
Bio-inspired Hybrid Intelligent Method

for Detecting Android Malware

Konstantinos Demertzis and Lazaros Iliadis

Abstract Today’s smartphones are capable of doing much more than the previous

generation of mobile phones. However this extended range of capabilities is coming

together with some new security risks. Also, mobile platforms often contain small,

insecure and less well controlled applications from various single developers. Due

to the open usage model of the Android market, malicious applications cannot be

avoided completely. Especially pirated applications or multimedia content in

popular demand, targeting user groups with typically low awareness levels are

predestined to spread too many devices before being identified as malware. Gen-

erally malware applications utilizing root exploits to escalate their privileges can

inject code and place binaries outside applications storage locations. This paper

proposes a novel approach, which uses minimum computational power and

resources, to indentify Android malware or malicious applications. It is a

bio-inspired Hybrid Intelligent Method for Detecting Android Malware (HIM-

DAM). This approach performs classification by employing Extreme Learning

Machines (ELM) in order to properly label malware applications. At the same time,

Evolving Spiking Neural Networks (eSNNs) are used to increase the accuracy and

generalization of the entire model.

Keywords Security ⋅ Android malware ⋅ Evolving spiking neural networks ⋅
Extreme learning machines ⋅ Radial basis function networks ⋅ Polynomial neural

networks ⋅ Self-Organizing maps ⋅ Multilayer perceptron

K. Demertzis (✉) ⋅ L. Iliadis (✉)

Department of Forestry and Management of the Environment and Natural Resources,

Democritus University of Thrace, 193 Pandazidou St, 68200 N. Orestiada, Greece

e-mail: kdemertz@fmenr.duth.gr

L. Iliadis

e-mail: liliadis@fmenr.duth.gr

© Springer International Publishing Switzerland 2016

S. Kunifuji et al. (eds.), Knowledge, Information and Creativity Support Systems,

Advances in Intelligent Systems and Computing 416,

DOI 10.1007/978-3-319-27478-2_20

289

kdemertz@fmenr.duth.gr

1 Introduction

Lately, the share of smartphones in the sales of handheld mobile communication

devices has drastically increased. Among them, the number of Android based

smartphones is growing rapidly. They are increasingly used for security critical

private and business applications, such as online banking or to access corporate

networks. This makes them a very valuable target for an adversary. Until recently,

the Android Operating System’s security model has succeeded in preventing any

significant attacks by malware. This can be attributed to a lack of attack vectors

which could be used for self-spreading infections and low sophistication of mali-

cious applications. However, emerging malware deploys advanced attacks on

operating system components to assume full device control [10]. Malware are the

most common infection method because the malicious code can be packaged and

redistributed with popular applications. In Android, each application has an asso-

ciated .apk file which is the executable file format for this platform. Due to the open

software installation nature of Android, users are allowed to install any executable

file from any application store. This could be from the official Google Play store, or

a third party site. This case of installing applications makes Android users vul-

nerable to malicious applications. Some of the most widely used solutions such as

antivirus software are inadequate for use on smartphones as they consume too much

CPU and memory and might result in rapid draining of the power source. In

addition, most antivirus detection capabilities depend on the existence of an

updated malware signature repository, therefore the antivirus users are not protected

from zero-day malware.

This research effort aims in the development and application of an innovative,

fast and accurate bio-inspired Hybrid Intelligent Method for Detecting Android

Malware (HIMDAM). This is achieved by employing Extreme Learning Machines

(ELMs) and Evolving Spiking Neural Networks (eSNNs). A RBF Kernel ELM has

been employed for malware detection, which offers high learning speed, ease of

implementation and minimal human intervention. Also, an eSNN model has been

applied to increase the accuracy and generalization of the entire method. In fact, the

bio-inspired model has shown better performance when compared to other ANN

methods, such as Multilayer Perceptrons (MLP), Radial Basis Function ANN

(RBF), Self-Organizing Maps (SOM), Group Methods of Data Handling (GMDH)

and Polynomial ANN. A main advantage of HIMDAM is the fact that it reduces

overhead and overall analysis time, by classifying malicious and benign applica-

tions with high accuracy.

1.1 Literature Review

Significant work has been done in applying machine learning (ML) techniques,

using features derived from both static [7, 24, 29] and dynamic [4] analysis to

290 K. Demertzis and L. Iliadis

kdemertz@fmenr.duth.gr

identify malicious Android applications [13]. Amongst early efforts towards

Android applications security was the “install-time policy security system” devel-

oped by Enck et al. which considered risks associated with combinations of the app

permissions [9]. From another perspective, some works focused in the runtime

analysis [20, 22] whereas others have tried a static analysis of apps [12]. For

instance, Chin et al. [7] used a 2-means clustering [21] of apps’ call activities, to

detect Trojans. Fuchs et al. [11] used formal static analysis of byte codes [33] to

form data flow-permission consistency as a constrained optimization problem.

Barrera et al. [3] used app permissions in self-organizing maps (SOMs) to visualize

app permission usage as a U-matrix [18]. Besides, their SOM component plane

analysis allowed identification of the frequently jointly requested permissions.

However, they did not relate categories and permissions. In [30], Tesauro et al. train

ANN to detect boot sector viruses, based on byte string trigrams. Schultz et al. [27]

compare three machine learning algorithms trained on three features: DLL and

system calls made by the program, strings found in the program binary and a raw

hexadecimal representation of the binary [23]. Kotler and Maloof [19] used a

collection of 1971 benign and 1651 malicious executable files. N-grams were

extracted and 500 features were selected using the Information Gain measure. The

vector of n-gram features was binary, presenting the presence or absence of a

feature in the file. In their experiment, they trained several classifiers: IBK

k-Nearest Neighbors (k-NN), a similarity-based classifier called the TFIDF clas-

sifier, Naïve Bayes, Support Vector Machines (SVM) and Decision Trees under the

algorithm J48 [28]. The last three of these were also boosted. In the experiments,

the four best-performing classifiers were Boosted J48, SVM, Boosted SVM and

IBK [28]. Also, Cheng et al. [6] proposed the use of ELM methods to classify

binary and multi-class network traffic for intrusion detection. The performance of

ELM in both binary-class and multi-class scenarios are investigated and compared

to SVM based classifiers. Joseph et al., [16] developed an autonomous

host-dependent Intrusion Detection System (IDS) for identifying malicious sinking

behavior. This system increases the detection accuracy by using cross-layer features

to describe a routing behavior. Two ML approaches were exploited towards

learning and adjustment to new kind of attack circumstances and network sur-

roundings. ELMs and Fisher Discriminant Analysis (FDA) are utilized collectively

to develop better accuracy and quicker speed of method.

2 Methodologies Comprising the Proposed Hybrid

Approach

2.1 Extreme Learning Machines (ELM)

The extreme learning machine (ELM) as an emerging learning technique provides

efficient unified solutions to generalized feed-forward networks including but not

limited to (both single- and multi-hidden-layer) neural networks, radial basis

Bio-inspired Hybrid Intelligent Method for Detecting Android Malware 291

kdemertz@fmenr.duth.gr

function (RBF) networks, and kernel learning [34]. ELM theories show that hidden

neurons are important but can be randomly generated, independent from applica-

tions and that ELMs have both universal approximation and classification capa-

bilities. They also build a direct link between multiple theories namely: ridge

regression, optimization, ANN generalization performance, linear system stability

and matrix theory. Thus, they have strong potential as a viable alternative technique

for large-scale computing and ML. Also ELMs, are biologically inspired, because

hidden neurons can be randomly generated independent of training data and

application environments, which has recently been confirmed with concrete bio-

logical evidences. ELM theories and algorithms argue that “random hidden neu-

rons” capture the essence of some brain learning mechanism as well as the intuitive

sense that the efficiency of brain learning need not rely on computing power of

neurons. This may somehow hint at possible reasons why brain is more intelligent

and effective than computers [5].

ELM works for the “generalized” Single-hidden Layer feedforward Networks

(SLFNs) but the hidden layer (or called feature mapping) in ELM need not be

tuned.

Such SLFNs include but are not limited to SVMs, polynomial networks, RBFs

and the conventional (both single-hidden-layer and multi-hidden-layer) feedforward

ANN. Different from the tenet that all the hidden nodes in SLFNs need to be tuned,

ELM learning theory shows that the hidden nodes/neurons of generalized feed-

forward networks needn’t be tuned and these hidden nodes/neurons can be ran-

domly generated [34]. All the hidden node parameters are independent from the

target functions or the training datasets. ELMs conjecture that this randomness may

be true to biological learning in animal brains. Although in theory, all the param-

eters of ELMs can be analytically determined instead of being tuned, for the sake of

efficiency in real applications, the output weights of ELMs may be determined in

different ways (with or without iterations, with or without incremental implemen-

tations) [34]. According to ELM theory the hidden node/neuron parameters are not

only independent of the training data but also of each other. Unlike conventional

learning methods which must see the training data before generating the hidden

node/neuron parameters, ELMs could randomly generate the hidden node/neuron

parameters before seeing the training data. In addition, ELMs can handle

non-differentiable activation functions, and do not have issues such as finding a

suitable stopping criterion, learning rate, and learning epochs. ELMs have several

advantages, ease of use, faster learning speed, higher generalization performance,

suitable for many nonlinear activation function and kernel functions [34].

2.2 Evolving Spiking Neural Networks (eSNNs)

The eSNNs are modular connectionist-based systems that evolve their structure and

functionality in a continuous, self-organized, on-line, adaptive, interactive way from

incoming information. These models use trains of spikes as internal information

292 K. Demertzis and L. Iliadis

kdemertz@fmenr.duth.gr

representation rather than continuous variables [25]. The eSNN developed and

discussed herein is based in the “Thorpe” neural model [31]. This model intensifies

the importance of the spikes taking place in an earlier moment, whereas the neural

plasticity is used to monitor the learning algorithm by using one-pass learning. In

order to classify real-valued data sets, each data sample, is mapped into a sequence of

spikes using the Rank Order Population Encoding (ROPE) technique [8, 32]. The

topology of the developed eSNN is strictly feed-forward, organized in several layers

and weight modification occurs on the connections between the neurons of the

existing layers.

The ROPE method is alternative to the conventional rate coding scheme

(CRCS). It uses the order of firing neuron’s inputs to encode information. This

allows the mapping of vectors of real-valued elements into a sequence of spikes.

Neurons are organized into neuronal maps which share the same synaptic weights.

Whenever the synaptic weight of a neuron is modified, the same modification is

applied to the entire population of neurons within the map. Inhibition is also present

between each neuronal map. If a neuron spikes, it inhibits all the neurons in the

other maps with neighboring positions. This prevents all the neurons from learning

the same pattern. When propagating new information, neuronal activity is initially

reset to zero. Then, as the propagation goes on, each time one of their inputs fire,

neurons are progressively desensitized. This is making neuronal responses depen-

dent upon the relative order of firing of the neuron’s afferents [17, 37].

The aim of the one-pass learning method is to create a repository of trained

output neurons during the presentation of training samples. After presenting a

certain input sample to the network, the corresponding spike train is propagated

through the eSNN which may result in the firing of certain output neurons. It is

possible that no output neuron is activated and the network remains silent and the

classification result is undetermined. If one or more output neurons have emitted a

spike, the neuron with the shortest response time among all activated output neu-

rons is determined. The label of this neuron is the classification result for the

presented input [26].

3 Description of the Proposed HIMDAM Algorithm

The proposed herein, HIMDAM methodology uses an ELM classification approach

to classify malware or benign applications with minimum computational power and

time, combined with the eSNN method in order to detect and verify the malicious

code. The general algorithm is described below:

Step 1:

Train and test datasets are determined and normalized to the interval [−1,1]. The
datasets are divided in 4 main sectors with “permission” feature. Permission is a

Bio-inspired Hybrid Intelligent Method for Detecting Android Malware 293

kdemertz@fmenr.duth.gr

security mechanism of mobile operating systems. For mobile phones any applica-

tion executed under the device owner’s user ID would be able to access any other

application’s data. The Android kernel assigns each application its own user ID on

installation. To avoid the abuse of mobile phone functions, Android allows the user

to effectively identify and manage mobile phone resources by setting permissions.

If the application requires a certain function, the developer can announce permis-

sion. In the latest version of Android, there are a total of 130 permissions. To

malware, some permissions are important and frequently needed, therefore they

should be weighted. For example, the attacker needs permissions to transfer the

stolen data to his account through the web, or to perform damaging behavior by

sending out large number of SMS messages. The features involved can be divided

in the sectors below:

1. Battery + Permissions (5 features)

2. Binder + Permissions (18 features)

3. Memory + CPU + Permissions (10 features)

4. Network + Permissions (9 features)

The Hardware_Dataset has been generated (16 features) including the most

important variables from hardware related sectors (Battery, Memory, CPU, Net-

work). On the other hand, the All_Imp_Var_Dataset (27 features) comprises of the

most important variables from all of the sectors (Battery, Memory, CPU, Network,

Binder). To calculate the importance of variables we replace them with their mean

values one by one and we measure the root mean squared error (RMSE) of the

“new” model. Original model error is considered to have a zero percent impact on

the RMSE and 100 % impact is a case where all variables are replaced with their

mean. The impact can easily exceed 100 % when the variable in a model is mul-

tiplied by another one or it is squared. A small negative percentage can also happen

if a variable is merely useless for the model.

In order to create a very fast and accurate prediction model with minimum

requirements of hardware resources, we randomly check two sectors (e.g. Battery

and Binder or Memory and Binder) every time with the ELM classifier. According

to the ELM theory [15], the Gaussian Radial Basis Function kernel K(u,v) = exp

(−γ||u − v||2) is used. The hidden neurons are k = 20, wi are the assigned random

input weights and bi the biases, where i = 1,…,N and H is the hidden layer output

matrix.

H =

h(x1Þ
⋮

h(xNÞ

2

4

3

5=

h1ðx1Þ ⋯ hLðx1Þ
⋮ ⋮

h1ðxNÞ ⋯ hLðxNÞ

2

4

3

5 ð1Þ

h(x) = [h1(x),…, hL(x)] is the output (row) vector of the hidden layer with respect to

the input x. Function h(x) actually maps the data from the d-dimensional input space

to the L-dimensional hidden-layer feature space (ELM feature space) H and thus,

294 K. Demertzis and L. Iliadis

kdemertz@fmenr.duth.gr

h(x) is indeed a feature mapping. ELM aims to minimize the training error as well

as the norm of the output weights as shown in Eq. 2:

Minimize: Hβ−Tk k2 and βk k ð2Þ

To minimize the norm of the output weights ||β|| is actually to maximize the

distance of the separating margins of the two different classes in the ELM feature

space 2/||β||.

The calculation of the output weights β is done according to Eq. (3):

β=
I

C
+HTH

� �− 1

HTT ð3Þ

where c is a positive constant and T is obtained from the Function Approximation of

SLFNs with additive neurons with ti = [ti1, ti2,…,tim]
T Rm and T =

tT1
⋮
tTN

2

4

3

5.

It has been shown numerically in ELM theory [15] that the above solution has

better generalization performance. More specifically, the reasoning of the new

Malware detection algorithm that has been developed in this research is as seen

below:

1: If both sectors’ analysis with the ELM offers Negative results, no action is

required and the next 2 sectors are examined.

2: If the ELM analysis results in a Negative result for the one sector and positive

for the other then:

3: If both sectors belong to the general Hardware field (eg. Network and

Battery) then the Hardware_Dataset is reexamined:

4: If the result is Negative then we go further.

5: If the result is Positive then the whole Original Dataset with all 40

features is checked.

6: If the ELM analysis of both sectors produces Positive results then the whole

Original Dataset with all 40 features is checked.

7: If one of sectors belongs to the Binder field then the All_Imp_Var_Dataset is

examined:

8: If the result is Negative then we go further.

9: If the result is Positive then the whole Original Dataset with all 40

features is checked with eSNN classification method.

10: If the ELM analysis of both sectors produces Positive result, then the whole

Original Dataset is checked with eSNN classifier.

Step 2:

The train and test datasets are determined and formed, related to n features. The

required classes (malware and benign applications) that use the variable Population

Encoding are imported. This variable controls the conversion of real-valued data

Bio-inspired Hybrid Intelligent Method for Detecting Android Malware 295

kdemertz@fmenr.duth.gr

samples into the corresponding time spikes. The encoding is performed with 20

Gaussian receptive fields per variable (Gaussian width parameter beta = 1.5). The

data are normalized to the interval [−1,1] and so the coverage of the Gaussians is

determined by using i_min and i_max. For the normalization processing the fol-

lowing equation is used:

x1norm =2 *
x1 − xmin

xmax − xmin

� �

− 1, x∈R ð4Þ

The data is classified in two classes namely: Class positive which contains the

benign results and Class negative which comprises of the malware ones. The eSNN

is using modulation factor m = 0.9, firing threshold ratio c = 0.7 and similarity

threshold s = 0.6 in agreement with the vQEA algorithm [26, 37]. More precisely,

let A = {a1, a2, a3… am−1, am} be the ensemble of afferent neurons of neuron i and

W = {w1,i, w2,i, w3,i... wm−1,i, wm,i} the weights of the m corresponding connec-

tions; let mod ∈ [0,1] be an arbitrary modulation factor. The activation level of

neuron i at time t is given by Eq. 5:

Activationði, tÞ= ∑
j∈ ½1,m�

modorderðajÞ wj, i ð5Þ

where order(aj) is the firing rank of neuron aj in the ensemble A. By convention,

order(aj) = +8 if a neuron aj is not fired at time t, sets the corresponding term in the

above sum to zero. This kind of desensitization function could correspond to a fast

shunting inhibition mechanism. When a neuron reaches its threshold, it spikes and

inhibits neurons at equivalent positions in the other maps so that only one neuron

will respond at any location. Every spike triggers a time based Hebbian-like

learning rule that adjusts the synaptic weights. Let te be the date of arrival of the

Excitatory PostSynaptic Potential (EPSP) at synapse of weight W and ta the date of

discharge of the postsynaptic neuron.

If te < ta then dW= a(1−W)e− Δoj jτ else dW = − aWe− Δoj jτ. ð6Þ

Δo is the difference between the date of the EPSP and the date of the neuronal

discharge (expressed in term of order of arrival instead of time), a is a constant that

controls the amount of synaptic potentiation and depression [8]. ROPE technique

with receptive fields, allow the encoding of continuous values. Each input variable

is encoded independently by a group of one-dimensional receptive fields (Figs. 1

and 2). For a variable n, an interval [Inmin, I
n
max] is defined. The Gaussian receptive

field of neuron i is given by its center μi and width σ by Eq. 8.

μi= Inmin +
2i− 3

2

Inmax − Inmin

M− 2
ð7Þ

296 K. Demertzis and L. Iliadis

kdemertz@fmenr.duth.gr

σ=
1

β

Inmax − Inmin

M− 2
ð8Þ

where 1≤ β≤ 2 and the parameter β directly controls the width of each Gaussian

receptive field. Figure 3 depicts an encoding example of a single variable.

For an input value v = 0.75 (thick straight line) the intersection points with each

Gaussian is computed (triangles), which are in turn translated into spike time delays

(right figure) [37].

Step 3:

The eSNN is trained with the training dataset vectors and the testing is performed

with the testing vectors. The procedure of one pass learning is described in the

following Algorithm 2 [17, 37].

Fig. 1 Extreme learning machine (ELM) [34]

Fig. 2 The Evolving Spiking Neural Network (eSNN) architecture [17]

Bio-inspired Hybrid Intelligent Method for Detecting Android Malware 297

kdemertz@fmenr.duth.gr

Algorithm 1: Training an evolving Spiking Neural Network (eSNN) [37]

Require: , , for a class label l L

1: initialize neuron repository = {}

2: for all samples belonging to class l do

3: wj

(i)
(ml)

order(j), j | j pre-synaptic neuron of i

4: umax
(i)

wj

(i)
j (ml)

order(j)

5:
(i)

clumax
(i)

6: if min(d(w(i), w(k))) < sl, w
(k) Rl then

7: w(k) merge w(i) and w(k) according to Equation 7

8:
(k)

merge
(i)

and
(k)

according to Equation 8

9: else

10: Rl Rl {w(i)}

11: end if

12: end for

For each training sample i with class label l which represent a benign software, a

new output neuron is created and fully connected to the previous layer of neurons,

resulting in a real-valued weight vector wðiÞ with w
ðiÞ
j ∈R denoting the connection

between the pre-synaptic neuron j and the created neuron i. In the next step, the

input spikes are propagated through the network and the value of weight w
ðiÞ
j is

computed according to the order of spike transmission through a synapse j:

w
ðiÞ
j = (mlÞ

orderðjÞ
, ∀j j j pre-synaptic neuron of i. Parameter ml is the modulation

factor of the Thorpe neural model. Differently labeled output neurons may have

different modulation factors ml. Function order(j) represents the rank of the spike

emitted by neuron j. The firing threshold θðiÞ of the created neuron I is defined as the

fraction cl ∈ R, 0 < cl < 1, of the maximal possible potential

uðiÞmax: θ
ðiÞ
←clu

ðiÞ
max ð7Þ

uðiÞmax←∑
j

w
ðiÞ
j ðmlÞ

orderðjÞ ð9Þ

Fig. 3 Population encoding based on Gaussian receptive fields. Left figure Input interval—right

figure neuron ID [17]

298 K. Demertzis and L. Iliadis

kdemertz@fmenr.duth.gr

The fraction cl is a parameter of the model and for each class label l ∈ L a different

fraction can be specified. The weight vector of the trained neuron is compared to the

weights corresponding to neurons already stored in the repository. Two neurons are

considered too “similar” if the minimal Euclidean distance between their weight

vectors is smaller than a specified similarity threshold sl (the eSNN object uses

optimal similarity threshold s = 0.6). All parameters of eSNN (modulation factor

ml, similarity threshold sl, PSP fraction cl, l ∈ L) included in this search space,

were optimized according to the Versatile Quantum-inspired Evolutionary Algo-

rithm (vQEA) [26]. Both the firing thresholds and the weight vectors were merged

according to Eqs. 10 and 11:

w
ðkÞ
j ←

w
ðiÞ
j +Nw

ðkÞ
j

1 +N
, ∀ jjj pre− synaptic neuron of i ð10Þ

θðkÞ←
θðiÞ +NθðkÞ

1 +N
ð11Þ

Integer N denotes the number of samples previously used to update neuron k. The

merging is implemented as the (running) average of the connection weights, and the

(running) average of the two firing thresholds. After merging, the trained neuron i is

discarded and the next sample processed. If no other neuron in the repository is

similar to the trained neuron i, the neuron i is added to the repository as a new

output.

4 Data and Results

For this experiment, we used the free dataset provided by B. Amos [2]. The author

developed a shell script to automatically analyze .apk Android application files by

running them in available Android emulators. For each .apk file, the emulator

simulates user interaction by randomly interacting with the application interface.

This is done using the Android “adb-monkey” tool [14]. Based on inspection of the

source code, we can conclude that each feature vector of the dataset is collected at

5 s’ intervals. The memory features were collected by observing the “proc”

directory in the underlying Linux system of Android. The CPU information was

collected by running the Linux “top” command. The Battery and Binder infor-

mation was collected by using “intent” (Action listener) [1].

The original dataset has a total of 1153 data (feature vector) samples with 660

benign samples (classified as positive class) and 493 malicious samples (classified

as negative class). It was divided randomly in two parts: 1) a training dataset

containing 807 patterns (467 positive and 340 negative patterns) 2) a testing dataset

containing 346 patterns (193 positive and 153 negative patterns). To identify the

integrity of HIMDAM we have compared the ELM and eSNN classifiers with other

neural network methods. The performance of both classifiers was evaluated on

Bio-inspired Hybrid Intelligent Method for Detecting Android Malware 299

kdemertz@fmenr.duth.gr

T
a
b
le

1
A
cc
u
ra
cy

(A
C
C
)
co
m
p
ar
is
o
n
b
et
w
ee
n
M
L
P
,
R
B
F
,
E
L
M
,
G
M
D
H

P
N
N
,
eS
N
N

M
L
P

R
B
F

S
O
M

E
L
M

G
M
D
H

P
N
N

eS
N
N

A
cc

(%
)

T
im

e
A
cc

(%
)

T
im

e
A
cc

(%
)

T
im

e
A
cc

(%
)

T
im

e
A
cc

(%
)

T
im

e
A
cc

(%
)

T
im

e

A
ll
fe
at
u
re
s

9
5
.3
8

3
8
.3
1

8
5
.7
2

0
.3
4

8
7
.3
4

0
.2
0

8
9
.1
9

0
.1
7

9
0
.5
0

1
3
.0
0

9
7
.1
0

2
0
.2
2

B
at
te
ry

+
p
er
m

7
3
.5
8

1
.6
9

7
1
.9
6

0
.1
9

6
4
.2
8

0
.2
3

7
2
.4
9

0
.1
7

7
1
.3
0

2
.0
0

7
9
.3
0

1
.2
2

B
in
d
er

+
p
er
m

9
3
.3
5

7
.9
5

7
9
.8
7

0
.0
8

7
2
.8
2

0
.0
8

8
2
.9
8

0
.0
5

8
4
.8
0

5
.0
0

9
3
.6
0

8
.7
1

M
em

o
ry

C
P
U

P
er
m

8
2
.0
8

4
.8
4

7
9
.6
5

0
.1
3

7
7
.1
6

0
.2
3

8
0
.0
8

0
.1
2

8
3
.1
0

4
.0
0

8
4
.9
0

4
.4
0

N
et
w
o
rk

p
er
m

8
1
.2
1

3
.0
2

6
9
.8
3

0
.1
3

7
0
.1
0

0
.1
9

7
1
.2
7

0
.1
4

7
3
.7
0

3
.0
0

8
0
.1
0

3
.1
1

Im
p
o
rt
an
t
v
ar
.
fr
o
m

al
l

fe
at
u
re
s

9
7
.6
9

1
4
.5
9

8
3
.7
6

0
.2
0

8
0
.3
4

0
.2
0

8
9
.4
7

0
.2
0

9
1
.0
0

8
.0
0

9
8
.2
0

1
1
.0
2

Im
p
o
rt
an
t
v
ar
.
fr
o
m

h
ar
d
w
ar
e

9
4
.2
2

6
.6
9

8
8
.2
5

0
.2
2

7
5
.9
0

0
.1
7

8
8
.0
0

0
.1
4

8
9
.4
0

6
.0
0

9
4
.8
0

5
.9
1

300 K. Demertzis and L. Iliadis

kdemertz@fmenr.duth.gr

malware datasets. The results showed that the kernel based ELM has much faster

learning speed (run thousands times faster than conventional methods) and the

eSNN has much better generalization performance and more accurate and reliable

classification results. The comparisons were performed on a dual boot PC with a P4

at 3.1 GHz CPU and 4 GB RAM. For the eSNN classification, the Linux Ubuntu

12.04 LTS OS with PyLab (NumPy, SciPy, Matplotlib and IPython) was employed.

The MLP, RBF and SOM tests were performed with the Weka 3.7 [35], ELM with

Matlab 2013 and GMDH PNN with GMDH shell software [36]. The performance

comparisons of NN algorithms are shown in Table 1. The confusion matrices for

ELM and eSNN can be seen in Table 2 (Fig. 4).

Table 2 Confusion matrices for ELM and eSNN algorithms

Confusion matrices for ELM Confusion matrices for eSNN

All features All features

Benign

(predicted)

Malware

(predicted)

Accuracy

(%)

Benign

(predicted)

Malware

(predicted)

Accuracy

(%)

Benign

(actual)

180 13 93.26 Benign

(actual)

190 3 98.40

Malware

(actual)

23 130 85.12 Malware

(actual)

7 146 95.80

Overall

accuracy

89.19 Overall

accuracy

97.10

Battery permissions

Benign

(actual)

149 44 77.20 Benign

(actual)

160 33 82.90

Malware

(actual)

50 103 67.78 Malware

(actual)

37 116 75.70

Overall

accuracy

72.49 Overall

accuracy

79.30

Binder permissions

Benign

(actual)

164 29 84,97 Benign

(actual)

185 8 95.80

Malware

(actual)

29 124 80,99 Malware

(actual)

13 140 91.40

Overall

accuracy

82.98 Overall

accuracy

93.60

Memory CPU permissions

Benign

(actual)

159 34 82.38 Benign

(actual)

168 25 87.00

Malware

(actual)

34 119 77.78 Malware

(actual)

26 127 82.80

Overall

accuracy

80.08 Overall

accuracy

84.90

(continued)

Bio-inspired Hybrid Intelligent Method for Detecting Android Malware 301

kdemertz@fmenr.duth.gr

Table 2 (continued)

Confusion matrices for ELM Confusion matrices for eSNN

All features All features

Benign

(predicted)

Malware

(predicted)

Accuracy

(%)

Benign

(predicted)

Malware

(predicted)

Accuracy

(%)

Network permissions

Benign

(actual)

142 51 73.57 Benign

(actual)

161 32 83.40

Malware

(actual)

48 105 68.97 Malware

(actual)

36 117 76.80

Overall

accuracy

71.27 Overall

accuracy

80.10

Importance variables from all

Benign

(actual)

180 13 93.26 Benign

(Actual)

191 2 99.00

Malware

(actual)

22 131 85.68 Malware

(Actual)

4 149 97.40

Overall

accuracy

89.47 Overall

Accuracy

98.20

Importance variables from hardware

Benign

(actual)

175 23 90.67 Benign

(actual)

184 9 95.30

Malware

(actual)

23 130 85.33 Malware

(actual)

9 144 94.30

Overall

accuracy

88.00 Overall

accuracy

94.80

Fig. 4 Accuracy and time comparison of MLP, RBF, ELM, GMDH PNN and eSNN

302 K. Demertzis and L. Iliadis

kdemertz@fmenr.duth.gr

5 Discussion—Conclusions

An innovative bio-inspired Hybrid Intelligent Method for Detecting Android

Malware (HIMDAM) has been introduced in this paper. It performs classification

by using ELM (a very fast approach to properly label malicious executables) and

eSNN for the detection of malware with high accuracy and generalization. An effort

was made to achieve minimum computational power and resources. The classifi-

cation performance of the ELM and the accuracy of the eSNN model were

experimentally explored based on different datasets and reported promising results.

Moreover the hybrid model detects the patterns and classifies them with high

accuracy. In this way it adds a higher degree of integrity to the rest of the security

infrastructure of Android Operating System. As a future direction, aiming to

improve the efficiency of biologically realistic ANN for pattern recognition, it

would be important to evaluate the eSNN model with ROC analysis and to perform

feature minimization in order to achieve minimum processing time. Other coding

schemes could be explored and compared on the same security task. Also what is

really interesting is a scalability of ELM with other kernels in parallel and dis-

tributed computing in a real-time system. Finally the HIMDAM could be improved

towards a better online learning with self-modified parameter values.

References

1. Alam M.S., Vuong S.T.: Random forest classification for detecting android malware. In:

IEEE IC on Green Computing and Communications and Internet of Things (2013)

2. Amos, B.: Antimalware. https://github.com/VT-Magnum-Research/antimalware (2013)

3. Barrera, D., Kayacik, H., Oorshot, P., Somayaji, A.: A Methodology for Empirical Analysis of

Permission-Based Security Models and its Application to Android. ACM (2010)

4. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware detection

system for android. In: 1st ACM Workshop on on SPSM, pp. 15–26. ACM (2011)

5. Cambria E., Huang G.-B.: Extreme learning machines. IEEE Intell. Syst. (2013)

6. Cheng, C., Peng, W.T, Huang, G.-B.: Extreme learning machines for intrusion detection. In:

WCCI IEEE World Congress on Computational Intelligence Brisbane, Australia (2012)

7. Chin E., Felt A., Greenwood K., Wagner D.: Analyzing inter-application communication in

android. In: 9th Conference on Mobile Systems, Applications, and Services, pp. 239–252.

ACM (2011)

8. Delorme, A., Perrinet, L., Thorpe, S.J.: Networks of Integrate-and-fire neurons using rank

order coding b: spike timing dependant plasticity and emergence of orientation selectivity.

Neurocomputing 38–40(1–4), 539–545 (2000)

9. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application certification.

In: Proceedings of the 16th ACM Conference on Computer Security, CSS (2009)

10. Fedler, R., Banse, C., Krauß, Ch., Fusenig, V.: Android OS security: risks and limitations a

practical evaluation, AISEC Technical Reports, AISEC-TR-2012–001 (2012)

11. Fuchs, A., Chaudhuri, A., Foster, J.: ScanDroid: automated security certification of android

applications, Technical report, University of Maryland (2009)

12. Ghorbanzadeh, M., Chen, Y., Zhongmin, M., Clancy, C.T., McGwier, R.: A neural network

approach to category validation of android applications. In: International Conference on

Bio-inspired Hybrid Intelligent Method for Detecting Android Malware 303

kdemertz@fmenr.duth.gr

https://github.com/VT-Magnum-Research/antimalware

Computing, Networking and Communications, Cognitive Computing and Networking

Symposium (2013)

13. Glodek, W., Harang R.R.: Permissions-based detection and analysis of mobile malware using

random decision forests. In: IEEE Military Communications Conference (2013)

14. Google, UI/Application Exerciser Monkey. http://developer.android.com/tools/help/monkey.

html (2013)

15. Huang, G.-B.: An Insight into Extreme Learning Machines: Random Neurons, Random

Features and Kernels. Springer (2014). doi:10.1007/s12559-014-9255-2

16. Joseph, J.F.C., Lee, B.-S., Das, A., Seet, B,-C.: Cross-layer detection of sinking behavior in

wireless ad hoc networks using ELM and FDA. IEEE IJCA 54(14) (2012)

17. Kasabov, N.: Evolving connectionist systems: Methods and Applications in Bioinformatics,

Brain study and intelligent machines. Springer Verlag, NY (2002)

18. Kohonen, T.: Self-organizing networks. In: Proceedings of the IEEE (1990)

19. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In:

International Conference on Knowledge Discovery and Data Mining, pp. 470–478 (2006)

20. Lange, M., Liebergeld, S., Lackorzynski, A., Peter M.: L4Android: a generic operating system

framework for secure smartphones. In: ACM Workshop on SPSM (2011)

21. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In:

Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability (1967)

22. Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid Android: versatile

protection for smartphones. In: 26th Annual Computer Security Applications Conference

(2010)

23. Sahs, J., Khan, L.: A Machine learning approach to android malware detection. In: European

Intelligence and Security Informatics Conference (2012)

24. Scandariato, R., Walden, J.: Predicting Vulnerable Classes in an Android Application (2012)

25. Schliebs, S., Kasabov, N.: Evolving spiking neural network—a survey. Evolving Systems 4

(2), 87–98 (2013)

26. Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated Feature and Parameter Optimization

for an Evolving Spiking Neural Network, 5506, pp. 1229–1236. Springer (2009)

27. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S. J.: Data mining methods for detection of new

malicious executables. In: SP ’01, pp. 38. IEEE Computer Society, Washington, DC (2001)

28. Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis for classifying android

applications using machine learning. In: IC Computational Intelligence and Security (2010)

29. Shabtai, A., Fledel, Y., Elovici Y.: Automated static code analysis for classifying android

applications using machine learning, in CIS. In: Conference on IEEE, pp. 329–333 (2010)

30. Tesauro, G.J., Kephart, J.O., Sorkin, G.B.: Neural networks for computer virus recognition.

IEEE Expert 11(4), 5–6 (1996)

31. Thorpe, S.J., Delorme, A.: Rufin van Rullen: Spike-based strategies for rapid processing.

Neural Netw. 14(6–7), 715–725 (2001)

32. Thorpe, S.J., Gautrais, J.: Rank order coding. In: CNS ’97: 6th Conference on Computational

Neuroscience: Trends in Research, pp. 113–118. Plenum Press (1998)

33. www.wala.sourceforge.net/wiki/index.php

34. www.extreme-learning-machines.org/

35. www.cs.waikato.ac.nz/ml/weka

36. www.gmdhshell.com/

37. Wysoski, S.G., Benuskova, L., Kasabov, N.K.: Adaptive learning procedure for a network of

spiking neurons and visual pattern recognition. In: Advanced Concepts for Intelligent Vision

Systems, pp. 1133–1142. Springer Berlin/Heidelberg (2006)

304 K. Demertzis and L. Iliadis

kdemertz@fmenr.duth.gr

http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://dx.doi.org/10.1007/s12559-014-9255-2
http://www.wala.sourceforge.net/wiki/index.php
http://www.extreme-learning-machines.org/
http://www.cs.waikato.ac.nz/ml/weka
http://www.gmdhshell.com/

	‎C:\Users\user\Desktop\papers\HIMDAM.pdf‎
	G:\Downloads\Desktop\Phd theory\15.Papers\3.KICSS\HIMDAM.pdf
	G:\Downloads\Desktop\Phd theory\15.Papers\3.KICSS\My Publications.pdf
	Message from the Conference Chairs
	Conference Organizer
	In Cooperation with
	Financially Supported by
	PatronsSponsors
	Keynote Speakers
	Conference Topics
	KICSS 2014 Statistics
	Committees and Reviewers

	Contents
	1 The Algorithm of Discovery: Making Discoveries on Demand
	Abstract
	1 Towards Ordinary Discoveries
	2 The Algorithm of Discovery
	3 A Series of Visual Models for Discoveries
	4 Mosaic Reasoning for Discovering Objects
	5 Mosaic Reasoning for Discovering Processes
	References

	2 The Art of Anticipatory Decision Making
	Abstract
	1 Introduction
	2 Anticipatory Networks as Generic Causal Models
	3 Decision Making Problems in General Anticipatory Networks
	4 Anticipatory Networks as Superanticipatory Systems
	5 Conclusions and a Discussion of Future Research Directions
	Acknowledgments
	References

	On Modeling Human-Computer Co-Creativity
	1 Augmenting Human Creativity
	2 Research Fields Fragmentation
	3 Knowledge in Computer Science
	4 Objectivist/Realist World View
	5 Divergent Thinking in Creativity Research
	6 What a Model Could Look Like
	7 Conclusion
	References

	4 Comparison of the Two Companies' Staff by the Group Idea-Marathon Training on Creativity and Motivation
	Abstract
	1 Introduction
	2 IMS and Its Support Systems
	2.1 Basic Concept of IMS
	2.2 ETS (e-Training System) and Its Weekly e-Hints
	2.3 Comparison of IMS with ETS and Without ETS
	2.4 Established Effects of ETS
	2.5 ETS Data of R & P Groups as Idea-Numbers, Average Per Person
	2.6 Weekly e-Hints

	3 Creativity Measurement Using TTCT
	4 Comparative Analysis of the Two Companies
	4.1 t-Test Analysis of TTCT Score of Companies R and P
	4.2 13 Items Criterion-Referenced Measures Scores of TTCT of R and P Company Staff
	4.3 ANOVA Analysis Between Companies P & R and Pretest and Posttest
	4.4 Analysis of Correlation Between TTCT Scores and ETC Number of Ideas in R & P Staff

	5 Discussion
	6 Conclusion and Future Research
	References

	5 Using Appropriate Context Models for CARS Context Modelling
	Abstract
	1 Introduction
	2 Related Work
	3 System Concept
	4 Building Context Models
	5 Validating Application Contexts Through Context Instances
	6 Recommendation of Application Context Models and Model Comparison
	7 Including Context Dimensions in the System
	8 System Testing
	9 Conclusions and Future Work
	References

	6 Computational Creativity for Intelligence Analysis
	Abstract
	1 Introduction
	2 The User Perspective
	3 The Algorithms
	3.1 Hypothesis Space and Formal Creativity Model
	3.2 Hypothesis Distance Measures
	3.3 Modelling Value Charge
	3.4 Capturing Awareness
	3.5 Modelling Novelty Charge
	3.6 Putting It All Together: Creative Suggestions

	4 The Implementation
	4.1 Baseline Implementation

	5 The Experiments
	5.1 Testing the Baseline Implementation
	5.2 Enhanced Value Model
	5.3 Enhanced Novelty Model

	6 Discussion and Conclusions
	Acknowledgments
	References

	7 Bus Scheduling in Dynamical Urban Transport Networks with the use of Genetic Algorithms and High Performance Computing Technologies
	Abstract
	1 Introduction
	2 Related Works
	3 Criterion of Efficiency and Genetic Algorithm
	4 Scheduling Algorithm Examination
	5 Conclusion
	5.1 Future Work

	Acknowledgement
	References

	8 MCDA and LCSA---A Note on the Aggregation of Preferences
	Abstract
	1 Introduction
	2 Preference Aggregation in LCSA
	3 MCDA Tools and Aggregation of Outputs in LCSA
	4 On the Potentialities of Open Exchange Interactive Multi-criteria Procedures in the Aggregation of the Outputs of LCSA
	4.1 VIP-Analysis [12]
	4.2 A Non-compensatory Software Package Integrating an Interactive Dashboard with an Extension of the Conjunctive Method [13]
	4.3 ELECTRE Methods

	5 A First Experiment Based on a Brazilian Social Life Cycle Assessment Case Study
	5.1 SLCA Case Study---on the Comparison of Wind and Thermo-Electric Power Stations
	5.2 On the Application of a Non-compensatory Software Package to the SLCA Case Study

	6 Conclusion
	References

	9 A Model for Managing Organizational Knowledge in the Context of the Shared Services Supported by the E-Learning
	Abstract
	1 Introduction
	2 Conceptual Background
	2.1 Organizational Knowledge Management
	2.2 Shared Services
	2.3 E-Learning
	2.4 Complex Adaptive System (CAS)

	3 Research Design
	3.1 Aims and Objectives
	3.2 Research Methodology

	4 Conceptual Model
	5 Results
	6 Conclusion
	References

	10 Online Communities of Practice: Social or Cognitive Arenas?
	Abstract
	1 Introduction
	2 Research Environment and Methodology
	3 Hypotheses
	3.1 Subjects of Posts
	3.2 Subjects of Discussions
	3.3 Sharing Personal Experiences

	4 Findings
	4.1 General Findings
	4.2 Subjects of Posts
	4.3 Subjects of Discussions
	4.4 Sharing Personal Experiences

	5 Discussion
	References

	11 Knowledge Extraction and Annotation Tools to Support Creativity at the Initial Stage of Product Design: Requirements and Assessment
	Abstract
	1 Introduction
	2 Requirements for Knowledge Extraction and Annotation Tools
	2.1 Versatility and Conceptual Expressivity of Semantic Annotations
	2.2 Support for Various Types of Knowledge Extraction
	2.3 Open Standards
	2.4 Support for the Extension of Semantic Concepts
	2.5 Support for the Automation of Knowledge Extraction and Annotation
	2.6 Usability and Collaboration Support

	3 Discussion
	4 Conclusion
	Acknowledgments
	References

	12 Web Board Question Answering System on Problem-Solving Through Problem Clusters
	Abstract
	1 Introduction
	2 Related Work
	3 Problems of Web Board QA System
	3.1 How to Identify Why Question and How Question with qwq2212i Ambiguity
	3.2 How to Determine Corresponding Answer from Knowledge Source

	4 A Framework for Web Board Question Answering System
	4.1 Question-Corpus Preparation
	4.2 Question-Type Learning
	4.3 Question-Type Identification
	4.4 Knowledge Source Preparation
	4.5 Answer Determination

	5 Evaluation and Conclusion
	Acknowledgments
	References

	13 A PHR Front-End System with the Facility of Data Migration from Printed Forms
	Abstract
	1 Introduction
	2 A PHR System Lico
	2.1 System and Interface Design in Lico
	2.2 Data Migration Issues in Lico PHR System

	3 PHR Data Management Front-End
	3.1 System Organization
	3.2 Form Capture Assistance in Data Migration by Photography
	3.3 OCR Processing with Adaptive Dictionary Configuration
	3.4 Data Confirmation and Correction by Display Synchronization

	4 Experimental Evaluation
	4.1 Evaluation OCR Accuracy Improvement
	4.2 User Evaluation

	5 Conclusion and Future Work
	Acknowledgments
	References

	Investigating Unit Weighting and Unit Selection Factors in Thai Multi-document Summarization
	1 Introduction
	2 Multi-document Summarization
	2.1 Unit Segmentation
	2.2 Unit Graph Formulation
	2.3 Unit Selection

	3 Unit Weighting and Unit Selection Factors
	3.1 Unit Weighting Factors
	3.2 Unit Selection Factors

	4 Experimental Setup
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Evaluation Method

	5 Experimental Results
	5.1 Effect of Unit Weighting and Unit Selection Factors
	5.2 Performance of Multi-document Summarization Methods

	6 Error Analysis
	7 Conclusion and Future Work
	References

	On the Use of Character Affinities for Story Plot Generation
	1 Introduction
	2 Related Work
	3 A Model of Character Affinity
	4 Implementation of the Model
	5 System Test
	6 Discussion
	7 Conclusions
	8 Future Work
	References

	Vicarious: A Flexible Framework for the Creative Use of Sensed Biodata
	1 Introduction
	2 Motivation
	3 Architecture
	3.1 Communications
	3.2 Producers
	3.3 Translators
	3.4 Processors
	3.5 Consumers
	3.6 Datastores
	3.7 Gateways
	3.8 Component Management
	3.9 Visualisation Suite

	4 Examples of Successful Applications
	4.1 The Experiment Live
	4.2 Juke: Built to Thrill
	4.3 Man Versus Turtle
	4.4 Duality

	5 Discussion
	5.1 Interpreting Data

	6 Conclusions and Future Work
	References

	Application of Rough Sets in k Nearest Neighbours Algorithm for Classification of Incomplete Samples
	1 Introduction
	2 Proposed Algorithm
	3 Performed Simulations
	4 Conclusions
	References

	An Application of Firefly Algorithm to Position Traffic in NoSQL Database Systems
	1 Introduction
	2 Queueing Model
	2.1 Cost Optimization Problem

	3 Applied Firefly Algorithm
	4 Optimal NoSQL Database System Positioning
	5 Conclusions
	References

	19 Length of Hospital Stay and Quality of Care
	Abstract
	1 Introduction
	2 Knowledge Representation and Reasoning
	3 A Case Study
	4 Artificial Neural Networks
	5 Conclusions and Future Work
	Acknowledgments
	References

	Predicting the Impact of Advertisements on Web Pages Aesthetic Impressions
	1 Introduction
	2 Related Work
	3 Advertisement Impact on Rating Prediction
	4 Advertisement Impact on User Ratings
	4.1 Colourfulness
	4.2 Complexity

	5 Tool Support
	6 Conclusions and Future Work
	References

	OntOSN---An Integrated Ontology for the Business-Driven Analysis of Online Social Networks
	1 Introduction and Motivation
	1.1 Problem Statement and Research Gap
	1.2 Research Objective and Research Method

	2 Requirements for Ontology Engineering
	2.1 Adapted Ontology Engineering Approach
	2.2 Requirements from Social Customer Relationship Management
	2.3 Requirements from Risk Management

	3 State of the Art
	3.1 Existing Ontologies in the Context of OSN
	3.2 Requirements Catalogue

	4 Ontology Engineering
	4.1 OntOSN: User and Information Objects
	4.2 OntOSN: Structural Aspects
	4.3 OntOSN: Business Aspects

	5 Conclusion and Further Research
	References

	23 Educators as Game Developers---Model-Driven Visual Programming of Serious Games
	Abstract
	1 Introduction
	2 Foundation: Serious Game Development Approaches
	3 Methodological Approach
	4 A Framework for Model-Driven Visual Programming of Serious Games
	4.1 Serious Game Modeling Language (GLiSMo)
	4.2 Visual Programming Environment for Serious Games (VIPEr)
	4.3 Model-Driven Development Toolchain

	5 Evaluation of the Serious Game Development Framework
	5.1 Advanced Modeling Language Evaluation
	5.2 Evaluation of the Visual Programming Environment for Serious Games

	6 Conclusion and Future Work
	References

	24 First Year Students' Algorithmic Skills in Tertiary Computer Science Education
	Abstract
	1 Introduction
	2 Methods
	3 Hypotheses
	4 Results
	4.1 Knowledge-Based Groups of Students
	4.2 Connections Between the Three Tasks
	4.3 Self-Assessment

	5 Summary
	Acknowledgment
	References

	25 Implementing a Social Networking Educational System for Teachers' Training
	Abstract
	1 Introduction
	2 Design of the Educational Approach
	2.1 Trainees' Characteristics and Needs
	2.2 Task and Learning Objectives Analysis
	2.3 Training Program Design and Teaching Strategies

	3 Educational Content Development
	4 Training Program Evaluation Results
	5 Conclusions
	References

	26 Virtual Environment for Creative and Collaborative Learning
	Abstract
	1 Introduction and Related Works
	2 Virtual Environment Infrastructure
	3 Implementation of VLE in the Learning Process
	4 Implementation Method Description
	5 Results and Conclusions
	6 Discussions and Future Work
	Acknowledgments
	References

	27 A Semiotic and Cognitive Approach to the Semantic Indexation of Digital Learning Resources
	Abstract
	1 Introduction
	2 Design Differentiated Digital Learning Resources: A Creativity Problem
	3 A Semantic System to Index the Digital Learning Resources
	4 Discussion
	5 Conclusions
	References

	28 The Significance of `Ba' for the Successful Formation of Autonomous Personal Knowledge Management Systems
	Abstract
	1 Pioneering Concepts for Autonomous Personal KM Systems
	1.1 Vannevar Bush's Vision of the `Memex' (1945)
	1.2 Simon's Notion of `Attention Management' (1971)
	1.3 Nonaka's Theory of Organizational Dynamic Knowledge Creation (2000)
	1.4 Levy's Autonomous PKM Capacities and Creative Conversations (2011)

	2 The Needs for Autonomous Personal KM Systems
	3 The Benefits of a Comprehensive System Concept and Design
	4 The Concept of `Ba' as the Underpinning of `Knowcations'
	5 The Road Travelled and the Road Ahead
	References

	29 The Significance of Memes for the Successful Formation of Autonomous Personal Knowledge Management Systems
	Abstract
	1 The Inadequacy of Today's Reference and Citation Systems
	2 It Is a Meme's World
	3 The Ideosphere as the Memes' Habitat of Operation
	4 Traditional Document-Focus Versus Meme-Based PKMS
	5 The Benefits of a Meme-Based PKMS Approach
	6 Conclusions for the Road Ahead
	References

	Computer Creativity in Games---How Much Knowledge Is Needed?
	1 Creativity---Concept and Requirements
	1.1 Definition of Creativity
	1.2 Requirement for KA (Knowledge Acquisition)
	1.3 Requirement for Evaluation

	2 Gameplay as a Domain for Computational Creativity
	3 PuyoPuyo as a Game for CC Research
	3.1 The Game Puyo-Puyo
	3.2 Monte Carlo Search (MCS) for PuyoPuyo

	4 Performance of the PuyoPuyo Player
	5 Discussion
	6 Conclusion
	References

	31 When Engineering and Design Students Collaborate: The Case of a Website Development Workshop
	Abstract
	1 Introduction
	2 The Importance and Challenge of Collaborative Design
	3 Digital Culture
	4 Empirical Study
	4.1 Method and Settings
	4.2 Analysis and Findings
	4.3 Project's Development in the Entrepreneurship Accelerator Program

	5 Conclusion and Future Research
	Appendix 1: Workshop Entry Questionnaire
	Appendix 2: Workshop Summary Questionnaire
	References

	32 Knowledge-Managing Organizational Change Effectors, Affectors and Modulators in an Oil and Gas Sector Environment
	Abstract
	1 Introduction and Background
	2 Knowledge-Managing Change
	3 HRM Effectors, Affectors and Modulators
	4 Methodology of the Study
	5 Study Findings
	6 Comments and Conclusions
	Acknowledgments

	33 From Computational Creativity Metrics to the Principal Components of Human Creativity
	Abstract
	1 Introduction
	2 Understanding the Human Perception of Creativity
	2.1 Metrics for Computational Creativity over Textual Content
	2.2 Correlation of Computational Creativity Metrics with the Human Perception of Creativity
	2.3 Extracting a Model for the Human Perception of Creativity

	3 Transferring Computational Creativity Metrics to the Human Perspective
	4 Conclusions
	References

	34 A Social Creativity Support Tool Enhanced by Recommendation Algorithms: The Case of Software Architecture Design
	Abstract
	1 Introduction
	2 Problem Statement
	3 Approach
	3.1 Research Goals and Methods

	4 SAD Recommendations---Related Work
	5 Current Status
	6 Future Work
	References

	35 The Approach to the Extension of the CLAVIRE Cloud Platform for Researchers' Collaboration
	Abstract
	1 Introduction
	2 Related Works
	2.1 Collaboration Approaches Based on Scientific Papers
	2.2 Using Traditional Models of Cloud Services
	2.3 Scientific Workflow Paradigm
	2.4 The Research Object Concept
	2.5 The CLAVIRE Platform as a Means to Facilitate Sharing of Workflow-Centric Scientific Results
	2.6 The Use of Scientific Results for Educational Purposes

	3 Web-Based Intellectual Editor for Integrating Application Packages into the CLAVIRE
	4 C++ Based Library for the Rapid Development of Visualization Tools and the FUSION Engine
	5 Developing the Composite Application for Interactive Visualization
	6 The Examination of the Developed Approach and Tools by Young, Evolving Russian Scientists
	7 Approaches to the Rapid Implementation of Scientific Results in the Educational Process
	8 Conclusion and Future Work
	Acknowledgment

	iDAF-drum: Supporting Practice of Drumstick Control by Exploiting Insignificantly Delayed Auditory Feedback
	1 Introduction
	2 Related Works
	3 Proposed Method and System
	3.1 Definition of iDAF and Method
	3.2 System Setup

	4 Estimating Effects of iDAF on Drumming
	4.1 Experimental Procedure
	4.2 Results
	4.3 Discussion

	5 Estimating Efficiency of iDAF-Drum
	5.1 Experimental Procedure
	5.2 Results
	5.3 Discussions

	6 Conclusions
	References

	37 Novel Methods for Analyzing Random Effects on ANOVA and Regression Techniques
	Abstract
	1 Introduction
	2 Classes of Random Correlations
	3 Random Correlation Analyzing Framework
	4 Applying RC Analyzing Processes in Practice
	4.1 RC Analyzing Session
	4.2 RC Analyzing Related to ANOVA and Regression Techniques

	5 Total Possibility Space Reducing Techniques
	5.1 Space Reducing Techniques and the Finding Unique Sequences Algorithm
	5.2 Handling Methods Assumptions
	5.3 Simulation Levels

	6 Results
	6.1 RC Session I: ANOVA
	6.2 RC Session II: Regression Techniques

	7 Conclusion
	Acknowledgments
	References

	38 nVidia CUDA Platform in Graph Visualization
	Abstract
	1 Introduction
	2 The Problem of Graph Visualization
	3 Description of the Computing Platform
	3.1 CUDA Hardware Model
	3.2 CUDA Computational Model

	4 Fruchterman-Reingold Algorithm Using NVidia CUDA
	4.1 Parallelization of the Code

	5 Graph Representation
	6 Results
	7 Conclusion
	References

	A Method for Opinion Mining of Coffee Service Quality and Customer Value by Mining Twitter
	1 Introduction
	2 Problem Statement
	3 Data Collection and Feature Extraction
	4 Analysis
	5 Discussion
	References

	40 Using Wiki as a Collaboration Platform for Software Requirements and Design
	Abstract
	1 Introduction
	2 Wiki Collaboration Platform
	3 The Empirical Study
	3.1 Settings and Method
	3.2 Findings
	3.3 Discussion

	4 Conclusion
	References

	41 Enhancing Software Architecture via a Knowledge Management and Collaboration Tool
	Abstract
	1 Introduction
	2 Motivation and Background
	3 Proposed Solution
	3.1 Framework
	3.2 Tool

	4 Evaluation and Discussion
	5 Conclusion and Future Work
	References

	42 Collaborative Requirement Prioritization for an E-Recruitment Platform for Qualified but Disadvantaged Individuals
	Abstract
	1 Introduction
	2 Method
	2.1 Main Steps of the Study
	2.2 Analytic Hierarchy Process

	3 Application and Findings
	4 Implications
	Acknowledgments
	References

	43 Text Comparison Visualization from Two Information Sources by Network Merging and Integration
	Abstract
	1 Introduction
	2 Network Visualization for Text
	3 Text Comparison on Network Visualization
	3.1 Principal Strategy
	3.2 Network Merging and Integration
	3.3 Integration Representation

	4 Case Study
	5 Conclusion
	References

	44 Collective Knowledge and Creativity: The Future of Citizen Science in the Humanities
	Abstract
	1 Introduction
	2 Citizen Science in the Humanities
	2.1 Crowdsourcing Use in the Humanities
	2.2 Some Project Examples
	2.3 Creativity, Citizens and Crowdsourcing in the Humanities

	3 Some Initial Findings from the Civic Epistemologies Project
	4 Discussion and Future Work
	4.1 Citizen Science: Between Collective Knowledge and Creativity
	4.2 The Lower Use of Citizen Science in the Humanities

	Acknowledgments
	References

	45 Aligning Performance Assessments with Standards: A Practical Framework for Improving Student Achievement in Vocational Education
	Abstract
	1 Introduction
	2 Development Phases of the Achievement Test
	2.1 Clarifying the Purpose of the Test
	2.2 Identifying the Educational Objectives
	2.3 Performing Panel of Experts
	2.4 Developing Test Blueprint
	2.5 Determining and Generating Test Questions
	2.6 Preparing Test Instructions
	2.7 Performing Panel of Experts
	2.8 Conducting the Pilot Study

	3 Findings
	3.1 Test Validity
	3.2 Test Reliability
	3.3 Item Analysis

	4 Conclusion and Limitation
	Acknowledgments
	References

	Author Index

	‎C:\Users\user\Desktop\papers\xy Publications_2.pdf‎

