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Abstract. Security incident tracking systems receive a continuous, unlimited
inflow of observations, where in the typical case the most recent ones are the most
important. These data flows and characterized by high volatility. Their charac-
teristics can change drastically over time in an unpredictable way, differentiating
their typical normal behavior. In most cases it is not possible to store all of the
historical samples, since their volume is unlimited. This fact requires the
extraction of real-time knowledge over a subset of the flow, which contains a
small but recent percentage of all observations. This creates serious objections to
the accuracy and reliability of the employed classifiers. The research described
herein, uses a Dynamic Ensemble Learning (DYENL) approach for Data Stream
Analysis (DELDaStrA) which is employed in RealTime Threat Detection sys-
tems. More specifically, it proposes a DYENL model that uses the “Kappa”
architecture to perform analysis of data flows. The DELDaStrA is based on the
hybrid combination of k Nearest Neighbor (kNN) Classifiers, with Adaptive
Random Forest (ARF) and Primal Estimated SubGradient Solver for Support
Vector Machines (SVM) (SPegasos). In fact, it performs a dynamic extraction of
the weighted average of the three results, to maximize the classification accuracy.
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1 Introduction

The data created by SCADA [31] and more generally by Industrial Control Systems
(ICS) [20], has caused an exponential increase of the obtained information. This fact has
led to the adoption of architectures which incorporate proper algorithms for real-time
data stream processing. These algorithms are dynamically adjusted by new models or
when the data are produced as a function of time [5]. The “Kappa” architecture uses a
real-time engine and it is the most suitable approach for the analysis of data flows [25].
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For each new sample, a small gradual update of the model takes place, which
gradually improves as more data arrive. The error in the real-time engine is calculated
at each iteration as data characteristics can change drastically and in an unpredictable
way. This changes the typical, normal behavior, and an object that may have been
considered extreme, can be included in the normal observations, due to rapid devel-
opments in the data stream (Fig. 1).

Due to the unlimited volume of data, data mining is performed on a subset of the
flow, which is called a sliding window (SLWI). Clearly the SLIWI contains a small but
recent percentage of the observations included in the global set. The goal of these data
processing algorithms is to minimize the cumulative error for all iterations, which can
be calculated by the following function (1) [2]:
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where xj 2 Rd , w 2 Rd and yj 2 R supposing that Xi� d is a data matrix and Yi� 1 is
a target values vector, obtained after the arrival of the first i data points. If we accept
that the covariance matrix Ri ¼ XTX is reversable, the optimal solution f �ðxÞ ¼
hw�; xi is given by the following function (2):
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� ��1

XT� ¼ R�1i
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If we estimate the covariance matrix Ri ¼
Pi

j¼1 xjx
T
j the time complexity

ðTCÞ changes fromO ðid2Þ ðd � dÞ and it becomes Oðd3Þ, whereas the rest of the
multiplication requires TC equal to Oðd2Þ. Thus, the TC finally becomes equal to
Oðid2þ d3Þ. If n is the number of points in the dataset, it is necessary to recalculate the
solution after the arrival of each new data point i ¼ 1; 2; . . .; n. So, the final time
complexity is of the order Oðn2d2þ nd3Þ which would make the algorithm unsuitable
for application in demanding fast changing environments such as the one under con-
sideration [2, 24]. It is therefore important to note that in-stream processing is subject to
time constraints, as applications require explanatory results in real time, and there are
also significant memory requirements.

Fig. 1. Kappa architecture (https://www.oreilly.com/ideas/applying-the-kappa-architecture-in-
the-telco-industry)
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It is clear from the above, that a secure approach for data flow mining problems,
requires robust systems characterized by reliability and high accuracy rates, without a
demand for high resources availability. Good preparation and methodological deter-
mination of their operating parameters is needed, to avoid long-term convergence, or
undesirable fluctuations in accuracy, which may be associated with frequent model
updates and instability or loss of generalization, which may be due to corrupted and
noisy data.

1.1 Literature Review

Soft computing techniques are capable to model and detect cyber security threats [6–14]
and they also offer optimization mechanisms in order to produce reliable results. In
many applications, learning algorithms have to act in dynamic environments where data
are collected in the form of transient data streams. Krawczyk et al. [21] investigated 3
data stream classification as well as regression tasks. Besides presenting a compre-
hensive spectrum of ensemble approaches for data streams, authors also discussed
advanced learning concepts such as imbalanced data streams. According to Liu et al.
[26] a weight computation policy based on confidence was presented to deal with the
problem in the sub-classifier’s weight in dynamic data stream ensemble classification.
The policy fully considers influence of the sample on the weight of the sub-classifier.
Krawczyk and Cano [22] introduced a dynamic and self-adapting threshold that was
able to adapt to changes in the data stream, by monitoring outputs of the ensemble to
exploit underlying diversity in order to efficiently anticipate drifts.

Nowadays, the intrusion detection systems (IDS) have become one of the most
important weapons against cyber-attacks. Chand et al. [4] performed a comparative
analysis of SVM classifier’s performance when it was stacked with other classifiers like
BayesNet, AdaBoost and Random Forest. Ahmin and Ghoualmi-Zine [1] used two
different classifiers iteratively, where each-iteration represented one level in the built
model. To ensure the adaptation of their model, authors added a new level whenever
the sum of new attacks and the rest of the training dataset reached the threshold.

Data mining in non-stationary data streams is gaining more attention recently,
especially in the context of Internet of Things and Big Data. Losing et al. [27] proposed
the Self Adjusting Memory (SAM) model for the k-Nearest Neighbor (k-NN) algo-
rithm since k-NN constitutes a proven classifier within the streaming setting. SAM-
kNN could deal with heterogeneous concept drift, i.e. different drift types and rates,
using biologically inspired memory models and their coordination. Rani and Sumathy
[28] used k-NN algorithm to determine the best optimal subset.

There are a few researches about Primal Estimated sub-Gradient Solver for SVM
(Pegasos) algorithm. Shalev-Shwartz et al. [29] described and analyzed a simple and
effective stochastic sub-gradient descent algorithm for solving the optimization prob-
lem cast by SVM. Their algorithm was particularly well suited for large text classifi-
cation problems, where authors demonstrated an order-of-magnitude speedup over
previous SVM methods. Farda [18] explored machine learning in Google Earth Engine
and its accuracy for multi-temporal land used mapping of coastal wetland area.
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1.2 Datasets

Appropriate datasets were chosen that closely simulate ICS communication and
transaction data. They were used in the development and evaluation of the proposed
model. The following preprocessed network transaction data, and preprocessed to strip
lower layer transmission data, were used in this research (e.g. TCP, MAC) [15]:

• The water_tower_dataset includes 23 independent parameters and 236,179 instan-
ces, from which 172,415 are normal and 63,764 outliers. Totally 86,315 normal
instances were used in the training phase (water_train_dataset) whereas the
water_test_dataset comprised of 86,100 normal instances and 63,764 outliers.

• The gas_dataset includes 26 independent features and 97,019 instances, from which
61,156 normal and 35,863 outliers. Training of the algorithm was done with the
gas_train_dataset that contains 30,499 normal instances, whereas the gas_test_-
dataset comprises of 30,657 normal instances and 35,863 outliers.

• Finally, the electric_dataset includes 128 independent variables with 146,519
instances, from which 90,856 normal and 55,663 outliers. The training was per-
formed 4 based on the electric_train_dataset comprising of 45,402 normal instances,
whereas the rest 45,454 normal and the 55,663 outliers, belong to the
electric_test_dataset.

More details regarding the dataset and their choice can be found in [15].

2 Proposed Dynamic Weighted Average Methodology

This research proposes an intelligent and dynamic Ensemble Machine Learning system
(EMLS) [32] aiming to develop a stable and accurate framework, which will have the
ability to generalize. The EMLS employs an innovative version of the “Kappa”
architecture that combines the ARF, SPegasos and k-NN SAM algorithms. DEL-
DaStrA performs real time analysis and assessment of critical infrastructure data, in
order to classify and identify undesirable digital security situations, related to cyber-
attacks. The reason for using the ensemble approach, is the multivariance that usually
appears in such multifactorial problems of high complexity, due to the heterogeneity of
the data flows. This is a typical case of digital security and critical infrastructures.

The two most important advantages of the Ensemble Techniques focus on the fact
that they offer better prediction and more stable models, as the overall behavior of a
multiple model is less noisy than a corresponding single [23]. Also, an Ensemble
method can lead to very stable prediction models, while offering generalization.
Finally, these models can reduce the bias, the variance, and they can avoid overfitting
[17] producing robust learning models.

Three classifiers were employed in the development of this model (Ensemble Size).
The number of the classifiers was determined after considering the law of diminishing
returns in ensemble construction in a trial and error approach. The applied algorithms
were chosen based on their different decision-making philosophy and methodology to
address the problem, in order to cover the number of possible cases associated with the
tactic of attacks against critical infrastructure. In general, the choice was based on both
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static tests combined with the trial and error method, but also on the basic properties of
these algorithms regarding the way they handle each situation.

More specifically, the following approaches were used: SVM non-parametric
models due to the way they handle outliers. Random Forests which are using subsets of
the training sets with bagging, and subsets of features that favor the reduction of the
outliers’ or extreme values’ effect. The k-NN classifier is automatically non-linear, it
can detect linear or non-linear distributed data and it tends to perform very well with a
lot of data points. Also, the choice of the algorithms was based on the diversity of their
operation and parameterization (Reliability of Ensemble) which is achieved with dif-
ferent architectures, hyper-parameter settings and training techniques. The weights’
determination of the different models of the Ensemble, was based exclusively on static
trial and error tests [16].

The DELDaStrA operation mode, includes the parallel analysis of the data flow by
all three algorithms and the dynamic extraction of the weighted average of the three
results. More specifically, each data flow is checked by each algorithm and the clas-
sification accuracy is obtained. Then the maximum accuracy isincreased by a weight
equal to 0.6 whereas in the rest of the forecasts this weight is equal to 0.2 and the
weighted average is calculated. This process is presented in the pseudocode of the
following Algorithm 1.

Algorithm 1. Dynamic Weighted Average
Input: x1, x2, x3 /* classifier accuracy
Step 1: if ((x1 > x2) && (x1 > x3)) 

max = x1; else if(x2 > x3)
max = x2; else max = x3;

Step 2: Set wmax=0.6, w1=0.2 and w2=0.2
Step 3: Calculate 

Output: The dynamic weighted average of classification accuracy

The use of the weighted average potential significantly enhances the visualization
of the trends in the estimated state, as it eliminates or at least minimizes the statistical
noise of the data streams. This is one of the best ways to assess the strength of a trend
and the likelihood of its reversal, as it places more weight on the classification with the
highest accuracy. It provides real indications before the start of a new situation or
event, thus allowing for a quick and optimal decision.

It is also important to note that this dynamic process ensures the adaptation of the
system to new situations, by offering generalization which is one of the key issues in
the field of machine learning. In this way we are implementing a robust framework
capable of responding to high complexity problems. Also, this architecture greatly
accelerates the process of making an optimal decision with the rapid convergence of the
multiple model, which is less noisy and much more reliable than a single learning
algorithm [23].
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3 Ensemble Algorithms

3.1 Adaptive Random Forests

It is clear that data flow management and especially knowledge extraction procedures
with Machine Learning algorithms applied on the flows, are unlikely to be performed
with iterations over input data. Accordingly, the adaptation of the Random Forest
algorithm depends on a suitable accumulation process that is partly achieved by
bootstrap, and partly by limiting any decision to divide the sheets into a subset of
attributes. This is achieved by modifying the base tree algorithm, by effectively
reducing the set of features examined for further separation into random subsets of size
m, όπου m < M (M corresponds to the total number of characteristics examined per
case) [19].

In non-streaming bagging, each of the n-base models is trained in a Z-size bootstrap
sample, created by random samples being substituted by the original training kit. Each
bootstrapped sample contains a prototype training snapshot K, where P (K = k) follows
a binomial distribution. For large values of Z this binomial distribution adheres to a
Poisson distribution with λ = 1. In contrast to the ARF method for streaming data,
Poisson is used with λ = 6 instead of Poisson λ = 1. This “feedback” has the practical
effect of increasing the possibility of assigning higher weights to instances during the
training of the basic models.

ARF is an adaptation of the original Random Forest algorithm, which has been
successfully applied to a multitude of machine learning tasks. In layman’s terms the
original Random Forest algorithm is an ensemble of decision trees, which are trained
using bagging and where the node splits are limited to a random subset of the original
set of features. The “Adaptive” part of ARF comes from its mechanisms to adapt to
different kinds of concept drifts, given the same hyper-parameters.

The overall ARF pseudo-code is presented below [19].

Algorithm 2. Adaptive Random Forests
function ARF (m, n, δw, δd)
T ←CreateTrees(n)
W ←InitWeits(n)
B ←Ø
while HasNext(S) do

(x, y)←next(S)
for all t  T do

←predict (t, x)
← 

RFTreeTrain (m, t, x, y)
if C (δw, t, x, y) then 

b←CreateTrees()
B(t) ←b

end if
end for
for all b B do

RFTreeTrain (m, b, x, y)
end for

end while
end function
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Where m: the maximum features evaluated per split; n: the total number of trees
(n = |T|); δw: the warning threshold; δd: the drift threshold; c(�): the change detection
method; S: the data stream; B: the Set of background trees; W(t): the Tree t weight; P
(�): the learning performance estimation function.

3.2 K-NN Classifier with Self Adjusting

The k-NN SAM algorithm is inspired by the Short-Term and Long-Term memory
(STM & LTM) model [27]. The information arriving in STM, are accompanied by
relevant knowledge from the LTM. The information that receives enough attention is
transferred in the LTM in the form of the Synaptic Consolidation. The memories are
assigned the following sets MST, MLT, MC which are subsets of the Rn � 1; . . .; cf g.
The STM is a dynamic sliding window that contains the most recent m examples of the
data flow [27]:

MST ¼ xi; yið Þ 2 Rn � 1; . . .; cf gji ¼ t�mþ 1; . . .; tf g ð3Þ

The LTM retains all of the initial information and unlike the STM, it is not a
continuous part of the data flow. It is a set of points p:

MLT ¼ xi; yið Þ 2 Rn � 1; . . .; cf gji ¼ 1; . . .; pf g ð4Þ

The combined memory CM is the union of both memories with size m + p:

MC ¼ MST [ MLT ð5Þ

Each set includes the weighted k-NN classifier:

Rn � 1; . . .; cf g; k � NNMST ; k � NNMLT ; k � NNMC ð6Þ

The k-NN approach assigns a label to each data point x based on a set
Z ¼ xi; yið Þ 2 Rn � 1; . . .; cf gji ¼ 1; . . .; nf g :

k � NNZ xð Þ ¼ argmax
X

xi2Nk x;Zð Þjyi¼ĉ

1
d xi; xð Þ jĉ ¼ 1; ::; c

8<
:

9=
; ð7Þ

where d xi; xð Þ is the Euclidean distance between two points and Nk x; Zð Þ returns the set
comprising of the k nearest neighbors x in Z [27].

3.3 Primal Estimated Sub-Gradient Solver for SVM

The SPegasos is a simple and effective stochastic sub-gradient descent algorithm for
solving the optimization problem by using SVM [29]. Initially, w1 is defined. In the
t iteration of the algorithm, we use a random training example xit ; yitð Þ by choosing an
index it 2 1; . . .; mf g. Then we use the following Eq. (8):
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min
w

k
2

wk k2þ 1
m

X
x;y2S

l w; x; yð Þð Þ ð8Þ

where l w; x; yð Þð Þ ¼ max 0; 1� y w; xh if g; with a sample xit ; yitð Þ, giving input to the
following function:

f w; itð Þ ¼ k
2

wk k2þ l w; xit ; yitð Þð Þ ð9Þ

where
ð10Þ

and is the index function, which takes the value 1 if the argument is
true and it becomes equal to 0 in any other case. Then, we update the relation wtþ 1  
wt � gtrt by using weight step gt ¼ 1

kt. After Τ iterations, the last value of the weight is
the wT +1 [29].

4 Results and Discussion

We have evaluated the performance of the proposed methods by measuring the average
values for Kappa Statistic and Kappa Temporal Statistic. The results of all experiments
are shown in the following Tables 1, 2 and 3.

The learning evaluation used 10,000 instances and the validation of the results was
done by employing the Prequential Evaluation method [3]. The training window used
5,000 instances. Window based approaches were allowed to store 5,000 samples (for
the sake of completeness, we also report the error rates of all window-based approaches
with a window size of 1,000 samples) but never more than 10% of the whole dataset.
This large amount gives the approaches a high degree of freedom and prevents the
concealment of their qualities with a too restricted window.

Table 1. Results for the water_tower_dataset

Network traffic analysis

Performance metrics

Classifier Window size 5000 Window size 1000
Kappa
statistic

Kappa temporal
statistic

Kappa
statistic

Kappa temporal
statistic

k-NN SAM 74.56% 75.29% 79.22% 79.96%
SPegasos 72.07% 72.94% 74.65% 76.51%
ARF 71.86% 72.47% 75.24% 77.72%
Ensemble
averaging

73.52% 74.26% 77.51% 78.82%
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The assessment of the actual error of the data flow classifiers, is done in terms of the
Accuracy Kappa statistic and the Kappa-Temporal statistic. The “true” label is pre-
sented right after the instance has been used for testing, where there is a delay between
the time an instance is presented and the moment in which its “true” label becomes
available [30]. The use of the dynamically estimated weighted average is the optimal
approach, considering that is solves a real problem of information systems security,
where it is rare for all data flows to have the same importance. The algorithm, which
has achieved the highest accuracy for each data stream, is multiplied by the corre-
sponding weighting factor of 0.6, reflecting its transient superiority and hence the
relative importance of the model to the particular algorithm at that time.

Based on this technique, the model is led to a relatively smooth but high learning
rate, which determines how quickly learning is converging. A high rate of learning can
lead to faster convergence and oscillation around optimal weight values, while the low
rate of learning results in slower convergence and can lead to trapping at local
extremes. The high learning rate is confirmed by the high accuracy rates of the model,
since very small size data flows are considered compared to the evaluation of a batch
data set. According to this technique, the quality of the model’s adaptation is inter-
preted as a “better forecasting” rate, due to the increased percentage of classification

Table 2. Results for the gas_dataset

Network traffic analysis

Performance metrics

Classifier Window size 5000 Window size 1000
Kappa
statistic

Kappa temporal
statistic

Kappa
statistic

Kappa temporal
Statistic

k-NN SAM 72.03% 72.73% 74.18% 75.41%
SPegasos 72.02% 72.69% 73.94% 75.01%
ARF 71.83% 72.41% 73.87% 74.89%
Ensemble
averaging

71.99% 72.66% 74.07% 75.23%

Table 3. Results for the electric_dataset

Network traffic analysis

Performance metrics

Classifier Window size 5000 Window size 1000
Kappa
statistic

Kappa temporal
statistic

Kappa
statistic

Kappa temporal
statistic

k-NN SAM 75.72% 76.33% 78.93% 79.56%
SPegasos 75.63% 76.12% 77.95% 78.93%
ARF 74.47% 75.16% 76.18% 77.97%
Ensemble
averaging

75.45% 76.05% 78.19% 79.17%
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precision. More specifically, the temporal bias created to the dynamics of a model at a
specific time, is reflected in the high precision percentages of Table 1.

An additional important interpretation, resulting from the high accuracy of the 9
learning algorithms and the mild “mutation”, attributable to the dynamically deter-
mined weighted average, is to assist in discovering the local extremes that may be
included in a data flow or in a learning window. This is expected, since new areas of
the multidimensional solution space are examined.

On the contrary, if the “mutation” rate was too high, it could lead to a reduction in
the exploitation of highly suitable areas of the solution space, and it could trap the
system into solutions that do not generalize [30, 33]. An important comment also refers
to the Kappa coefficient that links the level of observed agreement to the level of the
random agreement. It estimates the variability in each observer rater variation that
occurs when the same observer - evaluates differently in repeated evaluations of the
same size. The maximum value of the Kappa index represents the full agreement
between observers - markers, while the minimum value 0 is interpreted as there is only
random agreement and thus no reliability between observers - markers.

As we can see, there is considerable reliability in all cases tested, which also
strengthens the overall reliability and usability of the proposed model. Similarly, by
attempting a comparison of the results between the algorithms, we see that the ARF
method generally needs a larger number of cases to yield new data. In addition, ARF
works by combining some loose linear boundaries on the decision surface, as opposed
to SPegasos which can achieve max margin in non-linear boundaries. Therefore, given
that sliding windows are characterized by a small amount of data, SPegasos yielded
higher success rates than ARF. Regarding the comparison between SPegasos and k-NN
SAM, an clear reason that k-NN SAM performed better, is because a particular
problem is located in a high-dimensional space where this algorithm is more efficient.
Also, the optimal combination of the two levels of memory, the different retention
intervals between the memories and the transfer of knowledge, has been shown to
minimize errors and to increase classification accuracy.

5 Conclusions

An innovative, reliable and highly effective cyberattack detection system, based on
sophisticated computational intelligence, was presented in this paper. The DELDaStrA,
is an innovative effort to analyze large-scale, reliable and accurate data flows in order to
detect cyber-attacks in critical infrastructure networks. The implementation of DEL-
DaStrA was based on the philosophy of the dynamic ensemble learning method, which
ensures the adaptation of the system to new situations offering impartiality and gen-
eralization. It is a robust framework capable of responding to high complexity prob-
lems. The performance of the proposed system has been tested by using three
multidimensional datasets of high complexity. These datasets were obtained after
extensive research in the operation of ICS (SCADA, DCS, PLC). They realistically
state the operating states of these devices under normal conditions and under situations
of cyberattacks. The very high precision results that have emerged, reinforce the
general methodology followed. Proposals for the development and future
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improvements of this system, should focus on further optimizing the algorithms used to
achieve an even more efficient, accurate and faster classification process. Also, new
approaches for further optimization should be considered, by employing self-
improvement and adaptive learning, which will fully automate the cyber-detection
process.
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