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Abstract. According to the latest projections of the International Energy Agency, 

smart grid technologies have become essential to handling the radical changes 

expected in international energy portfolios through 2030. A smart grid is an 

energy transmission and distribution network enhanced through digital control, 

monitoring and telecommunications capabilities. It provides a real-time, two-way 

flow of energy and information to all stakeholders in the electricity chain, from 

the generation plant to the commercial, industrial and residential end user. New 

digital equipment and devices can be strategically deployed to complement 

existing equipment. Using a combination of centralized IT and distributed 

intelligence within critical system control nodes ranging from thermal and 

renewable plant controls to grid and distribution utility servers to cities, 

commercial and industrial infrastructures, and homes a smart grid can bring 

unprecedented efficiency and stability to the energy system. Information and 

communication infrastructures will play an important role in connecting and 

optimizing the available grid layers. Grid operation depends on control systems 

called Supervisory Control and Data Acquisition (SCADA) that monitor and 

control the physical infrastructure. At the heart of these SCADA systems are 

specialized computers known as Programmable Logic Controllers (PLCs). There 

are destructive cyber-attacks against SCADA systems as Advanced Persistent 

Threats (APT), were able to take over the PLCs controlling the centrifuges, 

reprogramming them in order to speed up the centrifuges, leading to the 

destruction of many and yet displaying a normal operating speed in order to trick 

the centrifuge operators and finally can not only shut things down but can alter 

their function and permanently damage industrial equipment. This paper 

proposes a computational intelligence System for Identification Cyber-Attacks on 

the Smart Energy Grids (SICASEG). It is a big data forensics tool which can 

capture, record and analyze the smart energy grid network events to find the 

source of an attack to both prevent future attacks and perhaps for prosecution.  
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1.  Introduction 

1.1 Smart Energy Grids 

It is a fact that the majority of research in electrical energy systems is related to Smart 

Energy Grids (SEG) [1]. There is a global effort on the way, aiming to overcome the 

problems of conventional systems and networks. The smart energy grid networks are 

using information and communication technologies (ICT) in order to offer optimal 

transfer and distribution of electrical energy from the providers to the customers [2]. 

On the other hand SEG operate in electrical networks that use digital technology to 

monitor and transfer electricity from all sources, in order to cover the varying needs of 

the users. They also coordinate the needs and the potentials of the producers, managers, 

consumers and all market entities in order to ensure that they function in the optimal 

way. Actually, they are minimizing the cost and the environmental consequences and 

at the same time they are enhancing reliability and stability [3]. 

1.2 Conceptual Framework 

This new energy network which aims to cover a basic and crucial matter of common 

prosperity is integrated under the conceptual framework of heterogeneous 

infrastructure collective operation, in a status of innovation and financial investments 

of mid-long term payoff. [4]. Under this point of view the SEG offer important 

contributions towards sustainable development.  

The main advantages of this technology are briefly discussed below [5][6]: 

• The SEG integrate distributed production of renewable energy sources  

• They offer reliability and quality of power, especially in areas with frequent 

voltage fluctuations.  

• They offer electricity with the use of distributed energy production in remote 

areas e.g. antennas, small villages, oil oceanic platforms.   

• Demand forecasting based on statistical data is used to reduce distribution 

lines overloading and accidental interruptions of electrical supply. At the same 

time they incorporate instant restart potentials of Black Start type. 

• SEG respond directly and optimally in new power demands, by forecasting 

the actual needs under specific situations and time periods.  

• Microgrids offer energy sustainability and backup.  

• SEG automate the provided services of the system that records and financially 

evaluates the interruption and reconnection of electrical power. 

• They activate systems of energy, physical and logical security with 

mechanisms of multilevel control access plus cryptography.  

• They are using real time controllers to offer management, correlation and 

warning of incidents, with technologies of Intrusion Prevention System (IPS) 

type. 

• They offer qualitative services of high added value in every phase of the 

energy cycle.  
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1.3 Conceptual Model 

The standardization organizations have applied a division model of the energy cycle in 

partial primitive branches. This was achieved based on the general conceptual 

functional framework of the smart energy grids [6]. This division aims in classifying 

the involved entities based on their homogeneous elements of interest and on their 

specific functions. This conceptual model is based on the functional variation of each 

sector and it is not related to an architectural plan. It is a tool to provide the background 

for the description and analysis of the models’ interfunctionality that also supports the 

development of emerging architectures in SEG technologies.  

The conceptual model [7], comprises of seven basic sectors (domains) namely: Bulk 

Generation, Transmission, Distribution, Customer, Service Provider, Operations and 

Markets. 

 
Fig 1. Conceptual Model of Smart Energy Grids 

2. Cybersecurity for Smart Grid Systems 

2.1 A new, smart era for the Energy Grids 

Upgrading of the energy infrastructures by incorporating new technologies (especially 

the ones related to ICT and Internet) introduce risks and new threats for the security 

and the continuous function of the electrical energy network [8]. The exploitation of 

the vulnerable points of a cable or a wireless smart network, can lead to the occupation 

of εcritical electronic devices and applications, the leak of top secret or personal 

information, the loss or block of necessary services, even to the total interruption of 

electricity with huge consequences [9]. 

Confronting the security issues combined with the application of a strong legal 

framework that would ensure integrity, security and availability of the transferred 
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energy information, is a primitive target, a continuous challenge and a social demand 

for the transition to the new energy scheme.  

2.2 Risks involved   

The smart network not only offers new functions but it introduces new risks in the 

electricity system as well. Given that the modern civilization is based on electricity and 

on the supporting infrastructure this matter is of high importance. A potential extended 

interruption of the production or distribution services would have huge socio-economic 

consequences and it would lead to loss of human lives. The risks associated to the SEG 

application are mainly related to the telecommunications, automation systems and data 

collection mechanisms [8] [9] [10].  

Due to the fact that the basic core of a SEG net is the telecommunication network, the 

use of the most modern relative infrastructures such as fiber optics, Broadband over 

Power Line (BLP) and wireless transmission technologies is really crucial. However, 

this stratification and also this modeling approach increase the system’s complexity and 
they create assymetric threats [10]. 

Another problem is that the incorporation of SEG technology, converts the previously 

isolated and closed network of power control systems, to a public one, accessible to the 

general public.  This fact combined with the rapid spread of the internet introduces new 

threats to the energy infrastructures. The advanced techniques undoubtedly offer 

significant advantages and possibilities, but also, they significantly increase the 

problems associated with the protection and availability of information [11]. Besides 

cyber threats [12], as malware, spyware, computer viruses, which currently threaten the 

ICT networks, the introduction of new technologies and services such as smart meters, 

sensors and distributed access points may create vulnerabilities in SEG. 

However, the smart energy grids are not only exposed to risks due to the vulnerabilities 

of the communications networks, but they also face risks inherit to the existing 

electrical networks, due to physical vulnerabilities of the existing old infrastructures 

[10].  

The problems due to physical attacks are targeting to interrupt the production, transfer 

and distribution of the electric power. However, the cyberattacks aim to gain remote 

access to users’ data, endanger or control electronic devices and general infrastructure 
to their benefit [11].  

2.3 Threats  

A threat is a potential damage or an unpleasant development that can take place if 

nothing changes, or that can be caused by someone if his target will not comply with 

his demands [10] [11] [12]. The best known types of threats related to energy systems 

are presented below [10] [11] [12]:  

• Physical threats 

They require specific tools and natural presence. The lines can be undermined 

anywhere along the line or in the transmission tower. The distribution lines 

are positioned at a relatively low height and can be easily interrupted. Also, 
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smart meters are extremely vulnerable to theft since they are installed at the 

customer premises [10] [11] [12]. 

• Cyber threats  

They can be executed by any computer. Smart meters communicate and 

interface with other counters in the network and with smart home appliances 

and energy management systems. These interfaces increase the exposure of 

the SEG in remote threats, such as invasion of privacy through wiretapping 

and data traffic analysis, unauthorized access to stored data, attacks, 

interference or modification of communications networks [10] [11] [12]. 

➢ Cyber-Physical (combined threats)  

They require combined knowledge, since the electronic attacks can have 

physical effects. On the other hand, physical attacks can affect the electronic 

infrastructure. For example, a disgruntled or complained employee with 

authorization to the computer network may enter the substation security 

system and disable the perimeter security, paving the way for any physical 

attack [10] [11] [12]. 

2.4 Types of Attacks   

Attack is any attempt to breach the confidentiality, integrity or availability of an energy 

system or network. It is also any unauthorized action that aims to prevent, bypass or 

disable safety mechanisms and access control to a system or a network. 

The goal of an attack varies depending on the capabilities and objectives of the intruder 

and on the degree of difficulty of the attempt regarding the measures and security 

mechanisms to be addressed. 

There are four types of attacks [10] [11] [12]: 

• Denial-of-Service (DoS) 

The attacker (Bob) denies the source (Alice) access to the destination (Mary). 

• Man-in-the-middle  

Bob pretends to be Mary, so he receives all messages from Alice to Mary. Bob 

can change the messages and forward them changed to Mary. 

• Spoofing  

Bob impersonates as Alice so that he can create and send messages to Mary. 

• Eavesdropping  

Bob receives all messages sent from Alice to Mary, but both Alice and Mary 

do not know about it. 
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Fig 2. Cyber Attacks 

2.5 Cyber Attacks on Smart Grid  

Smart Energy Grids attacks can be classified based on the following [10] [11] [12]:  

• On the motivation  

• The motive of the attackers can be categorized into five areas namely: 

curiosity for information motivated attacks, immoral power theft, theft of 

power consumption information, economic benefits 

• On the number of attackers 

They can be characterized as single or individual, aiming in collecting all the 

necessary information to commit a small scale blackout. Also they can be 

considered as coordinated attacks when they are organized by groups of 

attackers who cooperate to hit critical infrastructures.  

• On the target  

• A hacking attempt can aim in any field of the electric power network, such as 

the production (targeting to interrupt the operation of generators) or the 

distribution and control.   

The final target might be the change of the phase or other network status 

information, resulting in the sudden load change in critical locations of the 

electrical network. This could cause overload of the transmission lines and 

network collapse. 
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2.6 SCADA systems 

The term SCADA (supervisory control and data acquisition) [13] describes a class of 

industrial controllers and telemetry systems. The characteristic of the SCADA systems 

is that they comprise of local controllers, controlling individual components and units 

of an installation connected to a centralized Master Station. The central workstation can 

then communicate the data collected from the establishment in a number of 

workstations in the LAN or to transmit the plant data in remote locations via a 

telecommunications system, eg via the wired telephone network or via a wireless 

network or via the Internet [13]. 

It is also possible that each local controller is in a remote location and transmits the data 

to the master station via a single cable or via a wireless transceiver, always set by local 

controllers connected in a star topology to a master station. 

The use of SCADA systems manages on-line monitoring, (through PLCs) and 

continuous recording of all critical parameters of the electricity network, in order to 

achieve surveillance in real time. 

The main functions of a SCADA system are the following [13]: 

• Data collection from the PLCs and the remote terminal unit (RTU). All of the 

desired signals are propagated towards the SCADA system through the 

network.  

• Data storage in the database and their representation through graphs. The 

selected information is represented either as such or after suitable processing. 

• Analyze data and alert personnel in fault cases. When data values get 

abnormal, the SCADA system notifies operators by using visual or audible 

signals in order to avoid unpleasant consequences. 

• Control of the closed loop processes. There exists the possibility of technical 

control application, automatically or manually. 

• Graphical representation of the process sections to mimic diagram and data 

presentations in active fields. The mimic diagrams depict realistic parts of the 

process in order to facilitate monitoring and understanding of the data from 

the system operators. 

• Recording of all events regular or not, for the creation of a historical archive 

of critical parameters in the form of a database. Support of a dual computer 

system with automatic switching if this is considered appropriate, based on the 

process under control. In high risk processes the occurrence of error due to 

failure of the equipment should be minimized as much as possible. For this 

reason, the SCADA systems support a second computer system that 

undertakes in case of error. 

• Transfer of data to other parts of the central management and information 

system. 

• Check the access of the operators to the various subsystems of the SCADA 

system. 

• Specific software applications such as C++ code execution or intelligent 

systems development.  

• Handling, managing and processing of vast amounts of data. 
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2.7 Methods of Attack 

The attack methodology might be followed by a specific hostile entity willing to cause 

more than a service interruption. Getting unauthorized access to a SCADA system is 

an extremely difficult task requiring skills and many hours of research. 

Gaining control of the automation system of an electrical network requires three 

essential steps [14]:  

• Access: The first step of the attacker would be to gain access to the SCADA 

system. The attacker can gather as much information as possible (e.g. from the 

Internet) such as names and installed equipment. Then he targets specific 

elements of the system by using malware, he exploits weaknesses and gains 

access.  

The most common method for gaining unauthorized access is the external 

VPN access to the SCADA. The VPN access is mainly used by specialized 

personnel which logins from home or from work. Of course stealing the login 

details of such personnel is a huge problem.  

• Discovery: After intruding the SCADA the next step is to analyze and 

understand the specific network by discovering the processes running in it. 

The complexity of the network is a really good defense against the attacks 

however an experienced intruder can cause serious problems and the collapse 

of services. First the attacker searches simple information sources such as web 

servers or workstations. The information traffic can be monitored for a long 

period of time and thus a vast volume of data can be discovered (e.g. FTP, 

Telnet and HTTP certificates). The combination of all the above can offer a 

clear view of the network’s function for the intruder.  

• Control: If the SCADA is analyzed there are various methods to control the 

system. The engineers’ workstations used to upgrade the software, the 
database systems and the application server (where various SCADA 

applications are saved providing control) are a potential target.  

Additionally, another optional step which employs experienced invaders is hiding 

the attacks by deleting specific folders that can detect and report the presence of 

intruders in automation systems. 

3. Literature review 

In an earlier research of our team we have made few hybrid computational intelligence 

systems [15][16][17][18][19][20][21][22][23][24][25][26][27][28][29]. Tao et al. 

described the network attack knowledge, based on the theory of the factor expression 

of knowledge, and studied the formal knowledge theory of SCADA network from the 

factor state space and equivalence partitioning. This approach utilizes the factor neural 

network (FNN) theory which contains high-level knowledge and quantitative reasoning 

described to establish a predictive model including analytic FNN and analogous FNN. 

This model abstracts and builds an equivalent and corresponding network attack and 

defense knowledge factors system. Also, the [31] introduces a new European 

Framework-7 project Cockpit CI (Critical Infrastructure) and roles of intelligent 
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machine learning methods to prevent SCADA systems from cyber-attacks. Qian and 

Sherif [32] applies autonomic computing technology to monitor SCADA system 

performance, and proactively estimate upcoming attacks for a given system model of a 

physical infrastructure. In addition, Soupionis et al. [33] proposes a combinatorial 

method for automatic detection and classification of faults and cyber-attacks occurring 

on the power grid system when there is limited data from the power grid nodes due to 

cyber implications.  

The efficiency of the proposed method is demonstrated via an extensive experimental 

phase measuring the false positive rate, false negative rate and the delay of the 

detections. Finally, Qin at al. [34] puts forward an analytic factor neuron model which 

combines reasoning machine based on the cloud generator with the FNN theory. The 

FNN model is realized based on mobile intelligent agent and malicious behavior 

perception technology.  

The authors have acknowledged the potential of machine learning-based approaches in 

providing efficient and effective detection, but they have not provided a deeper insight 

on specific methods, neither the comparison of the approaches by detection 

performances and evaluation practices. 

This research paper proposes the development of the SICASEG, a cyber-threat bio-

inspired intelligence management system. Unlike other techniques that have been 

proposed from time to time and focus in single traffic analysis, SICASEG is an efficient 

SCADA supervision system which provides smart mechanisms for the supervision and 

categorization of networks. It provides intelligent approaches for the above task and it 

is capable of defending over sophisticated attacks and of exploiting effectively the 

hardware capabilities with minimum computational and resources cost. More 

specifically, this research proposes an innovative and very effective Extreme Learning 

Machine (ELM) model, which is optimized by the Adaptive Elitist Differential 

Evolution algorithm (AEDE). The AEDE is an improved version of the Differential 

Evolution (DE) algorithm and it is proper for big data resolution. This hybrid method 

combines two highly effective, biologically inspired, machine learning algorithms, for 

solving a multidimensional and complex cyber security problem. 

4. Power System Attack Datasets  

4.1 SCADA power system architecture 

The following figure 3, shows the power system framework configuration which is used 

in generating power event scenarios [34][35][36][37][38]. In the network diagram we 

have several components. G1 and G2 are power generators whereas R1 through R4 are 

Intelligent Electronic Devices (IEDs) that can switch the breakers on or off. These 

breakers are labeled BR1 through BR4. There are also two main lines. Line1 spans from 

breaker one BR1 to breaker two BR2 and Line2 spans from breaker three BR3 to breaker 

four BR4. Each IED automatically controls one breaker. R1 controls BR1, R2 controls 

BR2 and so on accordingly. The IEDs use a distance protection scheme which trips the 

breaker on detected faults whether actually valid or faked since they have no internal 

validation to detect the difference. Operators can also manually issue commands to the 
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IEDs R1 through R4 to manually trip the breakers BR1 through BR4. The manual 

override is used when performing maintenance on the lines or other system components 

[34][35][36][37][38].  

 

 
Fig 3. SCADA power system architecture 

4.2 Types of scenarios  

There are 5 types of scenarios [34][35][36][37][38]: 

• Short-circuit fault – This is a short in a power line and can occur in various 

locations along the line, the location is indicated by the percentage range.  

• Line maintenance – One or more relays are disabled on a specific line to do 

maintenance for that line.  

• Remote tripping command injection (Attack) – This is an attack that sends a 

command to a relay which causes a breaker to open. It can only be done once 

an attacker has penetrated outside defenses.  

• Relay setting change (Attack) – Relays are configured with a distance 

protection scheme and the attacker changes the setting to disable the relay 

function such that relay will not trip for a valid fault or a valid command.  

• Data Injection (Attack) – Here we imitate a valid fault by changing values to 

parameters such as current, voltage, sequence components etc.  This attack 

aims to blind the operator and causes a black out. 
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4.3 The final dataset 

The dataset comprised of 128 independent variables and 3 classes - markers (No Events, 

Normal Events, Attack) [34][35][36][37][38]. There are 29 types of measurements 

from each phasor measurement units (PMU). A phasor measurement unit (PMU) or 

synchrophasor is a device which measures the electrical waves on an electricity grid, 

using a common time source for synchronization. In our system, there are 4 PMUs 

which measure 29 features for 116 PMU measurement columns total. Also, there are 

12 features for control panel logs, Snort alerts and relay logs of the 4 PMU/relay (relay 

and PMU are integrated together) [34][35][36][37][38]. 

The dataset is determined and normalized to the interval [-1,1] in order to phase the 

problem of prevalence of features with wider range over the ones with a narrower range, 

without being more important. Also, the outliers and the extreme values spotted were 

removed based on the Inter Quartile Range technique. The final dataset containing 

159,045 patterns (48,455 No Events, 54,927 Natural and 55,663 Attack). 

5. Methodology and Techniques 

5.1 Extreme Learning Machines 

The Extreme Learning Machine (ELM) as an emerging biologically inspired learning 

technique provides efficient unified solutions to “generalized” Single-hidden Layer 

feed forward Networks (SLFNs) but the hidden layer (or called feature mapping) in 

ELM need not be tuned [39]. Such SLFNs include but are not limited to support vector 

machine, polynomial network, RBF networks, and the conventional feed forward 

neural networks. All the hidden node parameters are independent from the target 

functions or the training datasets and the output weights of ELMs may be determined 

in different ways (with or without iterations, with or without incremental 

implementations). ELM has several advantages, ease of use, faster learning speed, 

higher generalization performance, suitable for many nonlinear activation function and 

kernel functions. 

According to the ELM theory [39], the ELM with Gaussian Radial Basis Function 

kernel (GRBFk) K(u,v)=exp(-γ||u-v||2) used in this approach. The hidden neurons are 

k=20. Subsequently assigned random input weights wi and biases bi, i=1,…,N. To 
calculate the hidden layer output matrix H used the function (1): 

 𝐻 = [ℎ(𝑥1)⋮ℎ(𝑥𝑁)] =  [ℎ1(𝑥1) ⋯ ℎ𝐿(𝑥1)⋮  ⋮ℎ1(𝑥𝑁) ⋯ ℎ𝐿(𝑥𝑁)]   (1) 

 

 

h(x) = [h1(x), . . . , hL(x)] is the output (row) vector of the hidden layer with respect to 

the input x. h(x) actually maps the data from the d-dimensional input space to the L-

dimensional hidden-layer feature space (ELM feature space) H, and thus, h(x) is indeed 
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a feature mapping. ELM is to minimize the training error as well as the norm of the 

output weights: 

Minimize : ||Hβ – T||2 and ||β||  (2) 

 

where H is the hidden-layer output matrix of the function (1). To minimize the norm of 

the output weights ||β|| is actually to maximize the distance of the separating margins 

of the two different classes in the ELM feature space 2/||β||. 
To calculate the output weights β used the function (3): 

 

                                                   β=(𝐼𝐶 + 𝐻𝑇𝐻)−1 𝐻𝑇𝑇   (3) 

 

where C is a positive constant is obtained and T resulting from the Function 

Approximation  of  SLFNs  with  additive  neurons  in  which  is  an  arbitrary distinct  

 

samples with ti=[ti1, ti2,…,tim]T ∈ Rm and 𝑇 = [𝑡1𝑇⋮𝑡𝑁𝑇]  [39]. 

5.2 Adaptive Elitist Differential Evolution (AEDE) 

In evolutionary computation, Differential Evolution (DE) [40] is a method that 

optimizes a problem by iteratively trying to improve a candidate solution with regard 

to a given measure of quality. In the DE, the parameters such as mutant factor F and 

crossover control parameter CR and trial vector generation strategies have significant 
influence on its performance. To overcome the common limitations of optimization 
algorithms such as the use of a huge volume of resources (e.g. high computational cost) 

the Adaptive Elitist Differential Evolution algorithm (AEDE) [41] introduces two 

alternatives. The first one is applied in the mutation phase and the second one in the 

selection phase, in order to enhance the search capability as well as the convergence 

speed of the DE algorithm. The new adaptive mutation scheme of the DE uses two 

mutation operators.  The first one is the ‘‘rand/1” which aims to ensure diversity of the 
population and prohibits the population from getting stuck in a local optimum. The 

second is the ‘‘current-to-best/1” which aims to accelerate convergence speed of the 

population by guiding the population toward the best individual. On the other hand, the 

new selection mechanism is performed as follows: Firstly, the children population C 

consisting of trial vectors is combined with the parent population P of target vectors to 

create a combined population Q. Then, NP best individuals are chosen from the Q to 

construct the population for the next generation. In this way, the best individuals of the 

whole population are always stored for the next generation. This helps the algorithm to 

obtain a better convergence rate [41]. The elitist selection operator is presented in the 

following Algorithm 1. 
 

Algorithm 1: Elitist selection operator [41] 

1: Input: Children population C and parent population P 

2: Assign 𝑄 = 𝐶 ∪ 𝑃 
3: Select NP best individuals from Q and assign to P 

4: Output: P 
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The aeDE method is summarily shown as in Algorithm 2 below [41]: 
 

Algorithm 2: The adaptive elitist Differential Evolution (aeDE) algorithm [41] 

1: Generate the initial population 
2: Evaluate the fitness for each individual in the population 

//Definition of searching criteria 

3: while delta > tolerance or MaxIter is not reached do 

//Find the best individuals 

4: for i =1 to NP do 

//Generate the initial mutation factor 

5:       F = rand[0.4, 1] 

//Generate the initial crossover control parameter 
6:      CR = rand[0.7, 1]  

//Select a random integer number between 1 and D 

7:       jrand = randint(1, D) 
//Find the optimal parameters 

8:     for j =1 to D do 

//Check the crossover operation 
9:   if rand[0, 1] < CR or j == jrandthen 

//Check the mutation 

10:    if delta > threshold then 

//Select the optimal parameters  

11:                  Select randomly r1 ≠ r2 ≠ r3 ≠ i; ∀𝑖 ∈ {1, … , 𝑁𝑃} 

12:                 𝑢𝑖𝑗 = 𝑥𝑟1𝑗 + 𝐹×(𝑥𝑟2𝑗 − 𝑥𝑟3𝑗) 

13:             else 

14:               Select randomly r1 ≠ r2 ≠ best ≠ i;   ∀𝑖 ∈ {1, … , 𝑁𝑃} 

15:                  𝑢𝑖𝑗 = 𝑥𝑖𝑗 + 𝐹×(𝑥𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖𝑗) + 𝐹×(𝑥𝑟2𝑗 − 𝑥𝑟3𝑗) 

16:             end if 

17:           else 

18:             𝑢𝑖𝑗 = 𝑥𝑖𝑗 

19:           end if 

20:     end for 

21:Evaluate the trial vector ui 

22: end for 

23: Do selection phase based on Algorithm 1 

24: Define 𝑓𝑏𝑒𝑠𝑡, 𝑓𝑚𝑒𝑎𝑛 

25: delta = | 𝑓𝑏𝑒𝑠𝑡𝑓𝑚𝑒𝑎𝑛−1| 
26: end while 
 

where tolerance is the allowed error; MaxIter is the maximum number of iterations; 

and randint(1, D) is the function which returns a uniformly distributed random integer 

number between 1 and D. 

5.3 Adaptive Elitist Differential Evolution ELM (AEDE-ELM) 

Given that ELMs produce the initial weights (weights) and (bias) randomly, the process 

may not reach the optimal result, which may not imply as high classification accuracy 

as the desired one. The optimal choice of weights and bias, create the conditions for 

maximum potential accuracy and of course the best generalization performance of the 

ELMs [42]. To solve the above problem, we recommend the use of the AEDE 

optimization method for the optimal selection of weights and bias of the ELMs. 
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Initially, each individual in the first generation is obtained randomly, and it is composed 

of the input weights and hidden biases: 𝑥 = [𝜔1, 𝜔2, … , 𝜔𝑙 , 𝑏1, 𝑏2, … , 𝑏𝑙] 
Secondly, the corresponding output weights matrix for each individual is calculated in 

the manner of the ELM algorithm. Then, we apply AEDE to find the fitness for each 
individual in the population. Finally, when the evolution is over, we can use the optimal 

parameters of the ELM to perform the classification [42]. 

The procedure of AEDE-ELM algorithm is shown by Algorithm 3 [42]. 
 

Algorithm 3: aeDE-ELM algorithm [42] 

Input:  

    Training set, testing set; 

    aeDE algorithm parameters, NP; 
1: Create a random initial population; 

2: Evaluate the fitness for each individual with training set; 
3: while (stopping criteria not met) do 
4:           Randomly generate Fi and CRi 

5:  for i=1 to NP do 

6:                 Call the Algorithm 2; 

7:                 Use the optimal parameters of ELM; 

8:           end for 

9:   end while 

10: Evaluate the optimized model by testing set; 

Output:  

    Classification result; 

6. Results and comparative analysis  

It is extremely comforting and hopeful, the fact that the proposed system manages to 

solve a particularly complex cyber security problem with high accuracy. The 

performance of the proposed AEDE-ELM is evaluated by comparing it with RBFANN, 

GMDH, PANN and FNNGA learning algorithms. Regarding the overall efficiency of 

the methods, the results show that the AEDE-ELM has much better generalization 

performance and more accurate classification output from the other compared 

algorithms. The following table 1, presents the analytical values of the predictive power 

of the AEDE-ELM by using a 10-Fold Cross Validation approach (10-fcv) and the 

corresponding results when competitive algorithms were used.    
 

Table 1. Comparison between algorithms 

Classifier 

Classification Accuracy & Performance Metrics 

ACC RMSE Precision Recall F-Score ROC Area Validation 

SaE-ELM 96.55% 0.1637 0.966% 0.966 0.965% 0.996 10-fcv 

RBF ANN 90.60% 0.2463 0,909% 0.907 0.907% 0.905 10-fcv 
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GMDH 92.66% 0.1828 0.927% 0.927 0.927% 0.980 10-fcv 

PANN 91.34% 0.2162 0.914% 0.913 0.914% 0.961 10-fcv 

FNN-GA 94.71% 0.2054 0.947% 0.947 0.947% 0.969 10-fcv 

 

The Precision measure shows what percentage of positive predictions where correct, 

whereas Recall measures the percentage of positive events that were correctly 

predicted. The F-Score can be interpreted as a weighted average of the precision and 

recall. Therefore, this score takes both false positives and false negatives into account. 

Intuitively it is not as easy to understand as accuracy, but F-Score is usually more useful 

than accuracy and it works best if false positives and false negatives have similar cost, 

in this case. Finally, the ROC curve is related in a direct and natural way to cost/benefit 

analysis of diagnostic decision making. This comparison generates encouraging 

expectations for the identification of the AEDE-ELM as a robust classification model 

suitable for difficult problems.  

According to this comparative analysis, it appears that AEDE-ELM is highly suitable 

method for applications with huge amounts of data such that traditional learning 

approaches that use the entire data set in aggregate are computationally infeasible. This 

algorithm successfully reduces the problem of entrapment in local minima in training 

process, with very fast convergence rates. These improvements are accompanied by 

high classification rates and low test errors as well. The performance of proposed model 

was evaluated in a high complex dataset and the real-world sophisticated scenarios. The 

experimental results showed that the AEDE-ELM has better generalization 

performance at a very fast learning speed and more accurate and reliable classification 

results. The final conclusion is that the proposed method has proven to be reliable and 

efficient and has outperformed at least for this security problem the other approaches.   

7. Discussion – Conclusions 

An innovative biologically inspired hybrid computational intelligence approach 

suitable for big data was presented in this research paper. It is a computational 

intelligence system for identification cyber-attacks on Smart Energy Grids. 

Specifically, the hybrid and innovative AEDE-ELM algorithm was suggested which 

uses the innovative and highly effective algorithm AEDE in order to optimize the 

operating parameters of an ELM. The classification performance and the accuracy of 

the proposed model were experimentally explored based on several scenarios and 

reported very promising results. Moreover, SICASEG is an effective cross-layer system 

of network supervision, with capabilities of automated control. This is done to enhance 

the energetic security and the mechanisms of reaction of the general system, without 

special requirements. In this way, it adds a higher degree of integrity to the rest of the 

security infrastructure of Smart Energy Grids. The most significant innovation of this 

methodology is that it offers high learning speed, ease of implementation, minimal 
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human intervention and minimum computational power and resources to properly 

classify SCADA attacks with high accuracy and generalization.   

Future research could involve its model under a hybrid scheme, which will combine 

semi supervised methods and online learning for the trace and exploitation of hidden 

knowledge between the inhomogeneous data that might emerge. Also, SICASEG could 

be improved towards a better online learning with self-modified the number of hidden 

nodes. Moreover, additional computational intelligence methods could be explored, 

tested and compared on the same security task in an ensemble approach. Finally, the 

ultimate challenge would be the scalability of SICASEG with other bio-inspired 

optimization algorithms in parallel and distributed computing in a real-time system.   
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