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ABSTRACT
Due to climate change, windstorms are becoming increasingly common resulting in the destruction not 
only of extensive forest areas but, quite often, of small-sized and scattered forest lands, thereby adversely 
affecting both the productivity and the safety of workers employed in the harvest of windblown trees. In 
the present study, an attempt is made to identify and record areas in the northeastern forests of Greece 
covered by mixed stands of conifers and broadleaves that experienced massive windthrow following local 
storms. Our results reveal that where Pinus sylvestris was mixed either with Quercus sp. or with Fagus 
sylvatica, it had been substantially protected, while in plots where it stood on its own it had been 
extensively uprooted. On the other hand, Picea abies, even if it was mixed with Fagus sylvatica and 
Pinus sylvestris, had been blown down to a large extent. Based on tree-level data, local topographic 
features, forest characteristics, and the mechanical properties of green wood, a reliable model, to be used 
for the prediction of similar disturbances in the future, has been selected after a thorough comparative 
study of the most well-known intelligent Machine Learning (ML) algorithms. Specifically, Random Forest 
Classifier, k-Neighbors Classifier, Decision Tree Classifier, Light Gradient Boosting Machine, Gradient 
Boosting Classifier, Ada Boost Classifier, Ridge Classifier, Linear Discriminant Analysis, Logistic 
Regression, Naive Bayes, SVM – Linear Kernel, and Quadratic Discriminant Analysis were evaluated and 
compared using six performance measures (confusion matrix, accuracy, precision, recall, F1-score, and 
ROC).
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Introduction

Over the last years, windthrow has become an increasingly 
significant factor of natural disturbance. In recent decades, 
Europe has been hit by a series of severe storms. One such 
example is Cyclone Niklas, which, in March 2015, caused 
extensive damage to the forests of southern Germany, with 
the mountains of Zugspitze (where hurricane force winds 
reached 192 km/h), Brocken (162 km/h), Feldberg in the 
Black Forest (151 km/h), and Weinbiet Neustadt (148 km/h) 
bearing the brunt of the storm (German Weather Service, 
DWD). Severe storms are, unfortunately, predicted to become 
even more frequent in Europe as a result of climate change 
(Schelhaas et al. 2003; Seidl et al. 2014).

Research on the impact of windstorms on temperate forests 
has generally focused on catastrophic disturbances related to 
the most severe winds (Dunn et al. 1983; Foster 1988; Peterson 
and Pickett 1991; Cooper-Ellis et al. 1999; Canham et al. 2001). 
The range of disruptions they bring to the forest vegetation is 
an important parameter affecting in the long run the composi-
tion and structure of ecological systems in general (Pickett and 
White 1985; Canham et al. 2001).

It is important to note that natural disasters (windthrow 
incidents included) lead to exceptionally harsh logging condi-
tions, particularly when timber is scattered over large areas due 
to severe winds (Oprea and Sbera 2004). What is more, when 
harvest areas are not easily accessible, salvage logging condi-
tions become even more difficult due to the increased produc-
tion costs (related to smaller productivities) and depreciation 
of the harvested timber (Nieuwenhuis and Fitzpatrick 2002).

Other salvage logging related problems include health and 
safety issues, as the occupational safety of workers dealing with 
scattered windthrown timber is considerably reduced in com-
parison with those employed in regular cuttings (Borz 2013). 
More specifically, the most hazardous operations that loggers 
perform include tree felling, clearing the area surrounding the 
tree to be felled and clearing a path to the tree to be felled. 
Moreover, choker setters are exposed to increased hazards in 
comparison with their peers working under normal conditions 
(Sullman and Kirk 2001).

Uprooting (windthrow) and breakage of the tree trunk 
(windsnap) may cause local disturbance to the soil, as well as 
the formation of canopy gaps; the latter triggers the generation 
of early successional broadleaved species (Jankowska-Blaszcuk 
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and Grubb 2006). According to Böhm (1981), the composition 
and ratio of autochthonous to non-autochthonous species are 
altered, a fact that would entail a shift from deciduous trees to 
unstable conifers such as spruce (Schelhaas et al. 2003).

The short-term consequences of these disturbances include 
the damage incurred by the resulting insect communities, 
mainly the European spruce beetle [Ips typographus (L.)], 
thriving in the affected trees. More generally in Europe, both 
abiotic factors (windthrow) and biotic (bark beetle infesta-
tions) are serious causes of disturbance (Seidl et al. 2014).

In a period of 50 years (1950–2000) the average annual 
damage to wood from storms in Europe amounted to 
18.7 million m3, with most windthrow damage taking place 
in Central Europe and the Alps. For the same period, short- 
term wood damage from insect attacks amounted to 2.9 million 
m3 per year (Schelhaas et al. 2003). Taking the above into 
consideration, it becomes clear that windthrow forest areas 
must be identified as soon as possible in order to reduce the 
impact of the resulting biotic disturbance, as damaged trees 
yield substantial material for insect reproduction (Schelhaas 
et al. 2003; Seidl et al. 2014). More generally, delineating wind-
throw areas is deemed crucial both for the calculation of the 
damaged wood volume and in order to effectively schedule and 
plan the processing and marketing of the damaged wood to 
prevent its further degradation (Koloman 2013).

Identifying damaged sites and determining the extent of 
a wind disaster by means of terrestrial methods is often proble-
matic, especially in the case of multiple and smaller-sized 
mosaic-like disturbed areas. For this reason, measurements 
conducted with the use of global navigation satellite systems 
(GNSS) are the most common for this task (Tomaštík 2016). 
Data collection can also be performed using unmanned aircraft 
systems (UAS), a remote sensing technique that can provide 
accurate and detailed data (Tang 2015). UASs have also been 
employed in a number of studies focusing on forest distur-
bance incidents, such as fires (Yuan 2015) and insect infesta-
tions as well as the detection of smaller areas whose size is 
below 0.5 ha. (Honkavaara et al. 2013; Duan et al. 2017). As an 
alternative to UAS imagery, images obtained from the Pléiades 
satellite could be used (Vaudour et al. 2017) but are more 
expensive for small-sized areas.

Based on tree-level data, local topographic features, forest 
characteristics, and the mechanical properties of green wood, 
this paper proposes a reliable machine learning (ML) metho-
dology that can be used to analyze windthrow damage in 
mixed-broadleaf stands and predict similar disturbances in 
the future. Specifically, to prove the generalization ability of 
the proposed classification approach, we used a dataset com-
prising 455 windthrow damage cases. In order to develop the 
ML model, eight features (location, species, area, broken area, 
broken height, gradient %, aspect) and a class (uproot or not) 
were used. Validation performance reports the average accu-
racy computed over 10-fold cross-validation in the classifica-
tion process described below.

ML is a branch of artificial intelligence and computer 
science that trains computers to learn from data without 
being explicitly programmed. It is a sort of data mining that 
helps computers “learn” by studying data sets and recognizing 
patterns. ML has several advantages in forest engineering, 

including increased accuracy and efficiency, as well as 
improved decision-making.

Furthermore, ML addresses a variety of difficulties, 
including:

(1) Handling vast volumes of data: With the ever- 
increasing amounts of data created by forest applica-
tions and monitoring processes, forest engineers find it 
increasingly challenging to interpret and make sense of 
all this information. ML may assist forest management 
and civil protection organizations in handling enor-
mous volumes of data more efficiently and effectively, 
and it can even facilitate optimal decisions for action in 
the forest environment.

(2) Reducing bias: Unlike humans, ML algorithms are not 
prejudiced toward certain data sets, which might affect 
their judgment. As a result, ML can assist in the reduc-
tion of bias in forest management decisions, especially 
in damage prediction.

(3) Improving accuracy: When making damage predictions 
or categorizing damage data, ML algorithms may 
achieve significantly greater accuracy than humans or 
the other more traditional methodologies. This 
enhanced precision can lead to better outcomes and 
more efficient environmental management programs.

(4) Identifying hidden patterns and correlations: ML may 
assist forest management organizations in identifying 
patterns and correlations in data that they may not have 
detected otherwise. These learning systems have the 
potential to improve decision-making and provide 
a more profound comprehension of facts.

(5) Making future event predictions: ML algorithms can 
forecast future events such as damage prediction, wind-
throw behavior in specific local areas, etc. This can 
assist forest organizations and civil protection authori-
ties in planning for the future and capitalizing on emer-
ging possibilities.

The present study is part of a broader, long-term research 
effort whose objective is to spatially assess the climate change 
experienced by Greece due to its geophysical location and 
diverse climate. Its aim is twofold: on the one hand, the inves-
tigation and understanding of the role local topographic agents 
play in windthrow events, in combination with the character-
istics and mechanical properties of green wood species that 
experience windthrow damage; on the other, the creation of an 
ML model (Liski et al. 2020) which, once trained over the real 
data collected, will be capable of carrying out accurate predic-
tions (Lopes et al. 2022) of future windthrow disasters under 
similar environmental and topographic conditions and with 
similar mechanical tree characteristics.

Materials and methods

In April 2020, for three consecutive days (5 to 7 April), mod-
erate to strong winds developed in locations northeast of the 
Rodopi Mountains, Northern Greece. On April 5, maximum 
wind gusts reached 187.5 km/h, and in the next 2 days, max-
imum gusts of 140.79 km/h and 155.23 km/h, respectively, 
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were recorded (www.wunderground.com). The main area that 
was hit is located to the NE of the City of Xanthi. The strong 
winds caused a heterogeneous damage pattern including 
uprooting and trunk breakage mainly in small-sized mosaic- 
type sites. Salvage logging included motor-manual felling by 
means of chainsaws and skidding with the use of tractors 
(highly mechanized harvesting system).

After the storm event, and in order to assess the extent of the 
damage and identify the storm-hit areas, an unmanned aircraft 
system (Parrot Anafi) was used to scan an area of approxi-
mately 159 ha. Of the total of locations that were UAS-scanned, 
four sites were found to have been severely battered. These sites 
belonged to four mixed stands consisting of conifers and 
broadleaves located NE of the City of Xanthi.

The names we assigned to the plots are based on the items 
damaged in each plot. More specifically, in stand 27a 
(PsMxQu) (Table 1), where Pinus sylvestris trees occurred in 
mixtures with Quercus sp. (with neither of the two species 
being dominant), it was found that a specific plot, hereinafter 
referred to as “plot aPISY,” was seriously affected. In stand 26c 
(PsDomxQu), also made up of a mixed Pinus sylvestris and 
Quercus sp. community, the former being the dominant spe-
cies, the corresponding damaged section was assigned the 
name “plot bPISY.” In both aPISY and bPISY plots, the 
damaged species was Pinus sylvestris. In the third stand, stand 
7a (FsDomxPs), consisting of a mixed Fagus sylvatica and 
Pinus sylvestris assemblage, with Fagus sylvatica being the 
dominant species, the damaged location was named “plot 
aPIAB.” Finally, in the fourth stand, stand 7b (PsDomxFs), 
also consisting of mixed Pinus sylvestris and Fagus sylvatica 
trees, with Pinus sylvestris being the dominant species, the 

damaged site was named “plot bPIAB” (Figure 1). In plots 
aPIΑΒ and bPIΑΒ, the damaged species was Picea abies.

To put it in a nutshell, the four stands were all mixed 
communities of conifers and broadleaves, in two of which 
(26c and 7b) conifers were the prevailing species, one (7a) 
was dominated by broadleaves, whereas in the fourth (27a) 
there was no dominant species. Plots aPISY and bPISY were 
composed solely of Pinus sylvestris, whereas the other two 
plots, aPIAB and bPIAB, were occupied by mixtures of Pinus 
sylvestris and Fagus sylvatica and also a number of Picea abies 
individuals as a secondary species.

After identifying the four windthrow plots, a series of 
field measurements were carried out. These included a) the 
totality of the damaged trees in all four locations, which 
were subsequently classified according to forestry species 
and type of damage per plot. It must be clarified here that 
in the current study, we took into account only the 
uprooted trees and not the broken ones; b) the diameter 
at breast height of the uprooted trees; and c) with the help 
of Garmin Dakota 20 GPS, the area, elevation, as well as 
the aspect of each affected plot.

In order to draw conclusions pertaining to the proper-
ties of green wood and the strength and resilience of the 
species that were affected (Pinus sylvestris and Picea abies) 
as well as of those which were within the windthrow 
stands but did not experience any damage (Fagus sylvatica 
and Quercus sp.), the Stuttgart Table of Wood Strength 
(Wessolly and Erb 1998) was taken into account for the 
species concerned. This list (Table 2) refers to the 
mechanical properties of green wood (i.e., standing 
wood) and not of wood in use.

Table 1. Summary of the windthrow areas (stands and plots).

Name Designation Dominant species Secondary species Name of plot

Stand 
area 
(Ha) Wood volume m3

(27a) Conifer–hardwood mixed species PsMxQu aPISY 36.36 4987
(26c) Conifer–hardwood mixed species PsDomxQu Ps dominated bPISY 38.23 5496
(7a) Hardwood–conifer mixed species FsDomxPs Fs dominated Picea abies+ Prunus+Betula+Populus aPIAB 41.42 16,198
(7b) Conifer–hardwood mixed species PsDomxFs Ps dominated Picea abies+ Prunus+Betula+Populus bPIAB 42.98 15,275
Sum 158.99

Ps = Pinus sylvestris, Fs = Fagus sylvatica

Figure 1. Schematic representation of the plots.
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Intelligent data analysis

In order to create a forecasting model for the prediction of 
storm disasters based on tree-level data, a comprehensive com-
parative study of the most well-known machine learning algo-
rithms was carried out. Machine learning is one of the most 
important and most widely used fields of artificial intelligence 
that includes data-driven computational methods (Usui 2021) 
for studying and building algorithms (Keefe et al. 2019) that 
can learn from appropriate data (Strange et al. 2021) and, based 
on this experience, carry out accurate future forecasts (Starke 
and Geiger 2022).

In recent years, machine learning has been used in various 
environmental issues, such as the exploration of the impact of 
climate change on biodiversity (Demertzis and Iliadis 2018), 
the modeling of forest fires (Anezakis et al. 2018), the analysis 
of exhaust emissions generated by chainsaws (Dimou et al.  
2018), and the prediction of interior spruce wood density 
utilizing progeny test information (Demertzis et al. 2017).

The concept of experience mentioned above refers to the 
hidden knowledge included in the field data we collected, 
which are related to local topographic factors, forestry character-
istics as well as the mechanical properties of species in associa-
tion with the type of damage they suffered. To be more specific, 
we used as independent variables the characteristics related to 
the topographic area, the size of the damaged sites, the forestry 
species, diameter at breast height, slope, and geographic orienta-
tion. The only dependent variable that we used was whether the 
tree was uprooted or not. Consequently, we came up with 
a binary classification problem (Bahel et al. 2020).

Binary classification concerns the grouping of each sample 
into one of the two predetermined classes. The term “training” 
of a machine learning model by means of the classification 
method refers to the process that calculates the equation 
f̂ : RN ! T, where T is a set of labels that indicate the class 
(whether the tree was uprooted or not). In this problem, we 
considered as a key evaluation metric the error corresponding 
to an incorrect prediction, which depends on the concept of 
relative distance between the different classes (Canbek et al.  
2017).

An extensive comparison of the most widely used super-
vised ML models was made to identify the most effective 
classification algorithm. A comprehensive review of the models 
considered is summarized as follows:

(1) Random Forest Classifier: A Random Forest (as 
depicted in Figure 2) is a meta-learner that creates 
several categorizing decision trees on different sub- 
samples of the dataset and utilizes averaging to 
increase predicted accuracy and control over-fitting 
(Breiman 2001).

(2) k-Neighbors Classifier: k-Nearest Neighbors are 
a similarity-based learning technique that predicts 
the target by locally interpolating the targets associated 
with the training set’s nearest neighbors (Bremner 
et al. 2005).

(3) Decision Tree Classifier: A decision tree-based model 
that presents conditional control statements by inte-
grating random event outcomes and resource costs. 

Figure 2. Operation of random forest.

Table 2. Stuttgart table of wood strength (Wessolly and Erb 1998).

Species
Modulus of elasticity 

(N/mm2)
Comparable strength in longitude 

(N/mm2)
Elastic limit 

(%) Proposed aerodynamic drag factor (cw)

Pinus sylvestris 5800 17.0 0.29 0.15
Picea abies 9000 21.0 0.23 0.20
Fagus sylvatica 8500 22.5 0.26 0.25–0.30
Quercus robur 6900 28.0 0.41 0.25
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The pathways represent the classification process from 
the root to the leaf. Each node represents an attribute, 
each branch represents the result of an attribute test, 
and each leaf reflects the decision made once all details 
have been computed (Kamiński et al. 2017).

(4) Light Gradient Boosting Machine: A gradient- 
boosting architecture based on decision trees that 
improve model efficiency while reducing memory 
usage (Ke et al. 2017).

(5) Gradient Boosting Classifier: Gradient boosting is an 
ML technique for regression and classification pro-
blems that generate a prediction model in the form 
of an ensemble of weak prediction models, often deci-
sion trees.

(6) AdaBoost Classifier: It is a meta-learner that starts by 
fitting a regressor on the original dataset and then 
includes new copies of the regressor on the same 
dataset with the weights of instances changed based 
on the current prediction error (Kégl 2013).

(7) Ridge Classifier: Ridge Classifier is a method that 
solves a high covariance problem using regularization 
L2-norm, even if the errors come from an irregular 
distribution.

(8) Linear Discriminant Analysis (LDA): Fisher’s linear 
discriminant, a method used in statistics and other 
domains to determine a linear combination of features 
that characterizes or separates two or more classes of 
objects or events, is generalized by LDA. The resulting 
combination can be used as a linear classifier or, more 
typically, to reduce dimensionality before further 
classification.

(9) Logistic Regression Classifier: The logistic classifier 
model is a classification model in which the condi-
tional probability of one of the two possible realiza-
tions of the output variable is assumed to be equal to 
a linear combination of the input variables, trans-
formed by the logistic function.

(10) Naive Bayes: Naive Bayes methods are a set of super-
vised learning algorithms based on applying Bayes’ 
theorem with the “naive” assumption of conditional 
independence between every pair of features given the 
value of the class variable (Hastie 2001).

(11) Support Vector Machines (SVMs): Each data item in 
the SVM method represents a point in n-dimensional 
space, with the value of each feature being the value of 
a specific coordinate. The classification is accom-
plished by locating the hyperplane that best distin-
guishes the two classes (Cortes et al. 1995).

(12) Quadratic Discriminant Analysis (QDA): QDA is 
a generative model based on the assumption that 
each class has a Gaussian distribution. The proportion 
of data points that belong to the class is the class- 
specific prior. The class-specific mean vector is the 
average of the class’s input variables.

It must be noted that ML can analyze enormous amounts 
of data to reveal specific trends, patterns, and correlations in 
data that people would not be able to detect otherwise. For 
example, understanding the mechanisms of massive 

windthrows is a helpful tool for predicting disturbance events 
like the one under consideration. An ML model’s fundamen-
tal goal is generalization. The capacity of a given model to 
adapt effectively to additional, previously unseen data col-
lected from the same distribution as the one used to generate 
the model is referred to as generalization. It is a term that 
shows how well a trained model classifies or anticipates 
unobservable data. As ML algorithms gain experience, their 
accuracy, and efficiency improve. This enables people to 
make more informed selections. As the amount of data 
increases, ML algorithms learn to make more accurate pre-
dictions faster. It should be taken into account that a plethora 
of data and data diversity are not the only considerations to 
be addressed in order to have a generalized model.

An ML model’s generalization ability can be measured using 
inference accuracy, precision, recall, and F1-score. These are 
conventional metrics of inference accuracy or error for the 
trained ML model’s unknown input data (test data) rather 
than performance measures for the training data. To evaluate 
the generalization performance after the verification and verify 
the hyperparameters of the constructed model, we employed 
an unknown test set that did not include the training data. This 
validation method, known as cross-validation, is the most 
accurate in the literature.

The created ML model is tailored to the training data. If the 
training does not produce enough essential features, test set 
performance will be characterized by poor generalization due 
to overfitting or underfitting. In this instance, a method for 
efficiently estimating the learning progress should be consid-
ered in terms of learning measures. The suggested methodol-
ogy considers the learning curves in the inference error rate for 
overfitting and underfitting. If the generalization performance 
is poor, there is a significant gap between the test and valida-
tion. Overfitting frequently raises the error rate as training 
advances.

Furthermore, when the training data is skewed, the infer-
ence’s accuracy cannot guarantee a likelihood. The Receiver 
Operating Characteristic (ROC) curve is a graph that com-
pares epochs or data size with inference accuracy, and gen-
eralization performance is demonstrated when a particular 
threshold is reached. When the curve reaches this point, it is 
said to be saturated. Lowering the categorization threshold 
causes more items to be classified as positive, which 
increases both False Positives and True Positives.

As a proof of the supremacy of the algorithm over the other 
candidates, the following schematic diagrams (Fig. 3–5 and Fig. 
1Α-8Α, see Appendix) are presented confirming the efficiency of 
the said algorithm. In general, evaluation metrics are used to 
measure the performance of an ML method. Without these 
evaluation metrics, there can be no comparison between algo-
rithms, nor is there the potential to select the appropriate tune 
hyperparameters that allow the model to maximize model per-
formance. Evaluation is carried out only in the unknown data 
(test set) as an algorithm may be consistent with the training set 
but fail to perform well in the test set (Raschka 2014).

The most popular performance metrics that are capable of 
evaluating and comparing with clarity, thoroughness, and 
objectivity, the classification algorithms used in this paper are 
presented below (Talingdan 2019):
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Confusion matrix

The evaluation of a classification model is based on the number 
of records in a test set that are predicted correctly or incorrectly 
by the model. This number is placed in a confusion matrix, 
a two-dimensional table, in which columns correspond to the 
predicted and rows to the actual values of each class.

The confusion matrix gives the precise information required to 
evaluate the damage prediction model. This information is used to 
compare the effectiveness of the compared models. The number 
of true positive (TP), true negative (TN), false positive (FP), and 
false negative (FN) classifications for each class was used to 
calculate the performance metrics of the trees uprooted. Also, it 
depicts each combination of true and anticipated classes for the 

dataset used. The true model forecasts that are 100% accurate are 
highlighted in green. The line from the TP in the top-left corner to 
the TN in the bottom-right corner includes the majority of the 
correct predictions of the trees uprooted in the confusion matrix 
compared to the class’s actual values (Figure 3).

Accuracy

Accuracy is calculated via the following equation (Equation 1): 

accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
(1) 

and expresses the percentage of correct predictions.

Figure 3. Random Forest Classifier confusion matrix.

Figure 4. Precision vs recall curve for the Random Forest Classifier.
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Using accuracy as a defining metric for our model makes 
sense intuitively. Ideally, we would like to avoid potential 
problems that could be caused if we predicted that a tree was 
uprooted, but our model classified it as not uprooted (aim for 
high recall). Although we do aim for high precision and high 
recall values, achieving both at the same time is not possible. 
For example, if we change the model to one giving us high 

recall, we might detect all the trees that have actually been 
uprooted, but we might end up protecting areas that have not 
suffered windthrow damage. Similarly, if we aim for high 
precision to avoid taking any wrong and unrequired decisions, 
we might end up identifying a great number of windthrown 
areas that are actually in need of protection as requiring no 
protection at all.

Figure 5. Classification performance report for the Random Forest Classifier.

Figure 6. ROC plots for the Random Forest Classifier.
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Precision

Precision is calculated as follows (Equation 2): 

precision ¼
TP

TP þ FP
(2) 

and expresses the percentage of the correct positive results 
predicted by the classifier.

Recall

Recall is calculated by means of the following (Equation 3): 

recall ¼
TP

TP þ FN
(3) 

and expresses the classification percentage of all positive results 
classified by the classifier.

F-score

In order to effectively deal with instances in which a classifier 
has high recall but low precision, the F-Score metric has been 
introduced, which is the harmonic mean between precision 
and recall and is calculated through the following (Equation 4): 

FScore ¼
2� recall � precision

recallþ precision
¼

2TP
2TP þ FP þ FN

(4) 

The greater the F-Score, the higher are recall and precision and 
the better is the performance of a given model.

Instead of balancing precision and recall, we can just aim for 
a good F1-score and that would be indicative of good Precision 
and a good Recall value as well.

Receiver Operating Characteristic (ROC)

This metric can be applied to classifiers that have confidence as 
output. In this case, the classifier predicts a class if confidence 
in this class exceeds a given threshold. For the formation of the 
ROC curve, various threshold values are used, and each time, 
the rates [True Positive Rate (TPR) and False Positive Rate 
(FPR)] are recorded. These pairs of values are plotted in 
a graph, in which the y axis corresponds to TPR and the 
x axis corresponds to FPR. The performance of each classifier 
is represented as a point in the ROC curve as depicted in Figure 
6 (Alam et al. 2011).

In order to have an objective evaluation process of ML 
models, both as a self-evaluation and for comparison with 
alternative models, numerous statistical techniques for the 
distribution and processing of datasets, also known as valida-
tion techniques, can be used. The most frequent cross- 

validation approach is k-Fold, which divides the dataset into 
k subsets, each with an approximately equal population. The 
all-theoretic compound of the remaining k-1 subgroups is 
utilized as a training subset, while one of the k-above subsets 
is employed as a test subset. A total of k computation cycles are 
conducted, each k subset serving as a test subset. The benefit of 
this evaluation method is that each data set is used once for 
training and once for testing. The parameter k can have any 
positive integer value. However, the most common choice in 
practical applications used in this paper is k = 10, known as 10- 
Fold Cross Validation (Talingdan 2019).

The pre-processing of data aims to phase out problems that 
emerge during the selection of data, e.g., extreme values, out-
liers, missing data, etc. To handle the missing data problem, six 
records were removed. These records had gaps in some para-
meters. So, the final data set comprised 455 cases. Also, in 
order to determine if the dataset included extreme values and 
outliers, the Interquartile Range method was applied. Extreme 
values or outliers are points that are far away from the average 
value of a parameter. The distance is measured based on 
a threshold which is a multiplicand of the standard deviation. 
The above analysis was performed without raising extreme 
values or outliers. Finally, in order to eliminate the likelihood 
of high values prevailing by influencing the cost function, 
without nevertheless being more critical, the data were normal-
ized so as to be in the same range using the min-max method in 
the interval [−1, +1].

Results

After scanning with the help of a UAS an area of approximately 
159 ha (Table 1), four damaged plots were identified (aPISY, 
bPISY, aPIAB, and bPIAB), each of which was located in 
a different stand. In the first two plots (aPISY and bPISY), 
belonging to two mixed stands of conifers and broadleaves, 
namely Pinus sylvestris and Quercus sp., damage had only 
occurred in Pinus sylvestris. In the other two plots (aPIAB 
and bPIAB), also belonging to another two mixed stands of 
Fagus sylvatica and Pinus sylvestris, damage had only occurred 
in the secondary species, i.e., Picea abies.

Table 3 illustrates the topographic features as well as the size 
of each plot, the largest of them being aPIAB with 5.75 ha. 
These plots are located at altitudes ranging from 1000 to 
1300 m. Table 4 shows the ranking of the severity of damage 
in these plots following the Bradford/Unwin damage scale 
(Unwin et al. 1988). According to this scale, damage equal to 
1.5 is considered as a serious disturbance. Plot aPISY, with 
a large number of trees being snapped or uprooted and the rest 
having undergone moderate disturbance, belongs to this class 

Table 3. Topographic features and size of plots.

Plots Latitude Longitude Geology Aspect Altitude
Slope 

(%)
Area 
(Ha)

aPISY* 41° 15΄ 46΄΄ N 024° 45΄ 48΄΄ E granite SW 1000 10 1.20
bPISY 41° 15΄ 32΄΄ N 024° 46΄ 06΄΄ E granite S 1000 40 4.10
aPIAB** 41° 20΄ 37΄΄ N 024° 42΄ 21΄΄ E rhyolite NW 1300 20 5.75
bPIAB 41° 20΄ 40΄΄ N 024° 42΄ 22΄΄ E rhyolite NW 1300 20 0.26
Sum 11.31

* Pinus sylvestris, ** Picea abies
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(Table 4). Damage equal to 1.0 corresponds to severe and 
extensive disturbance; plot bPISY falls into this class as all the 
trees exhibited extensive disturbance.

Damage equal to 3 corresponds to moderate or minor dis-
turbances; plot aPIAB belongs here, as fewer than 10% of the 
trees were damaged (Unwin et al. 1988; Metcalfe 2008). In this 
plot, 160 Picea abies trees were affected, 88.75% of which were 
uprooted and the remaining snapped. Last, plot bPIAB belongs 
to scale 2.5, which is considered to represent instances of 
moderate disturbance, where fewer than 33% of the trees 
were found to be broken or uprooted. Table 4 also shows the 
diameters at breast height of the uprooted trees as well as the 
wood volumes of the uprooted trees per plot.

Table 5 depicts the total number as well as the percentage of 
the uprooted trees per species (111 Pinus sylvestris, 160 Picea 
abies) compared to the total number of damaged trees (457), 
which includes both the uprooted and snapped trees; the latter, 
however, were not taken into consideration in the present 
study. The table also shows (3rd column) the number and 
percentage of the uprooted trees per species (263 Pinus sylves-
tris, 194 Picea abies) compared to the total number of uprooted 
trees.

In the present study, the following ML methods were eval-
uated and compared to identify a predictive model for fore-
casting disasters at tree-level data: Random Forest Classifier 
(Breiman 2001), k-Neighbors Classifier (Bremner et al. 2005), 
Decision Tree Classifier (Kamiński et al. 2017), Light Gradient 

Boosting Machine, Gradient Boosting Classifier (Elith et al.  
2008), Ada Boost Classifier, Ridge Classifier, Linear 
Discriminant Analysis, Logistic Regression (Bishop 2006) 
Naive Bayes, SVM – Linear Kernel and Quadratic 
Discriminant Analysis (Cortes and Vapnik 1995). In order to 
get the best predictive model, the different ML algorithms were 
evaluated based on six performance metrics (confusion matrix, 
accuracy, precision, recall, F1-score, and ROC).

It must be noted that the proposed binary classification 
method has some substantial advantages. Specifically, it is 
very fast compared to the other multi-classification methods, 
performs well in large and small datasets, can easily handle 
irrelevant features, is free of complexity and can be easily 
handled by non-expert users.

Table 6 illustrates the results of the comparative study.

Winner algorithm

The algorithm with the best predictive performance as 
reflected in Table 6 was found to be Random Forest (RF) 
(Prinzie and Poel 2007). RF uses decision trees as predictive 
models, to which it assigns comments and conclusions regard-
ing the target value of the dependent variable. Each decision 
tree is calculated by induction, based on the recorded data, 
using the divide-and-conquer technique. More specifically, for 
the data set considered in the present paper, each datum 
includes seven independent variables and there are a total of 
two classes (C1,C2) as independent variables (uprooted vs. not 
uprooted).

The objective is the partition of the set into subsets, each of 
which comprises data belonging to a single class. In particular, 
a suitable test is selected, which typically uses a single feature, 
with only one output in the set {O1,O2,. . .,On}. In this way, the 
set is partitioned in subsets Τ1,Τ2,. . .,Τn, where subset Ti 
includes all the data of the initial set for which the Οi output 

Table 4. Damage severity according to Bradford/Unwin damage scale, number of damaged trees per plot, type of damage, and damage in m3.

Plot Bradford/unwin damage scale Level of damage Number of stems assessed % uprooting DBH (SD) Damage m3/species **

aPISY(27a) 1.5 (95%)* Severe 26 65.38 23.33 (4.43) 4.69
bPISY(26c) 1 (100%) Severe 237 39.66 21.46 (2.28) 33.08
aPIAB(7a) 3 (9%) Moderate 160 88.75 26.07 (8.00) 77.88
bPIAB(7b) 2.5 (20%) Moderate 34 52.94 25.27 

(8.28)
9.19

sum 457 124.84

(%)*percentage of damaged trees. 
**uprooted trees (m3).

Table 5. Uprooting percentage in relation to total damage for both species and 
per species.

Uprooted

PISY 111/457* (24.29%) 111/263** (42.20%)
PIAB 160/457 (35.01%) 160/194** (82.47%)

* Total damaged trees (uprooted and snapped) for both species (PISY: Pinus 
sylvestris and PIAB: Picea abies). 

** Total damaged trees (uprooted and snapped) per species.

Table 6. Machine learning performance comparison results.

ID Algorithm Accuracy ROC Recall Precision F-Score TT (Sec)

1. Random Forest Classifier 0.8851 0.9476 0.8677 0.8975 0.8820 0.610
2. k-Neighbors Classifier 0.8838 0.9433 0.8719 0.8917 0.8811 0.126
3. Decision Tree Classifier 0.8827 0.9030 0.8573 0.9019 0.8785 0.020
4. Light Gradient Boosting Machine 0.8745 0.9450 0.8407 0.8997 0.8689 0.121
5. Gradient Boosting Classifier 0.8468 0.9221 0.7874 0.8909 0.8356 0.192
6. Ada Boost Classifier 0.7662 0.8480 0.6655 0.8288 0.7376 0.160
7. Ridge Classifier 0.7559 0.0000 0.6634 0.8091 0.7286 0.016
8. Linear Discriminant Analysis 0.7559 0.7625 0.6634 0.8091 0.7286 0.020
9. Logistic Regression 0.7542 0.7687 0.6565 0.8110 0.7253 0.359
10. Naive Bayes 0.7391 0.7773 0.6856 0.7635 0.7220 0.018
11. SVM – Linear Kernel 0.6370 0.0000 0.7686 0.6947 0.6735 0.030
12. Quadratic Discriminant Analysis 0.5146 0.4607 0.1215 0.8495 0.1078 0.018
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has been derived. So, the decision tree includes a decision node 
where the test selected is performed and a branch for each 
O1,O2,. . .,On output. It should be stressed that the RF algorithm 
uses a large number of decision trees in order to correctly 
achieve the final categorization of the problem at hand.

Discussion

The Fujita (F) Scale is used to estimate tornado wind speeds 
based on the level of damage left behind by a tornado. The scale 
ranges from F0, assigned to tornadoes that generate “light 
damage,” to F5, which is assigned to tornadoes causing 
“incredible damage.” According to Canham et al. (2001), 
severe tornadoes rated F3-F5 on the Fujita scale with winds 
blowing at >70 m/s (Godfrey et al. 2017) may cause uniform 
and complete windthrow in a location with relatively distinct 
boundaries between the damaged area and an adjacent mini-
mally disturbed site. The majority of tornadoes (almost 75%) 
correspond to an F-scale rating of F0-F1 and are characterized 
by moderate winds (<50 m/s); however, they are likely to bring 
about a wide range of catastrophic impacts on the affected 
trees. In the current research, carried out in an area NE of 
the City of Xanthi, on April 5, wind speeds were well below 
50 m/s (9.4 m/s) and blew constantly without pause for the 
next 2 days (6 and 7 April), on which speeds amounted to 
11.8 m/s and 10.7 m/s, respectively. These winds produced 
damage rated between F0-F1 on the Fujita scale (Godfrey and 
Peterson 2017).

As also mentioned in the Materials and Methods section, in 
the present study, we used data from an airborne unmanned 
aircraft system (UAS). The detection of windthrow is com-
monly carried out with the use of imagery from both airborne 
(airborne optical sensors, airborne laser scanning [ALS], syn-
thetic aperture radar [SAR]) and spaceborne (spaceborne opti-
cal system, spaceborne exact repeat track SAR, spaceborne 
LRW SAR [multi-track]) sources (Rüetschi 2019).

Field surveys of windthrown areas either stand-alone or in 
combination with the interpretation of aerial imagery (the 
method followed in the present study) are considered time- 
consuming and expensive (Rüetschi et al. 2019). Besides that, 
the areas that can be covered by all the airborne sensing 
systems tend to be smaller sized in comparison with those 
covered by spaceborne means, and the optical data of their 
imagery are dependent on the prevailing weather conditions 
(Rüetschi et al. 2019; Honkavaara et al. 2013; Mokroš et al.  
2017; Duan et al. 2017; Nyström et al. 2014; Polewski et al.  
2018), a fact that is not the case with spaceborne systems 
(Dyukarev et al. 2011; Eriksson et al. 2012; Jonikaviˇcius et al.  
2013; Baumann et al. 2014; Elatawneh et al. 2014; Einzmann 
et al. 2017; Tanase 2018).

However, UASs have a certain number of advantages over 
the other airborne systems (ALS, SAR); firstly, they are capable 
of detecting windthrown areas smaller than 0.5 ha (Rüetschi 
et al. 2019), as is the case with plot bPIAB in the current study 
whose area is 0.26 ha (Table 3). In addition, unlike ALS or SAR 
(Rüetschi et al. 2019), they allow the detection of individual 
windthrown trees (Honkavaara et al. 2013; Mokroš et al. 2017; 
Duan et al. 2017) (in the present research, individual wind-
throw was detected in aPIAB and bPIAB plots).

Moreover, UASs are not dependent on low temperatures 
(Way et al. 1990), unlike SARs, whose backscatter in low 
temperatures is negatively affected by object properties. More 
specifically, low temperatures in wood (Way et al. 1990), espe-
cially below the freezing point (Wegmüller et al. 1994), wet 
snow (Koskinen et al. 1997), as well as the internal and external 
moisture conditions (Proisy et al. 2000; Sharma et al. 2005) are 
likely to affect backscatter from forested areas. Finally, UASs 
are not dependent on the structural properties of a forest, such 
as size, aspect, and the spatial pattern of the trees as a whole, as 
well as their branches and leaves (Westman et al. 1987; Dobson 
et al. 1992; Imhoff et al. 1995).

Future environmental conditions are expected to be parti-
cularly unstable due to climate change. In this context, foster-
ing species diversity is a particularly suitable management 
approach acknowledged by a growing body of research 
(Knoke et al. 2008; Griess et al. 2012; Neuner et al. 2015). 
Tree species diversity significantly contributes to the resilience 
of forest ecosystems and their resistance to the impacts of 
natural disturbances (Silva Pedro et al. 2015).

Diversity ensures that even if the performance of a given 
tree species declines or fails under certain conditions, other 
species with different characteristics become better adapted to 
or resist the same extreme environmental drivers and maintain 
ecosystem functionality. Diverse characteristics increase the 
likelihood of the ecosystem’s positive response to disturbance 
impacts, thus increasing ecosystem resilience, resistance, and, 
hence, rejuvenation (Mori et al. 2013).

All the windthrown plots of the present study (plots aPISY, 
bPISY, aPIAB, and bPIAB) were located in mixed stands of 
different spatial grain of mixing tree species. Despite the con-
sensus in the relevant literature on the benefits of species 
diversity, the effects of the spatial grain of mixing three species 
have not yet been systematically investigated (Sebald et al.  
2021).

Sebald et al. (2021) studied diversity effects between stands, 
which they termed beta diversity, and compared them with the 
effects of within-stand diversity (alpha diversity). While the 
effects of the latter have already been explored extensively 
(Del Río et al. 2017; Guyot et al. 2016; Huang et al. 2018), 
beta diversity has received relatively little attention.

In plots aPISY and bPISY, consisting solely of Pinus sylves-
tris, 95–100% of the trees were blown down. However, the 
greatest extent of uprooting measured in m3 of damaged 
wood (77.88 m3, Table 4) occurred in plot aPIAB, as it was 
the largest disturbed plot in size (5.75 ha, Table 3). As a rule, it 
was observed that in all four mixed stands of conifers and 
broadleaves (Table 1), only the conifers, i.e., Pinus sylvestris 
and Picea abies were affected, while the broadleaves (Fagus 
sylvatica and Quercus sp.) showed no signs of damage.

In the first two mixed stands (PsMxQu and PsDomxQu), 
both of which were made up of conifers and broadleaves (Pinus 
sylvestris and Quercus sp.), and more specifically, in plots aPISY 
and bPISY (corresponding to PsMxQu and PsDomxQu stands, 
respectively, Table 1), disturbance occurred only in Pinus syl-
vestris trees, as these plots were composed solely of Pinus 
sylvestris. In these plots, tree species mixing was between stands 
(beta diversity) (Sebald et al. 2021). In the other two mixed 
Pinus sylvestris and Fagus sylvatica plots, i.e., aPIAB and bPIAB 
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(belonging to stands FsDomxPs and PsDomxFs, respectively), 
disturbance occurred only in a secondary species, namely Picea 
abies, a fact that can serve as proof that Fagus sylvatica is 
exceptionally resistant to overturning or breaking in the 
given weather conditions, a fact that is also corroborated by 
Schmidt et al. (2010). This is true only if Fagus sylvatica is not 
affected by beech bark disease, as in the present case. In these 
plots, tree species mixing was within stands (alpha diversity) 
(Sebald et al. 2021).

By comparing the four plots, it can be seen that mixing tree 
species within a stand, such as in aPIAB and bPIAB plots 
(alpha diversity), is more effective in buffering disturbance 
impacts than mixing tree species between stands (beta diver-
sity, aPISY and bPISY plots), a result that is not consistent with 
the study by Sebald et al. (2021), who argue that fostering beta 
diversity can be as effective or even more effective than alpha 
diversity.

In the same study (Sebald et al. 2021), it is also claimed that 
in high elevation conditions (e.g., Dischma landscape) mixing 
tree species within a stand has stronger positive effects on 
biomass stocks (alpha diversity) (Larocque et al. 2013; Morin 
et al. 2018), a fact that is consistent with the results of the 
present research in which all windthrown plots are located at 
a considerably high altitude (1000–1300 m, Table 3).

Increasing tree species diversity, however, may not be 
enough to deter the multiple impacts of global change 
(Sebald et al. 2021) and may need to be accompanied by 
additional measures such as increasing resistance through 
thinning and reduced rotation periods (Zimová et al. 2020) 
or increasing resilience through advance regeneration 
(Johnstone et al. 2016) and enhanced structural diversity 
(Millar et al. 2007).

In the present paper, where Pinus sylvestris was mixed either 
with Quercus sp. or with Fagus sylvatica (aPIAB, bPIAB), it had 
been substantially protected, while in those plots where it stood 
on its own (aPISY, bPISY), it was extensively uprooted. On the 
other hand, Picea abies, even if it was mixed with Fagus sylvatica 
and Pinus sylvestris, had been blown down to a large extent.

The ability of a tree to withstand trunk breakage is deter-
mined by the applied load (wind speed), tree geometry (crown 
sail-area and stem taper), as well as the mechanical properties 
of green wood, i.e., compression strength and modulus of 
elasticity (Horáček 2003). Taking into consideration the fact 
that the mechanical properties of green (moist) wood differ 
from those of industrial wood (Brudi et al. 2002), we used the 
corresponding green wood values in accordance with the 
Stuttgart table of wood strength (Wessolly and Erb 1998) 
and, in particular, those for Pinus sylvestris, Picea abies, Fagus 
sylvatica and Quercus sp. (Table 2). Wessolly and Erb (1998) 
studied the behavior of standing trees by means of an elast-
ometer and derived the values of the mechanical properties of 
green (moist) wood (Horáček 2003).

Stiffness, measured by the modulus of elasticity (N/mm2), is 
the only constant of materials that is responsible for the beha-
vior of the trunk under load stress such as the power of the 
wind. The destruction of a trunk takes place when the wind- 
induced stress on the marginal fibers of the trunk exceeds the 
tree’s resistance to compression and this capacity to withstand 
loads is referred to as compression strength.

The resistance of a tree’s crown to the wind is also expressed 
by means of the aerodynamic drag factor (cw). The drag factor 
shows that during a storm, the leaves, branches, and smaller 
twigs are bent by powerful air gusts (Mayhead 1973). Fagus 
sylvatica’s green wood is significantly more rigid (Emod 
= 8500 N/mm2) and has stronger compressive properties 
(22.5 N/mm2) than Pinus sylvestris and Picea abies; also, the 
green wood of Quercus sp. has the highest compression 
strength (28 n/mm2) compared to the other three species.

In addition, both broadleaved species have very high aero-
dynamic drag factor values (cw = 0.25–0.30 and cw = 0.25 for 
Fagus sylvatica and Quercus sp., respectively), with cw = 0.30 
being the maximum limit. Pinus sylvestris does not have very 
high stiffness values (Emod = 5800 N/mm2) or particularly 
strong compressive properties (17 N/mm2) and at the same 
time exhibits a relatively low aerodynamic drag factor (cw 
= 0.15), a fact that justifies the high rates of Pinus sylvestris 
uprooting (42.20%).

Picea abies, on the other hand, is more resistant to external 
loads (Emod = 9000 N/mm2) compared to Pinus sylvestris, so it 
can be considered that its green wood is more rigid and has 
stronger compressive properties (21 N/mm2); its aerodynamic 
drag factor has a moderate value (cw = 0.20), which is by all 
means higher than that of Pinus sylvestris (cw = 0.15). The high 
rates of uprooting in this species (82.47%) are probably due to 
the fact that Picea abies is shallow rooted.

Conclusions

In the disturbed area, located NE of the City of Xanthi, Pinus 
sylvestris and Picea abies individuals suffered damage from 
stormy winds blowing for three consecutive days in 2020 
with maximum gusts reaching 187.5 km/h (on April 5th) and 
maximum wind speeds equal to 11.8 m/s. According to the 
Fujita scale, the above wind speeds are ranked F0-F1, 
a category comprising almost 75% of tornadoes (Godfrey  
2017). As the winds were not considered to be particularly 
strong, the disturbance caused was not significantly extensive. 
Four plots in the study area were affected with a total area equal 
to 11.31 ha (Table 3). The damage due to uprooting amounted 
to 124.84 m3 of wood (Table 4), while the overall damage 
including windsnap was 187.77 m3.

Mechanized harvesting constitutes an economical method 
of salvage logging as it secures high productivity (Magagnotti,  
2013) and offers improved occupational safety especially in 
harsh harvesting conditions due to windthrows. Fully mechan-
ized harvesting systems are not in use in Greece. In the current 
study, salvage logging was based on a highly mechanized sys-
tem (with chainsaws and cable yarder and tractor). According 
to Oprea (2008), the use of highly mechanized harvesting 
systems is not recommended when timber is scattered in 
large areas

Identifying the plots where the damage occurred was 
a problematic task as these areas were small-sized and scat-
tered, and consequently it was highly unlikely that they could 
be identified through satellite. In order to identify the dis-
turbed plots, an unmanned aircraft system (UAS) was used in 
the present study, as these systems are, as a rule, flexible and 
easy to use. It is beyond doubt that it is of crucial importance to 
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quickly detect all damaged trees from abiotic causes such as 
wind disturbance even if they are scattered and in small areas 
as they constitute habitats to bark beetles (Seidl et al. 2014).

While recording and analyzing the information we collected 
about the damaged trees, it became easily evident that Picea 
abies is highly unstable and therefore easily uprooted even in 
low wind speeds, and its individuals are unable to be protected 
even if it is a secondary species within mixed conifer-broadleaf 
clusters. Schmidt et al. (2010) also agree that Picea abies is more 
susceptible to disturbance and argue that enhancing tree spe-
cies diversity with Pinus sylvestris mitigates disturbance 
impacts to a great extent. According to the Stuttgart table of 
wood strength (Wessolly and Erb 1998), the green wood of 
Picea abies has relatively good mechanical resistance and pre-
sents sufficient stiffness (Emod = 9000 N/mm2), but its easy 
uprooting is due to its shallow root system that provides rather 
poor anchorage (Puhe 2003).

It was also found that, unlike Picea abies, under the same 
wind conditions, Pinus sylvestris experienced disturbance not 
individually but only in relatively small plots (1.20 ha and 
4.10 ha, respectively, was the total area of plots aPISY and 
bPISY, where almost all Pinus sylvestris trees [95% and 100%, 
respectively] had been damaged). From on-site research, the 
authors assumed that a large proportion of damage within the 
respective plots can be attributed to trees falling on their neigh-
bors (Metcalfe et al. 2008). It was also found that in those cases 
where Pinus sylvestris was mixed with Fagus sylvatica in a cluster, 
it had been protected, whereas if it stood alone, it was damaged. 
Taking into account the fact that wind speeds were not excep-
tionally high as compared to those in other disturbed areas, it 
can also be assumed that the topographic conditions of the plots 
(slope, aspect, etc.) played a role in affecting local wind condi-
tions, such as speed and pressure (Brudi and Wassenaer 2002; 
Metcalfe et al. 2008; Einzmann 2017).

Given the global climate change situation, the approaches to 
be adopted for the optimal management of forests should 
revolve around goals of forest resilience and effective adapta-
tion to future demanding environmental conditions. The 
authors of the current study believe that the windthrow data 
provided herein will benefit policy decision makers regarding 
risk management and forest planning. To this end, the follow-
ing recommendations might prove useful.

It is deemed necessary to opt for mixed forests and avoid 
large monoculture patches where a certain species develops on 
its own, as in the case of Pinus sylvestris, since it has been 
shown that even in relatively low wind intensities there may be 
serious tree damage; it is also recommended that Picea abies be 
avoided as it is particularly susceptible to windthrow even in 
relatively low wind intensities, and it is hardly protected even 
in a mixed conifer-broadleaf community.

The data collected was used to develop a realistic machine 
learning model (Demertzis et al. 2017) which adopts an RF 
algorithm in order to predict windthrow in similar conditions. 
The methodology of the proposed information system utilizes 
and expands the most technologically advanced forestry meth-
ods, as it takes advantage of the hidden knowledge lying in 
environmental data in order to add to climate change analysis 
methods and optimal decision-making mechanisms associated 
with it. The key to the success of the proposed method is how 

well the proposed ML model can be generalized. The term 
“generalization” refers to the model’s capability to adapt and 
react appropriately to previously unseen new data, which has 
been drawn from the same distribution as the one used to build 
the model. In other words, generalization examines how well 
a model can digest new data and make correct predictions after 
being trained on a training dataset. With a robust ML model like 
the proposed one, small-scale or no upgrades are needed because 
the prediction model readjusts itself to fit with the trend at hand 
at each particular time. This can be used to carry out any 
function possibly relevant to damage or the prediction of other 
environmental problems. These intelligent operations can help 
collate relevant or hidden information and can predict the 
occurrence of numerous disturbance events before they occur.
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