57 0.85 40.6 0.53 14.5 0.69 19.5 0.1 6.51 0.85 18.28

Unsuper som 0.19 0.98 0.38 58 0.25 25.1 0.27 35.4 0.03 7.13 0.45 34.7

Semi 0.78 0.59 0.82 37.34 0.53 12.88 0.7 19.94 0.12 3.35 0.82 22.99

Fuzzy–semi 0.78 0.54 0.84 31.43 0.50 13.5 0.69 15.48 0.13 3.34 0.84 16.48

Table 12 Comparison between extreme datasets (number of data records)

Number of extreme records Training (2000–2012) Testing (2013)

All Stations Athinas station (city center) All Stations Athinas station (city center)

Som 30.077 3.383 14.129 4.378

Gas 53.589 9.354 13.965 4.343

Fuzzy 91.440 24.834 14.273 3.987

Unsuper som 213.058 51.304 19.950 7.757

Semi – 44.601 – 5.098

Fuzzy–semi – 49.638 – 5.059

Table 13 Linguistics

boundaries for each air pollutant
Pollutants Low Medium High Extreme

CO 0.2802–1.883 0.681–2.284–3.886 2.684–4.287 [=4.2871

NO 5.178–109.5 31.27–135.6–239.9 161.7–266.1 [=266,372

NO2 13.2–43.33 20.73–50.86–80.98 58.4–88.55 [=88.5517

O3 1.92–50.61 14.09–62.78–111.5 74.96–123.7 [=128.605

SO2 2.549–7.509 3.789–8.747–13.71 9.989–14.95 [=15.155

Table 14 Number of high and

extreme linguistics (fuzzy sets)
2013 High Extreme

CO 347 105

NO 331 112

NO2 380 81

O3 78 1

SO2 187 61

ALL 2257 410
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idea behind the prediction model is that firstly a clustering

of the preexisting dataset must occur, in order for the data

to be labeled. In the next step, only the records from the

‘‘extreme’’ cluster (the cluster which has the biggest values

for our pollutants) are taken under consideration and

inserted in our prediction model. In order for the unlabeled

data to gain labels (clustering creation), four unsupervised

algorithms were implemented in previous efforts of our

group. In this paper, the labeling process is achieved by a

fuzzy semi-unsupervised algorithm: By using preexisting

labels for a small amount of our dataset, the model man-

ages to group all the records into clusters and also provide

fuzzy membership values for each one of them. By

checking the comparison of Tables 10 and 11, we see that

the new method performs similarly with the best of the

previous algorithms for each case (pollutant). In some

cases, it performs even better than the previous algorithms.

The main benefit though (apart from being novel) is clearly

shown in the next table, where we can see the amount of

records that were labeled as ‘‘extreme’’ by each model. We

see that the fuzzy semi-unsupervised algorithm labels

much more records as extreme, which makes the model

more flexible in its application. Moreover, it helps us shape

a better picture about air quality in Athens and allows us to

predict more future values of air pollutants by considering

them as extreme. Finally, the biggest advantage of the

proposed algorithm as a whole is that by using semi-su-

pervised learning, it allows us to evaluate the semi-clus-

tering that occurred. This is a huge benefit as there is no

established validation procedure for unsupervised learning.

The semi-supervised algorithm is used as an inversion of

the semi-unsupervised one; it performs classification on the

pre-labeled dataset, and then the neural network created is

used to perform classification and comparison of the clas-

ses assigned to each record with the cluster that was

assigned from the semi-unsupervised sub-algorithm. This

comparison is shown in Table 6. The two sub-algorithms

(semi-unsupervised and semi-supervised) are not related in

any manner and are implemented in different stages of the

proposed algorithm. As a result, this combination of semi-

unsupervised and semi-supervised learning can be used in

any other similar case or individually as an evaluation

method of the labeling process.

8 Conclusions and future work

This paper presents an innovative hybrid integrated

approach for clustering and classification, which exploits

the advantages of each sub-method. The development of

the model does not require the classic initial assignment of

classes for the whole dataset (which would be time, effort

and resources consuming). Also the classification is done

with the use of a rational, fast and timely method that

requires the pre-classification only for the 10% of the data

records in order to classify the rest.

Furthermore, it incorporates fuzzy logic, which adds

flexibility both in terms of the functionality of the method

and in terms of making the outcome easy to understand for

the common people (users). Moreover, the number of

features considered by the model is the minimum and there

is no need for real-time feedback from sensors or other

hardware devices. This not only reduces the cost, but it also

reduces the runtime required.

The purpose of assigning RL to the values of the pro-

jected gas emissions is the flexible and broader under-

standing of the degree of air pollution risk and the effective

and reliable warning of the society as a measure of public

health protection policy. This is achieved by using the

minimum resources in terms of cost and in terms of pro-

cessing time. Everyone can be informed at no cost by using

a cheap mobile device.

The proposed approach uses semi-supervised learning,

which is one of the most rational and realistic machine

learning methods.

The FuSSFFra algorithm allows the division of the

available dataset in homogeneous sectors, based on the

classification of first time seen samples, according to their

distribution. This results in the enhancement of the learning

process. The classification becomes faster and easier as it is

performed with the minimum potential volume of resour-

ces. The FuSSFFra was successfully tested as a standalone

system and in comparison with other methodologies.

Future work will include its application and testing with

other datasets, not necessarily meteorological or air quality

related. Also, the semi-supervised algorithm can be

potentially used in a comparative mode with other classi-

fication algorithms. Finally, since the FuSSFFra works well

for the city of Athens, it would be essential to run it for

other areas with different climate and it would be great to

try to project in the future by considering climate change

for the areas under study.
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