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Abstract

The backbone of the economy, security and sustainability of a state is inseparably linked to the security of its critical

infrastructure. Critical infrastructures define goods, systems or subsystems that are essential to maintain the vital functions

of society, health, physical protection, security plus economic and social well-being of citizens. The digital security of

critical infrastructures is a very important priority for the well-being of every country, especially nowadays, because of the

direct threats dictated by the current international conjuncture and due to the emerging interactions or interconnections

developed between the National Critical Infrastructures, internationally. The aim of this research is the development and

testing of an Anomaly Detection intelligent algorithm that has the advantage to run very fast with a small portion of the

available data and to perform equally well with the existing approaches. Such a system must be characterized by high

efficiency and very fast execution. Thus, we present the Gryphon advanced intelligence system. Gryphon is a Semi-

Supervised Unary Anomaly Detection System for big industrial data which is employing an evolving Spiking Neural

Network (eSNN) One-Class Classifier (eSNN-OCC). This machine learning algorithm corresponds to a model capable of

detecting very fast and efficiently, divergent behaviors and abnormalities associated with cyberattacks, which are known as

Advanced Persistent Threat (APT). The training process is performed on data related to the normal function of a critical

infrastructure.

Keywords Critical infrastructure � Industrial control systems � SCADA � Advanced persistent threat � Evolving spiking

neural network � One-class classification � Anomaly detection � Semi-supervised learning

1 Introduction

1.1 Critical infrastructure protection

Protecting the critical infrastructures (CRIN) of a country

is of the utmost importance. Any kind of potential CRIN

failure caused either by terrorist attack or due to systems’

weaknesses can cause complex and dynamic interdepen-

dencies, and it can have domino effects with incalculable

consequences [1]. The most significant CRIN are related to

the following sectors: Energy, Information Technology

(IT), Transportation, National Defense, Government

Infrastructure and Industry [1, 2]. Automation and remote

control are today the most important methods by which

critical infrastructures can improve their productivity and

the quality of provided services [1–3]. From this point of

view, automation and efficient management of industrial IT

systems, require the adoption of secure, reliable and

sophisticated network control devices that operate with

precision. Supervisory Control and Data Acquisition

(SCADA) systems and sensors are typical automated

control devices, used in control loops [4]. These intercon-

nected systems are active devices operating on real-time

industrial networks, and they allow remote monitoring and
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process control, even in cases where devices are remotely

distributed. Critical infrastructures are exposed to new risks

due to vulnerabilities in communications and information

technologies (malware, spyware, ransomware), which is

also greatly enhanced by the heterogeneity of these systems

[5].

Safety of the CRIN systems requires a very fast anomaly

detection process, where every second counts. The fact that

such systems have to run complex real-time algorithms in

order to analyze (in real time) huge amounts of data (big

data) makes them relatively slow. Thus, we do not only

need algorithms with high percentages of correct classifi-

cations, but we need security algorithms to run as fast as

possible. The basic aim of this research is the development

of an intelligent model/system that can achieve the optimal

compromise between accuracy and speed. Thus, we have

developed a system that performs equally well by using a

small portion of the data. This makes it equally reliable

with well-established methods, but much faster, thus more

efficient.

It is important to emphasize that attacks against CRIN

are typically identified as APT. Cyber criminals are fully

familiar with specialized methods and tools to exploit

unknown vulnerabilities to the public ‘‘zero-days’’ [5]. A

zero-day vulnerability, at its core, is a flaw. It is an

unknown exploit in the wild that exposes a vulnerability in

software or hardware and can create complicated problems

well before anyone realizes something is wrong. In fact, a

zero-day exploit leaves no opportunity for detection [6].

The cyber criminals try not to be perceived without con-

sidering time, and in most of the cases they are highly

capable, organized, funded and they have significant

incentives [6].

Given the growing complexity of threats, the ever-

changing environment and the need for critical infrastruc-

tures, such attacks could, in the worst-case scenario, cause

massive economic damages through data leakage or mis-

use, even the loss of lives of innocent, directly or indi-

rectly. This is another motivation for the adoption of

intelligent solutions to prevent, detect and deal with threats

or anomalies under the conditions and operating parame-

ters of CRIN [7].

Also, given the passive operation of traditional security

systems, which in most cases are unable to detect serious

threats such as APT attacks, alternative, more active and

more effective security methods, is needed. Our team is

trying to solve such complex digital security problems and

has previously proposed many innovative artificial intelli-

gence applications [8–15].

1.2 Unary classification and anomaly detection

The unary classification method (UCC), also known as

one-class classification (OCC), implements intelligent

categorization of cases belonging to a specific class, among

an existing set of records [16]. OCC is learning from a

training set that contains only records of one specific class.

Typically, these methods aim to implement classification

models in which the negative class is absent, either because

the missing class is not sampled, or due to the fact that it is

difficult to do so. This mode of operation, in which clas-

sifiers are required to determine effectively and reliably the

boundaries of the class separation only based on the

knowledge of the positive class, is a particularly complex

problem of machine learning. When only data from the

target class is available, the classifier is trained to receive

target objects and to reject the ones that deviate signifi-

cantly. Finally, it should be noted that the basic concept in

OCC problem solving is the reverse of the generalization

that is being pursued in other machine learning problems

[17]. Particularly, it is intended that the parameter setting is

fully defined, even if this exponentially increases the

complexity of the classifier, provided it is able to correctly

classify the target data.

In this sense, the UCC is the most appropriate approach

for detecting abnormalities and identifying patterns or

trends, in a set of data that display divergent behaviors than

expected. UCC achieves high levels of successful detec-

tion, while maintaining low false error rates (false alarm)

[18].

1.3 Semi-supervised unary anomaly detection

In supervised detection of abnormalities, the applied

models are binary [17, 18] (normal versus anomalous

behavior). On the other hand, in unsupervised anomaly

detection, training data are not required, and predictions are

mainly based on the fact that normal snapshots are more

than the extreme ones in the dataset. If this reasoning does

not apply, then the techniques have a large error rate

[17, 18].

In the case of semi-supervised (SESU) detection of

anomalies, the techniques assume that a set of training data

has been declared only as normal. The usual approach in

this case is to construct a model for the set to respond to

normal behavior and then to apply it in order to determine

the anomalies in the testing data. More generally, it should

be stressed that the success of the SESU learning depends

on some key assumptions imposed by each model or

algorithm. Thus, each case is dependent on these initial

assumptions or peculiarities. This fact makes the method
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one of the most rational machine learning approaches that

can be applied in real-world cases [19].

2 Literature review

Several approaches have been studied in [19–22] which use

different OCC methods [23]. In [24], Huang and his team

used one-class extreme learning machines (ELM) for liver

tumor detection. Zhu et al. [25] have introduced the data

and feature ensemble ELM (DFEN-ELM). They have

extended Huang’s initial work by using one-class kernel-

based ELM. Juszczak [26] has defined OCC as class

descriptors, capable to learn restricted domains in a mul-

tidimensional pattern space, using primarily just a positive

set of examples. Luo et al. [27] have proposed a cost-

sensitive one-class classification support vector machine

(OCC-SVM) algorithm for intrusion detection. Their

experiments have suggested that giving different cost or

importance to system users than to processes results in

higher performance in intrusion detection. Tax and Laskov

[28] have developed a SVM-based one-class classifier, for

incremental and online learning. Manevitz and Yousef

[29, 30] have employed OC-SVM and Auto-Associative

Neural Networks for retrieving the interested document

from the internet in the presence of positive examples only.

Shieh and Kamm [31] have proposed a kernel density

estimation method that assigns weights to the training data

objects, such that the outliers get the least weights, whereas

the positive-class members get higher weights, for creating

bootstrap samples.

Qian and Sherif [32] have applied autonomous com-

puting technology, to monitor SCADA system perfor-

mance. Their approach proactively estimates upcoming

attacks for a given system model of a physical infrastruc-

ture. Soupionis et al. [33] have proposed a combinatorial

method for automatic detection and classification of faults

and cyberattacks occurring on the power grid system when

there is limited data from the power grid nodes due to cyber

implications.

In addition, Tao et al. [34] have described the network

attack knowledge, based on the theory of the factor

expression of knowledge. They have studied the formal

knowledge theory of SCADA network from the factor state

space and equivalence partitioning. This approach utilizes

the factor neural network (FNN) theory which contains

high-level knowledge and quantitative reasoning, used to

establish a predictive model including analytic FNN and

analogous FNN. This model abstracts and builds an

equivalent and corresponding network attack and a defense

knowledge factors system. Finally, [35] has introduced a

new European Framework-7 project Cockpit CI (Critical

Infrastructure) and roles of intelligent machine learning

methods to prevent SCADA systems from cyberattacks.

3 Proposed framework

3.1 The Gryphon

APT attacks can undertake mechanical control, dynamic

rearrangement of centrifugation or reprogramming of

devices in order to accelerate or slow down their opera-

tions, leading the overall industrial equipment to destruc-

tion or permanent damage [36]. Industrial control systems

(ICS), which are mostly used in critical infrastructures, use

SCADA and distributed control systems (DCS) based on

the programmable logic controller (PLC) [37]. These sys-

tems are active devices of industrial networks deployed in

critical infrastructures. Successful completion of special-

ized activities, such as remote control or data recording,

requires that all devices used be accurately and reliably

controlled [37].

This research effort, proposes the development of an

innovative computational intelligence algorithm, which

significantly enhances critical infrastructure security

mechanisms with minimal resource consumption. Specifi-

cally, it proposes an advanced anomaly detection frame-

work, the Gryphon: a semi-supervised unary anomaly

detection system for big industrial data. It is based on the

evolving spiking neural network (eSNN-OCC) approach. It

implements a special form of SESU learning, to categorize

the obtained anomalies in SCADA critical infrastructure

devices, which are the result of APT attacks.

The implementation of the Gryphon is an evolution of

the spiking one-class anomaly detection framework

(SOCCADF) approach that has been proposed by our

research team in [38]. Additionally, the algorithmic

approach has also evolved from the SESU learning system

that we have previously proposed in [39]. In general, it is

based on the literature known methods, such as those

outlined below, which are optimally combined in a hybrid

manner to create a comprehensive intelligent learning

system. We have proven that this system optimally

implements a decision rule that properly assigns labels

(categorizes) for new unlabeled data.

3.2 Fuzzy c-means clustering

According to Zadeh [40–42] every element ‘‘x’’ of the

Universe of discourse ‘‘X’’ belongs to a fuzzy set (FS) with

a degree of membership in the closed interval [0,1]. Thus,

the following function 1 is the mathematical foundation of

a FS.
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S ¼ ðx; ls xð Þ=ls : X 0; 1½ � : xf gls xð Þf g ð1Þ

The Fuzzy c-means clustering algorithm initially gives

random values to the cluster centers, and then it assigns all

data points to all clusters with varying degrees of mem-

bership (DOM) by measuring the Euclidean distance. Then,

the DOM of each data point to each cluster is estimated

based on Eq. (2)

lj xið Þ ¼

1
dji

� � 1
m�1

Pp
k¼1

1
dki

� � 1
m�1

ð2Þ

where m is the fuzzification parameter with values in the

interval [1.25, 2, 40]. The values of m specify the degree of

overlapping between the clusters. Then, the centers are

estimated again. Equation (3) is used for the re-estimation

of the values of new cluster centers [42].

cj ¼

P

i lj xið Þ
� �m

xi

Ri lj xið Þ
� �m ð3Þ

where cj is the center of the jth cluster with (j = 1,

2…p) and xi is the ith point [42]. This is an iterative

algorithm and the process is repeated till the centers are

stabilized.

3.3 The evolving spiking neural network one-
class classifier

The eSNNs are modular connectionist-based systems that

evolve their structure and functionality in a continuous,

self-organized, online, adaptive and interactive way based

on incoming information [43]. Their topology is strictly

feedforward, organized in several layers, and weight

modification occurs on the connections between neurons of

the existing layers.

The winner takes that all approaches are employed.

According to this algorithm, only the weight of the first

postsynaptic neuron to fire is updated. This kind of plas-

ticity constitutes an underlying learning and information

storage mechanism, and it possibly contributes to the

development of neuronal circuits during brain development

[44]. The synaptic activity plasticity rule (SAPR) is a

temporally symmetric form of Konorski/Hebbian learning.

The synaptic connection strength in SAPR is modified

using an update function that takes advantage of the

membrane potential of the postsynaptic neuron [45].

The proposed eSNNs intensify the importance of the

spikes taking place in an earlier moment, whereas the

neural plasticity is used to monitor the learning algorithm

by using one-pass learning. In order to classify real-valued

datasets, each data sample is mapped into a sequence of

spikes using the rank-order population encoding (ROPE)

technique. The topology of the developed eSNN is strictly

feedforward, organized in several layers, and weight

modification occurs on the connections between the neu-

rons of the existing layers.

The ROPE method is an extension of the rank-order

encoding and is alternative to the conventional rate coding

scheme. It uses the order of firing neuron’s inputs to encode

information. It allows the mapping of vectors of real-val-

ued elements into a sequence of spikes. Neurons are

organized into neuronal maps which share the same

synaptic weights. Whenever the synaptic weight of a

neuron is modified, the same modification is applied to the

entire population of neurons within the map. Inhibition is

also present between each neuronal map. If a neuron

spikes, it inhibits all the neurons in the other maps with

neighboring positions. This prevents all the neurons from

learning the same pattern. When propagating new infor-

mation, neuronal activity is initially reset to zero. Then, as

the propagation goes on, each time one of their inputs fire

and neurons are progressively desensitized. This is making

neuronal responses dependent upon the relative order of

firing of the neuron’s afferents [43]. The general archi-

tecture of an evolving spiking neural network is shown in

Fig. 1. Real-valued vector elements are mapped into the

time domain using rank-order population encoding based

on Gaussian receptive fields. As a consequence of this

transformation input, neurons emit spikes at pre-defined

firing times, invoking the one-pass learning algorithm of

the eSNN. The learning iteratively creates repositories of

output neurons, one repository for each class. Here, a two-

class problem is presented. Due to the evolving nature of

the network, it is possible to accumulate knowledge as it

becomes available, without the requirement of retraining

with already learnt samples, which is one of the eSNN

principles.

The topology of the proposed eSNN is strictly feedfor-

ward, organized in three layers (input layer, hidden

Fig. 1 Evolving spiking neural network (eSNN) architecture [43]

Neural Computing and Applications

123



evolving layer and output layer). The encoding is per-

formed by employing the ROPE technique which uses 20

Gaussian Receptive Fields (GRF) per variable. The data

are normalized to the interval [- 1, 1], and so the coverage

of the Gaussians is determined by using imin = - 1 and

imax = 1. Each input variable is encoded independently by

a group of one-dimensional GRF. The GRF of neuron i is

given by its center li by Eq. (4) and width r by Eq. (5)

[43].

li ¼ Inmin þ
2i� 3

2

Inmax � Inmin

M � 2
ð4Þ

r ¼
1

b

Inmax � Inmin

M � 2
ð5Þ

where 1 B b B 2 and the parameter b directly control the

width of each GRF (see Fig. 2).

When a neuron reaches its threshold, it spikes and

inhibits neurons at equivalent positions in the other maps

so that only one neuron will respond at any location. Every

spike triggers a time-based Hebbian-like learning rule that

adjusts the synaptic weights. The eSNN uses one-pass

learning (OPAL) method in the training process. The aim

of the OPAL is to create a repository of trained output

neurons during the presentation of training samples. After

presenting a certain input sample to the network, the cor-

responding spike train is propagated through the eSNN

which may result in the firing of certain output neurons. It

is possible that no output neuron is activated and the net-

work remains silent, which results in an undetermined

classification result. If one or more output neurons have

emitted a spike, the neuron with the shortest response time

among all activated ones is determined. The label of this

neuron is the classification result for the presented input.

For each training sample i with class label l, a new

output neuron is created which is fully connected to the

previous layer, resulting in a real-valued weight vector w(i)

with w
ið Þ
j 2 R denoting the connection between the presy-

naptic neuron j and the created neuron i. In the next step,

the input spikes are propagated through the network, and

the value of weight w
ið Þ
j is computed according to the order

of spike transmission through a synapse [43]

j : w
ðiÞ
j ¼ ðmlÞ

orderðjÞ ð6Þ

where j is the presynaptic neuron of i. Parameter 0\ml-

\ 1 is the modulation factor of the Thorpe neural model.

Differently labeled output neurons may have different

modulation factors ml. Function order(j) represents the rank

of the spike emitted by neuron j. For example, a rank

order(j) would be assigned the 0 value, if neuron j is the

first among all presynaptic neurons of i that emits a spike.

In a similar fashion, the spikes of all presynaptic neurons

are ranked and then used in the computation of the weights.

The firing threshold h(i) of the created neuron i is defined as

the fraction cl 2 R, 0\ cl\ 1, of the maximal possible

potential [43]

uðiÞmax : hðiÞ  clu
ðiÞ
max ð7Þ

uðiÞmax  
X

j

w
ðiÞ
j ðmlÞ

orderðjÞ ð8Þ

The weight vector of the trained neuron is compared to

the weights corresponding to neurons already stored in the

repository. Two neurons are considered too ‘‘similar’’ if the

minimal Euclidean distance between their weight vectors is

smaller than a specified similarity threshold sl. It should be

mentioned that the eSNN object uses an optimal similarity

Fig. 2 Population encoding

based on Gaussian receptive

fields [43]
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threshold s = 0.6. Both the firing thresholds and the weight

vectors were merged according to Eqs. (9) and (10) [43]

w
ðkÞ
j  

w
ðiÞ
j þ Nw

ðkÞ
j

1þ N
ð9Þ

h kð Þ  
h ið Þ þ Nh kð Þ

1þ N
ð10Þ

The integer N denotes the number of samples previously

used to update neuron k. The merging is implemented as

the average of the connection weights, and of the two firing

thresholds. After merging, the trained neuron i is discarded

and the next sample is processed. If no other neuron in the

repository is similar to the trained neuron i, the neuron i is

added to the repository as a new output. The above pro-

cedure is described in detail in Algorithm 1 [43].

All of the eSNN parameters included in this search

space are optimized according to the versatile quantum-

inspired evolutionary algorithm (vQEA) [43].

3.4 Collective classification

Collective classification [46] is a combinatorial optimiza-

tion problem, in which we are given a set of nodes,

V = {V1,…, Vn} and a neighborhood set of node N = {N1,

…, Nn}, where Ni ( V\{Vi}, which describes the under-

lying network structure. Each node in V is a random

variable that can take a value from an appropriate domain.

V is further divided into two sets of nodes: X, the nodes for

which we know the correct values (observed variables) and

Y the nodes whose values need to be determined. Our task

is to label the nodes Yi [ Y with one value belonging to a

small labels’ dataset L = {L1, …, Lq}; In this case, we will

use the shorthand yi to denote the label of node Yi [46].

3.5 The proposed Gryphon algorithm

An important innovation of the proposed semi-supervised

method is the easy validation of the classification, per-

formed on an unknown set of values. This is achieved with

the employment of actual measurable factors.

Let us consider a supervised learning problem with a

training set comprising of N samples of the form {X,

Y} = xi; yif gNi¼1, where xi [ Rni , yi is a no-dimensional

binary vector with only one input (corresponding to the

class where xi belongs) equal to a multidimensional clas-

sification process, where ni and no are the dimensions of

input and output, respectively. Generally, unclassified data

provide useful information for exploring the structure of

the general dataset, whereas the respective classified data

contribute to the learning process.

The proposed Gryphon algorithm initially performs

SESU clustering using a small number of labeled data, in

order to categorize a number of records in clusters. The

actual process is based on a measure of similarity (MESI).

Typically, every cluster is assigned a characteristic center

of gravity value (CGV). During iterations, the values of the

centers are adjusted and when the CGV stabilize, the

iterations are terminated. Then, the ‘‘classes to clusters’’

evaluation method that employs a SESU approach is used

to verify the final clustering result. Initially a minimum

data sample related to the obtained clusters (labeled data) is

used. The remaining unlabeled data which ignore the class

attribute are used to provide useful information related to

the structure of the overall dataset, as they dynamically

modulate and adjust the classes based on the values that

belong to each cluster.

The test set uses the labeled data to test the performance

of the algorithm by calculating the classification error,

based on known assignments. This option evaluates whe-

ther the selected clusters match the specified class of data.

The overall process is presented in Algorithm 2.
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3.6 Threshold criteria

The OCC process is much more difficult than a traditional

binary or multiclass classifier, as it is trained to accept

target objects and to reject the ones that have significant

deviation [18]. Minimizing the errors is also a difficult

process, because in this type of categorization, cross-

validation is unavailable since there is no data from the

other classes [17]. Finally, it should be stressed that one-

class problem-solving technique is inverse to the general-

ization approaches that are pursued in other machine

learning problems, as it tends to provide a fully defined

configuration of parameters. This can exponentially

increase the complexity of the classifier, trying to correctly
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classify target data. The more complex the model, the

smaller the rank range in the target data range, and the less

likely it is for the outliers to be categorized correctly. In

practice, one can create a complex model by setting all its

possible parameters without being at risk from overfitting

[17].

As it has been pointed out, the threshold for separating the

classes is the most important and critical factor for the success

of the OCC method [17, 18]. This paper proposes a heuristic

algorithm (based on a well-established scientific approach)

that determines the threshold, considering that the training set

contains only positive samples. The training phase uses a

distance function d, between the objects and the target cate-

gory. (When calculating a value/class for a new instance, they

compute Euclidean distances between this instance and the

training instances to make a decision.) The Euclidean metric

(and distance magnitude) is that which corresponds to the

distance between any two points in space corresponding to

the length of a straight line drawn between them. The

determination of the threshold h for the separation of the

classes (normal or outlier) is determined by discarding a set of

training samples (TRSA), most of which diverge from the

target class. In this way, the classifier is strengthened. Even

when all samples are correctly labeled, the rejection of a small

but representative portion of TRSA helps the classifier to

learn the most representative one [17, 18].

The proposed heuristic algorithm implements condi-

tionally the interquartile range (IQR) method [47] with

some serious assumptions.

In the introduced method, quadrants do not divide the

data into four equal parts (quarters), but the interquartile

range of the median value, which is considered to be the

second quadrant denoted as Q2, is implemented to include

the intermediate 80% of the observations. This is clearly

shown in Fig. 3.

The pseudocode of the optimal threshold determination

is presented in Algorithm 3.

This method ensures that the small sample of data used

in training is the characteristic of the normal SCADA

operation on critical infrastructure systems. The proposed

algorithm that determines the classification threshold is

presented below in a natural language form.

4 Datasets

Appropriate datasets were chosen that closely simulate ICS

communication and transaction data. They were used for

the development and evaluation of the proposed model.

Contained preprocessed network transaction data and pre-

processed to strip lower layer transmission data were also

considered (e.g., TCP, MAC) namely [48]:

• The water_tower_dataset includes 23 independent

parameters and 236,179 instances, from which

172,415 normal and 63,764 outliers. Totally, 86,315

normal instances were used in the training phase

(water_train_dataset), whereas the rest 86,100 normal

instances and 63,764 outliers comprised the wa-

ter_test_dataset. The introduced Gryphon algorithm

used only the 10% of the water_train_dataset for the

training process (8500 normal instances).

• The gas_dataset includes 26 independent features and

97,019 instances, from which 61,156 normal and

35,863 outliers. The training of the algorithm was

performed on the gas_train_dataset that contains

30,499 normal instances, whereas the rest 30,657

normal instances and 35,863 outliers belong to the

gas_test_dataset. The proposed Gryphon considered

only 10% of the gas_train_dataset in the training

process (3000 normal instances).

• Finally, the electric_dataset includes 128 independent

variables with 146,519 instances, from which 90,856

are normal and 55,663 are outliers. The training was

performed based on the electric_train_dataset compris-

ing 45,402 normal instances, whereas the rest 45,454Fig. 3 Graphical display of IQR method
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normal and the 55,663 outliers belong to the elec-

tric_test_dataset. The proposed Gryphon used only

10% of the electric_train_dataset in the training

process (4500 normal instances).

These sets contain data logs from a Gas Pipeline, a Lab

Scale Water Tower and a Lab Scale Electric Transmission

system. The logs include flagged network transactions

during the normal operation of specific ICSs, as well as

transactions during 35 different cyberattacks. In addition to

the logs, our data include normal behavior measurements,

as well as abnormalities detected during attacks that were

simulated in a virtual ICS environment. Details regarding

the dataset, their choice and assessment can be found in

[48].

5 Results

In multiclass classification, all of the indices presented

below [17] should be calculated in a one versus all

approach [49].

The magnitude of misclassifications is indicated by the

false positive (FP) and false negative (FN) indices

appearing in the confusion matrix. A FP is the number of

cases where we wrongfully receive a positive result, and

the FN is exactly the opposite. On the other hand, the true

positive (TP) is the number of records where we correctly

receive a positive result. The true negative (TN) is defined,

respectively.

The True Positive rate (TPR) also known as Sensitivity,

the True Negative rate also known as Specificity (TNR),

and the Total Accuracy (TA) are defined by using

Eqs. (11), (12) and (13), respectively [17, 49]:

TPR ¼
TP

TPþ FN
ð11Þ

TNR ¼
TN

TNþ FP
ð12Þ

TA ¼
TPþ TN

N
ð13Þ

The precision (PRE), the recall (REC) and the F-Score

indices are defined as in Eqs. (14), (15) and (16), respec-

tively [17, 49]:

PRE ¼
TP

TPþ FP
ð14Þ

REC ¼
TP

TPþ FN
ð15Þ

F-Score ¼ 2�
PRE� REC

PREþ REC
ð16Þ

More specifically, since it is a unary classification, the

true positives and the false positives are output by the

classification execution. The true negatives are indirectly

estimated by us by counting the number of cases that were

not classified to belong to the one and only existing class.

The number of cases that were correctly not assigned to the

one existing class determines the true negative index,

whereas the number of records that were wrongfully not

assigned to this class determines the false negative index.

In the OCC cases, the probability density of the positive

order is known, which means that during training, only the

number of positive-class objects that are not categorized

correctly (FN) can be minimized. In the absence of

examples and distribution of samples belonging to other

categories, it is not possible to estimate the number of

objects of other classes that were poorly categorized as

false positive by the OCC classifier. Given that TP ?

FN = 1 and FP ? TN = 1, an OCC algorithm includes

information only for TP and FN and no information about

FP and TN [17, 49]. Table 1 presents an extensive com-

parison (for of all three datasets) with the SOCCADF

approach [38] that was developed and proposed by our

research team in a previous survey on the same subject,

with the OCC support vector machines (OCC-SVM) and

OCC Combining Density and Class Probability Estimation

(OCC-CD/CPE) learning.

As shown in the above table, other algorithms [38]

appear to have a slightly better performance across all

datasets, compared to the Gryphon which is proposed

herein. This fact does not detract in any case from the value

of the proposed framework. On the contrary, it is a strong

demonstration of the Gryphon’s potential, considering the

objective difficulties raised in this research. Specifically, it

is obvious that Gryphon implements the anomalies recog-

nition as successfully and rationally as possible, consider-

ing the fact that it is trained only with 10% of the others

approaches data vectors [38]. It is important to recall that

the Gryphon’s training was based on a totally specific

subset of the initial training set (which originated from the

80% of the actual data) thus limiting the learning algorithm

to a very specific vector distribution.

Thus, in the proposed Gryphon algorithm, we face a

very appealing compromise where we are using much less

data, which means faster response and less complexity,

whereas the efficiency and accuracy are practically the

same.

6 Discussion and conclusions

This research paper discusses an innovative, reliable, low-

demand and highly effective anomaly detection system,

employing computational intelligence principles. The

Gryphon: a semi-supervised unary anomaly detection sys-

tem is an evolution of the spiking one-class anomaly
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detection framework algorithm (SOCCADF) that was

proposed in a previous research effort of our team [38]. A

comparative in-depth analysis between these two approa-

ches has been carried out.

Gryphon uses the sophisticated eSNN classification

algorithm to identify deviations in the way ICS works,

which in most cases stem from cyberattacks.

The implementation of the Gryphon was based on the

unary classification philosophy. Its intelligent algorithm

was trained with a dataset related to normal ICS behaviors

and it was tested in defining the abnormalities of these

systems. An important innovation of Gryphon is the use of

eSNN which have proven to be capable, of solving a

multidimensional and complex IT security problem. The

eSNN simulate the functioning of biological brain cells in a

most realistic mode. They manage to rationally model

spatiotemporal cases, as the signals are transported with

time pulses. Apart from the duration, the frequency of time

pulses between neurons is an important parameter. This

creates potential for a fully defined configuration of the

model, based on target data, resulting in high-accuracy

classification.

Another important aspect is the use of SESU as it is the

most realistic approach of timely systems for which it is

impossible to parameterize all possible classes of opera-

tion. Additionally, the use of artificial intelligence in real-

time analysis of industrial equipment greatly enhances the

active defense mechanisms of critical infrastructures.

Another key issue is the development of the class sepa-

ration threshold used in training. This threshold has

emerged after extensive research into the way ICS work

and after comparisons and tests of their inherent behavior

boundaries, in order to determine their classification in the

potential states (normal or outliers).

This system, and more generally the active security

philosophy, greatly enhances the control of critical infras-

tructures, which are the main objective of advanced

attacks.

The performance of the proposed system was tested in

three multidimensional datasets of high complexity, which

resulted from extensive research into the operation of ICS

(SCADA, DCS and PLC). The high precision results that

have emerged greatly enhance the general methodology

followed, although the degree of difficulty and realism that

has been added has created extremely multifactorial issues

of thorough investigation and reflection. It is obvious that

the proposed framework, which simplifies the process and

minimizes the cost and running time, is an important pre-

requisite for the establishment of an effective risk reduction

and CRIN protection system. Proposals for the develop-

ment and future improvements of this system should focus

on further optimizing the parameters of the eSNN algo-

rithm, aiming to achieve an even more efficient, accurate

and quicker classification process.

It would be essential to extend this approach to be used

for the classification of data streams with online learning

methods. Finally, an additional element that could be

studied in the direction of future extension is related to the

employment of self-improvement methods with redefini-

tion of the system’s parameters in a meta-learning way, so

that it can fully automate the localization process of APT

attacks.

Table 1 Comparison between

algorithms
Classifier Classification accuracy and performance metrics

Total accuracy Precision Recall F-score ROC area

water_tower_dataset

GRYPHON 98.03% 0.980 0.980 0.980 0.980

SOCCADF 98.08% 0.981 0.981 0.981 0.994

OCC-SVM 98.01% 0.980 0.980 0.980 0.995

OCC-CD/CPE 96.75% 0.975 0.975 0.975 0.980

gas_dataset

GRYPHON 97.68% 0.975 0.975 0.970 0.980

SOCCADF 98.82% 0.988 0.988 0.988 0.995

OCC-SVM 97.98% 0.980 0.980 0.980 0.990

OCC-CD/CPE 95.67% 0.960 0.960 0.960 0.975

electric_dataset

GRYPHON 96.92% 0.970 0.969 0.969 0.985

SOCCADF 98.30% 0.983 0.983 0.983 0.999

OCC-SVM 97.63% 0.978 0.978 0.978 0.990

OCC-CD/CPE 97.02% 0.970 0.970 0.970 0.985
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