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Abstract. Disruptions to the earth’s biosphere and to the natural environment
stemming from the indiscreet human activity, have caused serious environ-
mental problems which are tantamount to an extended and prolonged ecological
crisis. Climate change is clearly reflected in the increase of the global average air
and ocean temperatures, in the excessive melting of snow-ice, and in the rise of
the global average sea level. One of the most serious impacts of climate change
is the complex interaction of species in relation to their corresponding climatic
survival factors, which favors the spread of invasive species (INSP). These
species constitute a very serious and rapidly deteriorating threat to the natural
biodiversity of the native environment, but also to the flora, fauna, and even to
the local human population. This research proposes a Machine Hearing
(MH) framework for real-time streaming analytics, employing Lambda Archi-
tecture (LARC). The hybrid modeling effort is based on timely and advanced
Computational Intelligence (COIN) approaches. The Framework for Lambda
Architecture Machine Hearing (FLAME_H) uses a combination of batch and
streaming data. The FLAME_H applies the EL_GROSEMMARI (Extreme
Learning Graph Regularized Online Sequential Multilayer Multiencoder Algo-
rithm) to classify the batch data and the Adaptive Random Forest (ARF) in order
to control the data streams in real time. The aim of the proposed framework is
the intelligent identification and classification of invasive alien species, based on
the sounds they produce. This would contribute to the protection of biodiversity
and biosecurity in a certain area.
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1 Introduction

Endemism can be sustained by natural hurdles such as rivers, oceans, mountains,
deserts and climatic conditions [1]. Due to increasing and continuous climate change,
coupled with globalization and the development of international trade and tourism,
these natural barriers are becoming increasingly inefficient. As a result, species, par-
ticularly marine ones, are able to travel long distances to other biotopes where they
become alien or, in many cases, even expansive species [2]. The process of recognizing
INSP is a critical step for the adoption and implementation of a specific policy to
tackle, eradicate, control and/or contain these species. Given that these species are
usually unknown in their new environment, it is extremely difficult, complex and
dangerous to identify and securely isolate them. It should be emphasized that neither
the large differences in morphology nor the significant similarities reflect the affinity of
biological organisms [3]. The need for thorough and fully valid identification of these
species is very serious in the case of planning their response programs, as the recog-
nition process depends on a multitude of required information and on a continuous
monitoring of the current situation. Searching for novel methods of resolving or ana-
lyzing phenomena related to the potential impacts of climate change, such as methods
of identifying invasive species, are key research priorities of high importance.

On the other hand, Machine Hearing (MAHE) is a scientific branch of artificial
intelligence that attempts to reproduce the sense of hearing algorithmically [4]. It is
related (in theoretical and practical level) to the design and development of data
analysis systems. MAHE data are obtained from digital sound recorders or by
appropriate sensors. Audio signal analysis is related to knowledge mining and it aims in
the classification, segmentation, or automated retrieval [5]. In general, the process
initially involves the extraction of certain features which must be able to differentiate
their values according to the content and structure of the respective signals. After the
determination of the audio features that characterize the sound signal, a pattern
recognition approach is employed [6]. The algorithmic resolution of a MAHE classi-
fication problem requires a high availability of resources. In this case, we have to
examine the temporal complexity of the algorithm, the memory availability as a
function of its input data, as well as individual analysis should be performed related to
other resources as appropriate (e.g. how many parallel processors are needed for a
parallel solution of the problem). This is a Big Data (BDA) problem, as data extracted
from audio clips, require big storage space for their clear computer comprehension.

The need for Big Data management and analysis such as the MAHE problems, has
re-established the prototyping architectures of BDA [7]. Lambda architecture (LAR) is
the most important one. It has been designed to handle massive amounts of data using
the batch and streaming processing methods. This approach attempts to balance
latency, throughput, and fault tolerance using the batch process to provide complete
and accurate views of historical data. At the same time, it uses real time data stream
processing to provide views of new inputs [8]. The two projection outputs can be
joined before the final data presentation or the final decision.
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2 The Proposed FLAME_H

This paper proposes the development of the FLAME_H (Framework of Lambda
Architecture for Machine Hearing) which performs real-time streaming analytics. It is
an advanced hybrid computational intelligence approach. The FLAME_H, employs an
innovative version of the Lambda architecture, which optimally combines batch and
streaming data, to safely perform classification. FLAME_H is a MAHE system, that
performs real-time audio streaming analysis and classifies audio data sets to identify
patterns. At the same time, it adopts different biosecurity policies for each resulting
category. It is a very important method of locating invasive species, and an innovative
approach of recording biofouling. At the same time, it can be considered a key tool in
security policy mechanisms as it allows for safe and cost-effective assessment of their
behavior and disclosure of the damage caused by their activities.

Batch data (BADA) is usually a set of data that is collected during some processes
for a specific time period and it characterizes and identifies species. Their processing by
conventional data mining (DAM) or Machine Learning (ML) methods, considers that
they are available and can be accessed simultaneously without any limitation in terms
of their processing or analysis time. It should be noted that this data is susceptible to
noise, their classification process has a significant cost, and they require serious
hardware infrastructure for safe storage and general handling. On the contrary, due to
their reliance on strict time constraints and their more general availability, they are
selected for detailed and specialized data processing techniques that can lead to mul-
tiple levels of revelation of the hidden knowledge they may contain. The growing field
of real-world applications produces streaming data (SDA) at an increasing rate,
requiring large-scale and real-time processing. SDA such as audio data analysis and
data generated in dynamic environments, leads to one of the most robust research areas
of DAM. It is the ML application on data streams for pattern recognition under
dynamic displacement and feedback environments. In general, FLAME_H is an
intelligent hybrid ML system, that employs a special version of the LARC architecture
and the Deep Learning EL_GROSEMMARI algorithm (for the batch data classifica-
tion) combined with the ARF approach in order to control data streams in real time.

Figure 1 presents an overall description of the algorithm.
In the first phase of the algorithm, the appropriate features are derived from the Sea

Audio data stream (audio feature extraction). The data are then provided as input and
they are controlled in parallel by the two learning algorithms. This is done aiming to
minimize the likelihood of misleading and to achieve high reliability classification. The
decision process merges the results of the two algorithms offering advantage to the ones
obtained by the EL_GROSEMMARI. The decision concerns whether it is a “sound”
coming from an invasive species fish. If the sound is described as noise that comes from
a usually human sea-related process, then it is rejected and there is no further devel-
opment in the process. If the sound comes from a species of fish or mammal and once
this species is identified, the coordinates are taken from the GPS and assigned to the
country where they belong. Then a check is made on whether the species identified is
native to this country, otherwise it is recorded as an invasive species. Listings with
indigenous and invasive species were extracted from the Invasive Species Compendium
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(http://www.cabi.org/isc/) [9], the most valid and comprehensive database on the issue,
world-wide. The Geolocation process is presented below:

Algorithm 1. Geolocation Process

Input:

Recognized_Species;

Country; 

Country_Native_Species;

1: Read Recognized_Species, Country, Country_Native_Species;

2: for i=1 to Country_Native_Species [max] do

3: if Country_Native_Species [i]= Recognized_Species then

4:                 Recognized Species=Native_Species

5: else

9: Recognized Species=Invasive_Species

10:           end if

11:     end

Output:  

Species Identity;

Fig. 1. Structure of the FLAME_H
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Lambda architecture was employed, as in multifactorial problems of high com-
plexity of large data sets such as the one under consideration, the results of the forecast
are multi-variable, especially with respect to analysis and integration of data flows.m.
This architecture employs a serious Reactive strategy to deal with invasive species. The
combination of two different algorithms facilitates the sorting process, making each
classifier more robust, and it accelerates the convergence of the generic multiple model,
which is less noisy than any single one [10]. Thus, this approach offers generalization
and avoids overfitting which is one of the basic targets in Machine Learning.

3 Literature Review

Invasive alien species are a result of generalized climate change and they constitute a
serious and rapidly worsening threat to natural biodiversity in Europe. European Union
spends at least 12 billion Euros per year on control of IAS and disasters they cause.
Also, the risk to public health should not be overlooked as these species may be toxic,
such as “Lagocefalus” fish, which contains “Tetrodotoxin” a very dangerous substance,
capable of causing serious health problems, even death in the consumer [11, 12]. The
significance of the hybrid innovative intelligent approaches (Machine Learning
Algorithms) for identifying IAS and their separation from indigenous ones has been
developed by recent researches [13, 14]. Soft computing techniques are capable to
model and detect cyber security threats [15, 16] and they also offer optimization
mechanisms in order to produce reliable results.

Hinton et al. [17] had proposed methods and applications of DL. Through a series
of new learning architectures and algorithms, domains such as object recognition [18]
and machine translation [19, 20] have been transformed; deep learning methods are
now the state-of-the-art in object, speech and audio recognition. In particular, deep
learning has been the driving force behind large leaps in accuracy and model robust-
ness in audio related domains like audio sensing [21]. Alom et al. [22] applied the
Cellular Simultaneous Recurrent Networks (CSRNs) to generate initial filters of CNNs
for features extraction and Regularized Extreme Learning Machines (RELM) for
classification. Experiments were conducted on three popular datasets for object
recognition (such as face, pedestrian, and car) to evaluate the performance of the
proposed system. Zhang, et al. [23], proposed an object recognition algorithm which
did not depend on human experts to design features for fish species classification, but
constructed efficient features automatically. Results from experiments showed that the
proposed method obtained an average of 98.9% classification accuracy with a standard
deviation of 0.96% with a dataset composed of 8 fish species and a total of 1049
images. Also, DL has been the driving force behind large leaps in accuracy and model
robustness in audio related domains like speech recognition. Moreover Han et al. [24]
proposed to utilize DNNs to extract high level features from raw data and show that
they are effective for speech emotion recognition. Finally, Zhao et al. [25] proposed a
new method for automated field recording analysis with improved automated seg-
mentation and robust bird species classification by a Gaussian Mixture Model.
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4 Algorithms

4.1 Extreme Learning Machines for Batch Data Algorithms

An ELM is a Single-Hidden Layer Feed Forward Neural Network (SLFFNN) [26] with
N hidden neurons, randomly selected input weights and random values of bias in the
hidden layer, while the weights at its output are calculated with a single multiplication
of vector matrix [27]. For an ELM using SLFFNN and random representation of hidden
neurons, input data is mapped to a random L-dimensional space with a discrete training

set N, where xi; tið Þ; i 2 1;N½ �½ �with xi 2 Rd and ti 2 Rc. The specification output of the
network is the following:

fL xð Þ ¼
XL

i¼1
bihi xð Þ ¼ h xð Þb i 2 1;N½ �½ � ð1Þ

Vector matrix b ¼ b1; . . .; bL½ �T is the output of the weight vector matrix connecting
hidden and output nodes. On the other hand, h xð Þ ¼ g1 xð Þ; . . .; gL xð Þ½ � is the output of
the hidden nodes for input x, and g1 xð Þ is the output of the ith neuron. Based on a

training set xi; tið Þf gNi¼1, an ELM can solve the Learning Problem Hb ¼ T , where

T ¼ t1; . . .; tN½ �T are the target labels and the output vector matrix of the Hidden Layer
H is the following:

H xj; bj; xi
� �

¼

gðx1x1 þ b1Þ � � � gðxlx1 þ blÞ

.

.

.
.
.

.
.
.

.

gðx1xN þ b1Þ � � � gðxlxN þ blÞ

2

6

4

3

7

5

N�l

ð2Þ

The input weight vector matrix of the hidden layer x (before training) and the bias
vectors b are created randomly in the interval [−1, 1], with

xj ¼ xj1;xj2; . . .;xjm

� �T
and bj ¼ bj1; bj2; . . .; bjm

� �T
ð3Þ

The output weight vector matrix of the hidden layer H is calculated by the use of the
Activation function in the training dataset, based on the following function:

H ¼ g xxþ bð Þ ð4Þ

The output weights b can be estimated by using function:

b ¼
I

C
þHTH

� ��1

HTX ð5Þ

where H ¼ h1; . . .; hN½ � is the output vector matrix of the hidden layer and X ¼
x1; . . .; xN½ � the input vector matrix of the hidden layer. Indeed, b can be calculated by
the following general relation:
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b ¼ H þ T ð6Þ

where Hþ is the generalized inverse vector matrix Moore-Penrose for matrix H. This
approach is employing ELM with Gaussian Radial Basis Function kernel K(u, v) =
exp(−c||u − v||2). The size k of the hidden layer are 20 neurons. Subsequently assigned
random input weights wi and biases bi, i = 1, …, N. To calculate the hidden layer
output matrix H we have used the function (7):

H ¼

hðx1Þ

.

.

.

hðxNÞ

2

6

4

3

7

5
¼

h1ðx1Þ � � � hLðx1Þ

.

.

.
.
.

.

h1ðxNÞ � � � hLðxNÞ

2

6

4

3

7

5
ð7Þ

Where h(x) = [h1(x), . . ., hL(x)] is the output (row) vector of the hidden layer with
respect to the input x. h(x) actually maps the data from the D-dimensional input space
to the L-dimensional hidden-layer feature space (ELM feature space) H. Thus, h(x) is
indeed a feature mapping. ELM is to minimize the training error as well as the norm of
the output weights:

Minimize: Hb�Tj jj j2 and bj jj j ð8Þ

where H is the hidden-layer output matrix of the function (7).
Minimization of the norm of the output weights ||b|| ||b|| is actually achieved by

maximizing the distance of the separating margins of the two different classes in the
ELM feature space 2/||b||. To calculate the output weights b we used function (9):

b ¼ ð
I

C
þHTHÞ�1HTT ð9Þ

where the value of C (a positive constant) and the value of T are obtained from the
Function Approximation of SLFFNs with additive neurons:

ti ¼ ti1; ti2; . . .; tim½ �T 2Rm
;T ¼

tT1
.
.

.

tTN

2

6

4

3

7

5
ð10Þ

Considering and combining the features of ELM presented above, we introduce and
propose a new Deep architecture by creating an Online Learning Multilayer Graph
Regularized Extreme Learning Machine Auto-Encoder (OSML-GRELMA). This is a
multi-layered neural network model that receives successive OL data streams and uses
the unsupervised GRELMA algorithm as a basic building block in which the output of
each level is used as inputs to the next one [28].

An autoencoder is an artificial neural network used for unsupervised learning of
efficient coding. The aim of an autoencoder is to learn a representation (encoding) for a
set of data, but with the output layer having the same number of nodes as the input
layer, and with the purpose of reconstructing its own inputs (instead of predicting target
value Y given inputs X). The Algorithm 2 is described below [28]:

252 K. Demertzis et al.



fficient

The overall function of the OSML-GRELMA is presented in the following algo-
rithm.

The main objective and training success of the proposed OSML-GRELMA
approach is based on evolutionary identification of the underlying structure of the input
data flows to produce the final model. It basically uses the knowledge of labelled data
to investigate the distribution of the input data, aiming at enhancing the outcome of the
learning process using an adaptive scheme. In this sense, it includes procedures that
approach unsupervised learning, where inputs come from the same marginal distri-
bution or follow a common cluster structure.

4.2 Adaptive Random Forests for Streaming Data

As it can be seen, data flow management and especially knowledge extraction with ML
algorithms from these flows are unlikely to be performed by applying iterations over
input data. Accordingly, adapting the Random Forest algorithm [29] to streaming data,
depends on a suitable accumulation process that is partially achieved by a bootstrap
method and at the same time by limiting each decision to divide the sheets into a subset
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of attributes. This is achieved with the modification of the base tree algorithm, by
effectively reducing the set of features examined for further separation into random
subsets of magnitude m, where m < M (M corresponds to the total number of attributes
that are examined in each case. In the non-streaming bagging, each of the n-base
models is trained in a Z-sized bootstrap sample created by random samples with
replacement from the original training kit. Every bootstrapped sample contains an
original training snapshot K, where P (K = k) follows a binomial distribution. For large
values of Z this binomial distribution is attached to a Poisson one, with k = 1. On the
other hand, according to the ARF approach for streaming data, a Poisson distribution is
used with k = 6. This “feedback” has the practical effect of increasing the probability of
assigning higher weights to instances during the training of the basic models [29].

ARF is an adaptation of the original Random Forest algorithm, which has been
successfully applied to a multitude of machine learning tasks. In layman’s terms the
original Random Forest algorithm is an ensemble of decision trees, which are trained
using bagging and where the node splits are limited to a random subset of the original
set of features. The “Adaptive” part of ARF comes from its mechanisms to adapt to
different kinds of concept drifts, given the same hyper-parameters. Specifically, the 3
most important aspects of the ARF algorithm are it adds diversity through resampling
(“bagging”); it adds diversity through randomly selecting subsets of features for node
splits and it has one drift and warning detector per base tree, which cause selective
resets in response to drifts. It also allows training background trees, which start training
if a warning is detected and replace the active tree if the warning escalates to a drift.
ARF was designed to be “embarrassingly” parallel, in other words, there are no
dependencies between trees. The overall ARF pseudo-code is presented below in
Algorithm 4 [29].

Algorithm 4.

Where m: maximum features evaluated per split; n: total number of trees (n = |T|);
dw: warning threshold; dd: drift threshold; c(�): change detection method; S: Data
stream; B: Set of background trees; W(t): Tree t weight; P(�): Learning performance
estimation function [29].
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5 Datasets

The following four main categories of sounds have been determined in order to create
highly complex scenarios that can potentially include the most likely cases that can be
detected in an underwater space:

• Fishes: Several species of fish produce sounds with various mechanisms such as
teeth, pharynx, fins, and shuttle bladder. 1076 sounds belonging to 10 fish species
have been included in this category (e.g. Bidyanus Bidyanus, Epinephelus
Adscensionis, Cynoscion Regalis, Carassius Auratus, Cyprinus Carpio, Rutilus
Rutilus, Salmo Trutta, Oreochromis Mossambicus, Micropterus Salmoides,
Oncorhynchus Mykiss).

• Mammals: Marine mammals produce and use sounds to orientate and communicate
with each other. Totally 836 sounds belonging to 8 species of mammals are
included in this category. (e.g. Delphinus Delphis, Erignathus Barbatus, Balaena
Mysticetus, Phocoena Phocoena, Neophocaena Phocaenoides, Trichechus, Tursiops
Truncates, Phoca Hispida).

• Anthropogenic Sounds: It comprises of 684 sounds belonging to 9 classes (Ship,
Sonar, Zodiac, Torpedo, Wind Turbine, Scuba Noise, Bubble Curtain, Personal
Water Craft, Airgun).

• Natural Sounds: Totally 477 sounds belong here classified in six clusters (Earth-
quake, Hydrothermal Vents, Ice Cracking, Rainfall, Lightning, Waves).

The Feature Extraction process [30] enables capturing of characteristics that pre-
cisely determine the uniqueness of each sound and helps distinguish between acoustic
categories. The categories distinction is based on 34 characteristics related to statistical
measurements obtained from the signal frequency information. In this research effort
we have extracted the short-term feature sequences for an audio signal, using a frame
size of 50 ms and a frame step of 25 ms (50% overlap). All sounds had a sampling rate
of 44.1 kHz, 16-bit stereo resolution while their average duration was 10.3 s.

6 Results

In data batch cases using multiple classifiers, for estimating the real error during
training, the full probability density of both categories should be known [31, 32]. The
classification performance is estimated by the Total Accuracy (TA), Root Mean
Squared Error (RMSE), Precision (PRE), Recall (REC), F-Score and ROC Area
indices [33, 34]. The 10-fold cross validation is employed in this stage in order to
obtain performance indices. Analytical values of the predictive capacity of the algo-
rithm are presented in the following Tables 1, 2, 3, 4, 5 and 6.

In the case of stream data classification, we need to compare classification per-
formance in terms of Accuracy Kappa statistic and Kappa-Temporal statistic. This is
done by using the traditional immediate setting. The true label is presented right after
the instance used for testing or the delayed setting (where there is a real delay between
the moment an instance is presented and the moment its true label becomes available)
[33].
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Table 1. Performance metrics of Categories_Dataset

Classifier Classification accuracy & performance metrics

TA RMSE PRE REC F-Score ROC Area

OSML-GRELMA 96.08% 0.1376 0.960 0.960 0.960 0.970

Table 2. Confusion matrix of Categories_Dataset

Fishes Mammals Anthr_Sounds Natural_Sounds

1042 13 12 9 Fishes

14 797 17 8 Mammals

5 7 659 13 Anthr_Sounds

4 6 10 457 Natural_Sounds

Table 3. Performance metrics of Mammals_Dataset

Classifier Classification accuracy & performance metrics

TA RMSE PRE REC F-Score ROC Area

OSML-GRELMA 92.18% 0.1571 0.922 0.922 0.922 0.955

Table 4. Confusion matrix of Mammals_Dataset

a b c d e f g h

142 2 0 1 1 0 1 0 a = Delphinus Delphis

1 101 3 0 0 5 0 4 b = Erignathus Barbatus

1 2 122 1 0 0 0 2 c = Balaena Mysticetus

1 1 2 61 1 1 0 3 d = Phocoena Phocoena

2 2 3 1 51 0 2 2 e = Neophocaena Phocaenoides

2 0 2 0 1 82 0 2 f = Trichechus

2 0 0 0 0 1 51 1 g = Tursiops Truncates

2 2 1 1 1 0 1 162 h = Phoca Hispida

Table 5. Performance metrics of Fishes_Dataset

Classifier Classification accuracy & performance metrics

TA RMSE PRE REC F-Score ROC Area

OSML-GRELMA 87.91% 0.1512 0.879 0.879 0.879 0.920
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Table 7 below, presents the results of the scenarios applied on streaming data in
this research. Validation of the results was done by employing the Prequential Eval-
uation method [34]. The training window used 1000 instances. It should be clarified
that the following Table 7 uses average values for every evaluation measure.

7 Discussion and Conclusions

This paper presents an innovative, reliable, low-demand and highly effective system of
MAHE and sound analysis, based on sophisticated computational intelligence. The
development of FLAME_H is based on the optimal combination of two highly efficient
and fast learning algorithms that create a comprehensive intelligent system of active
environmental security using a Lambda Architecture approach. The sophisticated

Table 6. Confusion matrix of Fishes_Dataset

a b c d e f g h i j

139 5 1 2 1 0 1 0 1 3

4 91 4 1 3 0 0 2 4 0

0 3 116 1 2 0 2 4 2 2

1 0 1 88 1 0 0 1 0 1

0 3 1 1 100 0 0 2 1 2

1 0 0 0 1 58 0 2 0 3

1 0 1 0 0 0 94 2 0 0

3 5 6 1 3 1 1 103 1 8

0 3 2 0 3 0 0 1 80 3

1 0 3 1 3 1 1 3 1 78

a = Bid/nus Bidyanus, b = Epin/lus
Adscen/nis, c = Cyn/cion Regalis, d = Cara/us
Auratus
e = Cyp/nus Carpio, f = Rutilus Rutilus,
g = SalmoTru, h = Oreo/mis Mossambicus
i = Micr/rus Salmoides, j = Oncor/hus Mykiss

Table 7. Validation metrics when streaming data are used

Classifier Classification accuracy & performance metrics

Accuracy Kappa statistic Kappa temporal statistic

Categories_Dataset

ARF 94.48% 73.91% 74.53%

Mammals_Dataset

ARF 92.16% 71.37% 73.14%

Fish_Dataset

ARF 88.11% 68.59% 70.36%
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application described herein, combined with the promising results that have emerged,
constitutes a credible innovative proposal for the standardization and design of
biosecurity and biodiversity protection. This implementation follows a Reactive
strategy for dealing with invasive species as it combines training of two counter dia-
metrically opposite classifiers to detect incoming contrasts and to discard them.
Training is done by using datasets that respond to specialized, realistic scenarios. In
addition, this framework implements a Big data analysis approach that attempts to
balance latency, throughput, and fault tolerance using integrated and accurate views of
historical data, while at the same time it is making optimum use of new entrant data
flows. The operating scenarios proposed with the combination of batch and streaming
data, create capabilities for a fully-defined configuration of model’s parameters and for
high-precision classification or correlation.

The basic innovation of the proposed FLAME_H is the implementation of an
intelligent ML system, based solely on fully automated methods of detecting sound
events using COIN. This innovation provides important solutions and improves the
way environmental problems and, in particular, biodiversity and bio-security mecha-
nisms work and deal. Also, a significant innovation is the architecture of the proposed
computational intelligence system, which combines and exploits Lambda architecture,
that is, the combination of both batch and streaming data analysis, using fast and
extremely accurate ML algorithms to solve a multidimensional and complex real-life
problem. ML delivers intelligence and significantly boosts the environmental protec-
tion mechanisms as it is an important defense tool against asymmetric environmental
threats. The FLAME_H simplifies and automates the sound recognition and the
invasive species detection procedures, while minimizing human intervention by
combining the EL_GROSEMMARI and ARF algorithms for the first time in the lit-
erature. Finally, one more innovation is found in the way of collecting and selecting the
data, (which emerged after extensive research) as well as the development of the final
data set used, which is complex and has a high dimension, but it can be used effectively
in training.

Future extensions-improvements should focus on further optimizing the parameters
of the algorithm used by the Lambda architecture, so that an even more efficient,
accurate, and faster classification process is achieved. Also, it would be important to
study the expansion of this particular system by implementing Lambda architecture in a
parallel and distributed data analysis system (Hadoop). Finally, an additional element
that could be studied in the direction of future expansion concerns the operation of
FLAME_H with methods of self-improvement and meta-learning in order to fully
automate the process of locating the species.
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