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Abstract. Developments and upgrades in the field of industrial information

technology, particularly those relating to information systems’ technologies for

the collection and processing of real-time data, have introduced a large number of

new threats. These threats are primarily related to the specific tasks these appli-

cations perform, such as their distinct design specifications, the specialized

communication protocols they use and the heterogeneous devices they are

required to interconnect. In particular, specialized attacks can undertake

mechanical control, dynamic rearrangement of centrifugation or reprogramming

of devices in order to accelerate or slow down their operations. This may result in

total industrial equipment being destroyed or permanently damaged.

Cyber-attacks against Industrial Control Systems which mainly use Supervisory

Control and Data Acquisition (SCADA) combined with Distributed Control

Systems are implemented with Programmable Logic Controllers. They are

characterized as Advanced Persistent Threats. This paper presents an advanced

Spiking One-Class Anomaly Detection Framework (SOCCADF) based on the

evolving Spiking Neural Network algorithm. This algorithm implements an

innovative application of the One-class classification methodology since it is

trained exclusively with data that characterize the normal operation of ICS and it is

able to detect divergent behaviors and abnormalities associated with APT attacks.

Keywords: Industrial Control Systems � SCADA � PLC � APT � evolving
Spiking Neural Network � One-class classification � Anomaly detection

1 Introduction

1.1 Industrial Control System (ICS)

Automation and remote control are the most important methods used by critical

infrastructure in order to improve productivity and quality of service. In this respect,

the efficient management of industrial IT and the introduction of sophisticated
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automation systems, have contributed to the emergence of advanced Cyber-attacks

against Industrial Control Systems (ICS) [1]. These systems are active devices of the

infrastructure network whereas the successful completion of specialized activities

requires all the devices used to be accurately controlled and totally reliable. Typi-

cal ICS automation devices are SCADA, Distributed Control Systems (DCS), Pro-

grammable Logic Controllers (PLC) together with the sensors used in control loops to

collect the measurements [2]. The above systems are properly interconnected to allow

remote monitoring and control of processes with high response rates, even in cases

where the devices are distributed between different distant points. The most important

categories of ICS applications concern water and sewage network infrastructure, nat-

ural gas, fuel and chemicals, building and building management systems in general,

power generation and distribution, automation of road arteries - railways - airports -

metro and telecom infrastructure management and Networks [3].

1.2 APT Against ICS

Integration into critical ICS infrastructures, especially where ICS includes features

related to communications and internet technologies, introduces risks and new threats

to the security and to the uninterrupted smooth operation of the critical infrastructure

they include [4]. Exploiting the vulnerabilities of the wired and wireless communica-

tion networks used to interface these devices, as well as the vulnerabilities associated

with their operating control, may cause total taking of critical devices and applications,

or unavailability of necessary services even partial or total destruction of them [5]. The

consequences may be severe. Critical infrastructures, however, are exposed not only to

new risks due to the vulnerabilities of the communications and computer network

(malware, spyware, ransomware) but also to the dangers inherent in the heterogeneity

currently characterized by these systems [6]. Physical attacks interrupt service provi-

sion, while cyberattacks attempt to gain remote access for their benefit [7]. In any case,

attacks against ICS are characterized as Advanced Persistent Threats (APT)s, as

cybercriminals are fully familiar with specialized methods and tools for exploiting

unknown vulnerabilities to the public (zero days). Most of the time, they are highly

competent and organized, they are funded and they have significant incentives.

The APT attack usually follows four steps [8].

Access: The attacker gathers as much information as possible and targets to specific

ICSelements (SCADA systems) by using zero days’ malware. In this way, he will

exploit weaknesses that will provide access [6–8].

Discovery: After gaining access to the critical infrastructures network, discovery

tactics are applied to the processes performed on it. For example, long term analysis

and monitoring of the information flow in the location of the attacker. This is done to

disclose information such as server mode, engineering workstation positions, archi-

tecture of local devices controlling individual components-units, connected Master

Stations and so on [6–8].
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Control: Once the network architecture and ICS mode have been understood, there

are several ways to control the system. Typical potential targets that can control the

network are the engineering workstation used to upgrade the software, database sys-

tems and the application server that hosts various applications used in the general

system.

Hiding: In this step, attackers hide all the elements of the attacks by deleting specific

folders that can betray their presence in automation systems [6–8]. Attacks designed to

attack SCADA systems (e.g. the Stuxnet virus) have created many doubts about the

level of critical infrastructure security and serious concerns about the consequences, as

society is heavily dependent on the routine operations of these infrastructures. Intel-

ligent anomaly detection is a process of high importance [6–8].

1.3 Anomaly Detection

The concept Anomaly Detection (AD) [9] refers to the recognition of standards from a

set of data that exhibit a different behavior than expected. The goal is high level

detection of possible anomalies combined with low false alert rates. The AD can be

supervised, (performed on a training set containing normal versus anomalous classes)

and semi-supervised where the training set is usually characterized as normal. The

usual semi-supervised approach constructs a model to respond to normal behavior

which is applied to determine the anomalies in the test data. In the unsupervised

approach, no training is performed. It is based on the assumption that the normal

incidents are more than the extreme ones in the testing data. If this reasoning does not

apply, then the techniques have a large error rate [10]. Several abnormality detection

techniques have been proposed in the literature, with more popular the One-class

classification (OCC) methods, the Distance Based [11] ones, the Replicator Neural

Networks [12] and the Conditional Anomaly Detection [13].

1.4 One-Class Classification

In machine learning (ML), the OCC method [14], tries to find objects of a particular

class among all objects, by learning from a training set containing only objects of this

class. Typically, these algorithms aim to implement classification models in which the

negative class is absent, either because the missing class is not sampled, or due to the

fact that it is difficult to do so. This mode of operation in which classifiers are required

to determine effectively and reliably the boundaries of the class separation only based

on the knowledge of the positive class, is a particularly complex problem of ML. When

only data from the target class is available, the classifier is trained to receive target

objects and to reject the ones that deviate significantly. Finally, it should be noted that

the basic concept in OCC problem solving is the reverse of the generalization that is

being pursued in other ML problems [15]. Particularly, it is intended that the parameter

setting is fully defined, even if this exponentially increases the complexity of the

classifier, provided it is able to correctly classify the target data.
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1.5 The Proposed SOCCADF

Identifying anomalies that lead to scrapping or deprecation of ICS devices is an

extremely complex matter, due to the fact that ART attacks are the most advanced and

highly intelligent cyber-engineering techniques, operating under a chaotic architecture

of industrial networks. Also, given the passive operation of traditional security systems

which in most cases are unable to detect serious threats, alternative more active and

more meaningful methods of locating ART attacks are necessary. Our research team

has developed several innovative approaches of computational intelligence towards

security threats identification. Herein we are proposing an intelligent system that sig-

nificantly enhances the security level of critical infrastructures, by consuming the

minimum level of resources. It is the Spiking One-Class Anomaly Detection Frame-

work (SOCCADF), which exploits for a first time a special operation form of the

evolving Spiking Neural Network (eSNN) algorithm, in order to effectively classify the

ICS anomalies resulting from APT attacks [16–30].

1.6 Innovation

An important innovation of SOCCADF is the use for first time of the eSNN algorithm

(incorporated in Spiking Neural Networks) for the implementation of an OCC anomaly

detection system. SNNs simulate the functioning of biological brain cells in a most

realistic way and they rationally model data in a spatiotemporal mode. The produced

signals are transmitted by discharges of temporal pulses, where duration and frequency

of time pulses between neurons are the crucial factors. Also, innovation is attributed to

the addition of artificial intelligence at the level of real-time analysis of industrial

equipment, which greatly enhances the defensive mechanisms of critical infrastruc-

tures. It is much easier to locate ARTs Attacks by controlling the interdependencies of

ICS at all times. Finally, there is innovation in the data selection process. This data has

emerged after extensive research in the way ICS work and after comparisons and tests

regarding the boundaries of their inherent behavior that determine their classification in

normal or outliers.

2 Literature Review

Moya et al. [31] originated the term One-Class Classification in their research. Dif-

ferent researchers have used other terms such as Single Class Classification [32–34].

These terms originated as a result of different applications to which OCC has been

applied. Juszczak [35] has defined One-Class Classifiers as class descriptors able to

learn restricted domains in a multi-dimensional pattern space, using primarily just a

positive set of examples. Luo et al. [36] have proposed a cost-sensitive OCC-SVM

algorithm for intrusion detection problem. Their experiments have suggested that

giving different cost or importance to system users than to processes results in higher

performance in intrusion detection than other system calls. Shieh and Kamm [37] have

introduced a kernel density estimation method to give weights to the training data
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objects, such that the outliers get the least weights and the positive class members get

higher weights for creating bootstrap samples.

Soupionis et al. [38] proposed a combinatorial method for automatic detection and

classification of faults and cyber-attacks occurring on the power grid system when there

is limited data from the power grid nodes due to cyber implications. In addition, Tao

et al. have described the network attack knowledge, based on the theory of the factor

expression of knowledge, and studied the formal knowledge theory of SCADA net-

work from the factor state space and equivalence partitioning. This approach utilizes

the factor neural network (FNN) theory which contains high-level knowledge and

quantitative reasoning described to establish a predictive model including analytic FNN

and analogous FNN. This model abstracts and builds an equivalent and corresponding

network attack and defense knowledge factors system.

Also, Qin et al. [39] have introduced an analytic factor neuron model which

combines machine reasoning based on the cloud generator with the FNN theory.

The FNN model is realized based on mobile intelligent agent and malicious behavior

perception technology. The authors have acknowledged the potential of machine

learning-based approaches in providing efficient and effective detection, but they have

not provided a deeper insight on specific methods, neither the comparison of the

approaches by detection performances and evaluation practices. Chen and Abdelwahed

[40] have applied autonomic computing technology to monitor SCADA system per-

formance, and proactively estimate upcoming attacks for a given system model of a

physical infrastructure. Finally, Yasakethu and Jiang in [41] have introduced a new

European Framework-7 project “CockpitCI (Critical Infrastructure)” and roles of

intelligent machine learning methods to prevent SCADA systems from cyber-attacks.

3 evolving Spiking Neural Network (eSNN)

The eSNNs based on the “Thorpe” neural model [42] are modular connectionist-based

systems that evolve their structure and functionality in a continuous, self-organized,

on-line, adaptive, interactive way from incoming information [43]. In order to classify

real-valued data sets, each data sample is mapped into a sequence of spikes using the

Rank Order Population Encoding (ROPE) technique [44, 45]. In this encoding method,

neurons are organized into neuronal maps which share the same synaptic weights.

Whenever a synaptic weight is modified, the same modification is applied to the entire

population of neurons within the map. Inhibition is also present between each neuronal

map. If a neuron spikes, it inhibits all the neurons in the other maps with neighboring

positions. This prevents all the neurons from learning the same pattern. When propa-

gating new information, neuronal activity is initially reset to zero. Then, as the prop-

agation goes on, each time one of their inputs fire, neurons are progressively

desensitized. This is making neuronal responses dependent upon the relative order of

firing of the neuron’s afferents [46, 47]. Also in this model, the neural plasticity is used

to monitor the learning algorithm by using one-pass learning method. The aim of this

learning scheme is to create a repository of trained output neurons during the pre-

sentation of training samples [48].
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4 ICS Anomaly Datasets

In order to carry out the research and evaluate the proposed model, 3 suitable datasets

were chosen to best match the ICS communication and transaction data [49]. These sets

include data logs from a gas pipeline, a lab scale water tower, and a lab scale electric

transmission system. The logs include flagged network transactions during the normal

operation of specific ICSs, as well as transactions during 35 different cyber-attacks. In

addition to the logs, measurements include normal behavior as well as abnormalities

detected during attacks that were simulated in a virtual ICS environment, including

Human Machine Interface (HMI), Virtual Physical Process, and Virtual Programmable

Logic Controller (VPLC) and a Virtual Network (VN). Although the configured virtual

systems do not have physical limits to the size of the modeling they simulate, the

virtual platform on which the data was collected was implemented by escalating the

ICS to represent their operating states in the most realistic way [49].

All three data sets contain network transaction data, preprocessed in a way to strip

lower layer transmission data (TCP, MAC) [49]. The “water_tower_dataset” includes

23 independent parameters and 236,179 instances, from which 172,415 are normal and

63,764 outliers. In the case of the “water_train_dataset” the algorithm was trained by

using 86,315 normal instances, whereas the rest 86,100 normal instances and the

63,764 outliers comprised the testing set “water_test_dataset”. The “gas_dataset”

contains 26 independent parameters and 97,019 instances, from which 61,156 are

normal and 35,863 outliers. For the “gas_train_dataset” case 30,499 normal instances

are used for the training process, whereas 30,657 normal instances and 35,863 outliers

comprise the “gas_test_dataset”. Finally, the “electric_dataset” includes 128 inde-

pendent features and 146,519 instances, from which 90,856 are normal and 55,663

outliers. The “electric_train_dataset” has 45,402 normal instances. The rest 45,454

normal ones and the 55,663 outliers comprise the “electric_test_dataset”. More details

related to the dataset and to the data selection process can be found in [49].

5 Methodology

5.1 Description of the eSNN One-Class Classification Method

The proposed methodology uses an eSNN classification approach in order to detect and

verify the anomalies on ICS. The topology of the developed eSNN is strictly

feed-forward, organized in several layers and weight modification occurs on the con-

nections between the neurons of the existing layers. The encoding is performed by

ROPE technique with 20 Gaussian Receptive Fields (GRF) per variable [46]. The data

are normalized to the interval [−1, 1] and so the coverage of the Gaussians is deter-

mined by using i_min and i_max. Each input variable is encoded independently by a

group of one-dimensional GRF. The GRF of neuron i is given by its center li by

Eq. (1) and width r by Eq. (2) [46]
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li ¼ Inminþ
2i�3

2

Inmax�I
n
min

M�2
ð1Þ

r ¼
1

b

Inmax � Inmin
M�2

ð2Þ

where 1� b� 2 and the parameter b directly controls the width of each Gaussian

receptive field. When a neuron reaches its threshold, it spikes and inhibits neurons at

equivalent positions in the other maps so that only one neuron will respond at any

location [50]. Every spike triggers a time based Hebbian-like learning rule that adjusts

the synaptic weights. For each training sample i with class label l, a new output neuron

is created and fully connected to the previous layer of neurons, resulting in a

real-valued weight vector wðiÞ with w
ðiÞ
j 2 R denoting the connection between the

pre-synaptic neuron j and the created neuron i. In the next step, the input spikes are

propagated through the network and the value of weight w
ðiÞ
j is computed according to

the order of spike transmission through a synapse [46]

j : w
ðiÞ
j ¼ ðmlÞ

orderðjÞ ð3Þ

where j is the pre-synaptic neuron of i. Function order(j) represents the rank of the

spike emitted by neuron j. The firing threshold hðiÞ of the created neuron i is defined as

the fraction cl 2 R, 0 \cl \1, of the maximal possible potential [46]

uðiÞmax : h ið Þ  clu
ið Þ
max ð4Þ

uðiÞmax  
X

j
w
ðiÞ
j ðmlÞ

orderðjÞ
ð5Þ

The weight vector of the trained neuron is compared to the weights corresponding

to neurons already stored in the repository. Two neurons are considered too “similar” if

the minimal Euclidean distance between their weight vectors is smaller than a specified

similarity threshold sl (the eSNN object uses optimal similarity threshold s = 0.6) [46].

Both the firing thresholds and the weight vectors were merged according to Eqs. (6)

and (7):

w
ðkÞ
j  

w
ðiÞ
j þNw

ðkÞ
j

1þN
ð6Þ

h kð Þ  
h ið Þ + Nh kð Þ

1þN
ð7Þ

Integer N denotes the number of samples previously used to update neuron k. The

merging is implemented as the average of the connection weights, and of the two firing

thresholds. After merging, the trained neuron i is discarded and the next sample
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processed. If no other neuron in the repository is similar to the trained neuron i, the

neuron i is added to the repository as a new output [46].

All parameters of eSNN included in this search space, are optimized according to

the Versatile Quantum-inspired Evolutionary Algorithm (vQEA) [46].

5.2 Threshold Deciding Criteria for the Proposed Method

The choice of the threshold value used for class separation is the most important and

critical factor for the success of the OCC approach. In order to determine the threshold,

and given that the training set contains only positive samples, this paper proposes a

reliable heuristic selection method based solely on criteria of merit. In particular, the

proposed algorithm assumes that a distance function d between the objects and the

target class is employed in the training phase. The determination of the threshold h for

the class separation (normal or outlier) is performed in a way that it discards a set of

training samples, most of which diverge from the target class, in order to strengthen the

classifier. Even when all samples are correctly labeled, the rejection of a small but

representative rate of training samples helps the classifier to learn the most represen-

tative set of training samples. This approach significantly enhances active security of

critical infrastructure. The following pseudocode presents the algorithmic approach for

the determination of the class separation threshold h.

Algorithm 1: Optimal Threshold

Optimal Threshold:

1: Calculate the error using Euclidean distance between actual and predicted on each training data; 

2:  Arrange the error in decreasing order;

3:  Set the threshold at rejection of 10% most erroneous data (false negative rate at the rate of 10%); 

6 Results and Comparative Analysis

The efficiency of the proposed OCC classifier is estimated by employing the following

statistical indices. The numbers of misclassifications are related to the False Positive

(FP) and False Negative (FN) indices A FP is the number of cases where you

wrongfully receive a positive result and the FN is exactly the opposite. On the other

hand, the True Positive (TP) is the number of records where you correctly receive a

Positive result. The True Negative (TN) is defined respectively. The True Positive rate

(TPR) also known as Sensitivity, the True Negative rate also known as Specificity

(TNR) and the Total Accuracy (TA) are defined by using Eqs. 8, 9, 10 respectively

[50]:

TPR ¼
TP

TPþ FN
ð8Þ

TNR ¼
TN

TNþ FP
ð9Þ
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TA ¼
TPþTN

N
ð10Þ

The Precision (PRE) the Recall (REC) and the F-Score indices are defined as in

Eqs. 11, 12 and 13 respectively:

PRE ¼
TP

TPþ FP
ð11Þ

REC ¼
TP

TPþ FN
ð12Þ

F� Score ¼ 2�
PRE � REC

PRE þREC
ð13Þ

The ROC (Receiver Operating Characteristic) is a standard technique for sum-

marizing classifier performance over a range of trade-offs between TP and FP error

rates. ROC curve is a plot of Sensitivity (the ability of the model to predict an event

correctly) versus 1-Specificity for the possible cut-off classification probability values

p0 [50]. The Precision measure shows what percentage of positive predictions where

correct, whereas Recall measures the percentage of positive events that were correctly

predicted. The F-Score can be interpreted as a weighted average of the precision and

recall. Therefore, this score takes both false positives and false negatives into account.

Intuitively it is not as easy to understand as accuracy, but F-Score is usually more

useful than accuracy and it works best if false positives and false negatives have similar

cost, in this case. Finally, the ROC curve is related in a direct and natural way to

cost/benefit analysis of diagnostic decision making [50].

In the training process of the OCC, only the probability density of the positive class

is known, which means that during training only the number of the positive class items

that are not classified correctly (FN) can be minimized. Basically, this means that due

to the fact that there are no examples of samples’ distribution belonging to other classes

(outliers) in the training phase, it is not possible to estimate the number of objects of

other classes that were misclassified as Positive (FP) by the OCC classifier. So given

the fact that TP + FN = 1 the algorithm during training can provide estimations only

for TP and FN. However during testing all four indices (TP, FN, TN, FP) can be

obtained.

The proposed system manages to operate effectively in a particularly complex

cyber security problem with high levels of accuracy. The performance of the SOC-

CADF is evaluated by comparing it with OCC Support Vector Machines (OCC-SVM)

and OCC Combining Density and Class Probability Estimation (OCC-CD/CPE)

learning. Regarding the overall efficiency of the method, the results show that the

proposed system significantly outperforms the other algorithms. The following

Table 1, presents the analytical values of the predictive power of the SOCCADF and

the corresponding results when competitive algorithms were used.
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7 Discussion and Conclusions

This comparison generates expectations for the identification of the SOCCADF as a

robust anomaly detection model suitable for difficult problems. According to this

comparative analysis, it appears that SOCCADF is highly suitable method for appli-

cations with huge amounts of data such that traditional learning approaches that use the

entire data set in aggregate are computationally infeasible. The eSNN algorithm suc-

cessfully reduces the problem of entrapment in local minima in training process, with

very fast convergence rates. These improvements are accompanied by high classifi-

cation rates and low-test errors as well. The performance of proposed model was

evaluated in a high complex dataset and the real-world sophisticated scenarios. The

experimental results showed that the SOCCADF has better performance at a very fast

learning speed and more accurate and reliable classification results. The final conclu-

sion is that the proposed method has proven to be reliable and efficient and has

outperformed the other approaches for the specific security problem.

Future research should include further optimization of the eSNN parameters,

aiming to achieve an even more efficient and faster categorization process. Also, it

would be important for the proposed framework to expand, based on “metalearning”

methods to self-improve and redefine its parameters so that it can fully automate the

process of locating APT attacks. Finally, an additional element that could be studied in

the direction of future expansion is the creation of an additional cross-sectional

anomaly analysis system. This could act counter-diametrically on the philosophy of the

eSNN classifier with potential enhancement of the system’s efficiency.

Table 1. Comparison between algorithms

water_tower_dataset

Classifier Classification accuracy & performance metrics

Total accuracy RMSE Precision Recall F-Score ROC area

OCC-eSNN 98.08% 0.1305 0.981 0.981 0.981 0.994

OCC-SVM 98.01% 0.1312 0.980 0.980 0.980 0.995

OCC-CD/CPE 96.75% 0.1389 0.975 0.975 0.975 0.980

gas_dataset

OCC-eSNN 98.82% 0.0967 0.988 0.988 0.988 0.995

OCC-SVM 97.98% 0.0981 0.980 0.980 0.980 0.990

OCC-CD/CPE 95.67% 0.1284 0.960 0.960 0.960 0.975

electric_dataset

OCC-eSNN 98.30% 0.1703 0.983 0.983 0.983 0.999

OCC-SVM 97.63% 0.1840 0.978 0.978 0.978 0.990

OCC-CD/CPE 97.02% 0.1897 0.970 0.970 0.970 0.985
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