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Abstract Several machine learning models were used to

predict interior spruce wood density using data from open-

pollinated progeny testing trial. The data set consists of growth

(height and diameter which were used to estimate individual

tree volume) and wood quality (wood density determined by

X-ray densitometry, resistance to drilling, and acoustic veloc-

ity) attributes for a total of 1146 trees growing on comparable

sites in interior British Columbia. Various machine learning

models were developed for estimating wood density. The

multilayer feed-forward artificial neural networks and gene

expression programming provided the highest predictability as

compared to the othermethods tested, including those based on

classical multiple regression which was considered as the

comparisons benchmark. The utilization of machine learning

models as a credible method for estimating wood density using

available growth data as an indirect method for determining

trees wood density is expected to become increasingly helpful

to forest managers and tree breeders.

Keywords Machine learning � Artificial neutral networks
(ANNs) � Interior spruce � Progeny test � Wood density

1 Introduction

Most traditional tree improvement programs have advanced

to either their second- or third-generation cycles with

increased emphasis on including wood density as a major

selection criterion [51]. Wood density is of tangible impor-

tance as it impacts several wood properties including

bending strength and stiffness as expressed by the modulus

of rupture (MoR) and the modulus of elasticity (MoE),

respectively [4]. Tree breeders traditionally establish elab-

orate, long-term, and resource-dependent tree improvement

programs following the recurrent selection scheme [1].

These programs consist of repeated cycles of breeding,

testing, and selection, for estimating the genetic worth of the

tested trees for identifying the elite genotypes for either their

inclusion in new breeding cycles or production populations

(i.e., seed orchards) [39]. An important feature of most tree

breeding programs is determining the magnitude of genetic

control (heritability) of the attributes under selection (e.g.,

growth, survival, resistant to pests, and wood density).

While it is known that the heritability estimate is population-

specific, nonetheless, the higher the heritability, the greater

the genetic control over the attribute in question [12].

Wood density is commonly measured either by the

volumetric approach [2] or by X-ray densitometry [9]. For

this purpose, increment cores are extracted from the studied

trees followed by sample preparation and wood density

determination. This approach is intrusive and time-con-

suming and is a two-step method for sampling and wood

density determination. Alternative in situ, one-step, non-

destructive, and rapid methods for determining wood

density of standing trees have been developed (resistance

to drilling using Pilodyn [8] and Resistograph� [52] or

acoustic velocity using Director� ST300 [6]) and suc-

cessfully tested [5, 7, 11, 27, 43, 44].
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The progeny testing phase of tree improvement pro-

grams involves the establishment of multiple sites planted

throughout the target breeding zone, each with various

numbers of replications for sampling sites’ heterogeneity,

and finally each replication accommodating several plots

(single tree, rows, or blocks) of the tested offspring, with

tree number often exceeding 100,000s [54, 55]. Estimating

wood density using destructive and/or in situ methods is

commonly done on a subsample of the progeny test due to

the prohibitive large number of trees [11, 43]. The devel-

opment of a heuristic rather than algorithmic approach for

predicting wood density utilizing existing progeny testing

information would be of great value as it will provide

substantially faster results with even less reliance on esti-

mating wood density as it could be derived from site,

progeny pedigree, and other growth attributes. The feasi-

bility of this approach was successfully demonstrated by

Iliadis et al. [26] on Douglas fir [Pseudotsuga menziesii

(Mirb.) Franco var. menziesi] progeny test using informa-

tion from actual (X-ray densitometry) and in situ (acoustic

velocity) wood density, multiple test sites, genetic pedi-

gree, and growth (height, diameter, and volume) attributes

in a nonlinear modeling approach to predicting wood

density using artificial neural networks (ANNs). Iliadis

et al. [28] using two ANNs [the multilayer feed-forward

(MLFF) and modular (MOD) models] developed a signif-

icant relationship between actual and predicted wood

density with coefficient of determination (R2) values of

0.50 and 0.52 for MLFF and MOD, respectively, with

substantially higher predictive power than that obtained

using the classic multiple regression approach (R2
= 0.23).

In the present study, we investigated and compared a

multitude of machine learning methods to identify the best

approach for predicting ‘‘interior spruce’’ wood density

from progeny testing data. We utilized actual (X-ray den-

sitometry) and in situ (acoustic velocity and drilling

resistance) wood density, and growth (height, diameter,

and volume) attributes from 1146 36-year-old trees repre-

senting 25 open-pollinated families growing on three test

sites in interior British Columbia, Canada.

2 Materials and methods

2.1 Field experiment

A total of 25 open-pollinated ‘‘interior spruce’’ [common

name for white (Picea glauca (Moench) Voss.] and

Engelmann (Picea engelmannii Parry ex Engelm.) spruces

and their hybrid [48] families provided the data for this

study. Parent trees originated from low- to mid-elevations

(&650–1500 m) east and southeast of Prince George

breeding zone of British Columbia. Three test sites, namely

Aleza Lake (Lat. 54�03015.700N, Long. 122�06035.400W,

Elev. 700 mas), Prince George Tree Improvement Station

(PGTIS) (Lat. 53�46017.900N, Long. 122�43007.600W, Elev.

610 mas), and Quesnel (Lat. 52�59027.200N, Long.

122�12030.600W, Elev. 915 mas) provided the data for this

study. Test sites were established as a complete random-

ized block design with 5 or 10 replications (blocks) with

either 10- or 15-tree row plots [32]. Four randomly selected

trees from each family from only four replications were

measured (N = 1146 trees). In the summer of 2009

(36 years old), each tree was measured for height (m) and

diameter (cm) (a.k.a., diameter at breast height: dbh) and

each tree’s volume (m3) was calculated following the

method of Millman [38]. Additionally, each tree’s wood

quality was evaluated using two non-destructive methods

(drilling resistance and acoustic velocity using Resis-

tograph� IML F300 and Director� ST300, respectively)

and one intrusive sampling methods requiring 5-mm cores

extracted at dbh for X-ray densitometry determination (see

El-Kassaby et al. [11], Radcliffe et al. [43], for details).

Each tree’s drilling resistance measurement was the aver-

age of two drills done at height of 1 m in two mutually

perpendicular directions and provided an estimate of rela-

tive density. The acoustic velocity measurement also was

the average of three readings and was used to obtain an

indirect estimate of MoE. X-ray wood density data repre-

sent the benchmark for evaluating the two non-destructive

wood quality assessment methods. The X-ray densitometry

was performed by QTRS-01X Tree Ring Scanner (Quintek

Measurement Systems Inc., USA) and was represented by

the average density of each years’ early and late wood

across all 36 years (kg m-3).

2.2 Data

Data related to the progeny tests’ experimental design and

trees’ attributes [i.e., site, family, replication, height,

diameter, volume, director (velocity), resistograph (drilling

resistance)] represent eight independent parameters,

namely site [3; PGTIS, Aleza Lake, and Quesnel], repli-

cation [4], family [25], height (m), diameter (cm), volume

(m3), director, and resistograph. The dependent parameter

was core wood density obtained by X-ray densitometry

(kg m-3).

2.3 Data preprocessing

Initially, data preprocessing was conducted which aimed at

phasing problems that might emerge during their selection

(e.g., removal of extreme outliers and missing records).

Following data ‘‘cleaning,’’ data were normalized and

scaled. This was done in order to fit the requirements of the

learning algorithms and to phase the problem where high
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values prevail, by influencing more the cost function,

without being more important at the same time. Both input

and output data were scaled between the closed interval

[-1, ?1]. The following function (Eq. 1) was used by the

Normalize filter of the Weka software for this task [22].

� ; � ¼
� i � l

r
ð1Þ

where l and r are the sample mean and standard deviation

for the specific feature, respectively. Individual trees with

missing values (for one or more parameters) were removed,

and the data set was reduced to 1143 data vectors. The

estimation of the extreme values was done under the in-

terquartile range filter (IQRF) of the Weka software [22],

where extreme values and outliers are identified and

removed based on interquartile range (IQR). IQR is the

difference between the third (Q3) and the first (Q1) quartiles

(IQR = Q3 - Q1). The quartiles divide the data set in four

equal groups. The IQR includes the 50 % of the data

around the median, whereas the rest 25 % is smaller than

Q1 and the 25 % is higher than Q3 [56].

Also, feature reduction was performed in order to

improve the regression results, by locating the cases with

noise that reduces performance. In the feature selection

process, we tried to exclude the parameters that might

contain information irrelevant to the case under analysis.

Principal components analysis (PCA) was used for the

transformation of the vector feature space [22, 25]. PCA is

a method to transform the correlated available parameters

to new uncorrelated ones and at the same time to provide as

much as possible information on the fluctuation of the

initial features. It enables the concentration of the infor-

mation included in the initial data.

Finally, a feature selection approach was performed.

Feature selection is the process where a subset with the

most relative and correlated variables is chosen for the

development of the optimal model suitable for a specific

case study [22, 25]. However, unfortunately after the

application of PCA and feature selection, the efficiency and

the obtained results were not improved and the perfor-

mance remained very low.

3 Development of machine learning models

Various machine learning models capable of estimating

wood density were developed, and the most successful are

presented and discussed in the following section. In all

cases, a tenfold cross-validation was employed in order to

compare the machine learning models. Table 1 presents an

overall evaluation and Table 2 parameters of all employed

methodologies.

4 Artificial neural networks

ANNs are inspired from the human central nervous system

and are widely used toward nonlinear modeling [16, 41]

and generally are part of computational intelligence. They

approximate the function of the human brain and the bio-

logical learning processes [42]. ANNs are networks of

interconnected simple processing elements (neurons).

Table 1 Comparison of the performance of all machine learning methods employed

ID Algorithma MSE RMSE Correlation

coefficient (R)

Coefficient of

determination (R2)

Validation

1 MLFF ANN 0.0003175 0.0178215 0.8077000 0.6524 Tenfold CV

2 GEP 0.0003575 0.0189035 0.8026980 0.6443 Tenfold CV

3 CFF ANN 0.0004005 0.0200065 0.7919220 0.6271 Tenfold CV

4 GMDH 0.000426 0.0206280 0.7770410 0.6038 Tenfold CV

5 ELM RBF kernel 0.000558 0.0235000 0.7347205 0.5400 Tenfold CV

6 ELM linear kernel 0.002978 0.0545500 0.6122500 0.3750 Tenfold CV

7 SLR 0.000686 0.0262000 0.6113000 0.3737 Tenfold CV

8 DENFIS 0.003600 0.0600000 0.5742820 0.3299 Tenfold CV

9 RBF network 0.001024 0.0320000 0.2396000 0.5741 Tenfold CV

10 Multilayer perceptron 0.000441 0.0210000 0.7707000 0.5940 Tenfold CV

11 RFs 0.000462 0.0215000 0.7686000 0.5907 Tenfold CV

12 MLR 0.000449 0.0212000 0.7676000 0.5892 Tenfold CV

13 RBF regressor 0.000449 0.0212000 0.7671000 0.5884 Tenfold CV

14 MLP regressor 0.000458 0.0214000 0.7588000 0.5758 Tenfold CV

15 EFuNN 0.000900 0.0300000 0.7014270 0.4920 Tenfold CV

16 SVR 0.000445 0.0211000 0.7708000 0.5941 Tenfold CV

a See text for abbreviations
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Table 2 Parameters of all

machine learning methods

employed

ID Algorithm Parameters

1 MLFF ANN Architecture = 8-10-1

Training algorithm = back-propagation

Transfer function = tansig

Learning rate = 0.3

Momentum = 0.2

Training epochs = 100

2 GEP Number of chromosomes = 30

Head size = 10

Genes = 5

Constants per genes = 10

Mutation = 0,00138

Strategy = optimal evolution

3 CFF ANN Architecture = 8-(10-5-10)-1

Training algorithm = back-propagation

Adaption learning function = learngdm

Transfer function = tansig

Training epochs = 100

4 GMDH Validation criterion = RMSE

Variables ranking = by error

Neuron function = polynomial

Max. number of layers = 4

Max. power of a variable = 2

Min. power of a variable = 0

Max. total power in a term = 2

Max. number of variables in a term = 2

5 ELM RBF kernel Number of hidden neurons = 25

Activation function = RBF

Regularization coefficient = 1

Block = 1

6 ELM linear kernel Number of hidden neurons = 25

Activation function = linear

Regularization coefficient = 1

Block = 1

7 SLR Ridge value = 1.0E-8

8 DENFIS Distance threshold = 0.1

Number of nodes = 3

Epochs = 2

9 RBF network Maximum number of iterations = 100

Minimum standard deviation for the clusters = 0.1

Number of clusters for K-means = 2

Ridge value = 1.0E-8

10 Multilayer perceptron Hidden layers = 8

Learning rate = 0.3

Momentum weights updating = 0.2

Training time = 500

Validation threshold = 20

11 RFs Maximum depth = unlimited

Number of execution slots = 1

Number of trees = 100

12 MLR Ridge value = 1.0E-8
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Following the analogue of the human brain, the intercon-

nected neurons of the multilayer feed-forward (MLFF)

ANNs are organized in three layers, namely input, hidden,

and output (Fig. 1). Each neuron accepts a set of numerical

inputs from various sources, and based on their informa-

tion, an output is produced. The output is either addressed

to the environment or forwarded as input to other neurons

of the network. In an idealized artificial neuron, all

received input information is weighted via appropriate

elements wi and summed up. The hidden neurons multiply

each input signal with its corresponding synaptic weight

(wi), and they calculate the sum of the products. An

Table 2 continued
ID Algorithm Parameters

13 RBF regressor Size of thread pool = 1

Ridge value = 0.01

Delta value = 1.0E-6

14 MLP regressor Hidden layers = 8

Size of thread pool = 1

Ridge value = 0.01

Delta value = 1.0E-6

15 EFuNN Sensitivity threshold = 0.9

Error threshold = 0.1

Number of membership function = 3

Learning rate for W1 = 0.1

Learning rate for W2 = 0.1

Node age = 60

Max. field = 0.5

Number of activity rule nodes = 2

16 SVR Cost parameter = 1

Degree of the kernel = 3

Epsilon criterion = 0.001

Gamma parameter = 1/max_index

Epsilon for the loss function = 0.1

Fig. 1 Basic architecture of a

typical multilayer feed-forward

ANN
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activation function transforms the sum of the weighted

inputs and produces the output (Fig. 2).

ANNs pass through an iterative learning process in order

to be able to capture complex signals from the data and to

obtain better predictive performance. In each iteration, the

weights of the ANNs are steadily adjusted, in order to

minimize the differences between observed and predicted

output [18]. The main target is to obtain a network capable

of generalizing, meaning that it should have a reliable

performance with data vectors that have not been used in

the training phase. That is why overtraining and memo-

rization have to be avoided by stopping the learning pro-

cess when a predefined threshold of the error function in

training samples is reached [19, 21, 25]. From this point of

view, the tuning of the weights is actually an optimization

approach. The level of good performance of the ANN is

determined in the testing phase. The most common

supervised learning optimization approach for ANNs is the

back-propagation (BP) which can be considered as a gra-

dient descent method to locate the optimal solution [46]

and is a generalization of the delta rule [21, 34].

5 Multilayer feed-forward (MLFF) ANN

Several trial and error experiments should be performed in

order to determine the best MLFF model. Various archi-

tectures and transfer functions were employed. The optimal

wood density ANN was a MLFF ANN with a sigmoid

transfer function in the hidden layer and a linear function in

the output layer. This MLFF ANN had 8 input neurons, 16

hidden neurons, and 1 output. This was implemented in

MATLAB [49] using the trainlm MATLAB’s network

training function that updates weights and bias values

according to Levenberg–Marquardt optimization algorithm

[20, 37]. The trainlm is often the fastest BP algorithm in the

toolbox of MATLAB and is highly recommended as a first-

choice supervised algorithm, although it does require more

memory than other algorithms (http://www.mathworks.

com/help/nnet/ref/trainlm.html).

The mean squared error (MSE, [35]), root-mean-square

error (RMSE), the correlation coefficient R, and the coef-

ficient of determination R
2 were used as performance

metrics during training, validation, and testing processes.

MSE (Eq. 2) stands for the average squared error between

the network outputs ai and the target outputs ti.

MSE ¼
1

N

XN

i¼1

eið Þ2¼
1

N

XN

i¼1

ti � aið Þ2 ð2Þ

The estimated average R2 values for the optimal network

were 0.6524, and the average RMSE = 0.0178215

(Table 1, ID #1). The convergence and performance of the

MLFF ANN are shown in Fig. 3. The accuracy comparison

of the machine learning algorithms with tenfold cross-

validation is shown in Table 1.

Additionally, various other ANN architectures were

developed, trained, and evaluated; however, they did not

produce encouraging results. The degree of convergence

for the best developed radial basis function (RBF) network

was characterized by an average R2 equal to 0.5740 and by

an average RMSE equal to 0.0320 (Table 1, ID #9). For the

multilayer perceptrons, the average R2 was as high as

0.5939 and the average RMSE was equal to 0.0210

(Table 1, ID #10).

Fig. 2 An illustration of an

artificial neuron and its output

function
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6 Cascade feed-forward (CFF) ANN

The cascade feed-forward (CFF) ANN shares the same

basic architecture with the MLFF ANN. The main differ-

ence is that in the former, the neurons of each layer are

connected with the neurons of all successive layers and not

only with the nodes of the following one [17].

This architecture makes CFF networks more flexible and

also more complex due to the fact that there are more

weights involved. A back-propagation BP CFF ANN with

8 input nodes, 3 hidden sublayers with 10-5-10 neurons,

and 1 output, using a sigmoid transfer function in the

hidden layer, was the optimal one. Again, the tenfold cross-

validation method was used. The average R2 for the opti-

mal network was as high as 0.6271, and average RMSE

was 0.0200, respectively (Table 1, ID #3). This perfor-

mance was slightly poorer than that observed for the MLFF

ANN. The architecture of the developed CFF ANN and its

performance are shown in Figs. 4 and 5, respectively. The

convergence and performance of the CFF ANN are shown

in Fig. 5.

7 Group method of data handling (GMDH) ANN

GMDH-type neural networks are also known as polyno-

mial neural networks (PNNs). They constitute flexible

ANN whose topology is not predefined, but it is devel-

oped through an iterative learning process [28]. GMDH

algorithms are inductive, and they perform sorting of

gradually complicated polynomial models where they

finally chose the optimal solution by employing the

‘‘external criterion.’’ A GMDH model with multiple

inputs and one output is a subset of components of the

Kolmogorov–Gabor base function ([33, 36], https://www.

gmdhshell.com).

A GMDH ANN can use multilayer structures (Fig. 6),

and it estimates the parameters of each obtained model and

Fig. 3 Performance of MLFF ANN (MSE = 0.0003175,

RMSE = 0.0178215, R = 0.8077, R2
= 0.6524)

Fig. 4 Architecture of the CFF ANN

Fig. 5 Performance of CFF ANN (MSE = 0.0004005,

RMSE = 0.0200065, R = 0.791922, R2
= 0.62714)
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validates it by using a separate part of the data that was not

used in the previous process. Generally speaking, this

method produces multilayer network models with linear,

polynomial, logistic, gaussian, harmonic, and other non-

linear functions. It can identify nonlinear relations between

the input and output parameters [40] and terminates when it

fails to perform better [13]. Moreover, it might terminate if

the reduction in the error level is\1 %, or if the number of

layers has reached an upper predefined limit. Since the

width of a network layer rarely improves the model, this

algorithm reduces by 50 % the width of each successive

layer. Thus, the number of neurons in layer k are

Nk = 0.5�Nk-1 and in this way, the algorithm becomes

faster and the possibility of performance reduction is

low [3].

The average R2 for the optimal network was equal to

0.6038, and RMSE was 0.0206, respectively (Table 1, ID

#4). Along these lines, the GMDH approach produced

similar performance to MLFF and CFF ANNs but with

reduced accuracies.

8 Extreme learning machine (ELM)

Extreme learning machines (ELMs) are based on a fast

learning algorithm for single-hidden-layer feed-forward

neural networks (SLFFNs). The hidden layer (a.k.a., fea-

ture mapping) needs no tuning, and the hidden neurons are

randomly created. The hidden neurons are independent

from the target functions or from the training sets (Fig. 7).

ELMs provide effective solutions in feed-forward and RBF

ANNs and also in kernel learning methods (http://extreme-

learning-machines.org). They can be applied in universal

approximation and classification, ridge regression, opti-

mization, ANN generalization performance, linear system

stability, and matrix theory. Their contribution can be

significant for large-scale computing and big data sets.

ELMs can handle non-differentiable activation functions,

and they do not have issues such as finding a suit-

able stopping criterion, learning rate, and learning epochs.

According to the ELM theory [23], the RBF Gaussian

kernel is employed as follows:

K u; vð Þ ¼ expð�c u� vj jj j2Þ ð3Þ

where c ¼ �1
2r2

. In fact, the parameter r determines the width

of the Gaussian kernel. In statistics, when we consider the

Gaussian probability density function, it is called the stan-

dard deviation (r). In the present study, we also used a linear

kernel which is given by the inner product\x, y[ plus an

optional constant ‘‘c’’ as seen in the following Eq. 4:

K x; yð Þ ¼ xTyþ c ð4Þ

According to the optimal Gaussian ELM model with

RBF kernel, the RMSE value was equal to 0.0235 and the

R2 was as high as 0.54 (Table 1, ID #5). The application of

the ELM with the linear kernel did not have reliable

Fig. 6 Basic architecture of the

group method of data handling

neural networks (GMDH-type

ANNs) or polynomial neural

networks (PNNs)
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validation outcome with RMSE = 0.0545 and R2
= 0.3750

(Table 1, ID #6).

9 Evolving connectionist systems

Evolving connectionist systems (ECOS) [30] are multi-

modular, connectionist architectures that facilitate model-

ing of evolving processes and knowledge discovery [47].

ECOS’ advantage is that they learn fast by, for example,

using one-pass training which is much faster than the

iterative process of other ANN models.

ECOS keep on adapting their structure and functional-

ity, through a continuous interaction with the environment

according to: (i) a set of parameters that are subject to

change, (ii) an incoming continuous flow of information

with unknown distribution, and (iii) a goal (rational) cri-

terion (subject to modification) applied to optimize the

performance of the system. The ECOS function in an open

space, using constructive processes, not necessarily of fixed

dimensions. They learn in online incremental fast mode,

possibly through one pass of data propagation. Lifelong

learning is a main attribute of this procedure. They operate

both as individual systems, and as part of an evolutionary

population of such systems [24, 30]. ECOS are connec-

tionist structures that evolve their nodes and connections

through supervised incremental learning from input–output

data. Their architecture comprises five layers: (1) input

nodes, representing input variables; (2) input fuzzy mem-

bership nodes, representing the membership degrees of the

input values to each of the defined membership functions;

(3) rule nodes, representing cluster centers of samples in

the problem space and their associated output function; (4)

output fuzzy membership nodes, representing the mem-

bership degrees to which the output values belong to

defined membership functions; and (5) output nodes, rep-

resenting output variables (Fig. 8) [29].

ECOS produce local models through data clustering and

by associating a local output function for each cluster. Rule

nodes evolve from the input data stream to cluster the data,

and the first-layer W1 connection weights of these nodes

represent the coordinates of the nodes in the input space. The

second-layer W2 represents the local models (functions)

allocated to each of the clusters. Clusters of data are created

based on the similarity between data samples either in the

input space, or in both the input space and the output space.

Samples that have a distance to an existing cluster center (rule

node)N of less than a threshold Rmax are allocated to the same

cluster Nc. Samples that do not fit into existing clusters form

new clusters as they arrive in time. Cluster centers are con-

tinuously adjusted according to new data samples, and new

clusters are created incrementally. The similarity between a

sample S = (x, y) and an existing rule node N = (W1, W2)

can be measured in different ways, the most popular of them

being the normalized Euclidean distance. The following

ECOS architectures were used to model wood density.

10 Dynamic evolving neuro-fuzzy inference

system

The first ECO approach used was the dynamic evolving

neuro-fuzzy inference system (DENFIS). This is an adap-

tive learning approach which evolves through hybrid

Fig. 7 General architecture of

ELMs (after, Huang [25])

Fig. 8 Structure of EFuNN (after, Watts [50])
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(supervised/unsupervised) learning methods creating new

fuzzy rules. These rules are updated through the system’s

operation. In this way, the output of a DENFIS system is

estimated through a fuzzy inference system. DENFIS can

be effectively used for learning complicated time series in

an adaptive manner, bypassing the complexity problems

which might emerge [31].

In the present study, we employed a tenfold cross-vali-

dation approach (www.theneucom.com) which resulted in

an average RMSE of 0.0600 and an average R2 equal to

0.3298, respectively (Table 1, ID #8), producing less sat-

isfactory results when compared to the previous methods.

11 Evolving fuzzy neural networks

The second ECOS approach employed was the evolving

fuzzy neural networks (EFuNN). EFuNN are feed-forward

ANNs of five layers with each one performing a specific

task. The input layer is the first. The second layer estimates

the fuzzy membership degrees of the input values for proper

linguistics like ‘‘low,’’ ‘‘medium,’’ and ‘‘high’’ by using

specific fuzzy membership functions. The third layer rep-

resents the correlations between the input and the output

parameters by using fuzzy IF–THEN rules. The fourth layer

calculates the degrees to which output membership func-

tions are matched by the input data, and the last one per-

forms defuzzification in order to estimate the crisp values.

The EFuNN combines the characteristics of an ANN

and a fuzzy inference system. It combines the following

algorithms: modified back-propagation algorithm, genetic

algorithm, structural learning with forgetting, training and

zeroing, and combined modes. We employed a tenfold

cross-validation which resulted in an average RMSE of

0.0300 and an average R2 of 0.4920 (Table 1, ID #15). The

use of this method showed a significant improvement

compared to DENFIS, but still the MLFF (see above) and

gene expression programming (GEP) (see below) outper-

formed this approach, whereas the cascade produced sim-

ilar results.

12 Gene expression programming

Gene expression programming (GEP) [14] is an evolu-

tionary algorithm which, like the genetic algorithms (GA)

and genetic programming (GP), uses populations and

chooses the cases according to their suitability (fitness). It

imports new instances of potential solutions in the popula-

tion by using one or more genetic operators. The funda-

mental steps of the GEP are schematically represented in

Fig. 9 [14]. The process begins with the random generation

of the chromosomes of a certain number of individuals (the

initial population). The chromosomes of the individuals of

the initial population are randomly generated using the

symbols representing the functions and terminals chosen to

Fig. 9 Flowchart of a GEP algorithm
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solve the particular problem. These initial individuals are

the first set of candidate solutions to the problem at hand.

Because they are totally random, these founder individuals

are most probably not very good solutions. But they are,

nonetheless, everything that is necessary because evolution

takes care of the rest and, soon enough, very good solutions

will start to appear. One important application of GEP is

symbolic regression or function finding, where the goal is to

find a symbolic expression that performs well for all fitness

cases within a certain error of the correct value. For most

symbolic regression applications, it is important to use

small relative or absolute errors in order to discover a very

good solution. But if we excessively narrow the range of

selection and only allow the selection of individuals per-

forming within a very small error, populations evolve very

inefficiently and, most of the times, are incapable of finding

a satisfactory solution. On the other hand, if we do the

opposite and excessively enlarge the range of selection,

numerous solutions with maximum fitness, fmax, will

appear that are far from good solutions. So, a simple fitness

function which only discriminated between cases solved

within and without the chosen error will not suffice, and a

more skilled approach is required. To solve this problem,

we devised an evolutionary strategy that permits the dis-

covery of very good solutions without halting evolution.

With this scheme, the system is left to find for itself the best

possible solution within a minimum error. For that purpose,

a very broad limit for selection to operate is given, that

allows not only the evolutionary process to get started but

also the fine-tuning around the desired minimum error. And

what is observed is that the individuals of early generations

are usually very unfit, but their later descendants are con-

tinually reshaped by the genetic operators, and populations

adapt wonderfully, finding better solutions that progres-

sively approach a very good solution. The individuals are

then selected according to their fitness (their performance in

that particular environment) to reproduce with modifica-

tion, leaving progeny with new traits. These new individ-

uals are, in their turn, subjected to the same developmental

process: expression of the genomes, confrontation of the

selection environment, selection, and reproduction with

modification. The whole process is repeated till the most

effective solution is obtained [14]. In the present study with

tenfold cross-validation configuration, the R2
= 0.6443 and

RMSE = 0.0189, respectively (Table 1, ID #2). This

method’s performance was the second best after MLFF.

13 Multiple linear regression

Multiple linear regression (MLR) attempts to model the

relationship between two or more explanatory variables

and a response variable by fitting a linear equation to

observed data. Every value of the independent variable x

is associated with a value of the dependent variable y.

The population regression line (PRL) for p explanatory

variables x1, x2, …, xp is defined to be ly = b0 ?

b191 ? b292 ? ��� ? bp9p. The PRL describes how the

mean response y changes with the explanatory variables.

The observed values for y vary about their means �y and

are assumed to have the same standard deviation. The

fitted values b0, b1, …, bp estimate the parameters b0, b1,

…, bp of the population regression line [15]. In the case

of the MLR, a tenfold cross-validation approach was

performed. The performance results obtained by the

MLR were average R2 and average RMSE of 0.5892 and

0.0212, respectively (Table 1, ID #12). It should be

stated that the results obtained from the MLR, which

represent the benchmark for comparison with the other

methods attempted in this study, are exceedingly inferior

even when they were based on real data. Additionally,

simple linear regression (SLR) was also attempted in the

present study, but produced non-satisfactory results:

average R2 and RMSE of 0.3737 and 0.0262, respec-

tively (Table 1, ID #7). RBF regressors (http://www.

cs.waikato.ac.nz/*eibe/pubs/rbf_networks_in_weka_

description.pdf) and MLP regressors [54] were also

employed through tenfold cross-validation with average

values of R2
= 0.5884, RMSE = 0.0212, and average

values of R2
= 0.5757, RMSE = 0.0214 for RBF and

MLP, respectively (Table 1, ID # 13 and 14). Both

regressors algorithms were developed in University of

Waikato, New Zealand. The RBF one is employed to

train models where the loss function uses penalized

squared error, with a quadratic penalty on the non-bias

weights in the output layer. Other algorithms and

approaches (e.g., support vector regression (SVR) [10] or

rotation forests (RFs) [45]) have also been used to

determine wood density; however, their performance was

quite inferior to the approaches described above. SVM

and SVR were proposed by Vladimir Vapnik and his co-

workers in 1992. They define a certain loss function

ignoring errors which are located in a certain distance

from the actual value. This is achieved by employing the

‘‘epsilon intensive’’ function that defines a zero-error

‘‘tube’’ of width equal to 2e. Rotation forest is an algo-

rithm based on feature extraction. According to this

algorithm, the feature set is randomly split into K subsets

(K is a parameter) and then principal component analysis

is applied to each subset. All principal components are

retained in order to preserve the variability information in

the data.

More specifically, the optimal SVR had average

R2
= 0.5941 and average RMSE = 0.0211, whereas the

obtained performance results for the RFs were R2
= 0.5907

and average RMSE = 0.0215 (Table 1, ID # 11 and 16).
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14 Conclusion

The importance of incorporating wood density as a selec-

tion criterion in advanced-generation breeding programs

cannot be understated due to: (1) the often observed neg-

ative genetic correlation between growth rate and wood

density as the former often represents the main selection

goal of most improvement programs’ first-generation cycle

[11] and (2) the importance of wood density as an intrinsic

characteristic of wood properties at large [4]. Irrespective

of the method used to determine wood density, these

methods are time-consuming and require the use of large

number of samples. The development of precise predica-

tion methods that rely on other easily determined attributes

such as growth traits would be of great values, specifically

considering the large number of trees and multiple sites

often used in progeny testing evaluation. The utilization of

heuristic approaches for predicting wood density utilizing

existing progeny testing information is expected to speed

the assessment phase and assess breeders in making

Fig. 10 Comparison of MSE (note MLFF ANN has the smallest error)

Fig. 11 Comparison of coefficient of determination (R2) values (note MLFF ANN has the highest value)
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informed selections with minimum efforts. ANNs have

been developed for assessing wood density from Douglas

fir progeny test data [26]. While successful, with results

better than that obtained from the classical parametric

multiple regression approach, the developed predictive

models were of lower confidence to support selection

decision in a breeding program framework. In the present

study, we tested a multitude of machine learning approa-

ches to identifying those with higher predicative ability. As

shown in Figs. 10, 11, and 12, the multilayer feed-forward

(MLFF) ANNs [19, 21, 25] and GEP [14] provided the

highest predictability as compared to the other methods

tested. We therefore recommend the use of these machine

learning approaches to predict wood density for selection

and/or other forest management decisions. These methods

rely on existing data, and their application on other popu-

lations within the studied species requires further investi-

gation to permit generalization.
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