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Abstract. Recent advances in optical sensor technologies and Geoinformatics,
can support very large scale high definition, used for multispectral and
panchromatic images. This capability allows the use of remote sensing for the
observation of complex earth ecosystems. Application areas include, sustain-
ability of biodiversity, precision agriculture, land, crops and parasites manage-
ment. Moreover, it supports advanced quantitative studies of biophysical and
biogeochemical cycles, in costal or inland waters. The requirement for precise
and effective scene classification, can significantly contribute towards the
development of new types of decision support systems. This offers considerable
advantages to business, science and engineering. This research paper proposes a
novel and effective approach based on geographic object-based scene classifi-
cation in remote sensing images. More specifically, it introduces an important
upgrade of the well-known Residual Neural Network (ResNet) architecture. The
omission of some layers in the early stages of training, achieves an effective
simplification of the network, by eliminating the “Vanishing Gradient Problem”
(VGP) which causes efficiency limitations in other “Deep Learning” (DEL) ar-
chitectures. The use of the Softmax activation function instead of the Sigmoid in
the last layer, is the most important innovation of the proposed system. The
ResNet has been trained using the novel AdaBound algorithm that employs
dynamic bounds on the employed learning rates. The result is the employment
of a smooth transition of the stochastic gradient descent, tackling the noise
dispersed points of misclassification with great precision. This is something that
other spectral classification methods cannot handle. The proposed algorithm was
successfully tested, in scene identification from remote sensing images. This
confirms that it could be further used in advanced level processes for Large-
Scale Geospatial Data Analysis, such as cross-border classification, recognition
and monitoring of certain patterns and multi-sensor data fusion.
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1 Introduction

1.1 Scene Classification and Machine Learning

The rapid advances of digital and communication technologies combined with recent
developments in optical sensor technologies have resulted in major changes in the way
that we monitor land. This is due to the availability of many different systems that offer
high spectral image analysis of the earth’s surface (e.g. Multispectral, Hyperspectral
[1], Panchromatic and Synthetic Aperture Radar) [2]. Despite such advances, the
effective comprehension of the semantic content of such images is still a major chal-
lenge and a significant research topic. More specifically, scene classification, aims to
achieve automatic semantic tagging of each remote sensing object. This process is
content-based and it is one of the most critical problems in Geoinformatics. It is very
important in a wide range of applications such as, the design and the management of
land resources, the applications of precision agriculture, the monitoring of complex
ecosystems, the sustainable management of biodiversity and the recording of nature
destruction and traffic control.

The past few decades have seen the development of various methods of Scene
Classification (SCC) based on remote sensing. The early SCC methods were primarily
based on low level features or heuristics, which focused on colour, texture, and shape.
It is worth mentioning Color Histogram (CH), Histogram of Oriented Gradients
(HOG), Local Binary Pattern (LBP), Scale Invariant Feature Transform (SIFT) and
Gabor filters Grey Level Co-occurrence Matrix (GLCM) [3]. These methods perform
well with images of uniform texture, but their ability to identify more complex scenes
is poor. The design of features by humans, affects the effectiveness of the above models
considerably. On the other hand, methods based on middle level features, can produce
a holistic representation of a scene, which is developed through local visual features
such as SIFT, CH, or LBP of local image patches. The deployment of a system capable
to develop middle level features, starts with the extraction of the local features of the
image, and continues with the codification that can lead to an intermediate represen-
tation. The most well-known and widely used model for classifying images of middle
level is the Bag of Visual Words (BoVW) due to its simplicity and effectiveness [5].
Despite having evolved through considerable improvements in the effectiveness of
classification, the techniques based on BoVW have not seen further development and
utilisation due to their limitations in representing scenes of high resolution.

Deep Learning (DL) is a branch of computational intelligence that utilises a series
of algorithms in attempting to model data of high levels of abstraction. This is achieved
by using a multilevel processing architecture, based on consecutive linear and non-
linear transformations. It is part of the group of learning techniques that exploit data
representations to explain and extract optimal results. In the case of image classification
they can produce spatial information such as, edges, shapes and relevant chromatic
regions.

Deep Learning Architectures use distributed representation whose main hypothesis
is that the observed data are extracted from the interaction of factors grouped in levels.
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DL adds the assumption that these levels of factors are either the result of abstraction or
synthesis of various scales, depending on their volume and size. Such architectures
explore the idea of a hierarchical decomposition of the factors from a high to a low
level, with the more abstract concepts drawn from the lowest levels. Thus, they are
hierarchically distributed according to levels of abstraction, creating the conditions for
selecting the most suitable features of the learning process.

Using the above processes, DL architectures and more specifically Deep Neural
Networks (DNN), have achieved impressive performance in many remote sensing
applications such as, the accurate representation of features in image classification, the
identification of objects and their semantic segmentation. DNN, simulate processes of
human vision. Multiple operational levels and intermediate representations are created
from image capture in the human eye’s retina caused by the reaction of muscles. Such
process relies in the transformation of every intermediary unit of input representation
into a representation at a higher level. The features at higher level are more generic and
less changeable, while those of lower level support the classification of inputs. Their
effectiveness can be interpreted based on the Universal Approximation Theorem which
refers to the potential of a neural structure to approximate continuous functions and the
Probabilistic Inference which assumes the activation of non-linearity as a cumulative
distribution function [5].

In DNN, every hidden layer trains a discreet group of features resulting from the
output of the previous layer. The functioning of such a network allows for the analysis
of the most complex features as they recompose and decompose from layer to layer.
Such a feature is called a hierarchy. As the decomposition of information increases the
complexity of the system hierarchically, it offers the ability to process high level data
through non-linear functions. Such networks are suitable for the discovery of non-
structured data, for revealing latent structures in unlabelled data and the handling of
other problematic structures. Even miniscule similarities or anomalies that these might
entail can be identified.

Despite all their important functionality and their advantages, the gradients of the
loss function approximate zero, when layers that use activation functions are added
neural network architectures. This may cause considerable difficulties in the training of
the network, almost to the point of not being capable of training at all, depending on the
number of hidden layers that are added. The above is a major vulnerability of deep
learning neural networks, called Vanishing Gradient Problem (VGP) [6].

2 Theoretical Background

2.1 Facing the Vanishing Gradient Problem

In Machine Learning the VGP problem pauses a problem in the constriction of neural
networks with gradient-based learning methods and backpropagation. In such methods,
each of the weights receives, at each iteration, an analogue update with the partial
derivative of the error function in relation to the weight it currently uses. In some cases
though, the gradient is insignificantly low effectively preventing the weight to change
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its value. In the worst case, this could prevent the neural network in completing its
training [7]. The following Eq. 1, corresponds to a sigmoid activation function (SGA).

S að Þ ¼ 1
1þ e�a

ð1Þ

It compresses and projects a large range of inputs to a relative small vector space
e.g. [0, 1]. Thus, a large change of the input to the sigmoid activation function,
corresponds to a small change in its output. Thus the partial derivative becomes
extremely small. It is worth noting that when the inputs to the SGA increase, i.e. when |
x| increases or decreases, the partial derivative moves towards zero. The above prop-
erties of the sigmoid activation function are ideal for the representation of probabilities
and classification procedures. However, both the Sigmoid and the Tangent Hyperbolic
(TanH) activation functions, have decreased in popularity recently due to the VGP
problem [7].

Let us assume a neural network (NN) with 4 hidden layers with a single neuron at
each layer. In the above NN the activity of each neuron depends on the activity of that
in the previous layer. More specifically the activity of each neuron depends on that of
the previous, multiplied by a given weight. This value is propagated via an activation
function (the input is a case of special exemption from the above rule). The margin of
error J at the end of the network shows the total error of the system. The backprop-
agation process is executed to modify the weights via Gradient Descent in such a way
as to minimise the value of J. To calculate the first weight derivative, the chain rule to
backpropagate is used as follows:

@error
@w1

¼ @error
@output

� @output
@hidden2

� @hidden2
@hidden1

� @hidden1
@w1

ð2Þ

Subsequently the derivatives are used repetitively until the lowest point has been
reached using gradient descent following a specific Learning Rate. The first derivative
is used for the activation of the second hidden layer as it is given below. This is
performed using the sigmoid activation function (from the output to hidden2) based on
the equations below:

z1 ¼ hidden2 � w3 ð3Þ

@output
@hidden2

¼ @Sigmoid z1ð Þ
@z1

w3 ð4Þ

Similarly the second derivative is used for the propagation from the hidden2 to the
hidden1 layer:

z2 ¼ hidden1 � w2 ð5Þ

@hidden2
@hidden1

¼ @Sigmoid z2ð Þ
@z2

w2 ð6Þ
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In both cases the propagated values contain the derivatives of the sigmoid acti-
vation function. This can collectively be expressed as follows:

@output
@hidden2

@hidden2
@hidden1

¼ @Sigmoid z1ð Þ
@z1

w3 � @Sigmoid z2ð Þ
@z2

w2 ð7Þ

Both the values of the Sigmoid (z1) and Sigmoid (z2), are less than 0.25. The
weights w1, w2, w3, are initialised by the Gauss method so that they can have a mean
value equal to 0 and standard deviation equal to 1. Therefore every ||wi|| is smaller than
1. Thus for the calculation of the derivatives we multiply numbers that are less than 1
and 0.25. Given that two numbers in the range [0, 1] are multiplied, the result will
always be a smaller value, e.g. 1/3*1/3 = 1/9. Thus, multiplying such small numbers
many times, results in a gradient that is so small that will force the network to stop the
learning process. The various terms used in such a multiplication is shown in (8) below:

@output
@hidden2

@hidden2
@hidden1

¼ \1=4
@Sigmoid z1ð Þ

@z1

\1
w3

� \1=4
@Sigmoid z2ð Þ

@z2

\1
w2

ð8Þ

In networks with a small number of layers, employing Sigmoid activation functions
is not considered a major problem, whereas in multi-layered architectures it could cause
major disruption to the normal and effective training of the network.

Totally, four types of solutions for the VGP problem have been proposed in the
literature [8]:

a) Methods that do not use gradients such as Simulated Annealing, Multi-Grid
Random Search and Random Weight Guessing. Generally the Global Search
Methods (GSM) work well in the case of simple problems with long term
dependencies. Simple problems can be resolved with networks that use only a few
parameters and do not require complex calculations. Such solutions are charac-
terized as Flat Minima situations where the network is attempting to solve the
problem using a simple architecture. The weights’ interconnection levels, are
included in a very specific vector space with the error being almost constant. This
can only cover a small range of problems, therefore the use of Flat Minima is not
recommended as a general solution.

b) Methods that enforce higher gradients. Higher gradients can be reinforced by using
optimization methods. These are considered time consuming and computationally
costly. Furthermore, they appear to have problems in learning to store accurate
information, related to the real value of classification.

c) Methods that operate on higher levels. They employ the Rectified Linear Unit
(ReLU) activation functions that do not yield small derivatives:

ReLU xð Þ ¼ max 0; xð Þ or ReLU xð Þ ¼ 0 if x\ 0
x if x � 0

�
ð9Þ

In some cases though, the ReLU neurons can be forced to situations in which they
become inactive for all inputs. In such cases, none of the gradients backpropagate via
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the neuron, resulting in the neuron being stuck in an interminable inactive condition
and effectively dies. This category also includes methods that attempt to solve the
problem by following an intuitive process, via the use of high level parameters, such as
metadata. These cases also fail in yielding solid and generalizing solutions.

d) Methods that use special architectures. The most important solutions for the VGP
problem have been proposed via the use of ResNets [9]. This addresses the stag-
nation of multiple layer levels even when the size of the network exceeds the 150
layers.

3 The Employed Residual Neural Networks

ResNets, are brain inspired. They are utilizing “skip connections-shortcuts”, in order to
jump over some layers. They operate similarly to the Convolutional Neural Networks
(CNN), however in ResNets the input is provided sequentially at the exit of the hidden
layers, if they are in a certain distance from each other.

In the majority of neural networks, one layer feeds the very next one. In a ResNet
that consists of several blocks, every single layer feeds the successive one, but at the
same time it provides input to a layer which is located 2 maybe 3 positions far (it skips
the order as in Fig. 1). Many linearly interconnected Residual Blocks (REB) constitute
a Residual Neural Network. The values of REB parameters are determined based on the
network’s structure. They aim at modelling a high level of abstraction of the incoming
samples, using multiple stacked non-linear transformations. Their architecture assumes
the following characteristics, namely: Local Receptive Fields (LRF), Weight Sharing
(WS), Spatial Subsampling (SpaSu), Feature Combination (FC) [10].

Essentially, ResNet architecture consists of a set of levels that are characterized by
different functionality. They can be configured through their parameters and hyper-
parameters. The purpose is to convert an input volume into an output one, through a
differential function. Interconnection based on the Residual Block parameter,

Fig. 1. Image of a Residual Block. Several of them are forming a Residual Neural Net
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determines the overall architecture of the network. The levels of neurons commonly
used fall into the following basic categories, namely: Convolutional Layers (CL), Fully
Connected Layer (FCL), Pooling Layers (PL), Dropout Layer (DRL), Feed-Forward
Layer (FFL). After any level architecture and sequence, all of the top-level neurons are
input to an FFL array or any similar forward-current array [10]. The Loss Function
(LF) aims to attribute the classification error, which is the difference between the
prediction output and the known desired output during the training process.

As noted above, the substantial difference between CNNs and ResNets is the
sequential addition of the input to the output of the hidden layers, provided that the
hidden layers are at certain distance apart. The Residual Block consists of a set of CLs
defined by architectural standardization (usually 2). The input vector x of the Block is
stored in a local buffer and after passing all levels of the Block, it is added to the output
of F(x) + x. The increased output is presented as input to the next Residual Block and
so on [10]. In the case of single skips we can use the notation l-2 to l. More specifically,
let Wl�1;l be the weight vector for connection weights from layer l-1 to l and let Wl�2;l

be the weight vector for weights from layer l-2 to l. Thus, the forward propagation
through the use of the activation function would be the following [9]:

al ¼ g Wl�1;l � al�1 þ bl þWl�2;l � al�2� � ¼ g Zl þWl�2;l � al�2� � ð10Þ

Where, al is the output of neurons in layer l, g is the activation function for layer l,
Wl�1;l is the weight matrix for neurons between layer l-1 and l. Also, Wl�2;l is the
weight matrix for neurons between layer l-2 to l and

Zl ¼ Wl�1;l � al�1 þ bl: ð11Þ

ResNets, are inspired by the function of pyramidal cells in the cerebral cortex of the
brain, where forward skips take place in many layers. This forward propagation process
is expressed by the following equation:

al ¼ g Zl þ
XK

k¼2
Wl�k;l � al�k

� �
ð12Þ

where k-1 is the number of skips.
In backward propagation through the activation function, the Normal Path is

described by Eq. 13 and the Skip Paths by Eq. 14:

Dwl�1;l ¼ �g
@El

@wl�1;l ¼ �gal�1 � dl ð13Þ

Dwl�2;l ¼ �g
@El

@wl�2;l ¼ �gal�2 � dl ð14Þ
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Where g is the learning rate, dl is the error signal of neurons at layer l and al is the
activation of neurons at layer l. For the case of a ResNet using forward propagation, the
above equations are transformed as follows:

Dwl�k;l ¼ �g
@El

@wl�k;l
¼ �gal�k � dl ð15Þ

This residual connection does not go through activation functions that “squash” the
derivatives, resulting in a higher overall derivative of the block.

4 Literature Review

Inspired by the success of deep learning in the field of computer vision, several related
studies have been conducted suggesting various DL architectures for the analysis of
ultrasonic data, which have admittedly provided new impetus to this field. The authors
of [11] use a hybrid method which combines stacked Autoencoder, Principle Com-
ponent Analysis (PCA), and Logistic Regression to perform hyperspectral data clas-
sification. Tao et al. [12] use a sparse stacked Autoencoder to efficiently represent
features from unmarked spatial data, and then learned features are fed into a linear
SVM for hyperspectral data classification. Various 1D [13] and 2D [14] CNN archi-
tectures have been proposed from time to time to encode spectral and spatial infor-
mation. The latest and most sophisticated proposal concerns 3D CNN [15] in which the
third dimension refers to the time axis resulting in a spatio-temporal architecture in the
spectral classification. In 3D CNNs, the convolution functions are spatial-spectral,
whereas in 2D CNNs, they are spatial only. Compared to 1D and 2D CNNs, 3D CNNs
can better spectral information thanks to 3D convolution functions.

Trying to exploit the particularities and advantages of unsupervised learning, the
authors [16] propose an unsupervised CNN architecture to perform learning of spectral-
spatial features. This is performed by using sparse learning to estimate the network’s
weights in a greedy layer-wise fashion instead of an end-to-end approach. The algo-
rithm is rooted on sparse representations and enforces both population and lifetime
sparsity of the extracted features, simultaneously. They successfully illustrate the
expressive power of the extracted representations in several scenarios: classification of
aerial scenes, as well as land-use classification in very high resolution or land-cover
classification from multi- and hyperspectral images [4].

The proposed algorithm clearly outperforms PCA. The results have shown that
single-layer CNNs can extract powerful discriminative features only when the receptive
field accounts for neighboring pixels. They are preferred when the classification
requires high resolution and detailed results. However, Deep architectures significantly
outperform single-layer variants, capturing increasing levels of abstraction and com-
plexity throughout the feature hierarchy.

In [17] authors propose a Deep Recurrent Neural Network model with a new
activation function (parametric rectified Tanh – PRetanh). The proposed activation
function makes it possible to use fairly high learning rates without the risk of diver-
gence during the training procedure. Moreover, a modified gated recurrent unit, which

Large-Scale Geospatial Data Analysis 281



uses PRetanh for hidden representation, is adopted to construct the recurrent layer in
the network to efficiently process hyperspectral data and reduce the total number of
parameters.

All of the above architectures have major malfunctions and are hampered by the
VGP problem, which generally disrupts deep approaches. He et al. [9] tried to over-
come this problem by employing the idea of very deep networks by proposing the 152-
layers ResNet, which allowed CNNs to grow much deeper without suffering the
problem of vanishing/exploding gradients. The authors provide an in-depth analysis
about the degradation problem, i.e., simply increasing the number of layers in plain
networks results in higher training and test errors.

It is suggested that it is easier to optimize the residual mapping in the ResNet than
to optimize the original, unreferenced mapping in the conventional CNNs. In essence,
instead of learning a direct map from low-quality inputs to high-quality outputs, the
CNN is tasked with learning the residual, i.e., the difference between the low and high-
quality signals, which typically represents missing high-frequency information, at least
for the case of super-resolution. To allow networks to capture and extract features from
multiple scale, skip connections between different layers have also been considered and
are now part of state-of-the-art approaches.

The authors of [18], are proposing a novel network architecture, which is a fully
Convolutional/Deconvolutional network, for unsupervised spectral–spatial feature
learning of hyperspectral images, which is able to be trained in an end-to-end manner.
Specifically, the proposed architecture, is based on the so-called encoder–decoder
paradigm. The input 3-D hyperspectral patch is first transformed into a typically lower
dimensional space via a convolutional sub-network (encoder). Then it is expanded to
reproduce the initial data by a de-convolutional sub-network (decoder).

However, during the experiments, we have found out, that such a network is not
easy to be optimized. Although the proposed network has not been explicitly designed
for the task of object detection, we have observed that the target object can be localized
by the activated or suppressed pixels in some specific learned feature maps of the first
residual block. This makes it possible to achieve the unsupervised object detection in
hyperspectral images. Experimental results also demonstrate that the features learned
by the proposed unsupervised network can be used for the hyperspectral image clas-
sification task, and the obtained classification results are competitive compared with the
other supervised approaches.

5 The Introduced Methodology

The methodology that is introduced by this research paper, is based on the
Convolutional/Deconvolutional (CN/DC) Network architecture that has been used by
Mou et al. [18]. The above authors have proposed a fully CN/DC network approach, in
which the desired output is the input data itself. Specifically, the introduced model,
consists of two parts as its name typically states, namely the Convolutional and
Deconvolutional subsystem. The first subsystem corresponds to an encoder that
transforms the input characteristics xi into an abstract representation of intermediate
features hi.
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The corresponding Deconvolutional subset, plays the role of the decoder that
reproduces in the original xi input data, the encrypted, intermediate hi features.
Essentially the CN/DC network with Residual Learning is a modular network archi-
tecture that stacks residual blocks. Similar to Convolutional blocks, a Residual block
consists of several Convolutional layers that have the same feature map size and the
same number of filters. Their function performs the following calculation.

/n ¼ g unð ÞþF un;Hnð Þ ð16Þ

unþ 1 ¼ f /nð Þ ð17Þ

Where un refers to feature maps, Hn to a collection of weights associated with
residual block, F is a residual function and f is the activation function. The corre-
sponding function g, is fixed to an identity mapping:

g unð Þ ¼ un ð18Þ

If f is a linear activation function and u(n + 1) = un, the output for the nth residual
block is calculated by Eqs. (16) and (17) so that:

unþ 1 ¼ un þ F un;Hnð Þ ð19Þ

The following Eq. 20 is recursively produced:

unþ 2 ¼ unþ 1 þF unþ 1;Hnþ 1
� � ¼ un þF un;Hnð ÞþF unþ 1;Hnþ 1

� � ð20Þ

The recurrence formula below, is obtained for any shallower block n and any
deeper block L.

uL ¼ un þ
XL�1

i�n
F ui;Hið Þ ð21Þ

The way residual learning helps in the effective training of the deep network in
question, is found in the rules of backpropagation, where E stands for the loss function:

@E
@un

¼ @E
@uL

@uL

@un
¼ @E

@uL
1þ @

@un

XL�1

i¼1
F ui;Hið Þ

� �
ð22Þ

In this way, the classification information of a layer in the network does not
disappear even when the trainable weights are arbitrarily small, which is the key to
make the training in the deep network possible. Also, in order to be able to successfully
complete the processes performed by the Convolutional/Deconvolutional subsystems,
the need for a pooling layer is imperative. However, the pooling layer leads to a
reduced resolution of feature maps. This recreates the original input data to Decon-
volutional, through an Unpooling process, in order to separate the feature maps, that is,
to increase their spatial range, as opposed to the concentration applied by the Con-
volutional web.
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It should be noted that using Max-Pooling indices the system is able to record the
position of the maximum value in each local concentration area while concentrating in
the Convolutional sub-net. Recently, an advanced version of the max and argmax
functions was presented [19]. It can receive not only the maximum value in the field of
indicators of a maximum concentration layer, but the corresponding index of this value
as well [19]. Specifically, these two functions can be calculated as follows:

l ¼
X

m
z i; jð Þ exp az i; jð Þð ÞP

m exp az i; jð Þð Þ � maxvz i; jð Þ ð23Þ

l ¼
X

m
i; j½ �T exp az i; jð Þð ÞP

m exp az i; jð Þð Þ � argmaxvz i; jð Þ ð24Þ

It is a fact, that with the use of the max and argmax functions, the max-poling
indices can be obtained in any pooling layer. Then, by performing interpolation in the
Unpooling layers of the Deconvolutional sub-network, the interconnected values which
are transferred by the max-pooling indices can be successfully handled. The use of
max-pooling indices allows for a more accurate display of location information and
allows feature maps to record detailed information about input features.

6 The Geographic Object-Based Scene Classification
Algorithm

This research paper suggests an important modification that upgrades the ResNet
architecture discussed above, which employs the Softmax activation function, instead
of the Sigmoid at its last level. According to the introduced novel approach, the fully
Residual Network is trained using the novel AdaBound algorithm that employs
dynamic bounds on their learning rates. It achieves a smooth transition to the stochastic
Gradient Descent, which accurately addresses the noisy scattered misspellings that
other spectral classification methods cannot handle. As it has already been said, the
following Softmax activation function which maps the non-normalized output of a
neural network to a probability distribution over predicted output classes, was used
instead of the Sigmoid, in the last CL [10]:

r zð Þi¼
eziPk
j¼1 e

zj
; i ¼ 1; . . .; k z ¼ z1; . . .; zkð Þ 2 Rk ð25Þ

Where, zj is every element of the input vector z, r zð Þ is the output vector and the
sum of its components r zð Þi is equal to 1.

The choice of the Softmax was based on the fact that it performs better on multi-
classification problems, like the one under consideration. On the other hand, the Sigmoid
is suitable on binary classification tasks. In the case of Softmax, the sum of probabilities
is equal to 1 whereas in Sigmoid it does not have to be equal to 1. Finally for the
Softmax, the highest value has the highest probability, whereas in the Sigmoid, the
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highest value has a high probability but not the highest. The fully residual network was
trained using the novel AdaBound algorithm [20] that employs dynamic bounds on their
learning rates. It achieves a smooth transition to stochastic gradient descent. The fol-
lowing algorithm 1, (in the form of pseudocode) presents the AdaBound function [20]:

Compared with other approaches, the AdaBound method has two advantages. First,
there exists a fixed turning point to distinguish, in the simple ADAM algorithm and the
SGD is uncertain. So the Adabound addresses this problem with a continuous trans-
forming procedure rather than a “hard” switch. Second, the AdaBound introduces an
extra hyperparameter to decide the switching time, which is not very easy to fine-tune.
In general, the use of the AdaBound algorithm has a high convergence speed compared
to stochastic gradient descent models and it exceeds the poor generalization ability of
adaptive approaches. Moreover, it has dynamic limits on the learning rate, in order to
achieve the highest accuracy for the dataset under consideration [20].

7 The Data Experiments and Results

The dataset used in this research, includes images taken from the Reflective Optics
System Imaging Spectrometer (ROSIS) covering the Engineering School at the
University of Pavia [21]. The available training samples belong to nine categories that
are mainly related to land cover items. Each image is 610 � 340 pixels with a reso-
lution of 1.3 m per pixel. Ultrasound imaging consists of 115 spectral channels ranging
from 430 to 860 nm of which only 103 were used in the work as 12 were removed due
to noise.

For the network configuration, we leverage convolutional filters with a very small
receptive field of 3 � 3. In addition, the convolutional stride is fixed to 1 pixel; the
spatial padding is also 1 pixel. Max-pooling is performed over 3 � 3 pixel windows
with stride 3. All the convolutional layers are using ReLU as an activation function
except for the last layer that uses Softmax. The fully residual network was trained using
the novel AdaBound algorithm [9] and all the suggested default parameters were used
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for all the following experiments. Once the training of the residual network is complete,
we can start to fine-tune the network for hyperspectral data classification. We have
made use of stochastic gradient descent with a fairly low learning rate equal to 0.0001.

The following criteria were used to evaluate the performance of the geographic
object-based scene classification algorithms in remote sensing images [22]:

a) Overall Accuracy (OA): This metric represents the number of samples that are
classified correctly, divided by the number of test samples. b) Average Accuracy (AA):
This index shows the average accuracy of the classifications of all categories. c) Kappa
coefficient: This is a statistical measurement that provides information on the level of
agreement between the truth map and the final classification map. It takes into account
the percentage of agreement which could be expected only chance. In general, it is
considered to be a more robust index than a simple percent agreement calculation, since
k takes into account the agreement occurring by chance.

In addition, in order to evaluate the importance of the classification accuracy
derived from different approaches, a McNemar statistical test is performed [23]:

z12 ¼ f12 � f21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f12 þ f21

p ð26Þ

Where fij is the number of correctly classified samples in the ith classification and of
the incorrectly classified in the jth classification. The McNemar’s test is based on the
standardized normal test statistic and therefore, the null hypothesis, which is “no
significant difference,” is rejected at the widely used p ¼ 0:05ð zj j[ 1:96Þ level of
significance. This assessment test, determines the significance of the differences
between the classification accuracy values obtained by the proposed model, versus the
accuracy values obtained by other examined approaches.

To validate the effectiveness of the proposed architecture, the method is compared
with the most widely used supervised deep learning models which are summarized as
follows:

a. 1-D CNN: The 1-D CNN network architecture was designed as in [24] and includes
an input layer, a convolutional layer, a max-pooling layer, a fully connected layer,
and an output layer. The number of convolutional filters is 20, the length of each
filter is 11 and the pooling size 3. Finally, 100 hidden units are contained in the fully
connected layer.

b. 2-D CNN: The 2-D CNN architecture was designed as in [15]. It contains three
convolutional layers equipped with 4 � 4, 5 � 5 and 4 � 4 convolutional filters,
respectively. The 2-D CNN architecture was designed as in [15]. It contains three
convolutional layers equipped with 4 � 4, 5 � 5 and 4 � 4 convolutional filters,
respectively.

c. The Convolutional layers - except for the latter - are followed by max-pooling
layers. In addition, the numbers of convolutional filters for CL are 32, 64 and 128,
respectively.

d. Simple Convolutional/Deconvolutional network: The simple Convolutional/
Deconvolutional network with simple convolutional blocks and the Unpooling
function are applied in the cases of [25,26].

286 K. Demertzis et al.



e. Residual Convolutional/Deconvolutional network: It is an architecture using
residual blocks and a more precise Unpooling function, as presented in [18].

Optimized Residual Convolutional/Deconvolutional (ORCD) network
It is the improved version of the above architecture which was presented in this
research paper. It differs in the fact that it uses the Softmax activation function in the
last convolutional layer and that its fully residual network is trained using the novel
AdaBound algorithm. This is achieved by employing dynamic bounds on the learning
rates, which results in a smooth transition to stochastic gradient descent. This method
shows great efficacy while maintaining advantageous properties of adaptive learning,
such as rapid initial progress and hyperparameter insensitivity. Note that, we have used
the standard types of training and testing samples in order make the proposed approach
fully comparable with other classifiers in the literature.

The ORCD network was trained using the AdaBound algorithm, and all the sug-
gested default parameters were used for all the following experiments. The number of
Convolutional filters (CF), increases towards deeper layers of the convolutional sub-
networks: There were 64 CF in the first residual block, 128 in the following block, and
256 in the last one. This rule is turned over for the Deconvolutional sub-network. All of
the convolutional layers are with ReLU as activation function except the last layer that
uses the Softmax.

All weight matrices in the network and the bias vectors are initialized with a
uniform distribution, and their values are initialized in the range [−0.1, 0.1]. The
number of the unlabeled data samples of the Pavia University that were used for
training the network is 10000. These unlabeled samples are randomly selected from the
whole set of images.

In the Optimized Residual Convolutional/Deconvolutional network, the hyper-
spectral data are normalized in the closed interval [0, 1]. Then, all of the weights are
updated during the training procedure. Once the training of the network is completed,
the fine-tuning process for hyperspectral data classification follows. The stochastic
gradient descent with a fairly low learning rate of 0.0001 has been employed, for the
fine tuning of the network. During this process, a percentage equal to 10% of both
hyperspectral data sets, has been randomly selected as the validation set.

That is, during fine-tuning, 90% of the dataset has been used for learning and the
remaining 10% of the available data samples served as the validation set, to perform
tuning of the hyper-parameters, such as the numbers of convolutional filters in the
convolutional layers. All of the test samples were used to evaluate the final perfor-
mance of the learned spectral–spatial feature representations and the fine-tuned net-
work was used to perform the classification.

The following Table 1 shows the classification maps using the Pavia University
data set and the comparison of the accuracies between the classifiers 1-D CNN, 2-D
CNN, Simple Convolutional/Deconvolutional Network (Simple C/D N), Residual C/D
N and the proposed Optimized R C/D N.

Trying to evaluate the above algorithms based on the obtained results, it is easy to
conclude that the proposed ORCD Network outperforms the competing Deep Learning
approaches for the OA, AA, and Kappa evaluation indices.
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The proposed method produces extremely accurate results without repeated prob-
lems of undetermined cause, because all of the features in the considered dataset are
handled very efficiently. In addition, one of the key advantages gained from the results
is the high reliability, resulting from the high kappa values (maximum reliability if
k � 0.81). This can be considered as the result of data processing that allows the most
reliable relevant data for the forthcoming forecasts. The above Table 1, also provides
information on the results of the McNemar test to assess the significance of the dif-
ference between the classification accuracy of the proposed network and the other
approaches considered. The results of the McNemar test, have proven that there exist
statistically significant differences among the results obtained by the employed meth-
ods. More specifically, the differences between the 1D and 2D CNN with the rest of
them are quite high, whereas there are minor but significant differences between the
Optimized R C/D N (our proposed approach) and the Residual.

8 Discussion - Conclusions

This research proposes an innovative and highly effective geographic object-based
scene classification system in remote sensing images, using an innovative Residual
Neural Network (ResNet) architecture. This approach eliminates VGP as it is using
Softmax activation function instead of Sigmoid on the last layer of the network. The
fully residual network was trained using the novel AdaBound algorithm that employs
dynamic bounds on their learning rates. It achieves a smooth transition to stochastic
gradient descent, and it precisely addresses the noisy scattering points of misclassifi-
cation that other spectral classification methods cannot handle properly.

Table 1. Comparison of the accuracies between the classifiers

Class No Class Name 1D
CNN

2D
CNN

Simple
C/D N

Residual
C/D N

Optimized R
C/D N*

1 Asphalt 83.73 69.25 82.81 78.99 86.59
2 Meadows 65.70 93.39 97.11 97.16 97.01
3 Gravel 67.03 63.13 60.31 61.46 69.97
4 Trees 94.03 94.39 95.59 95.76 94.91
5 Metal Sheets 99.41 100 97.55 97.77 98.83
6 Bare Soil 96.30 49.06 59.38 59.46 69.87
7 Bitumen 93.83 72.26 78.42 79.50 86.49
8 Bricks 93.56 94.32 96.50 96.82 96.85
9 Shadows 99.79 93.77 92.29 92.40 97.71
OA – 79.28 82.66 87.82 87.39 90.51
AA – 88.15 81.06 84.44 84.37 88.69
Kappa – 0.7423 0.7688 0.8363 0.8308 0.8482
Significance – 31.362 31.464 23.178 22.232 21.871
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Its implementation is based on the optimal use and combination for the first time in
the literature, of two highly efficient and fast learning processes (Softmax activation
function and AdaBound algorithm), which create an integrated intelligent system.

This network also remarkably implements a Large-Scale Geospatial Data Analysis
approach that attempts to balance latency, throughput, and fault-tolerance using ResNet
while simultaneously exploiting learning processes optimally and as efficiently as
possible. The reliability of the proposed network has been successfully tested in the
recognition of scenes from remote sensing photographs, which suggests that it can be
used in higher level Geospatial Data Analysis processes. Such cases are the classifi-
cation, the recognition and monitoring of specific standards, and the fusion of multi-
sensor data.

Suggestions for the evolution and future improvements of this network should
focus on further optimizing the parameters of the algorithms used in ResNet archi-
tecture. This will be done in order to achieve an even more efficient, more accurate and
faster categorization process using a heuristic approach [27] or customization of the
algorithm with the use of Spiking Neural Networks [28]. It would also be important to
study the extension of this system by implementing the Lamda architecture [29] in an
environment of parallel and distributed big data analysis systems (Hadoop). Finally, an
additional target that could be considered in the direction of future expansion concerns
the operation of the network by methods of self-improvement [30] and redefinition of
its parameters in meta-learning. This can fully automate the geographic object-based
scene classification process in remote sensing images.
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