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Abstract
Data streams are characterized by high volatility, and they drastically change in an unpredictable way over time. In the

typical case, newer data are the most important, as the concept of aging is based on their timing. These flows require real-

time processing in order to extract meaningful information that will allow for essential and targeted responses to changing

circumstances. Knowledge mining is a real-time process performed on a subset of the data streams, which contains a small

but recent part of the observations. Timely security requirements call for further quest of optimal approaches, capable of

improving the reliability and the accuracy of the employed classifiers. This research introduces a real-time evolving spiking

restricted Boltzmann machine approach, for efficient anomaly detection in data streams. Testing has proved that the

proposed algorithm maximizes the classification accuracy and at the same time minimizes the computational resources

requirements. A comparative analysis has shown that it outperforms other data flow analysis algorithms.

Keywords Big Data � Data streams analysis � Evolving spiking neural networks � Restricted Boltzmann machines �
Deep learning � Real-time anomaly detection

1 Introduction

Information generated by complex environments such as

the Internet of Things (IOT) ecosystem, has increased

exponentially [1]. The result is the inefficient management

and storage of the total volume of generated information.

This requires the adoption of complex real-time data

mining and analysis architectures [2]. These architectures

should incorporate specialized real-time processing algo-

rithms that dynamically adapt to new standards or data, or

to scaled data production as a function of time [3].

Although mining data streams is an emerging area, it poses

enormous challenges to the data mining community. High

transmission speed, change of data distribution and high vol-

ume raise the following issues that should be addressed [4]:

• High velocity Online data streams arrive at a very high

speed. Thus, it has become almost practically infeasible

to scan all of them. This is also the case for the off-line

ones.

• Concept drift Frequent patterns keep changing, as data

streams are time varying in nature. During the mining

process, as new incoming data are added to the existing

ones, some frequent patterns may change their status to

become infrequent and vice versa. This issue is known

as the concept drift problem.

• Unbounded size Data streams are unbounded in size.

Their size is unknown to the user in advance unlike the

static data.
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• Enormous space requirement Huge amount of data are

generated both in online and off-line applications.

There might not be enough space to store the data

stream before processing.

• Unsteady analysis results High-speed as well as varying

data distribution may affect the analyzed results, due to

which the mining outcome may be declined. In order to

cope with this, data streams mining must be an

incremental process.

Anomaly detection [5] over multiple data streams is

initially determined by the real-time observation of a single

(multivariable) time-series frequency, which constitutes the

systems’ quantitative performance parameters.

A data stream si coming from a system of sensors

consists of numerical values determined by a function of

time (t), where t [ [0, ? !]. The values of (t) must be in

the closed interval [0, 1]. If n sensor flows are synchro-

nized periodically to report their values, the whole of the

multivariable information at each time t is represented by

the following frame vector (Eq. 1) [6]:

DPt ¼ s1 tð Þ; s2 tð Þ; . . .; sn tð Þ 2 Rnð Þ ð1Þ

In practice, each flow forms a one-dimensional time

series, while the frame vector flow (FVF) represents a

multivariable time series. Event detection on data streams

is intended to determine the values si (t), which represent

abrupt changes within an FVF.

Particularly, each FVF of length n is converted to a

binary vector of the same length, where each value repre-

sents a possible change in the corresponding sensor flux.

Such deviations from the normal behavior are called

events, and binary vectors are called event vectors. An

event may be an observation that does not conform to an

expected standard in the dataset (anomaly). Incidents may

have been caused by a variety of reasons, like sensor

failure or malfunction, or deviations and substantial chan-

ges that may affect the system’s behavior, such as cyber-

attacks. Therefore, a vector of events in time t is

represented by Eq. 2 [7, 8]:

DRt ¼ et1; e
t
2; . . .; e

t
nÞ 2 0; 1½ �

�
ð2Þ

Finally, eti ¼ ei tð Þ is the binary value which represents

the occurrence of an abnormal flow behavior, and it is

equal to (t) = 1 in time t.

The error is calculated at each iteration, as data char-

acteristics can change drastically and in an unpre-

dictable way changing the typical, normal behavior. An

object that may be considered abnormal can then be

included in the set of normal observations due to rapid

developments in the data stream. Due to the fact that the

data volume is unlimited, data mining is performed on a

subset of the flow, called a sliding window, which

obviously contains a small but recent percentage of the

observations. The goal of the data flow processing algo-

rithms is to minimize the cumulative error for all iterations,

which can be calculated by Eq. 3 [7, 8]:

In w½ � ¼
Xn

j¼1
V w; xj; yj
� �

¼
Xn

j¼1
xTj w� yj

� �2

ð3Þ

where xj 2 Rd;w 2 Rd and yj 2 R. We consider that i� d is

a data matrix and i� 1 is a matrix with target values, after

the arrival of the first i data points. Assuming that the

covariance matrix Ri ¼ XTX is reversible, the optimal

solution f � xð Þ ¼ w�; x is given by Eq. 4 [7, 8]:

w�;Xh i ¼ XTX
� ��1

XT� ¼ R�1i

Xi

j¼1
xjyj ð4Þ

First, the covariance table is calculated Ri ¼
Pi

j¼1 xjx
T
j .

The initial time complexity (CM) is calculated to be of

O id2ð Þ order, but after we inverse the XTX d � dð Þ table, it
increases to O d3ð Þ, while the rest of the required multi-

plications have an O d2ð ÞCM. This produces an overall CM

of O id2 þ d3ð Þ [7, 8].
It is conceivable that robust systems ensuring reliability

and high accuracy rates without requiring high availability

of resources are required, to safely approach problems

stemming from knowledge mining processes. The above

argument is further supported as follows: Let’s suppose

that the set of data points is equal to n, and after the arrival

of each new data point i = 1, 2, …, n, recalculation of the

solution is required. In this case, the total time complexity

is equal to O n2d2 þ nd3ð Þ [8].
Summarizing, we suggest that a successful model

requires good preparation and methodological determination

of the operating parameters related to the data processing

algorithms. This can avoid long-term convergence, unwan-

ted variations in precision that may be associated with fre-

quent model updates and instability or loss of generalization,

which may be due to corrupted and noisy data.

1.1 Innovation of the proposed approach

This research introduces the real-time e-SREBOM algo-

rithm, which performs successful anomaly detection in data

streams. This is a hybrid, sophisticated, innovative and

highly effective anti-malware detection method.

To the best of our knowledge, the evolving spiking

restricted Boltzmann machine algorithm is introduced to

the literature for the first time, as a hybrid anomaly

detection approach (combining two well-established algo-

rithms). Our research team was inspired by the need to

maximize the classification accuracy and to simultaneously

minimize the computational resources requirements.
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The structure of the rest of the paper is the following:

Sect. 2 is the literature review, which briefly describes

some of the most well-known machine learning approa-

ches used in processing of data streams. Section 3 is an

overall description of the methodology employed herein,

whereas Sect. 4 presents the proposed e-SREBOM algo-

rithm. Sections 5 and 6 present the datasets and the

evaluation metrics, respectively, and Sect. 7 shows and

illustrates the results and the last chapter discusses the

conclusions.

2 Literature review

Data mining in nonstationary data streams is gaining more

attention recently, especially in the context of Internet of

Things and Big Data. To cope with evolving data streams,

ensembles are often coupled with drift detectors. The

leveraging bagging for evolving data streams [9] and the

adaptive windowing are characteristic algorithms [10]. The

diversity for dealing with drifts online ensemble learning

[11] employs the early drift detection method [12] to detect

concept drifting. Another approach to deal with concept

drift while using an ensemble of classifiers is to constantly

reset the low-performance classifiers [13, 14]. This reactive

approach is useful to recover from gradual drifts, while

methods based on drift detectors are more appropriate for

rapidly recovering from abrupt drifts. Moreover, Yang

et al. [15] present a novel method for concept drift detec-

tion, based on: (1) the development and continuous

updating of online sequential extreme learning machines

and (2) the quantification of how much the updated models

are modified by the newly collected data. The results show

the superiority of the proposed method with respect to

alternative state-of-the-art concept drift detection methods.

Furthermore, updating the prediction model when the

concept drift has been detected is shown to allow

improving the overall accuracy of the energy prediction

model and, at the same time, minimizing the number of

models updating. A major issue is the fact that the method

is time-consuming and needs significant computational

resources. Domingos et al. [16] have developed the varying

fast decision tree algorithm which is constructed on

Hoeffding trees. The split point is found by using

Hoeffding bound, which satisfies the statistical measure.

This algorithm also drops the nonpotential attributes.

Hence, the cost of acquiring the confidence interval is

sublinear in terms of confidence level and quadratic in

terms of precision. Note that there are more efficient

methods of estimating a confidence interval. Aggarwal

introduced the idea of microclusters included in CluStream,

following on-demand classification [17]. This technique

exploits clustering results to classify data, using statistics of

class distribution in each cluster. But, as the number of

records increases, the performance of algorithm goes

decreasing and time for execution increases. Therefore, for

the same amount of data, micro-clustering will take

quadratic amount of time. Peng and Zhang [18] proposed a

model that categorizes concept drift in data streams based

on the following two scenarios, namely the loose concept

drifting and the rigorous one. They proposed solutions to

handle each one of them, by using a weighted instance,

plus a weighted classifier ensemble framework, such that

the overall accuracy of the built classifier ensemble

framework can reach the minimum value.

Losing et al. [19] proposed the self-adjusting memory

(SAM) model for the k-nearest neighbor (k-NN) algorithm,

since k-NN constitutes a proven classifier within the

streaming setting. SAM-kNN can effectively deal with

heterogeneous concept drift, i.e., different drift types and

rates, using biologically inspired memory models and their

coordination. Rani and Sumathy [20] used the k-NN

algorithm to determine the optimal subset.

Some researchers have employed the primal estimated

sub-gradient solver for support vector machines (SVM)

algorithm, known as ‘‘Pegasos’’. Shalev-Shwartz et al. [21]

described and analyzed a simple and effective stochastic

sub-gradient descent algorithm for solving the optimization

problem cast, by using SVM. Their algorithm was partic-

ularly well suited for large text classification problems,

where authors demonstrated an order-of-magnitude

speedup, over all previous SVM methods.

Random forests is currently one of the most popular ML

algorithms in the nonstreaming (batch) setting. This pref-

erence is attributed to its high learning performance and to

its low demands with respect to input preparation and

hyper-parameter’s tuning. The adaptive random forests

(ARF) algorithm [22] is often employed for the classifi-

cation of evolving data streams. ARF includes an effective

resampling method and adaptive operators that can cope

with different types of concept drifts without performing

complex optimizations.

The e-SREBOM algorithm (proposed herein) optimizes

the run-time performance of ARF by limiting the number

of detectors, as maintenance of several detectors that often

trigger simultaneously, would be a redundant consumption

of resources.

3 Methodology

The hybrid architectural standardization and development

of the proposed e-SREBOM data flow analysis algorithm is

employed by an intelligent cybersecurity monitoring,

modeling and management system. It is based on intelli-

gent methods that have been widely used by our research
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team [23–26]. This study has emerged after extensive and

long-term research on stream analysis, and it performs

actions on real-time data. This paper exploits and considers

some of the most important suggestions and innovations of

our prior research [27–31].

3.1 Evolving spiking neural network (e-SNN)

Spiking neural networks (SNNs) [32] have been developed

to cover and overcome the simplifying assumptions and

generalizations of existing technologies. These models aim

at simulating (in the most realistic way) the complex

structures of the human brain and the way neuronal

information is processed and transmitted. SNNs use spike

sequences, as neural coding and internal presentation

mechanisms, as opposed to the usual continuous variables,

and they have better computational cost than traditional

neural networks (ANN).

Neural encoding is the domain that analyzes and char-

acterizes the following [32]: (a) the relationship between a

stimulus with the individual or overall neuronal responses,

(b) the relationship between the overall electrical activities

of the neurons and (c) the processes of information trans-

formation and representation in a form suitable for trans-

mission and analysis. It is considering the cases of potential

actions that vary in terms of duration, width, intensity and

length of intervals between two successive spikes in a

serial spike sequence. It is the process of encoding the

input data in a suitable form, which is transmitted as serial

signals (spike trains).

The e-SNNs [33] are based on the ‘‘Thorpe’’ neural

model. They are modular connectionist-based systems that

evolve their structure and functionality in a continuous,

self-organized, online, adaptive and interactive way, by

exploiting incoming information. In order to classify real-

valued datasets, each data sample is mapped into a

sequence of spikes using the rank order population

encoding (ROPE) technique. In this encoding method,

neurons are organized into neuronal maps which share the

same synaptic weights. Whenever the synaptic weight is

modified, the same modification is applied to the entire

population within the neuronal map, where inhibition is

also present. If a neuron spikes, it inhibits all the neurons in

the other maps with neighboring positions. This prevents

all neurons from learning the same pattern. When propa-

gating new information, neuronal activity is initially reset

to zero. As the propagation goes on (each time one of their

inputs fires), neurons are progressively desensitized. This is

making their responses dependent upon the relative order

of firing of the neuron’s afferents. Neural plasticity is used

to monitor the learning algorithm by using the one-pass

learning method. The aim of this scheme is to create a

repository of trained output neurons during the presentation

of training samples.

3.2 Restricted Boltzmann machines

The restricted Boltzmann machines (REBOM) [34] belong

to the family of energy-based models, where each config-

uration of the variables of interest corresponds to a finite

scalar energy value used for training. The learning process

is performed by modifying the energy function (ENF), so

that its shape is desirable [35]. An energy model could be

trained to output a low value, when the variables’ config-

uration appears frequently in the experimental data, thus

giving a generator model. Moreover, the ENF offers the

potential to define probability distributions of the following

form [34, 35]:

P xð Þ ¼ e�Energy xð Þ

Z
ð5Þ

where x is the variables set and the value of the partition

function Z is determined by normalization Eq. 6:

Z xð Þ ¼
X

x

e�Energy xð Þ ð6Þ

In several problems, it is not possible to observe the

values of all variables at the same time. A popular option in

these cases is to divide the variables into the following two

groups, namely the visible group x and the hidden one

denoted as h. The common probability distribution is

defined by Eq. 7:

P x; hð Þ ¼ e�Energy x;hð Þ

Z
ð7Þ

4 The proposed model

4.1 The REBOM

This research paper proposes a highly efficient hybrid

computing intelligence mechanism for analyzing data

flows. This approach stems from the innovative hybrid

combination of the e-SNN and REBOM algorithms.

Specifically, REBOM is a symmetric graphical model with

a visible and a hidden layer described in the [34, 35] and

analytical model presented in the following functions.

Specifically, the units of one layer are connected (and

thus dependent) only with units of the next one. This

approach makes it easier to train its layout. The REBOM’s

ENF with V visible units and H hidden ones is defined

according to Eq. 8:
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E v; hð Þ ¼ �
XV

i¼1

XH

j¼1
vihjwij �

XV

i¼1
vib

v
i �

XV

j¼1
hjb

h
j ð8Þ

where v and h are binary vectors related to the state of visible

units and to the state of hidden units, respectively. More-

over, vi and hj correspond to the individual state of each

visible unit (VU) i, and each hidden unit (HU) j, respec-

tively, and wij is the weight assigned to their connection.

Finally, bvi and b
h
j are the bias of the VU i and the bias of the

HU j. The reserved probability p vjhð Þ is given by Eq. 9:

p vjhð Þ ¼ e�E v;hð Þ
P

g e
�E g;hð Þ ð9Þ

In the specific case of examining a unit i of the visible

level, the assigned reserved probability distribution (if we

know the status of the hidden layer h) is estimated by

Eq. 10:

p vk ¼ 1jhð Þ ¼ 1

1þ e
�
PH

j¼1 hjwkjþbvk
ð10Þ

The reserved probabilities p hjvð Þ and p hk ¼ 1jvð Þ are
defined by Eqs. 11 and 12, respectively:

p hjvð Þ ¼ e�E v;hð Þ
P

g e
�E v;gð Þ ð11Þ

and

p hk ¼ 1jvð Þ ¼ 1

1þ e�
PV

i¼1 viwkjþbhk
ð12Þ

These relations express the independence of the units of

the two levels from the units of the same level.

The proposed energy model can be trained if appropriate

energy-specific limitations for each configuration are

given. For example, in the case of a set of observations, we

aim to maximize the likelihood that these data will appear

in our model, giving them less energy. More specifically,

let us give a set of training cases vcjc 2 Cf g. Training the

e-REBOM is the process of finding values for its param-

eters that maximize the mean logarithmic probability of the

occurrence of set C (Eq. 13):

XC

c¼1
logp

P
g e
�E vc;gð Þ

P
u

P
g e
�E u;gð Þ ð13Þ

Several engineering learning problems are usually

optimized by using gradient descent, where at each exe-

cution step we are approaching the final solution by uti-

lizing the information given by the gradient function at that

point. Let us suppose that we want to find the function for

the renewal of the weights wij. The calculation of the

partial derivative of the cost function to wij and the use of

Eq. 14 result in the following:

o

owij

XC

c¼1
logp vcð Þ ¼ o

owij

XC

c¼1
log

X

g

e�E vc;gð Þ

� log
X

u

X

g

e�E u;gð Þ
ð14Þ

The first term is calculated by the average values of

vci ; gj when the visible level of e-REBOM is led by the data

(vc), whereas the second term corresponds to the values of

vi; gj when the data are ‘‘produced’’ by the model. An

equivalent way of formulating would suggest that every

weight wij should change to become equal to Dwij (Eq. 15):

Dwij ¼ ew Edata vihj
� �

� Emodel vihj
� �� �

ð15Þ

She proposed e-REBOM model starts approaching the

actual values of the data. The first term Edata vihj
� �

can be

calculated easily, since knowing the values of the units at

the visible level, we can calculate the reserved probability

for each unit at the hidden level. Calculation of the second

term, which presupposes the existence of samples from the

model itself, is more difficult. An obvious solution to the

problem is to initiate the units at the visible level at random

values and then to take samples by the Gibbs sampling.

This can be achieved through the relevant functions, so that

after several iterations the model will be forced to ‘‘forget’’

the original (random) state.

Gibbs sampling is a Markov chain Monte Carlo algo-

rithm [36] that repeatedly samples from the conditional

distribution of one variable of the target distribution p,

given all of the other variables. Gibbs sampling works as

follows:

1. Initialize x tð Þ ¼ x
tð Þ
1 ; . . .; x

tð Þ
k

� �
14ð Þ for t ¼ 0

2. For t ¼ 0; 1; . . .

(a) Pick index i uniformly at random from 1, …, k

(b) Draw a sample a � p x
0

ijx
tð Þ
�i

� �
where x

tð Þ
�i is the

set of all variables in x tð Þ except for the ith

variable.

(c) Let

x tþ1ð Þ ¼ x
tð Þ
1 ; x

tð Þ
2 ; . . .; x

tð Þ
i�1; a; x

tð Þ
iþ1; . . .; x

tð Þ
k

� �
ð16Þ

Gibbs sampler [37] simulates cases of multidimensional

target distributions, which are already known. Thus, the

overall problem is transformed to a simulation of cases

following a low-dimensional distribution. Gibbs sampler is

valid under the assumption that we can compute condi-

tional distributions of one variable, based on the rest of the

variables and by sampling these distributions. In graphical

models, the conditional distribution only depends on the

variables in the Markov blanket of that node. Let us show

that Gibbs sampling is a special case of Metropolis–
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Hastings algorithm (a Markov chain Monte Carlo method)

[37] where the proposed moves are always accepted (the

acceptance probability is 1).

Let xi denote the ith variable, and let x�i denote the set

of all variables except xi. Let

Q x
0

i; x�ijxi; x�i
� �

¼ 1

k
p x

0

ijx�i
� �

: ð17Þ

Let

A x
0

i; x�ijxi; x�i
� �

¼ min 1; að Þ ð18Þ

where

a ¼
p x

0
i; x�i

� �
Q xi; x�ijx

0
i; x�i

� �

p xi; x�ið ÞQ x
0
i; x�ijxi; x�ið Þ !

a ¼
p x

0

i; x�i
� �

p xijx�ið Þ
p xi; x�ið Þp x

0
ijx�ið Þ !

a ¼
p x

0
ijx�i

� �
p x�ið Þp xijx�ið Þ

p xijx�ið Þp x�ið Þp x
0
ijx�ið Þ !

a ¼ 1

As it can be seen, the full implementation of this method

is not efficient because it requires a long execution time

[37]. Hinton [38] showed that if the Markov chain is only

run for a few steps, the learning can still work well, and it

approximately minimizes a function called contrastive

divergence (CODI). The optimal solution in these cases

involves optimization through CODI [38]. The basic, sin-

gle-step contrastive divergence procedure for a single

sample can be summarized as follows [39]:

1. Take a training sample v, compute the probabilities of

the hidden units and sample a hidden activation

vector h from this probability distribution.

2. Compute the outer product of v and h and call this

the positive gradient.

3. From h, sample a reconstruction v0 of the visible units

and then resample the hidden activations h0 (Gibbs
sampling step).

4. Compute the outer product of v0 and h0 and call this

the negative gradient.

5. Let the update to the weight matrix W be the positive

gradient minus the negative gradient, times some

learning rate: DW ¼ e uhT � u0h0Tð Þ.
6. Update the biases a and b analogously: Da ¼ e u� u0ð Þ;

Db ¼ e h� h0ð Þ.

CODI uses the following two tricks to speed up the

sampling process:

A. Since we eventually want p uð Þ � ptrain uð Þ (the true

underlying distribution of the data), we initialize the

Markov chain with a training example (i.e., from a

distribution that is expected to be close to p, so that the

chain will be already close to having converged to its

final distribution p).

B. CODI does not wait for the chain to converge. Samples

are obtained after only k-steps of Gibbs sampling. In

practice, k = 1 has been shown to work surprisingly

well.

In this case, the contrastive divergence method attempts

to approximate the quantity Emodel vihj
� �

, by performing the

sampling for a small number of iterations. Units at the

visible level are initialized to a sample from the existing

actual data, and we perform N iterations, taking some

‘‘reconstructed’’ data, due to model’s contribution. The

CODI method gives lower energy to the actual data and

much higher energy to the ‘‘reconstructions’’ resulting from

them. This helps the model approach the actual data

distribution.

The primary disadvantage of the contrastive divergence

[37, 38] is that the samples from Pn do not necessarily

explain the whole state space. Hence, some of the modes in

the model distribution are not explored. Even after learning

has converged, the model distribution possesses the modes

that are not included in the data distribution as it is defined

by the training dataset. This problem is illustrated in Fig. 1.

The left figure shows the model distribution (blue) and

the training samples (black dots). The blue dots in the right

figure indicate the fantasy particles obtained by CODI

learning. It is apparent that the fantasy particles failed to

explain the whole space by missing the mode at the top. In

order to overcome the above problem and to make the

training process much faster and more efficient, this

research suggests that the e-REBOM training should be

performed based on the operation and training mode of the

e-SNN algorithm.

4.2 The e-SNN

Spiking neural networks (SNNs) fall into the third genera-

tion of neural networks models, increasing the level of

realism in a neural simulation. In addition to neuronal and

synaptic state, SNNs also incorporate the concept of time

into their operating model. The idea is that neurons in the

SNN do not fire at each propagation cycle (as it happens

with typical multilayer perceptron networks) but they rather

fire only when a membrane potential (an intrinsic quality of

the neuron related to its membrane electrical charge) reaches

a specific value. When a neuron fires, it generates a signal

which travels to other neurons which, in turn, increases or

decreases their potentials in accordance with this signal [32].

The topology of the e-SNN is strictly feed-forward,

organized in several layers, and weight modification occurs

on the connections between the neurons of the existing
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layers. The encoding is performed by the rank order pop-

ulation encoding (ROPE) technique with 20 Gaussian

Receptive Fields (GRF) per variable [33]. The ROPE

method is an alternative to conventional rate coding

scheme that uses the order of firing neuron’s inputs to

encode information. This allows the mapping of vectors of

real-valued elements into a sequence of spikes. In addition,

the e-SNN [33] uses the one-pass learning method. The aim

of this method is to create a repository of trained output

neurons during the presentation of training samples. After

presenting a certain input sample to the network, the cor-

responding spike train is propagated through the network

which may result in the firing of certain output neurons. It

is also possible that no output neuron is activated and in

this case the network remains silent and the classification

result is undetermined. If one or more output neurons have

emitted a spike, the neuron with the shortest response time

among all activated output neurons is determined. The

label of this neuron represents the classification result for

the presented input sample.

The CODI is used to train the REBOM model, by

optimizing the weight vector. In the spiking version of this

algorithm, Hebbian rule is used to calculate the weight

change in forward and reconstruction phase. Weight

changes from data layers result in potentiation of synapses

while those in model layers result in depreciation. Also,

weight change is calculated only when hidden layer neuron

fires. The proposed e-SREBOM implementation is based

on the following two rules:

• Any synapse that contributes to the firing of a

postsynaptic neuron should be made strong.

• Synapses that do not contribute to the firing of a

postsynaptic neuron should be demised.

Following the above rules, this is the algorithm for

updating weights.

• If a presynaptic neuron fires before a postsynaptic

neuron, then corresponding synapse should be made

strong by a factor proportional to the time difference

between the spikes. The smaller the time difference

between a postsynaptic and a presynaptic spike, the

higher is the contribution of that synapse in postsynaptic

firing and hence the greater the weight change (positive).

• If a presynaptic neuron fires after a postsynaptic neuron,

the corresponding synapse should be diminished by a

factor proportional to the time difference between the

spikes. The smaller the time difference between a

postsynaptic and a presynaptic spike, the smaller is the

contribution of that synapse in postsynaptic firing and

hence the greater the weight change (negative).

The weights’ update mechanism is performed by the e-

SNN algorithm. Specifically, neurons are organized into

neuronal maps which share the same synaptic weights.

Whenever the synaptic weight of a neuron is modified, the

same modification is applied to the entire population of

neurons within the map. Inhibition is also present between

each neuronal map. If a neuron spikes, it inhibits all the

neurons in the other maps with neighboring positions. This

prevents all the neurons from learning the same pattern.

When propagating new information, neuronal activity is

initially reset to zero. Then, as the propagation goes on,

neurons are progressively desensitizing each time one of

their inputs fire, thus making neuronal responses dependent

upon the relative firing order of the neuron’s afferents.

More precisely, let A = {a1, a2, a3, …, am-1, am} be the

ensemble of afferent neurons of neuron i and W = {w1,i,

w2,i, w3,i …wm-1,i, wm,i} the weights of the m corre-

sponding connections; let mod [ [0, 1] be an arbitrary

modulation factor. The activation level of neuron i at time t

is given by Eq. 19 [33]:

Activation i; tð Þ ¼
X

j2½1;m�
modorderðajÞwj;i ð19Þ

where order(aj) is the firing rank of neuron aj in the

ensemble A. By convention, if a neuron aj does not fire at

time t, the corresponding term order(aj) in the above sum is

set to zero. This kind of desensitization function could

correspond to a fast shunting inhibition mechanism.

Whenever a neuron reaches its threshold, it spikes and

inhibits neurons at equivalent positions in the other maps

Fig. 1 Problem of the

contrastive divergence (color

figure online)
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so that only one neuron will respond at any particular

location. Every spike also triggers a time-based Hebbian-

like learning rule that adjusts the synaptic weights. Let te be

the date of arrival of the excitatory postsynaptic potential at

synapse of weight W, and let ta be the date of discharge of

the postsynaptic neuron:

if te\ta then dW ¼ a 1�Wð Þe� Doj js ð20Þ

else dW ¼ �aWe� Doj js ð21Þ

where Do is the difference between the date of the EPSP

and the date of the neuronal discharge (expressed in terms

of order of arrival instead of time) and a is a constant that

controls the amount of synaptic potentiation and depression

[2].

4.3 The e-SREBOM

This rule of weight update has been used in the CODI

algorithm in order to train the e-SREBOM. In this imple-

mentation, the change in weight is kept constant in the

entire window. The hyper-parameters of this e-SREBOM

version are described below:

• Learning rate This parameter determines the size of a

weight update when a hidden layer neuron spikes, and it

controls how quickly the system changes its weights to

approximate the input distribution. It is considered to be

the most basic parameter of any neural network. There

is a trade-off associated with this parameter, and it can

be explained by the same experiment done above.

Higher learning rate develops fast receptive fields but in

an improper way. Accuracy increases quickly, but it

reaches a plateau much earlier. Lower learning rate

results in better training but it requires more samples

(more time) to reach the highest accuracy.

• Spikes per sample This parameter, also known as

luminosity, defines the spiking activity of the network

quantitatively. It is preferred to keep the activity as low as

possible (enough to change the weights). We have kept a

maximum bound on the number of spikes that an input

can generate. Without this moderation, there will be no

uniformity in the input activity across all the patterns.

• Weight initialization The range of uniformly distributed

weights used to initialize the network play a very

significant role in training, which most of the times is

not considered properly. Properly initializing the

weights can save significant computational effort, and

it can have drastic results on the eventual accuracy.

Generally, the weights are initialized between 0 and 1.

When signals propagate from visible to hidden, the input

layer (i.e., the data sample) is multiplied by the weight matrix

W and it is added with the bias vector b of the hidden layer. It

finally goes through the sigmoid function to be translated in

the interval [0, 1], which corresponds to the probabilities for

each hidden neuron to be on. However, it is very important to

keep the hidden states binary (0 or 1), rather than using the

probabilities itself. Only during the last update of the Gibbs

sampling, should we use probabilities for the hidden layer.

During backward pass, or reconstruction, the hidden layer

activation becomes the input, which is multiplied by the same

weight matrixW, added with visible biases, and then it either

goes through the sigmoid function or it is sampled from a

multivariate Gaussian distribution. The model is adjusting its

weights, during training, such that it could best approximate

the training data distribution p with its reconstruction distri-

bution q. For any pair of x and h, we are able to calculate

energy function E(x, h). Its value is scalar. The higher the

value of energy function, the lower the joint probability p(x,

h). Generally, the energy function, which is also scalar, is

exactly what we need for testing data, fromwhich we will use

the distribution to detect anomalies. The higher the energy,

the higher the chance of x being some anomalies [34, 39].

The process to tune hyper-parameters is described

below:

1. Split the data into training and validation sets with

ROPE technique. ROPE technique with receptive fields

allows the encoding of continuous values by using a

collection of neurons with overlapping sensitivity

profiles [33]. Each input variable is encoded indepen-

dently by a group of one-dimensional receptive fields.

For a variable n, an interval [Inmin; I
n
max] is defined. The

Gaussian receptive field of neuron i is given by its

center li:

li ¼ Inmin þ
2i� 3

2

Inmax � Inmin

M � 2
ð22Þ

The width r is given by the following function (23):

r ¼ 1

b
Inmax � Inmin

M � 2
ð23Þ

where 1	 b	 2 and the parameter b directly controls

the width of each Gaussian receptive field.

2. Train the model on the training dataset with one-pass

learning method, while evaluating the performance on

validation. The aim of the one-pass learningmethod is to

create a repository of trained output neurons, during the

presentation of the samples. After presenting a certain

input sample to the network, the corresponding spike

train is propagated through the spiking neural network,

which may result in the firing of certain output neurons.

It is also possible that no output neuron is activated, and

in this case, the network remains silent and the

classification result is undetermined. If one or more

output neurons have emitted a spike, the one with the
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shortest response time among all is activated. The label

of this neuron represents the classification result for the

presented input sample. For each training sample i with

class label l [ L a new output neuron is created and fully

connected to the previous layer of neurons This results

in a real-valued weight vector w ið Þ with w
ið Þ
j 2 R denot-

ing the connection between the presynaptic neuron j and

the created neuron i. In the next step, the input spikes are

propagated through the network and the value of weight

w
ið Þ
j is computed according to the order of spike

transmission through a synapse j : w
ðiÞ
j ¼ ðmlÞorder jð Þ

,

8jjj presynaptic neuron of i. Parameter ml is the

modulation factor of the Thorpe neural model. Differ-

ently labeled output neurons may have different mod-

ulation factors ml. Function order(j) represents the rank

of the spike emitted by neuron j. The firing threshold h ið Þ

of the created neuron I is defined as the fraction cl [ R,

0\ cl\ 1, of the maximal possible potential u
ið Þ
max:

h ið Þ  clu
ið Þ
max ð24Þ

uðiÞmax  
X

j

w
ðiÞ
j ðmlÞorder jð Þ ð25Þ

The fraction cl is a parameter of the model, and for

each class label l [ L, a different fraction can be

specified. The weight vector of the trained neuron is

then compared to the weights corresponding to neurons

already stored in the repository. Two neurons are

considered too ‘‘similar’’, if the minimal Euclidean

distance between their weight vectors is smaller than a

specified similarity threshold sl. (The e-SNN object

uses optimal similarity threshold s = 0.6.) In this case,

both the firing thresholds and the weight vectors are

merged according to functions (26) and (27):

w
ðkÞ
j  

w
ðiÞ
j þ Nw

ðkÞ
j

1þ N
; 8

j j j pre-synaptic neuron of i

ð26Þ

h kð Þ  h ið Þ þ Nh kð Þ

1þ N
ð27Þ

The merging is implemented as the (running) aver-

age of the connection weights and the (running) aver-

age of the two firing thresholds. After the merging, the

trained neuron i is discarded and the next sample is

processed. If no other neuron in the repository is sim-

ilar to the trained neuron i, the neuron i is added to the

repository as a new output neuron.The overall process

of the e-SREBOM training updates using CODI is

presented in Algorithm 1:
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3. Start the hidden layer with a smaller dimension than

the input layer (e.g., 5, 10). Set the learning rate to have

a small value (such as 0.001), and monitor the

validation dataset reconstruction error (not the actual

error against labels).

4. The reconstruction error is basically the mean squared

of the difference between the predicted x0 and the

actual data value x, averaged over the entire mini-

batch.

5. If the reconstruction error stops decreasing, that would

be a sign for early stopping.

5 Datasets

Appropriate datasets were chosen that closely simulate

Industrial Control Systems communication and transaction

data. They were used in the development and evaluation of

the proposed model. Network traffic analysis and feature

extraction methodology were determined based on the

functionality of ICS, namely on the verification of the

reliable and error-free data upload and capture mecha-

nisms. The sets also include data logs from flagged network

transactions during the regular operation of certain ICSs, as

well as transactions during 35 different cyberattacks.

Finally, they also include measurements of physiological

behavior as well as abnormalities detected during attacks,

which were simulated in a virtual ICS environment. It

should be noted that the configured virtual systems have no

physical limits to the size of the simulation; therefore, the

virtual platform on which the data were collected was

formed by scaling the ICS. This was done in order to

represent their operational situations in the most realistic

way: the contained data from a laboratory-scale water

tower, a gas pipeline and a laboratory-scale electric trans-

mission system namely [40]:

• The water_tower_dataset includes 23 independent

parameters and 236,179 instances, comprising 172,415

normal and 63,764 outliers. Totally 86,315 normal

instances were used in the training phase (water_train_-

dataset) whereas the rest 86,100 normal instances and

63,764 outliers comprised the water_test_dataset.

• The gas_dataset includes 26 independent features and

97,019 instances, comprising 61,156 normal and 35,863

outliers. The training of the algorithm was done with

the gas_train_dataset that contains 30,499 normal

instances, whereas the rest 30,657 normal instances

and 35,863 outliers belong to the gas_test_dataset.

• Finally, the electric_dataset includes 128 independent

variables with 146,519 instances, comprising 90,856

normal and 55,663 outliers. The training was performed

based on the electric_train_dataset comprising of

45,402 normal instances, whereas the rest 45,454

normal and the 55,663 outliers belong to the

electric_test_dataset.

The datasets include preprocessed network transaction

data to strip lower layer transmission (e.g., TCP, MAC). In

addition, our data include normal behavior measurements,

as well as abnormalities detected during attacks that were

simulated in a virtual ICS environment. The dataset is

determined and normalized to the interval [- 1, 1] in order

to phase the problem of prevalence of features with wider

range over the ones with a narrower range, without being

more important. Details regarding the dataset, their choice

and assessment can be found in [40].

6 Evaluation metrics

A key point in any intelligent system is the evaluation

methodology. Learning systems generate compact repre-

sentations of what is being observable. They should be able

to improve with experience and continuously self-modify

their internal state. Their representation of the world is

approximate. Evaluation is used in two contexts: inside the

learning system to assess hypothesis and as a wrapper over

the learning system to estimate the applicability of a par-

ticular algorithm in a given problem.

In most supervised tasks for machine learning, for each

new example an exact loss function may be computed with

respect to a previously made prediction. This is especially

useful to assess the quality of online predictive models. For

predictive learning tasks, the learning goal is to induce a

function ŷ ¼ f x~ð Þ. The most relevant dimension is the

generalization error. It is an estimator of the difference

between f and the unknown f̂ , and an estimate of the loss

that can be expected when applying the model to future

examples. In online learners, this estimate can be used not

only to assess the quality of the model, but also to tune the

model’s parameters before applying it to future examples.

Given the online setting of learning from data streams, the

quality of a learning model is difficult to condense in a

single value of loss or performance, since data are being

produced with evolving concepts and the model itself is

being continuously updated. The evaluation of online

learners has been assuming at the end of the learning

process by computing average losses in time windows.

The analysis of data streams is a specialized machine

learning problem that requires specific metrics to measure

the accuracy [41]. We evaluated the applied approaches by

measuring the accuracy, based on the average values of the

following indices, namely: Kappa statistic (K-Stats), Kappa

temporal statistic (K-Temp-Stats) and Time to learn.
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The data flow classifiers aim to capture the actual error.

Comparison of classification performance is done in terms

of accuracy Kappa statistic and Kappa temporal statistic,

using the traditional immediate setting [42]. The true label

is presented right after the instance has been used for

testing, or after the delayed setting, where there is a delay

between the presentation of an instance and the availability

of its true label.

The Kappa statistic is a popular measure for validating

classification accuracy under class imbalance. It is used in

static classification scenarios, as well as in streaming data

classification. The Kappa statistic or Cohen’s kappa mea-

sures the agreement between two raters which classify N

items into C mutually exclusive categories. The definition

of j is given by Eq. 28:

j ¼ p0 � pe

1� pe
¼ 1� 1� p0

1� pe
ð28Þ

where p0 is the relative observed agreement among raters

(identical to accuracy) and pe is the hypothetical proba-

bility of chance agreement, using the observed data to

calculate the probabilities of each observer randomly see-

ing each category. If the raters are in complete agreement,

then j = 1. If there is no agreement among the raters other

than what would be expected by chance (as given

by pe), j & 0. Considering the presence of temporal

dependencies in data streams, the Kappa temporal statistic

is defined by Eq. 29:

jT ¼
p� pper

1� pper
ð29Þ

where pper is the accuracy of the persistent classifier.

The Kappa temporal statistic may take values in the

interval 1;�1½ Þ. The interpretation is similar to that of j.
If the classifier is perfectly correct, then jper = 1. If it is

achieving the same accuracy as the persistent one, then

jper = 0. Classifiers that outperform the persistent one fall

between 0 and 1. Sometimes it may happen that jper\ 0,

which means that the reference classifier is performing

worse than the persistent one’s baseline.

Therefore, using jper instead of j, we will be able to

detect misleading classifier performance, for data that have

temporal dependence. For highly imbalanced, but inde-

pendently distributed data, the majority class classifier may

beat the persistent and thus the use of jper will not be

sufficient enough. Overall, jper and j measures can be seen

as orthogonal, since they measure different aspects of

performance. Hence, for a thorough evaluation we rec-

ommend measuring and combining both.

It is important to mention that the efficiency of com-

puting the Kappa statistic is an important reason why it is

more appropriate for data streams than a measure such as

the area under the ROC curve.

The evaluation parameters that have been selected are

the following:

• Accuracy It refers to the reliability of the rule, usually

represented by the proportion of correct classifications,

although it may be that some errors are more serious

than others, and it may be important to control the error

rate for some key class.

• Speed In some circumstances, the speed of the classifier

is a major issue. A classifier that is 90% accurate may

be preferred over one that is 95% accurate if the former

is 100 times faster in testing (and such differences in

timescales are not uncommon in neural networks). Such

considerations would be even more important when the

number of samples to be processed is very large.

• Time to learn: In particular, in a rapidly changing

environment, it may be necessary to learn a classifica-

tion rule quickly, or to adjust an existing rule in real

time. ‘‘Quickly’’ might imply also that we need only a

small number of observations to establish our rule. In

addition, retraining can be performed very fast, and this

in turn allows it to be performed more often.

7 Results and discussion

In all simulations, the testing hardware and software con-

ditions are listed as follows: Laptop Intel-i7 2.4 G CPU, 16

G DDR3 RAM, Ubuntu 18.04 LTS, Anaconda Python Data

Science Platform and TensorFlow Python environment. All

experiments are shown in Tables 1, 2 and 3. We also

considered CPU time or speed (the total CPU time used by

the process since it started, precise to the hundredths of a

second) and memory consumption as RAM Hours (RAM-

H) as estimates of computational resources usage. We have

used a shell script based in the ‘‘top’’ command to monitor

processes and system resource usage on the Linux OS.

The learning process used 10,000 instances, and the

validation of the results was done by employing the pre-

quential evaluation method [41]. For the sake of com-

pleteness, we reported the error rates of all window-based

approaches with a window size of 1000 samples. The

training window used 5000 instances. Window-based

approaches were allowed to store 5000 samples but never

more than 10% of the whole dataset. This rather large

amount offers a high degree of freedom, and it prevents the

concealment of their qualities with a very restricted

window.

A comparative analysis of the performance of various

data stream classification algorithms was made with the

proposed e-SREBOM approach. The traditional immediate

setting approach where the true label is presented right

after the instance, or the delayed setting method which
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applies a delay between the time an instance is presented

and the time its true label becomes available, has been

followed in testing [30]. The evaluation metrics used were

accuracy Kappa statistic and Kappa temporal statistic.

Looking at the results, we conclude that the use of the

e-SREBOM algorithm is an optimal practice, since it

solves extremely quickly and with great precision and

reliability, a real Information Systems’ security problem. It

is remarkable that this is achieved without requiring high

availability of computational resources. Additionally, this

technique employs a relatively smooth and fast learning

rhythm, which determines how quickly learning converges.

A high learning rate can lead to faster convergence and

oscillation around optimal weight values, whereas low rate

Table 1 Results

water_tower_dataset
Performance metrics

Classifier K-Stats (%) K-Temp-Stats (%) Time to learn (s) Speed (summary) (s) RAM-H

Window size = 5000

k-NN SAM 74.56 75.29 38 178 0.0135

SPegasos 72.07 72.94 41 165 0.0130

ARF 71.86 72.47 30 113 0.0126

e-SREBOM 75.95 76.87 29 111 0.0128

Window size = 1000

k-NN SAM 79.22 79.96 12 81 0.0088

SPegasos 75.65 77.51 11 79 0.0080

ARF 75.24 77.72 14 82 0.0056

eS-REBOM 81.13 82.54 10 71 0.0060

Table 2 Results gas_dataset
Performance metrics

Classifier K-Stats (%) K-Temp-Stats (%) Time to learn (s) Speed (summary) (s) RAM-H

Window size = 5000

k-NN SAM 72.03 72.73 51 185 0.0159

SPegasos 72.02 72.69 50 182 0.0164

ARF 71.83 72.41 52 148 0.0167

e-SREBOM 72.99 73.15 46 141 0.0158

Window size = 1000

k-NN SAM 74.18 75.41 44 99 0.0101

SPegasos 73.94 75.01 47 101 0.0103

ARF 73.87 74.89 43 84 0.0097

e-SREBOM 74.31 75.24 42 89 0.0100

Table 3 Results

electric_dataset
Performance metrics

Classifier K-Stats (%) K-Temp-Stats (%) Time to learn (s) Speed (summary) (s) RAM-H

Window size = 5000

k-NN SAM 75.72 76.33 76 192 0.0191

SPegasos 75.63 76.12 81 198 0.0190

ARF 74.47 75.16 73 193 0.0196

e-SREBOM 75.86 77.09 70 189 0.0190

Window size = 1000

k-NN SAM 80.63 81.96 21 93 0.0069

SPegasos 77.95 78.93 28 89 0.0072

ARF 76.18 77.97 23 83 0.0070

e-SREBOM 80.61 82.03 19 82 0.0071
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can result in slower convergence and it can lead to trapping

at local extremes. The high rate of learning convocation is

confirmed by the high accuracy of the model, considering

the small magnitude of the examined data flow, for such a

case of batch dataset evaluation.

The quality of the model’s adaptation is proved by the

fact that the model retains high accuracy levels or improves

its forecasting percentages in a continuously changing

environment, without been misled by temporary condi-

tions. Specifically, the temporal bias that is developed in a

certain time stamp is absorbed by keeping stable classifi-

cation accuracy percentages, as they are presented in the

results’ table.

An additional important attribute resulting from the high

accuracy of the proposed e-SREBOM algorithm is the

relatively low ‘‘mutation’’ rate in the changes that char-

acterize the data flows. The algorithm is not trapped in

local extremes (minima/maxima) or general anomalies

included in data flows or learning windows. This fact

allows the discovery of local extremes that may be inclu-

ded in them, or in a learning window, as new areas of the

multidimensional solution space are being explored.

On the contrary, if the mutation rate was too high, it

could trap the system in solutions that do not generalize.

An important additional comment concerns the Kappa

coefficient that links the level of the observed agreement to

the level of the random agreement, and it estimates the

variation in each observer–rater. This variability occurs

when the same observer–evaluator evaluates differently the

same case in repeated evaluations. The maximum value of

the Kappa index, represents the full agreement between

observers and markers, whereas the minimum value 0

means that there are only random agreement and thus no

reliability between observers and markers.

The hybrid e-SREBOM model proposed herein has been

proven reliable in all tests. The adaptive random forest

approach generally needs a larger number of instances in

order to achieve better accuracy with new data. Moreover,

ARF works by combining some loose linear boundaries on

the decision surface, as opposed to SPegasos which can

achieve max margin in nonlinear boundaries. Therefore,

given that the windows are characterized by a small

amount of data, SPegasos yielded higher success rates than

the ARF. Regarding the comparison between SPegasos and

the k-NN self-adjusting memory, it is easy to understand

why k-NN SAM performed better. This is due to the fact

that the specific case examined herein is related to a high-

dimensional space, where this algorithm is more efficient.

Also, the optimal combination of the two levels of mem-

ory, the employed different time intervals between memories

and the transfer of knowledge, has minimized the errors and

the increased the classification accuracy. The e-SREBOM

algorithmmanages to decode data from a specific distribution

in a very prominent way, without this process requiring spe-

cial computational resources. It also discovers accurately the

high-level correlations contained in datasets, due to the way

the hidden layers of the algorithm work, where the units of

one layer depend only on units of the other.

Due to the above characteristics of the e-SREBOM, the

general model is extremely fast, mainly because of the

connection limitations between its hidden and its visible

units. Another important advantage of the proposed algo-

rithm is the ability to isolate and reject the random noise

that may be contained in the training set.

8 Conclusions

This work presented a hybrid, innovative, reliable and

highly effective algorithm for detecting data flow anoma-

lies, based on sophisticated computational intelligence. The

e-SREBOM is a clearly innovative effort to effectively

analyze large-scale data flows. The proposed method is

based on the optimal combination of the e-SNN and the

REBOM algorithms, which ensures the adaptation of the

system in new situations. It offers high level of general-

ization, by implementing a robust algorithm capable of

responding to high-complexity problems. The performance

of the proposed algorithm was tested on three-multidi-

mensional datasets of high complexity. These datasets

emerged as a result of an extensive research on the function

of industrial control systems ICS (SCADA, DCS, PLC).

They realistically state the operating modes of these

devices in normal conditions and in situations where they

are subject to cyberattacks. The results have proven the

efficiency of the developed hybrid model.

Future research will focus in further optimization of the

algorithm’s parameters that may result in a faster and more

accurate performance. We will work on the improvement

of the e-SREBOM’s complexity in a high understandable

and adjustable level.

Further optimization by means of self-improvement and

adaptive learning can be explored in order to fully auto-

mate the process of detecting abnormalities. Finally, a very

important future improvement is the extension of the

algorithm for incremental online learning, with long–short-

term memory capabilities, in order to approach and model

time sequences and their broader dependencies with greater

accuracy and efficiency.
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