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Abstract The analysis of air quality and the continuous

monitoring of air pollution levels are important subjects of

the environmental science and research. This problem

actually has real impact in the human health and quality of

life. The determination of the conditions which favor high

concentration of pollutants and most of all the timely

forecast of such cases is really crucial, as it facilitates the

imposition of specific protection and prevention actions by

civil protection. This research paper discusses an innova-

tive threefold intelligent hybrid system of combined

machine learning algorithms HISYCOL (henceforth). First,

it deals with the correlation of the conditions under which

high pollutants concentrations emerge. On the other hand,

it proposes and presents an ensemble system using com-

bination of machine learning algorithms capable of fore-

casting the values of air pollutants. What is really

important and gives this modeling effort a hybrid nature is

the fact that it uses clustered datasets. Moreover, this

approach improves the accuracy of existing forecasting

models by using unsupervised machine learning to cluster

the data vectors and trace hidden knowledge. Finally, it

employs a Mamdani fuzzy inference system for each air

pollutant in order to forecast even more effectively its

concentrations.

Keywords Ensembles learning � Ensembles of

classifiers � Fuzzy inference systems � Feedforward neural

network � Random forest � Air pollution

1 Introduction

The increase in the human population and the growth of the

productive process during the years led to a series of

negative environmental consequences. This fact is the

cause of several health problems of human beings and

living creatures in general. Air pollution is one of the most

characteristic examples of environmental burden caused by

human activity. This research effort deals with the fol-

lowing primary air pollutants (which are directly emitted

by human actions) CO, NO, NO2, SO2 and with one sec-

ondary pollutant (caused by chemical reactions) the ozone

O3. The chemical composition and the characteristics of all

pollutants cause well-known problems in the human res-

piratory system and hospitalization for heart or lung dis-

eases, and also, they are favoring the development of

various types of cancer. Due to their dissimilarity and to

the distinct mechanisms that they are using to enter the

atmosphere, it is difficult to model their concentrations and

to estimate their exact consequences in human health. An

effective quantitative estimation of their impact requires an

integrated spatiotemporal analysis of the conditions that

favor their concentration and the determination of the

relations between the air pollutants (APOL) and between

the pollutants and meteorological factors. Of course the

problem is monitored and watched mainly in major urban

centers.

Forecasting VAP is really important so that civil pro-

tection authorities can impose specific prevention or warn-

ing protection measures aiming to protect the population.
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It is very positive that modern computational intelligence

and machine learning technologies offer the proper mech-

anisms capable of forecasting APOL values.

This research proposes an innovative ensemble and

fuzzy inference system entitled HISYCOL that forecasts

the concentrations of air pollutants, and it reaches proper

decisions toward protection of the urban centers people.

Obviously, it is based on combined various computational

intelligence methodologies.

More specifically, this paper proposes a new effective

and reliable hybrid system that is based on the combination

of unsupervised clustering, ANN and random forest

ensembles and fuzzy logic.

The general framework of the proposed model com-

prises of the following stages: (a) Unsupervised clustering

of the initial dataset is executed in order to re-sample the

data vectors. (b) Ensemble ANN modeling is performed

using combination of machine learning algorithms. (c) Fi-

nally, the last stage comprises of the optimization of the

modeling performance with a Mamdani rule-based fuzzy

inference system that exploits the relations between the

parameters affecting the concentrations of APOL. More

specifically, self-organizing maps (SOM) are used to per-

form dataset re-sampling, then ensembles of feedforward

artificial neural networks (FFANN) and random forests

(RAF) are trained on the clustered data vectors, and finally,

the obtained models are optimized by using a fuzzy

inference system.

1.1 Literature review: motivation

In an earlier research effort of our team [1], we have made

an effort to get a clear and comprehensive view of the air

quality in the wider urban center of Athens and also in the

Attica basin. This study was based on data that were

selected from the air pollution measuring stations of the

area during the temporal periods (2000–2004, 2005–2008

and 2009–2012). This method was based on the develop-

ment of 117 partial ANNs whose performance was aver-

aged by using an ensemble learning approach. The system

used also fuzzy logic in order to forecast more efficiently

the concentration of each pollutant. The results showed that

this approach outperforms the other five ensemble

methods.

There are other similar studies in the literature that are

trying to forecast the air pollution values [16, 18–20].

However, they have certain limitations that do not guar-

antee their generalization ability. More specifically, they

train ANN models with data related to a narrow area (e.g.,

city center), and they consider this data sample as repre-

sentative of a wider area that covers locations varying from

a topographic, microclimate or population density point of

view. For example, paper [23] predicts particulate matter

concentrations in India, using data from only two stations,

paper [4] uses data from ten stations in order to figure out

an air pollution picture for the whole country of Belgium,

while paper [6] uses only four stations for the city of

Istanbul. Also there are important seasonal studies in the

literature that do not offer more generalized annual solu-

tions. For instance, paper [25] uses only summer records in

order to train the developed neural networks. Moreover,

paper [17] describes a model that estimates ozone con-

centrations, based on a limited data volume. Kunwar et al.

[11] used a hybrid approach which selects a subset of the

involved features by employing principal components

analysis (PCA). It is a model combining three ensemble

learning methods applied in the area of Lucknow, India. It

is worth to mention that they tried to interpolate the output

to cases with different climate conditions with limited

results.

An interesting approach [21] blending time series with

multi-linear regression ANNs in order to achieve accept-

able forecasting accuracy based on limited air quality and

meteorological data vectors was proposed for the case of

Temuco, Chile. In this place, residential wood burning is a

major pollution source during cold winters. The described

model considered a limited volume of surface meteoro-

logical and PM10 primitive data [21].

This paper aims to overcome the above limitations, by

providing more generalized models that have emerged after

considering reasonable and representative amount of data

from all types of measuring stations. It is rational that such

ANNs can be effectively applied in wider areas. Further-

more, a main objective was to combine machine learning

techniques, in order to achieve better convergence for the

developed models.

Paper [8] was an inspiration to use ensemble neural

networks (ENNs). More specifically, in [8], it is stated that

ensemble methods may be more effective than single ANN

approaches. The research described in [8] was held in

China, and it introduced ENNs for pollutant’s estimation.

Additionally, in our previous work [1], we had already

created ENNs for this purpose. In this research, due to the

individuality and particularity of each residential area of

Athens, separate local ANNs had to be developed, capable

of performing reliable interpolation of missing data vectors

on an hourly basis. Also due to the need for hourly overall

estimations of pollutants in the wider area of a major city,

ANN ensembles were additionally developed by employ-

ing four existing methods and an innovative fuzzy infer-

ence approach.

In paper [12], the relationships between the ensembles

and their comprising ANNs are analyzed aiming to create a

set of nets with the use of a sampling technique. This

technique is such that each net in the ensemble is trained on

a different subsample of the training data. Also [22]
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performs a review of the existing ensemble techniques, and

it can serve as a tutorial for practitioners who are interested

in building such systems (e.g., ENNs). As a result, papers

[13, 27] were very useful, as they provided the theoretical

background for our research.

Summarizing all of the above, it is a fact that the

motivation for this research was the development of a

hybrid model capable of absorbing and overcoming the

problem of bad local behaviors of the existing ones. The

main idea was that such an approach would require ANN

ensembles applied on homogenous data clusters and not in

randomly divided datasets. This could add much more

efficiency to an air pollution forecasting system. Addi-

tionally, a fuzzy inference system could act as an optimizer

to improve further the reliability of the model. The design,

development and application of this model are described in

the following paragraphs.

1.2 Data

The data used are related to nine air pollution measuring

stations and two meteorological ones located in the Attica

basin (as seen in Table 2). Every station counts hourly

values for CO, NO, NO2, O3 and SO2. All the values are

counted in lg/m3, except from CO which is measured in

mg/m3. The time period of this research starts from 2000

and finishes in 2012. Additionally, every record in each

measuring station includes five temporal data, namely

Year, Month, Day, Day_Id (1 for Monday, 2 for Tuesday

and so on) and Hour value. Moreover, six meteorological

factors are considered, namely Air Temperature (Air_-

Temp), Relative Humidity (RH), Atmospheric Pressure

(PR), Solar Radiation which is not included for 2013 (SR),

Wind Speed (WS) and Wind Direction (WD), and finally

the measuring stations code Station. As it is seen in

Table 2, the meteorological data are related to the

‘‘Penteli’’ and ‘‘Thiseion’’ stations. Figure 1 shows the

location of the measuring station in the basin.

The selected data were stored in an integrated dataset

that comprises of the vectors related to all measuring sta-

tions except the ones of ‘‘Agia Paraskevi’’ and ‘‘Aris-

totelous’’ for which there is a serious problem of missing

data for the whole period under research. Table 1 presents

a descriptive statistical analysis of the dataset on which this

research was based.

1.3 Data preprocessing

Data preprocessing aims to phase various problems that

emerge during their gathering like the manipulation of

missing values, the tracking of extreme values and the

transformation of data so that they can be proper input for

the learning algorithms.

1.3.1 Missing data

Missing data is one of the most serious problems when

trying to develop a rational and effective model. The dis-

persion of missing values was estimated, and after con-

firming their random appearance, the following approaches

toward overcoming this problem were studied, by taking

into consideration their advantages and disadvantages.

Fig. 1 Measuring stations in

the Attica basin

Table 1 Statistical analysis of the whole SOM dataset

SOM (5,12,971 records) CO NO NO2 O3 SO2

MAX 24.6 953 533 320 445

MIN 0.1 1 0 1 2

MODE 0.4 4 32 3 2

COUNT_MODE 45,532 39,003 5786 21,660 75,081

AVERAGE 1.41 51.62 57.36 41.70 13.21

STANDARD_DEV 1.46 81.04 35.24 36.26 16.44
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Replace missing values with sample mean or mode

• Advantage:

• Can use complete case analysis methods

• Disadvantages:

• Reduces variability

• Weakens covariance and correlation estimates in

the data (because ignores relationship between

variables)

Dummy variable adjustment

• Advantage:

• Uses all available information about missing

observation

• Disadvantages:

• Results in biased estimates

• Not theoretically driven

Replacement of missing values with predicted scores

from a regression equation

• Advantage:

• Uses information from observed data

• Disadvantages:

• Overestimates model fit and correlation estimates

• Weakens variance

Identification of the set of parameter values that pro-

duces the highest likelihood

• Advantages:

• Uses full information (both complete cases and

incomplete cases) to calculate likelihood

• Unbiased parameter estimates with missing at

random data

• Disadvantage:

• Complexity of model.

Discarding all missing values

• Advantages:

• Simplicity

• Comparability across analyses

• Disadvantages:

• Reduces statistical power

• Does not use all information

Such malfunctions are divided into two basic categories.

The first type is the so-called partial deficiencies where

measuring stations malfunction for a long time that may

last up to some months. The second is known as ‘‘total

deficiencies’’ which occur when a station does not measure

a pollutant for a long scaled time period which may last for

years, e.g., 2000–2012 or even for a wider period, e.g.,

from 2005 till today. In both cases, missing data records

were excluded for the whole related time period.

Table 2 shows a brief presentation of the measuring

stations with statistical data related to missing air pollu-

tants’ values.

1.3.2 Extreme values

The determination of the extreme air pollution concen-

trations with the inter quartile range (IQR) method is a

purely statistical data preprocessing approach, which

locates the divergent dataset values. In fact IQR detects

extreme values that can potentially cause ‘‘noise’’ and

lead to generalization incapability. For example, there

might be some CO values much higher than the upper

statistical boundary of average ?3r (where r is the

standard deviation). These values are considered outliers

and moreover extreme ones.

Table 2 Statistics of measuring

stations
ID Station’s name Code Missing values (%) Correct data vectors Station’s data

1 Ag. Paraskevi AGP 12.32 99.936 O3, MO, MO2, SO2

2 Amarusion MAR 21.58 89.371 O3, MO, MO2, CO

3 Peristeri PER 33.61 75.668 O3, MO, MO2, CO, SO2

4 Patision PAT 10.45 102.068 O3, MO, MO2, CO, SO2

5 Aristotelous ARI 16.76 94.873 MO, MO2

6 Geoponikis GEO 26.84 83.381 O3, MO, MO2, CO, SO2

7 Piraeus PIR 33.67 75.600 O3, MO, MO2, CO, SO2

8 N Smyrnh SMY 26.06 84.272 O3, MO, MO2, CO, SO2

9 Penteli PEN 3.66 109.806 Meteorological station

10 Thiseion THI 0.30 113.632 Meteorological station

11 Athinas ATH 21.86 89.058 O3, MO, MO2, CO, SO2
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An extreme value (outlier) is a point that lies far away

from the mean value of a feature. The distance is usually

measured as a multiple of the standard deviation (SD). For

a parameter that follows normal distribution, a distance

equal to twice the SD covers 95 % of the expected values,

whereas this percentage grows to 99 % when we are

dealing with a distance three times the SD. Data records

with values far away from the mean value are the cause of

serious errors in the training phase, and they have

destructive results. This bad influence gets even worse

when the extreme values are due to noise that has emerged

during measuring. If the number of the extreme values is

small, then the corresponding records can be removed from

the dataset and they can be analyzed independently. The

IQR approach was used to trace the extreme values. The

IQR method locates outliers based on the inter quartile

scales. The quartiles divide the dataset to four equal parts.

She IQR is the difference between the third (Q3) and the

first (Q1) quartile, IQR = Q3-Q1, which includes the

intermediate 50 % of the data, whereas the rest 25 % is less

than Q1 and the other 25 % is greater than Q3. The cal-

culation process of the extreme values is presented by the

following equations below [26]:

Outliers:

Q3 þ OF� IQR \ x � Q3 þ EVF� IQR or

Q1 � EVF� IQR � x\Q1 � OF� IQR
ð1Þ

Extreme value:

x [ Q3 þ EVF� IQR or x\Q1 � EVF� IQR

ð2Þ

Key:

Q1 = 25 % quartile, Q3 = 75 % quartile, IQR = in-

terquartile range (difference between Q1 and Q3),

OF = outlier factor, EVF = extreme value factor.

It should be mentioned that the extreme values in this

case are what we are looking for; because based on their

determination civil protection authorities should be acti-

vated to take all necessary actions. For this reason, the

EXDV were not removed or isolated from the dataset, but

they were used to create objective training data samples

that would enable the development of models capable of

generalizing. In this way, the developed models would

respond to new data from other measuring stations or other

cities quite efficiently. After using the above method,

31,857 vectors were characterized as outliers and 7459

ones were found to be related to extreme values.

1.3.3 Data normalization

Data normalization was performed for the concentrations

of air pollutants, in order to phase the problem of preva-

lence of features with wider range over the ones with a

narrower range, without being more important. The result

was to keep all of their values in the closed interval [-1,

?1] by using Eq. 3:

x1norm ¼ 2�
x1 � xmin

xmax � xmin

� �

� 1; x 2 R ð3Þ

2 Theoretical background

2.1 Ensemble learning

Ensemble methods [22] use multiple learning algorithms to

obtain better predictive performance than could be

obtained from any of the constituent learning algorithms.

Usually, they refer only to a concrete finite set of alterna-

tive models, but typically they allow for much more flex-

ible structures to exist between those alternatives. Also,

they are primarily used to improve the performance of a

model, or to reduce the likelihood of an unfortunate

selection of a poor one. Other applications of ensemble

learning include assigning a confidence to the decision

made by the model, selecting optimal (or near optimal)

features, data fusion, incremental learning, non-stationary

learning and error correcting.

The novel concept of combining learning algorithms is

proposed as a new direction of ensemble methods for the

improvement of the performance of individual algorithms.

These algorithms could be based on a variety of learning

methodologies and could achieve different ratios of indi-

vidual results. The goal of the ensembles of algorithms is to

generate more certain, precise and accurate system results.

Numerous methods have been suggested for the creation of

ensembles of learning algorithms:

• Using different subsets of training data with a single

learning method.

• Using different training parameters with a single

training method (e.g., using different initial weights

or learning methods for each neural network in an

ensemble).

• Using different learning methods.

Herein the third approach was applied in order to

develop the ANN ensembles. The ensemble learning is

realized with feedforward neural networks and random

forest algorithms, and it was applied in four clusters

(subsets of the original dataset).

2.1.1 Feedforward artificial neural networks

FFNN are biologically inspired regression and classifica-

tion algorithm. They consist of a (possibly large) number of

simple neuron-like processing units organized in three
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layers, namely input, hidden and output layer. The infor-

mation moves forward, from the input nodes, through the

hidden nodes and to the output nodes. Every unit in a layer

is connected with all the units in the previous layer. These

connections are not all equal; each connection between the

ith and the jth neuron may have a different strength or

weight wij. The weights on these connections encode the

knowledge of a network. Actually, the weight coefficient

reflects the degree of importance of the given connection in

the ANN [3].

Often the units in a neural network are also called nodes.

Data enters at the inputs and passes through the network,

layer by layer, until it arrives at the outputs [5]. The output

function is presented by Eq. 4, where xi are the input

vectors, yj the output vectors, wij the synaptic weights, Hj

the bias or external threshold and W is the activation

function.

yj ¼ w
X

n

i¼1

wjixi þHj

 !

ð4Þ

The architecture and the learning algorithm plus the

transfer function used for the development of the MLFF

ANN are presented clearly in Sect. 3.2.2.

2.1.2 Random forests

Random forests (RF) are an ensemble learning method for

classification and regression that operate by constructing a

multitude of decision trees at training time and outputting

the class that is the mode of the classes output by individual

trees. The algorithm for inducing a random forest was

developed by Breiman and Adele Cutler in 2001 [2]. It is a

popular and efficient algorithm very powerful for predic-

tion, based on model aggregation ideas, for classification

and regression. The principle of random forests is to

combine many binary decision trees built using several

bootstrap samples coming from the set of observations and

choosing randomly at each node a subset of explanatory

variables.

The training algorithm for RF applies the general tech-

nique of bootstrap aggregating, or bagging, to tree learners.

More specifically, at each node, a given number of input

variables are randomly chosen and the best split is calcu-

lated only within this subset. Clearly, no pruning step is

performed so all the trees are maximal ones. In the random

forest framework, the most widely used score of impor-

tance of a given variable is the increase in the mean of the

error of a tree in the forest when the observed values of this

variable are randomly permuted in the bag sample. The

higher the importance is the stronger the variable influence

[7].

So far to the best of our knowledge, only a limited

number of research efforts have been reported in the lit-

erature on air quality modeling using random forests. More

details about their related algorithms can be found in

Sect. 3.2.1.

2.2 Competitive learning neural networks

Competitive learning neural networks (CLNN) include a

competitive layer (CLA) comprising of competitive neu-

rons (CNE) (Fig. 1). Every CNEi is characterized by a

weight vector wi = (wil,…,wid)
T, i = 1,…,M, and it esti-

mates a similarity measure with the input data vector

xi = (xil,…,xid)
T x [ R. For every input vector that is

introduced to the network, there is a competition between

the CNE for the determination of the winning neuron. The

winner is the neuron that has the higher degree of similarity

between the input vector and its assigned weight vector.

The output of the winning CNE is set to om = 1, whereas

for the rest of the neurons the output is oi = 0, i = 1,…,M,

i = m. The default similarity function used is the inverse

value of the actual Euclidean distance x–wi between the

input vector xn and the weight vector wi [3].

2.2.1 Self-organizing maps

Self-organizing map (SOM) is a widely used ANN archi-

tecture, which is based on competitive learning, and it was

proposed by Kohonen [10] in the mid-1980s. It was pro-

posed in an effort to model the self-organization which is

performed in the human brain. A SOM network includes

the input layer and the layer with the CNE which are

organized in the form of a two-dimensional lattice (Fig. 2).

Each competitive neuron is assigned a weight vector

wi = (wil,…,wid)
T. When an input x = (x1,…,xd)

T x [ R is

Fig. 2 Graphical display of the IQR method

Neural Comput & Applic

123



applied, the lattice neurons compete each other and the

result is the determination of the winning neuron m, whose

vector wm appears to have the best similarity with the

vector x. Consequently, SOM implements a mapping of the

input x that has dimension d to the coordinates of the lattice

rm = (zm1, zm2)
T [3, 10].

2.3 Fuzzy inference systems

A fuzzy inference system (FIS henceforth) [15] is a way of

mapping an input space to an output space using fuzzy

logic. FIS uses a collection of fuzzy membership functions

and rules, instead of Boolean logic, to reason about data.

The rules in FIS (sometimes may be called as fuzzy expert

system) are fuzzy production rules of the form:

If p Then q, where p and q are fuzzy statements

(Linguistics)

The antecedent describes to what degree the rule

applies, while the conclusion assigns a fuzzy function to

each of one or more output variables. The set of rules in a

fuzzy expert system is known as knowledge base. There are

two popular versions of fuzzy inference systems: Mamdani

and Tagasi Sugeno type [24]. The first one was applied

herein. The Mamdani-type FIS was proposed in 1975 [14]

as an attempt to control a steam engine and boiler com-

bination by synthesizing a set of linguistic control rules

obtained from experienced human operators.

The algorithm of a Mamdani FIS is as follows:

1. Determining a set of fuzzy rules.

2. Fuzzifying the inputs using the input membership

functions.

3. Combining the fuzzified inputs according to the fuzzy

rules to establish rule strength.

4. Finding the consequence of the rule by combining the

rule strength and the output membership function (if it

is a Mamdani FIS).

5. Combining the consequences to get an output

distribution.

6. Defuzzifying the output distribution [this step applies

only if a crisp output (class) is needed].

3 Description of the HISYCOL

A hybrid machine learning system entitled HISYCOL has

been developed which had the following targets: (a) to

study in depth the conditions parameters under which high

concentrations of air pollutants emerge, (b) to determine

the correlation degree between these features and (c) to

have the optimal forecasting and decision making effi-

ciency. The algorithmic steps of this system are presented

below (Fig. 3):

Step 1: Re-sampling ei9mai is one of the techniques

used to achieve ensample learning. The first

and innovative step was the segmentation

of the general dataset in clusters by

the employment of SOM. This resulted

in the clustering of the data, based on

the concentrations of air pollutants and the

creation of hierarchical chains of correlated

data structures. In this way, re-sampling of the

data was performed not in a random manner

but using unsupervised machine learning.

Consequently, instead of using the whole

dataset in the regression that was performed

in the next step, or dividing it randomly,

clustering was employed. The aim was to

divide the dataset in four clusters, which

means that the data vectors of each group

would be related to each other and they would

share common characteristics. Afterward,

separate regressions were performed for each

cluster by employing the ANN ensemble

approach.

The SOM clustering algorithm is discussed in

Sect. 3.1. From the clustering, we obtained

four new datasets named as SOM-i (where

i = 0–3) which are described in details in

Sect. 3.1.1.

Fig. 3 General architecture of competitive learning
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Step 2: Then for every new dataset, ANN regression was

performed in order to develop models capable of

forecasting the values of each air pollutant

separately. More specifically, the following

features were the independent parameters: Year,

Month, Day, Day_Id, Hour, AirTemp, Relative

Humidity, Atmospheric Pressure, Solar

Radiation, Wind Speed, Wind Direction,

Station_Id, including the air pollution ones CO,

NO, NO2, O3, SO2, whereas one of the air

pollutants was excluded each time from the

independent parameters vector and it was

considered as the depended parameter. For

example, the first time CO was not in the

depended feature, the second time NO was the

depended and so on.

Feedforward neural networks (FFNN), random

forest ANN (RAF), e-support vector regression,

linear regression, k-nearest neighbors and radial

basis function ANN were used for the regression.

However, the FFNN and the RAF ones were

chosen to be applied in the final model because

they outperform by far the other approaches, and

they generalize much better in testing. As it was

mentioned in step 1, distinct regressions were

performed for each cluster of data vectors.

The tenfold cross-validation and the ‘‘repeat

random subsampling validation’’ were employed

to enhance generalization of the emerged optimal

models. Regression with the FFNN and with the

RAF approach are described in Sects. 3.2.1 and

3.2.2, and the results of the regressions are

presented in Sect. 3.2.3.

Step 3: The second innovation of the HISICOL is in the

way it assigns and handles a new fuzzy value

after the process of combined learning is

fulfilled. More specifically, the RMSE and R
2

results from the above regression algorithms for

every air pollutant were used as input vectors to a

FIS, from which we obtain fuzzy values with the

process described in Sect. 3.3, whereas the

results are presented in Sect. 4.

The overall algorithmic approach that was

proposed herein is described clearly and in

details in Fig. 4.

3.1 SOM algorithm

A SOM network clustered the available data in order to

create partitions of correlated data vectors and thus to

perform re-sampling. The algorithm comprises of the fol-

lowing steps (Fig. 5):

First, the weight vectors wi = (wil,…,wid)
T are randomly

initialized to small values with a random generator func-

tion. Then, the following procedures are executed as

follows:

The application of the SOM algorithm starts with the

initialization of the weight vector wi = (wil,…,wid)
T by

using random generation functions. Afterward, the fol-

lowing three basic procedures are executed:

A. Competition: For every training vector sample xn, the

neurons calculate the similarity function value, where

the neuron with the highest value is the winner. The

Euclidean distance between the input vector

x = (x1,…,xd)
T

x[ R and the weight vector wi =

(wil,…,wid)
T of the competing neurons is the similarity

function.

B. Cooperation: The winning neuron i defines its topo-

logical hj,j from the surrounding neurons who adjusted

their weights to the input vector. The distance between

the winning neuron i and neuron j is symbolized as dj,i
so that the topological neighborhood hj,i is a function

of dj,i which satisfies two conditions:

B1. It should be symmetric to the point of the local

minimum (point of winning neuron) where

dj,i = 0.

B2. The amplitude of the function should be reduced

monotonically as the distance dj,i from the

winning neuron increases. The function that

satisfies the above limitations and was used in

this research is the following Gaussian

hj;i xð Þ ¼ exp �
d2j;i

2r2

 !

ð5Þ

where r is the effective width of the topological

neighborhood, which defines the degree of par-

ticipation of the winning neuron neighborhood

neurons to the training phase. The value of this

parameter is reduced in every epoch according

to the function below

r nð Þ ¼ r0 exp �
n

s1

� �

; n ¼ 0; 1; 2; . . . ð6Þ

It should be mentioned that r0 is the initial value

of the effective width and

s1 ¼
n0

ln r0ð Þ
ð7Þ

C. Synaptic weight adaption: In this last training stage,

the weight vectors of the competitive neurons are

updated. The value of this change is given by the

following equation:
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Dwj ¼ ghj;iðxÞðx� wjÞ ð8Þ

where i is the winning neuron and j is a neuron in its

neighborhood. Given the weight vector wj(n) for a

specific time point n, we estimate the new vector for

the moment n ? 1 from the following equation:

wj nþ 1ð Þ ¼ wj nð Þ þ g nð Þ hj;iðxÞ nð Þ x nð Þ � wj nð Þ
� �

:

ð9Þ

The learning rate g(n) starts from the value around 0.1

and it is gradually reduced to 0.01 by using the above

relation.

3.1.1 Clustering results

After the termination of the clustering process (following the

procedure described above), four datasets were created.

Each one contained the data vectors that were assigned to

each cluster, namely (SOM-0, SOM-1, SOM-2 and SOM-3).

The final shape of the data set includes the following inde-

pendent parameters: (a) temporal attributes (Year, Month,

Day, Day_Id, Hour), (b) the meteorological features values

(AirTemp, RH, PR, SR, WS, WD), (c) the Station_Id (Sta-

tion) and (d) the values of all the air pollutants, except for the

one pollutant that was left each time out to serve as the

depended parameter. Tables 3, 4, 5 and 6 present a

descriptive statistical analysis of the four related datasets.

The basic conclusions that were obtained from the

clustering process were related to the high concentrations of

the secondary air pollutant O3 and to the determination of

the conditions that favor its high values. In the cluster

SOM_0, we had the highest O3 concentrations. It is worth

mentioning that the average O3 value for the SOM_0 cluster

was 57.8 lg/m3, whereas the average value for the whole

dataset was 41.69. In the SOM_0 dataset, we had quite high

temperature values (almost 30 % higher than the average of

the other three clustered datasets) with predominant value

24.9� Celcium and an average value equal to 23.21�. Also

the same data cluster had a moderate average relative

humidity equal to 50.55 %. As long as the calendar char-

acteristics are concerned, the dominant month for high O3

values was July and the time was 13:00 hours pm.

The rest of the clusters comprised of data vectors with

conversely considering characteristics. For example,

December was the most common month of the data vectors

and night hours were the most dominant. Interesting

characteristics with good practical value were located, and

they plead the application of a model that exports the

hidden knowledge of the related data. More specifically,

SOM_1 cluster was characterized by the 16 hpm which

was the dominant time of the days. Data vectors of the

SOM_3 cover a time period from 6 o’clock in the morning

till the first afternoon hours. The main attribute of the

SOM-2 is that its data vectors comprise of characteristics

related only to week days.

3.2 Regression

Regressions were performed in order to develop ANN

ensemble models capable of estimating each depended

variable (each separate air pollutant) efficiently with the

two approaches FFNN and RAF. The four datasets

obtained from the SOM clustering were used to perform

these regressions.

So for each pollutant two ANN ensembles were devel-

oped (one with FFNN and one with RAF) each ensemble

comprising of four ANN using the same algorithm, but

Fig. 4 Self-organizing map

(d inputs and two-dimensional

lattice m1 9 m2)
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Fig. 5 Structure of the hybrid system of combined machine learning (HISYCOL) algorithm

Neural Comput & Applic

123



applied on a different dataset namely (SOM-0, SOM-1,

SOM-2, SOM-3).

So keeping in mind that the air pollutants of interest

were five, totally ten ANN ensembles were developed for

each ANN algorithm.

3.2.1 Regression with random forests

This methodology applies the general technique of boot-

strap aggregating (also known as bagging) to tree learners.

Actually, bootstrap aggregating is a machine learning

ensemble meta-algorithm which is designed to improve the

stability and the accuracy of machine learning algorithms

that are used in regression. Moreover, it is really important

that it reduces variance and helps to avoid over-fitting.

To estimate the extreme air pollutants’ values with the

use of the random forests algorithm and for a given training

set X = x1,…, xn with responses Y = y1,…,yn, bagging

repeatedly it selects a random sample with replacement of

the training set and fits trees to these samples.

More specifically, the algorithm goes as follows:

For b = 1,…,B:

• Sample, with replacement, n training examples from X,

Y call these Xb, Yb.

• Train a decision or regression tree fb on Xb, Yb.

• After training, predictions for unseen samples x0 can be

made by averaging the predictions from all the

individual regression trees on x0 by using Eq. 10:

f̂ ¼
1

B

X

B

b¼1

f̂b x0ð Þ ð10Þ

This can be done also by taking the majority vote in the

case of decision trees [2].

It should be specified that B is a free parameter corre-

sponding to the number of samples/trees.

3.2.2 Regression with FFNN

When FFNN are used, the training process includes the

following steps [3]:

• The weighted sums of the inputs are calculated based

on function 11:

Table 3 Statistical analysis of

the dataset SOM-0
SOM-0 (1,63,384 records) CO NO NO2 O3 SO2

MAX 21.4 911 533 320 293

MIN 0.1 1 0 1 2

MODE 0.3 4 19 4 2

COUNT_MODE 18,613 13,743 2166 2431 21,877

AVERAGE 1.23 40.82 58.19 57.81 14.57

STANDARD_DEV 1.29 65.70 41.57 40.11 17.47

Table 4 Statistical analysis of

the dataset SOM-1
SOM-1 (1,46,334 records) CO NO NO2 O3 SO2

MAX 22.9 914 264 164 290

MIN 0.1 1 0 1 2

MODE 0.3 1 48 3 2

COUNT_MODE 11,574 9251 1832 11,874 23,708

AVERAGE 1.51 67.84 56.70 26.46 11.45

STANDARD_DEV 1.59 98.28 30.21 27.47 13.50

Table 5 Statistical analysis of the dataset SOM-2

SOM-2 (1,06,308 records) CO NO NO2 O3 SO2

MAX 24.6 953 319 243 380

MIN 0.1 1 1 1 2

MODE 0.4 4 60 4 2

COUNT_MODE 8585 8248 1279 4366 14,363

AVERAGE 1.55 53.83 60.24 37.65 13.80

STANDARD_DEV 1.56 82.67 33.62 32.83 17.47

Table 6 Statistical analysis of the dataset SOM-3

SOM-3 (96,945 records) CO NO NO2 O3 SO2

MAX 19.6 825 350 223 445

MIN 0.1 1 0 1 2

MODE 0.4 4 20 3 2

COUNT_MODE 8925 8162 1231 3249 15,133

AVERAGE 1.38 42.89 53.77 41.98 12.94

STANDARD_DEV 1.40 68.74 31.93 33.42 17.26
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sj ¼
X

n

i¼1

WijXi

� �

� hj j ¼ 1; 2; . . .; h ð11Þ

where n, h and m are the number of input, hidden and

output nodes, respectively, andWij is the connection weight

from the ith node of the input layer to the jth node of the

hidden layer. Also hj is the bias (threshold).

The output for each hidden node is estimated with

Eq. 12:

Sj ¼ sigmoid
sjð Þ ¼

1

1þ exp �sj
� �� � j ¼ 1; 2; . . .; h ð12Þ

The final output is estimated based on Eqs. 11 and 12

[3, 5]:

ok ¼
X

h

j¼1

WjkSj
� �

� h0k k ¼ 1; 2; . . .;m ð13Þ

Ok ¼ sigmoid okð Þ ¼
1

1þ exp �okð Þð Þ
k ¼ 1; 2; . . .;m

ð14Þ

The learning technique which used is the back propa-

gation in order to calculate the gradient of the loss function

with respect to all the weights in the ANN. The gradient is

fed to the optimization method which uses it to update the

weights, in an attempt to minimize the loss function. In this

research, we have developed the FFNN by employing the

following parameters:

• Training function: TRAINBR

• Learning function: LEARNGDM

• Transfer function: TANSIG

• Performance function: MSE

3.2.3 Regression results

Root mean square error (RMSE) and the coefficient of

determination (regression R2) were used as metrics to

evaluate the performance of the ANN regression ensemble

models. Each of the above criteria is represented by an

index which is obtained by comparing the forecasted val-

ues of each air pollutant to the actual ones in training,

validation and testing phases. The tenfold partitions aver-

age values of these indices were produced by the use of

tenfold cross-validation in each one of the various archi-

tectures that were tried in order to minimize the error.

Root mean square error (RMSE) or root mean square

deviation (RMSD) is a frequently used measure of the

differences between value (sample and population values)

predicted by a model or an estimator and the values actu-

ally observed. Basically, it represents the sample standard

deviation of the differences between predicted values and

observed values. These individual differences are called

residuals when the calculations are performed over the data

sample that was used for estimation, and are called pre-

diction errors when computed out of sample. The RMSE

serves to aggregate the magnitudes of the errors in pre-

dictions for various times into a single measure of pre-

dictive power. RMSE is a good measure of accuracy, but

only to compare forecasting errors of different models for a

particular variable and not between variables, as it is scale

dependent.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 Oi � Pið Þ2

N

s

ð15Þ

Coefficient of determination (regression R2) in linear

least squares regression with an estimated intercept term

equals the square of the Pearson correlation coefficient

between the observed and modeled (predicted) data values

of the dependent variable. Under more general modeling

conditions, where the predicted values might be generated

from a model different from linear least squares regression,

the R2 value can be calculated as the square of the corre-

lation coefficient between the original and modeled data

values. In this case, the value is not directly a measure of

how good the modeled values are, but rather a measure of

how good a predictor might be constructed from the

modeled values (by creating a revised predictor of the form

a ? bfi). This usage is specifically the definition of the

term ‘‘coefficient of determination’’: the square of the

correlation between two (general) variables.

R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 Oi � Pið Þ2

PN
i¼1 ðOi � OiÞ

2

s

ð16Þ

The values of the regression evaluation indices used are

presented in Table 7. From this table, it is concluded that

the random forests algorithm outperforms the others, as it

offers ANN ensembles with much better average perfor-

mance in testing and better generalization ability. How-

ever, the FFNN approach has also a good and quite reliable

performance.

3.3 Fuzzy inference ensemble model (FIEM)

The innovation of this paper is enhanced by the employ-

ment of a flexible approach based on fuzzy logic. For each

pollutant, a Mamdani fuzzy inference system (FIS) has

been developed. The FIS considers the range from the two

evaluation metrics (correlation coefficient and mean square

error). This consideration leads to the development of

corresponding Mamdani rule sets. From the execution of

the system, two outputs are obtained, namely fuzzy cor-

relation coefficient and fuzzy mean square error after per-

forming de-fuzzification with the centroid approach.

Neural Comput & Applic

123



The FIEM model takes under consideration the accuracy

of each network in a flexible manner. Moreover, the new

values are produced through machine learning, filtered by

fuzzy logic. In this way, the outputs are unbiased.

As a result, this method offers a more objective

approach. A distinct fuzzy inference system has been

developed for every pollutant. Each FIS has an Inference

mechanism comprising of the following Heuristic rule set.

The differentiation between the separate systems (corre-

sponding to each pollutant) lies in the determination of the

fuzzy membership functions.

Rule set:

If(R2
is max) and (RMSE is min) Then (R2

fuzzy is max)

AND (RMSEfuzzy is min)

If(R2 is min) and (RMSE is max) Then (R2fuzzy is min)

AND (RMSEfuzzyis max)

If(R2
is med) and (RMSE is med) Then (R2fuzzy is med)

AND (RMSEfuzzy is med)

If(R2 is min) Then(R2 fuzzy is min)

If(R2 is max) Then (R2 fuzzy is max)

If(RMSE is min) Then (RMSE fuzzy is min)

If(RMSE is max) Then(RMSE fuzzy is max)

The first three rules were given a weight value of 0.5,

whereas the last four a value of 1. This was done because in

many cases the overall performance of a network is not

defined by both the correlation coefficient and the root

mean square error. For example, there were networks

where we had a high correlation coefficient value (great for

the overall performance), but also at the same time a high

root mean square error (inadequate for the overall perfor-

mance). So we decided that the outputs of the system

should be influenced from each input separately (fuzzy

correlation coefficient and fuzzy mean square error), rather

than from both at the same time.

For the fuzzy membership functions (FMFs), the range

of each input was the range of the values for each pollutant.

Finally, the FMFs used in the inputs were Triangular (trimf

for MATLAB) FMF for the minimum and maximum

Linguistics and Trapezoidal (trapmf in MATLAB) for the

medium Linguistic, whereas the FMFs employed in the

output functions were Triangular for the minimum and

maximum Linguistics and Gaussian (Gausmf in MATLAB)

for the medium one.

4 FIS results

Two distinct regression algorithmic approaches were

employed for each one of the four datasets, so totally eight

R2 and RMSE values were produced. The R2 and the

RMSE values that were obtained as regression results for

each air pollutant were used as input to each FIS. Actually,

one FIS was developed for each air pollutant. The FIS

applied values and relations congruent to the individual R2

and RMSE values based on the rules described in Sect. 3.3.

This was done in order to phase rationally the correlation

between the conditions that favor high concentrations of air

pollutants. The fuzzy values emerged from the above

process and the average values of the regression methods

before and after the application of the FIS and also the

average overall values for each pollutant are presented in

the following Tables 8, 9, 10, 11, 12 and 13.

It should be clarified that RFSom0 stands for the per-

formance results of the random forest application on the

dataset som0. The RF_Som_All and NN_Som_All are the

methods applied in the whole dataset (with all records

participating) before dividing it to clusters, and it is the

opponent of the ensemble and the FIS approaches. Also the

Table 7 Ensemble regression results

Random forests Neural networks

R2 RMSE R2 RMSE

CO

Som0 0.93 0.34 0.90 0.42

Som1 0.94 0.40 0.92 0.46

Som2 0.94 0.40 0.92 0.45

Som3 0.94 0.35 0.92 0.40

Som All 0.94 0.36 0.90 0.46

NO

Som0 0.92 18.64 0.90 20.89

Som1 0.94 24.31 0.92 27.47

Som2 0.94 20.93 0.92 23.67

Som3 0.94 17.09 0.92 18.94

Som All 0.94 19.62 0.91 23.84

NO2

Som0 0.90 13.36 0.84 16.58

Som1 0.87 10.74 0.79 13.88

Som2 0.88 11.48 0.81 14.51

Som3 0.90 10.36 0.83 13.18

Som All 0.90 11.31 0.81 15.47

O3

Som0 0.89 13.42 0.79 18.17

Som1 0.90 8.67 0.84 11.03

Som2 0.88 11.29 0.79 15.18

Som3 0.89 11.17 0.81 14.55

Som All 0.91 10.91 0.81 16.01

SO2

Som0 0.66 10.24 0.50 12.26

Som1 0.74 6.85 0.63 8.18

Som2 0.76 8.57 0.64 10.31

Som3 0.78 8.16 0.69 9.58

Som All 0.75 8.30 0.55 11.06
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term ‘‘Actual’’ stands for the performance of the ensembles

networks and the FIS for the performance of the fuzzy

inference system. The term ‘‘Total’’ stands for the average

performance values of the models where the whole dataset

was used.

In Table 8 (the CO case), it is shown that if we compare

the average values of the three approaches they are more or

less similar to a slightly better R2 value for the ensembles,

whereas in Table 9 (the NO case) we see that the FIS has

the best average performance for both indices and in

Table 10 (NO2) the ensembles have the smallest average

RMSE (Table 11).

Generally speaking, the hybrid approach developed here

performs more or less the same with the holistic approa-

ches of the RAF and FFNN if we pay attention to the

average values. However, as it was mentioned in the

beginning of the paper, the aim was to develop local

models related to homogenous data vectors with the same

characteristics and to absorb the bad local behaviors, and

this has been achieved. The benefit from this approach is

that if we wish to forecast the air pollution values for a

specific type of concentration (e.g., for extreme cases), then

we can perform the forecasting not only for the whole

dataset but for the extreme cluster separately, and the

regression will be behaving more smoothly (Table 12).

Finally, Table 13 presents a comparison between the

results of the three average value approaches (ensembles)

emerging after the process of combinatorial learning. Two

kinds of comparisons are done to approaches found in the

literature: (a) a comparison by using the average value

(AVGV) to the FIS average performance and (b) a com-

parison by using the FIS average performance to the

highest potential AVGV that might emerge. The proposed

hybrid model shows its validity and its reliability.

It is really important that the FIS method is based on

rational rules which are either of heuristic nature, related to

the variance of the pollutants concentrations, or they are

emerging from hidden knowledge coming from the

machine learning analysis of the dataset.

5 Discussion and conclusions

An innovative ensemble learning modeling approach was

discussed in this paper. The method was tested successfully

in the forecasting of air pollutants values for the case of the

wider Attica area with data gathered from several

measuring stations distributed all over the basin. More

specifically, this research paper presents the design

Table 8 FIS ensemble vs simple ensemble regression efficiency for

CO

Actual FIS Total

R2 RMSE R2 RMSE R2 RMSE

RF Som0 0.93 0.34 0.94 0.33

RF Som1 0.94 0.40 0.95 0.40

RF Som2 0.94 0.40 0.95 0.40

RF Som3 0.94 0.35 0.95 0.33

NN Som0 0.90 0.42 0.87 0.45

NN Som1 0.92 0.46 0.91 0.46

NN Som2 0.92 0.45 0.91 0.46

NN Som3 0.92 0.40 0.91 0.40

RF Som All 0.94 0.36

NN Som All 0.90 0.46

Averages 0.92 0.40 0.92 0.40 0.92 0.41

Table 9 FIS ensemble versus simple ensemble regression efficiency

for NO

Actual FIS Total

R2 RMSE R2 RMSE R2 RMSE

RF Som0 0.92 18.64 0.91 19.82

RF Som1 0.94 24.31 0.95 27.81

RF Som2 0.94 20.93 0.95 20.23

RF Som3 0.94 17.09 0.95 20.03

NN Som0 0.90 20.89 0.87 20.22

NN Som1 0.92 27.47 0.91 28.48

NN Som2 0.92 23.67 0.91 24.15

NN Som3 0.92 18.94 0.94 19.83

RF Som All 0.94 19.62

NN Som All 0.91 23.84

Averages 0.92 21.49 0.92 22.57 0.93 21.73

Table 10 FIS ensemble versus simple ensemble regression efficiency

for NO2

Actual FIS Total

R2 RMSE R2 RMSE R2 RMSE

RF Som0 0.90 13.36 0.91 13

RF Som1 0.87 10.74 0.90 8.60

RF Som2 0.88 11.48 0.90 8.80

RF Som3 0.90 10.36 0.91 8.56

NN Som0 0.84 16.58 0.84 17.44

NN Som1 0.79 13.88 0.77 13

NN Som2 0.81 14.51 0.81 13.81

NN Som3 0.83 13.18 0.84 13

RF Som All 0.90 11.31

NN Som All 0.81 15.47

Averages 0.85 13.01 0.86 12.03 0.85 13.39
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implementation and testing of an innovative hybrid model

capable of forecasting the concentrations of air pollutants.

This method uses a technique of combined learning

which avoids bad local behaviors and contributes to a

smoother forecasting for several homogenous clusters of

data vectors. It employs exclusively computational intelli-

gence techniques in order to re-sample the dataset in

homogenous clusters that share common characteristics (in

terms of pollutants concentrations, day, time, month, tem-

perature, relative humidity and so on). In this way, it

exploits local hidden knowledge.

Also this model proposes an effective system for the

estimation of the common value of the depended parameter

(air pollutant concentration) that is derived by the com-

bined learning approach based on heuristic and rational

rules of a fuzzy inference system. This paper presents a

model that has been developed by considering data vectors

related to all involved factors obtained from various rep-

resentative measuring stations with specific topographic

and microclimate characteristics. Thus, it can be consid-

ered a rational modeling effort with good level of con-

vergence and with a high practical merit. Testing (a rather

difficult forecasting and decision making task) has been

performed with reliable and rational results.

Other research efforts like [9] propose the use of an

ANFIS ensemble scheme (adaptive neuro-fuzzy inference

system) to forecast the air pollution in Macau. It should be

clarified that though ANFIS combines the advantages of

ANNs with the ones of Fuzzy Logic (which are related to

the generalization learning ability and error tolerance of the

ANN with the comprehensive knowledge representation of

fuzzy inference) the choice of data is a crucial process for

the good performance of the model. When the application

is related to a wide area, the variations in the topographic

and microclimate characteristics should be taken into

consideration. Also a high volume of data vectors related to

a long temporal period should be also used.

The hybrid methodology described in this paper can be

used simultaneously with holistic ANN forecasting models

in order to produce more rational forecasts related to

specific types of homogenous data (e.g., extremely high or

extreme low values, or values related to specific meteoro-

logical conditions or months).

It would be interesting to employ the general architec-

ture and the framework of this model in order to perform

the same task in other areas with different climate, topo-

graphic or urban characteristics. Also various development

scenarios must be employed with the use of different

Table 11 FIS ensemble versus simple ensemble regression efficiency

for O3

Actual FIS Total

R2 RMSE R2 RMSE R2 RMSE

RF Som0 0.89 13.42 0.91 13

RF Som1 0.90 8.67 0.91 7.08

RF Som2 0.88 11.29 0.90 8.34

RF Som3 0.89 11.17 0.91 7.65

NN Som0 0.79 18.17 0.77 18.92

NN Som1 0.84 11.03 0.84 10.75

NN Som2 0.79 15.18 0.77 18.17

NN Som3 0.81 14.55 0.80 13.16

RF Som All 0.91 10.91

NN Som All 0.81 16.01

Averages 0.85 12.93 0.85 12.14 0.86 13.46

Table 12 FIS ensemble versus simple ensemble regression efficiency

for SO2

Actual FIS Total

R2 RMSE R2 RMSE R2 RMSE

RF Som0 0.66 10.24 0.64 9.08

RF Som1 0.74 6.85 0.75 4.56

RF Som2 0.76 8.57 0.76 5.13

RF Som3 0.78 8.16 0.76 4.93

NN Som0 0.50 12.26 0.51 13.44

NN Som1 0.63 8.18 0.63 7.25

NN Som2 0.64 10.31 0.64 9.17

NN Som3 0.69 9.58 0.65 9

RF Som All 0.75 8.30

NN Som All 0.55 11.06

Averages 0.68 9.27 0.67 7.82 0.65 9.68

Table 13 Comparison of ensembles versus FIS performance

FIS versus

actual

Actual versus

total

FIS versus

total

CO

R
2 0.0001 0.002 0.002

RMSE 0.0002 0.007 0.007

NO

R
2 0.001 -0.002 -0.003

RMSE 1.08 0.24 -0.84

NO2

R2 0.007 -0.0007 0.006

RMSE 0.99 0.37 1.36

O3

R2 0.002 -0.009 -0.007

RMSE 0.80 0.53 1.32

SO2

R2 0.009 0.03 0.01

RMSE 1.45 0.41 1.86
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approaches of unsupervised and semi-supervised clustering

algorithms and the performance of regressions under var-

ious types if ANN ensembles’ learning. Finally, an inter-

esting potential would be the use of genetic algorithms to

further enhance and optimize the performance.
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