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Abstract
Data-driven methods are implemented using particularly complex scenarios that reflect in-depth perennial knowledge and

research. Hence, the available intelligent algorithms are completely dependent on the quality of the available data. This is

not possible for real-time applications, due to the nature of the data and the computational cost that is required. This work

introduces an Automatic Differentiation Variational Inference (ADVI) Restricted Boltzmann Machine (RBM) to perform

real-time anomaly detection of industrial infrastructure. Using the ADVI methodology, local variables are automatically

transformed into real coordinate space. This is an innovative algorithm that optimizes its parameters with mathematical

methods by choosing an approach that is a function of the transformed variables. The ADVI RBM approach proposed

herein identifies anomalies without the need for prior training and without the need to find a detailed solution, thus making

the whole task computationally feasible.

Keywords Automatic differentiation variational inference � Restricted Boltzmann machines � Condition monitoring �
Anomalies detection � Predictive maintenance � Industry 4.0

1 Introduction

Finding the solutions for continuous monitoring the oper-

ational status of active equipment using an Industrial

Internet of Things (IIoT) network is a key priority of

Industry 4.0 [1]. Thus, solutions for prognostic analysis,

machine learning and rationalization of preventive main-

tenance are utilized. Functional control and communication

between humans and machines in general becomes clear

and well defined with the Condition Monitoring (CoMo)

process. CoMo technologies include non-destructive test

methods for collecting, through active sensor networks,

data directly related to the operational status of the

equipment [2].

A typical case is that of signals generated by the

vibrations of machines, audible or thermal imaging signals

or the analysis of liquids such as oil, fuel. Data are ana-

lyzed in real time by the most advanced applications of

intelligent algorithms, in order to detect hidden knowledge

[3]. This analysis provides important information about the

operational condition of the equipment, its possible mal-

functions, and its vulnerabilities [4].

Anomaly detection [5] can significantly contribute

toward the discovery of hidden knowledge in industrial

data. Anomaly detection is the process of identifying data,

objects, observations, events, or behaviors that do not

conform to the expected pattern of a particular group. Such

abnormalities are rare and they are very likely to be asso-

ciated with significant threats such as [6]:

(a) Malfunctions or misuse of equipment

(b) Adverse situations of their operating environment
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(c) Intentional malicious interference from external

agents, such as digital attacks, malware, information

interception [7].

Detection of anomalies is considered one of the biggest

and most complex challenges in managing large-scale

applications [6, 8–10]. The success of these methods is

relaying on comparing the current operating condition of

the equipment, with patterns that describe normal cases,

such as the average number of concurrent services, the

average length of the operating cycle, the rate of return.

These methods prove to be very sensitive to small changes

in the input vectors. Also, the usual approach employed to

identify anomalies is the approximation technique for

calculating the expected values under the distribution of the

dataset by a continuous sampling for a long time until

equilibrium was reached. This is not possible for real-time

applications due to the nature of the data and the compu-

tational cost that is required.

This fact, under certain conditions, may lead to the

modification of the behavior of the learning algorithms and

to the questioning of the reliability and safety of the

approaches in question. Also, in real-world problems, the

data contain noise, errors, or are partially identified, which

affect the process of developing robust intelligent models

[3, 11].

Estimating uncertainty and simulating highly dynamic

processes is a difficult task in general. The data used in the

development of these models solely reflect difficult situa-

tions, so that the employed methods often fail to generalize

[12].

Each learning algorithm has specific biases, which may

be related to the chosen values of the related hyperpa-

rameters, or to the applied classification methodology, or to

the chosen information representation method. This fact

makes algorithms vulnerable to specialized attacks. It is a

fact that the finite training data do not always reflect reality.

The data selection process and the assumption that data

have the same distribution as all the unknown cases,

introduces another level of bias, which makes intelligent

systems vulnerable to Adversarial Attacks [13].

This paper proposes a new and innovative anomaly

detection system based on RBMs methodology. RBMs are

discovering several layers of increasingly complex repre-

sentations of the input, it comes with an efficient layer-by-

layer pre-training procedure, it can be trained on unlabeled

data and can be fine-tuned for a specific task using the

(possibly limited) labeled data. Second, the approximate

inference procedure for RBM’s incorporates top-down

feedback in addition to the usual bottom-up pass, allowing

to better incorporate uncertainty about ambiguous inputs.

Third, the parameters of all layers can be optimized jointly

by following the approximate gradient of a variational

lower bound on the likelihood function. This greatly

facilitates learning better generative models.

In this spirit, the proposed system is an innovative RBM

that uses the advanced ADVI technique, which operates in

an automatic way without training to accurately determine

a posterior distribution. Using Variational Distribution as a

normal distribution of multiple variables, it is possible to

correlate the parameters to solve dynamic problems in real

time at an affordable computational cost. This is achieved

without the need for prior training of the system and

without the need to find a detailed solution, which makes it

computationally accessible. This methodology is capable

of performing well, even when the nature of the anomaly is

new and therefore unknown.

2 Literature review

There is an increasing interest in research related to the

anomaly detection systems [8, 9, 14] and specifically in

real-time anomaly detection systems [15–17]. For example,

the authors of [18] reported inefficiencies in most anomaly-

based network intrusion detection systems employing

supervised algorithms and suggested an unsupervised out-

lier detection scheme as a measure to overcome these

inefficiencies. The method uses a database containing logs

of each cloud service. This technique can detect some types

of attacks and faulty services in a cloud environment with

high accuracy.

Also, the proposed detection system [19] uses an unsu-

pervised stochastic Restricted Boltzmann Machine algo-

rithm to self-learn the reliable network metrics. This

algorithm detects and classifies the type of DDoS attacks in

a dynamic network environment by framing a new context.

Three modules have been implemented in Mininet, namely

DDoS attack generation, Flow collection and attack

detection. First, the network topology is created with

5 hosts, 1 controller and 1 switch. Each node in the

Mininet runs a virtual machine with a real GNU/Linux

kernel. The results prove that the RBM-based DDoS

detection system achieves higher accuracy than the existing

static methods but only as a batch method that needs a lot

of training data.

On the other hand, Variational Autoencoders have been

used to identify anomalies [20–22]. For example, the

authors of the [23] propose a novel botnet detection

method, built upon Recurrent Variational Autoencoder,

that effectively captures sequential characteristics of botnet

anomalies. The experimental results with large-scale

intrusion data (NSL-KDD dataset) show that the proposed

method can detect previously unseen botnets by utilizing

sequential patterns of network traffic by 85.51 accuracy.

Also, can detect botnets in the streaming mode, which is
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the essential requirement to perform real time, online

detection. But the method is time-consuming and needs

high computational resources.

Additionally, the authors of the [24] present a robust and

unsupervised federated learning system in which the cen-

tral server employs a conditional variational autoencoder to

detect and eliminate malicious model updates. Since the

reconstruction error of malicious updates is much larger

than that of benign ones, it can be used as an anomaly

score. The authors formulate a dynamic threshold of

reconstruction error to differentiate malicious updates from

normal ones, based on this idea. The proposed model is

tested in 4 competitive datasets, namely Vwhicle, MNIST,

FEMNIST and a Synthetic dataset. The experiments have

shown a competitive performance over existing aggrega-

tion methods under Byzantine attack and targeted model

poisoning attack. A critical disadvantage of the method is

that needs very extensive and sophisticated parameter

tuning in order to be effective.

A major problem related to the reliability and security of

computational intelligence methods is the design of the

appropriate input in a specific straight forward way [25].

Failure to do so, leads learning algorithms to wrong results

(Adversarial Attacks) [26]. The problem arises from the

fact that learning techniques are designed for stable envi-

ronments, in which training and test data are considered to

be generated from the same (possibly unknown) distribu-

tion. For example, a trained neural network represents a

large decision limit, which corresponds to a common class.

A properly designed and implemented attack, which cor-

responds to a modified input that may come from a slightly

differentiated data set (LFW face dataset), may lead the

algorithm to make a wrong decision (wrong class) [27].

This yields several interesting observations: (1) Within a

specific range, as the perturbation size increases, while the

recognition rate for dodging attacks drops, the recognition

rate for impersonation attacks increases. (2) Dodging

attacks and Impersonation attacks have different sensitivity

to the perturbation. A small perturbation (0.001) can sig-

nificantly help the impersonation attack but could not

support the dodging attack. A significant perturbation (0.1)

can help the dodging attack, but not the impersonation

attack. It could be presumed that dodging attack needs less

control on the perturbation. As long as the perturbation

makes the original image not to be recognizable, while the

impersonation attack needs more control to the perturba-

tion, there is still a chance for it not to be recognized for the

victim images. (3)The iteration does affect the perfor-

mance. More iterations lead to higher recognition rate. It is

good for impersonation attacks but not good for the

dodging attacks. (4) The granularity of perturbation is also

critical to the perturbation generation. The recommenda-

tion is to start with a small scale, such as 0.001.

On the other hand, anomaly detection systems are an

essential cog of the network security suite that can defend

the network from malicious intrusions and anomalous

traffic. Many anomaly detection methods have been pro-

posed in the literature for the detection of anomalies

[7, 16, 17, 28]. However, recent works have shown that

models are vulnerable to adversarial perturbations through

which an adversary can cause IDSs to malfunction by

introducing a small impracticable perturbation in the net-

work traffic. There are several defense methods to adver-

sarial attacks, which are deliberately created to fool

learning models [29–31].

For example, to improve the attack performance against

the variational autoencoder, which is robust to tiny per-

turbations through uncertainty modeling, the authors of

[32] design a mechanism to weaken its robustness by

introducing a variance regularization to the optimization.

Simulation results show that the adversarial attacks gen-

erated by a universal adversarial sample generator can

effectively degrade the performance of the autoencoder-

based systems. The system was tested with 3 vast datasets

(MNIST, FEMNIST, and CIFAR-10). However, state-of-

the-art attack methods can generate attack images by

adding small perturbations to the source image [13]. These

attack images can fool the classifier but have little impact

to humans. Therefore, such attack instances are difficult to

generate by searching the feature space. How to design an

effective and robust generating method has become a key

requirement. Inspired by adversarial examples, we propose

two novel generative models to produce adaptive attack

instances, in which a conditional generative adversarial

network is adopted and a distinctive strategy is designed

for training. The authors of [30] propose two models that

can reduce the generating cost and improve robustness,

resulting in about one-fifth of the running time for pro-

ducing attack instance. The system was tested in MNIST

and FEMNIST datasets with high accuracy. Nonetheless,

the model is not adequate for real-time applications.

3 Proposed anomaly detection model

In this work, a RBM is proposed which combined with the

ADVI methodology, creates a framework for dealing with

Adversarial Attacks. It can automatically detect anomalies

in dynamic systems based on the posterior distribution of

the data it uses. The proposed RBM can be defined based

on random Markovian fields, as a two-dimensional graph

with non-directed edges.

It comprises of m visible neurons V ¼ V1;V2; . . .;Vm

and n hidden ones H ¼ H1;H2; . . .;Hn. Since the work

studies the binary problem of the anomalies’ existence, the

model takes binary values [33]. Thus, the random variables
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V;Hð Þ take values u; hð Þ 2 0; 1f gmþn
. The common prob-

ability distribution of the model is the Boltzmann distri-

bution [34, 35]:

p u; hð Þ ¼ 1

Z
e�E u;hð Þ ð1Þ

The model’s Energy function Eðu; hÞ is defined as fol-

lows [36]:

E u; hð Þ ¼ �
Xn

i¼1

Xm

j¼1

wijhiuj �
Xm

j¼1

bjuj �
Xn

i¼1

cihi ð2Þ

The parameters of the model for i 2 1; . . .;mf g and j 2
1; . . .; nf g are the weights wij and the biases bj and ci for

the jth visible and ith hidden neuron. All change parame-

ters get real values. RBMs do not allow connections

between neurons belonging to the same level [37].

This implies a conditional independence for elements at

a certain level so that [35, 38]:

p hjuð Þ ¼
Yn

i¼1

p hijuð Þ ð3Þ

p ujhð Þ& ¼
Ym

j¼1

p ujjh
� �� �

ð4Þ

The marginal distribution is determined as follows

[22, 39–41]:

p uð Þ ¼
X

h

p u; hð Þ ¼ 1

Z

X

h

e�E u;hð Þ

¼ 1

Z

X

h1

X

h2

. . .
X

hn

e
Pm

j¼1
bjuj
Yn

i¼1

e
hi ciþ

Pm

j¼1
wijuj

� �

¼ 1

Z
e
Pm

j¼1
bjuj
X

h1

e
h1 c1þ

Pm

j¼1
w1juj

� �

. . .

X

hn

e
hn cnþ

Pm

j¼1
wnjuj

� �

¼ 1

Z
e
Pm

j¼1
bjuj
Yn

i¼1

X

hi

e
hi ciþ

Pm

j¼1
wijuj

� �

¼ 1

Z

Ym

j¼1
ebjuj

Yn

i¼1

1þ e
ciþ
Pm

j¼1
wijuj

� �

ð5Þ

To calculate the conditional probabilities of a given

hidden or visible neuron, the set of visible variables can be

defined as u�l without considering the variable l (a and b
are vectors for the visible and hidden units) [38, 42, 43]:

al hð Þ ¼ �
Xn

i¼1

wilhi � bl

b u�l; hð Þ ¼ �
Xn

i¼1

Xm

j¼1;j6¼l

wijhiuj �
Xm

j¼1;j 6¼l

bjuj �
Xn

i¼1

cihi

ð6Þ

The Energy function Eðu; hÞ is given by the following

relation [44, 45]:

E u; hð Þ ¼ b u�l; hð Þ þ ulal hð Þ ð7Þ

The conditional probability of Vl is equal to [38, 46, 47]:

p Vl ¼ 1jhð Þ ¼ p Vl ¼ 1ju�l; hð Þ ¼ p Vl ¼ 1; u�l; hð Þ
p u�l; hð Þ

¼ e�E ul¼1;u�l;hð Þ

e�E ul¼1;u�l;hð Þ þ e�E ul¼0;u�l;hð Þ

¼ e�b u�l;hð Þ�1al hð Þ

e�b u�l;hð Þ�1al hð Þ þ e�b u�l;hð Þ�0al hð Þ

¼ e�b u�l;hð Þ � e�al hð Þ

e�b u�l;hð Þ � e�al hð Þ þ e�b u�l;hð Þ

¼ e�b u�l;hð Þe�al hð Þ

e�b u�l;hð Þ � e�al hð Þ þ 1ð Þ
e�alðhÞ

e�alðhÞ þ 1

1
ealðhÞ

1
ealðhÞ

þ 1

1

1þ ealðhÞ

¼ r �al hð Þ½ �

¼ r
Xn

i¼1

wilhi þ bl

 !

ð8Þ

where r is the following Sigmoid function 9 [48, 49].

r xð Þ ¼ 1

1þ e�x
ð9Þ

The independence condition for a hidden neuron with a

given visible level is calculated as follows [50, 51]:

p Hi ¼ 1juð Þ ¼ r
Xm

j¼1

wijuj þ ci

 !
ð10Þ

p Vj ¼ 1jh
� �

¼ r
Xn

i¼1

wijhi þ bj

 !
ð11Þ

The derivative of the logarithmic probability is equal to

[35, 38, 42]:

o lnL hjuð Þ
oh

¼ �
X

h

p hjuð Þ oE u; hð Þ
oh

þ
X

u;h

p u; hð Þ oE u; hð Þ
oh

ð12Þ

Setting the parameter h equal to the weights wij [52, 53]:
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X

h

p hjuð Þ oE u; hð Þ
owij

¼
X

h

p hjuð Þhiuj

¼
X

h

Yn

k¼1

p hkjuð Þhiuj

¼
X

hi

X

h�i

p hijuð Þp h�ijuð Þhiuj

¼
X

hi

p hijuð Þhiuj
X

h�i

p h�ijuð Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼1

¼ p Hi ¼ 1juð Þuj

¼ r
Xm

j¼1

wijuj þ ci

 !
uj

ð13Þ

The second term can be expressed as follows:

X

u;h

oE u; hð Þ
oh

¼
X

u

p uð Þ
X

h

p hjuð Þ oE u; hð Þ
oh

¼
X

h

p hð Þ
X

u

p ujhð Þ oE u; hð Þ
oh

ð14Þ

From the above relations, it is a sum over 2N situations.

The derivative of the logarithmic probability can be esti-

mated as follows [49, 54]:

o lnL hjuð Þ
owij

¼ �
X

h

p hjuð Þ oE u; hð Þ
owij

þ
X

u;h

p u; hð Þ oE u; hð Þ
owij

¼
X

h

p hjuð Þhiuj �
X

u

p uð Þ
X

h

p hjuð Þhiuj

¼ p Hi ¼ 1juð Þuj �
X

u

p uð Þp Hi ¼ 1juð Þuj

ð15Þ

For a given set S ¼ u1; . . .; ulf g [38, 47]:

1

l

X

u2S

o ln L hjuð Þ
owij

¼ 1

l

X

u2S

�Ep hjuð Þ
oE u; hð Þ
owij

	 


þEp h;uð Þ
oE u; hð Þ
owij

	 


2
6664

3
7775

¼ 1

l

X

u2S
Ep hjuð Þ uihj

� �
� Ep h;uð Þ uihj

� �� �

¼ uihj
� �

p hjuð Þq uð Þ� uihj
� �

p h;uð Þ

ð16Þ

The distribution q is the distribution represented by the

data set and the above result can be written as:

X

u2S

o ln L hjuð Þ
owij

/ uihj
� �

data
� uihj
� �

model
ð17Þ

Setting parameter h equal to the total of the remaining

change parameters which are the weights bj and ci, the

following expressions will be considered [36, 55]:

o lnL hjuð Þ
obj

¼ uj �
X

u

p uð Þuj ð18Þ

o ln L hjuð Þ
oci

¼ p Hi¼1juð Þ �
X

u

p uð Þp Hi ¼ 1juð Þ ð19Þ

It is possible to assess the above terms with Monte Carlo

Markov chains. However, the representative subset of

model distribution samples would require continuous

sampling of the Markov chain for a long time until equi-

librium was reached. This is not possible due to the com-

putational cost and an additional approach is required. The

usual approach employed when using RBMs is the Con-

trastive Divergence (CODI) method [56, 57]. CODI is the

most common approximation technique for calculating the

expected values in the derivative of the logarithmic prob-

ability, under the model’s distribution [44].

In particular, instead of applying sequential Gibbs

sampling steps to balance the neural network [58], CODI

introduces a training example uð0Þ to the visible neurons. It

then executes a Gibbs chain for k steps, acquiring a

reconstruction uðkÞ. For a large number of problems, even

one step k is enough. The resulting approach for the

derivative of the logarithmic probability to a change

parameter h, is:

CODIk h; u 0ð Þ
� �

¼ �
X

h

p hju 0ð Þ
� � oE u 0ð Þ; h

� �

oh

þ
X

h

p hju kð Þ
� � oE u kð Þ; h

� �

oh
ð20Þ

A proper approach requires the implementation of CODI

across the entire data set S; for every step of the procedure.

However, the best way is to apply CODI to a subset of data

bS 2 S, which could be a representative and extended mini

batch, especially in cases of big data sets. In any case,

CODI is an approximate technique. The resulting sample

may not be related to the equilibrium distribution of the

model, so the approach is biased. Accordingly, the mixing

rate of the Markov chain is a measure of how quickly it

leads to equilibrium distribution.

It is described by the transition probabilities and is one

of the factors, in conjunction with the individual execution

steps, that influences the approach error. Also, the order of

magnitude of the change parameters affects the mixing

rate. This is evident by the expressions of the conditional

probabilities in terms of the sigmoid function. High values

of change parameters correspond to values close to zero for

the conditional probabilities, and the Markovian chain is

evolving very slowly over time.

Variational Inference (VAI) [59] is an alternative for

cases where Markovian models cannot perform effectively.

VAI models are interested in finding the parameter
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distribution of the model, using faster and scalable meth-

ods, which are suitable also for big datasets. Specifically,

the models in question, are searching the exact and detailed

distribution of a strict approach to the actual posterior

distribution, following the following relation [22, 60]:

argmin
/2U

KL q h;/ð Þ k p hjdatað Þð Þ ð21Þ

where qðh;/Þ is the variational density. It is a parametric

density which is parametrized by /, which should be easy

to sample and evaluate. The proposed anomaly detector

refers to the change between two points which is compared

to a specified threshold [52]:

Dt ¼ yt � yt�1 ð22Þ

The threshold is determined based on the Mahalanobis

distance and specifically [49, 61]:

dðMahalanobis; x; lÞ ¼ ðx� lÞT�R�1 � x� lð Þ
� �0:5 ð23Þ

As soon as the Mahalanobis distance is estimated, it

becomes feasible to estimate the probability PðXÞ of a

sample’s appearance as follows:

P X; l;Rð Þ ¼ 1= ð2pÞn=2 � jRj1=2
� �n o�

exp �d Mahalanobis;X; lð Þð Þ
ð24Þ

where jRj is the covariance matrix R [43, 49].

Using the threshold value e and for all values PðXÞ\e
we have an anomaly in the dataset, which is estimated

dynamically as follows:

e ¼ X� Xmin

Xmax � Xmin

ð25Þ

Defining the threshold e, the relation 26 changes as

follows:

jt ¼
1 Dt � e
�1 Dt\e



ð26Þ

Supposing that the Ds are following a Normal Distri-

bution, the output pj;t is related to the cumulative distri-

bution function of the normal distribution as follows:

pj;t ¼ U Dtð Þ ð27Þ

The Kullback–Leibler (KL) [56, 62] deviation is the

method of measuring the distance between two densities.

Therefore, in the Variational Inference methods an attempt

is made to minimize the dissimilarity between the classi-

fication approach and the actual posterior distribution. The

exact form of KL between two densities is calculated by

the following formula [62]:

KL q hð Þ k p hð Þð Þ ¼ Eq log q hð Þ � log p hð Þ½ � ð28Þ

where the expectation of solutions is directly related to the

variational density which is related to the variable h. The

immediate minimization of the KL deviation is a difficult

task.

Therefore, the solutions are related to the maximization

of the Evidence Lower Bound (ELBO), which is equivalent

to minimizing the KL deviation, so that [40, 63]:

ELBO /ð Þ ¼ Eq h;/ð Þ log p datanhð Þ þ log p hð Þ � log q h;/ð Þ½ �
ð29Þ

ELBO /ð Þ ¼ Eq h;/ð Þ logp data; hð Þ � logq h;/ð Þ½ � ð30Þ

Therefore, the goal becomes to find solutions for

/� ¼ argmax
/

ELBO /ð Þ ð31Þ

Solutions that have been proposed for this process,

concern the attempt to update the parameter / in varia-

tional distribution successively, until certain convergence

criteria are met. This requires detailed sources of updates,

which can be time consuming at best and impossible in

some cases.

ADVI [64] is an alternative approach for the maxi-

mization of ELBO. It is a gradient-based procedure, and it

requires iterative optimization to detect /�. Nevertheless, it
uses a stochastic gradient descent method that requires the

calculation of ELBO derivatives in relation to the param-

eters. Assuming that all model parameters are continuous,

in ADVI, ELBO is rewritten as follows [39, 59, 64]:

ELBO /ð Þ ¼ Eq f;/ð Þ log p data; T�1 fð Þ
� ��

þ log det JT�1 fð Þj j � log q f;/ð Þ�
ð32Þ

where, the T : supportðhÞ ! RdimðhÞ is a function that

converts the h to f, and f 2 RdimðhÞ. ELBO estimation

requires sampling of values from the variables of the nor-

mal distributions and the evaluation of the expression

through the above expectation. It should be noted that

authors of ADVI demonstrate in practice that one sample is

sufficient for this evaluation. ELBO maximization requires

the ELBO gradient with respect to variational parameters

as follows [27, 39]:

r/ELBO /ð Þ ¼ r/Eq f;/ð Þ log p data; T�1 fð Þ
� ��

þ log det JT�1 fð Þ
�� ��� log q f;/ð Þ

� ð33Þ

In order to push the gradient inside the expectation, we

must first design a standard Normal random variate, and

then multiply the random variate by the variational stan-

dard deviation and variational mean as in Eq. 34 as follows

[39, 43]:

r/ELBO /ð Þ � log p data; T�1 ~f
� �� �

þ log det JT�1
~f
� ����

���

� log q ~f;/
� �

ð34Þ
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where �
f ¼ lþ zr, and z is a draw from a standard Normal

and ðl; rÞ are the variational mean and standard deviations

which can be vectors when z is multivariate standard

Normal. All that remains is to perform some kind of

inclination to obtain solutions for / which is legitimate and

computationally feasible. It should be noted that this

modeling does not require the calculation or use of Jaco-

bian, nor does it record a correlation between parameters. It

also does not record a correlation between parameters,

which makes it very affordable and efficient without high

computational cost.

In conclusion, the proposed methodology automatically

transforms the hidden variables into a real coordinate

space. In this space, it chooses an approach which is a

function of the transformed variables and optimizes its

parameters with stochastic gradient ascent methods. Thus,

it can be applied to solve a wide range of models without

having to find a detailed solution for each of them. This

makes it computationally accessible.

4 Dataset

The HIL-based Augmented Industrial Control System (ICS)

(HAI) [65] security dataset was used to test the proposed

system. This is a fully realistic data set, collected through

the Hardware-In-the-Loop (HIL) simulation process.

Specifically, it simulated steam-turbine power generation

and pumped-storage hydropower generation mechanisms

[66].

HAI is considered one of the most valid and realistic

data sets. It includes both normal and abnormal behaviors

of the systems in question. Its sole purpose is the detection

of abnormalities in ICS. The normal data set was collected

from the actual operation of the ICS systems. The abnor-

mal set was collected based on various attack scenarios in

the six control loops and in the three different types of

industrial equipment devices [67].

Each control loop refers to a system that includes all

software functions required to measure and adjust the

variable that controls a process. The simulation considers

the boiler, the turbine, the water treatment component and

the HIL simulator. The boiler process is actually, the

transfer of heat from water to water, under conditions of

low pressure and moderate temperature. The turbine pro-

cess includes a rotor test kit aiming to simulate the

behavior of a real rotating machine.

In this research, the boiler and turbine processes were

interconnected with the HIL simulator to ensure synchro-

nization with the rotation speed of the steam generator. The

water treatment process involved pumping water into the

upper tank and subsequent release into the lower tank,

based on a hydroelectric generating model that uses a

storage pump. The three procedures were controlled by

three different types of controllers, as shown in Fig. 1 [28].

Data collection was based on the use of SCADA sys-

tems which typically collect data elements called points (or

tags). Each point represents an individual variable mea-

sured or controlled by each system. All scenarios are

configured based on the four variables of the feedback

loop, namely Setpoints (SP), Process Variables (PV),

Control Variables (CV), and Control Parameters (CP).

During normal conditions, it is assumed that the control

module is operated normally via the HMI and that the

simulator variables associated with the output of the HIL

change. The operator monitors the values given by the

current sensor displayed on the HMI and adjusts the SPs of

the various control devices related to the operation of the

system.

An HMI task scheduler was used to periodically ini-

tialize the SPs and HIL simulator variables at random or

predefined values, which were within the normal range, in

order to simulate a Benign scenario. The normal SP value

limits at which the whole procedure was constant were

determined by performing an experimental change of each

SP value [67].

The four controls (P1-PC, P1-LC, P1-FC and P1-TC)

and two simulation models (steam turbine power generator

and pump hydroelectric generator) operated automatically

several times on a daily basis. They started with a random

delay and reached a random value or default value, within

the normal operating range. All SP values were recorded to

learn the capabilities of the system. Respectively, based on

the four variables of the feedback control loop presented

above, the attack scenarios are simulated as shown in

Fig. 2.

Abnormal behavior occurs either when some of the

parameters are not within the normal range, or when they

are facing unexpected situations due to attacks,

Fig. 1 Process flow diagram
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malfunctions and failures. It should be noted that the attack

scenarios have been implemented taking into account the

attack target, the attack time and the method for each

feedback control loop. Overall, the HAI 2.0 dataset that

was used, has 79 measurement channels for receiving data

from sensors, actuators and control devices, representing

the current state of the system, taking one measurement

every second.

Totally, 964,804 s of cyber-physical systems are con-

sidered, including measurements from 5 cyber-attacks

[66]. The aim of the proposed system is to detect the

structure of the input data and to discover their hidden

patterns, in order to detect the anomalies that are expressed

as cyber-attacks. This should be done without providing

any experience to the learning algorithm, and without the

need to find an analytical solution.

5 Results and discussion

Thorough preprocessing of the dataset was performed to

demonstrate its proper use. This process is necessary as the

original data often suffer from various kinds of problems,

such as conflicting information, coding inconsistencies,

noise and extremes. Also, it is often necessary to address

specific problems that require data transformation, such as

the discretization, the normalization, the reduction of the

dimensionality or the selection of the most appropriate

characteristics.

Initially, an indicative statistical analysis of the dataset

was performed. The main objective of the above statistical

procedure was the analysis and interpretation of the used

data, with the ultimate goal of drawing safe conclusions

that can lead to correct decisions. Specifically, Table 1

shows the probability for each sample to belong to a

specific subset, when the sample space consists of discrete

random variables, where the distribution can be determined

by a cumulative probability function.

Also, for the clear and distinct determination of the

variance, the graphs of the statistical frequencies of each

feature’s values are presented in histograms. The height of

each region is equal to the ratio of the frequency to the

range of values represented by the rectangle. An illustrative

presentation of the features is shown in Fig. 3.

Correlation analysis has been performed. It can facilitate

the comparison of several quantitative variables in order to

identify patterns, similarities, complexes, as well as posi-

tive, negative or neutral relationships between data. Cor-

relations are useful because they can indicate a predictive

relationship that can be exploited in practice, although

statistical dependence is not sufficient to prove the pres-

ence of a causal relationship (that is, the correlation does

not imply causality). A Principal Component Analysis

(PCA) test was then performed to detect data covariance

and to decide if parameter reduction is required.

As can be seen from the scree plot of Fig. 4 the first two

principal components retain slightly less than 41% of the

statistical data from the original data, so no parameter

reduction is required.

Respectively, the following Fig. 5 identifies the contri-

bution of each variable to the predictive capacity of the set.

Data pre-processing ensures the quality of the used data,

in order to avoid any potential bias regarding the experi-

mental procedure. Unsupervised learning was employed

for the determination of the clusters in order to reach a

reliable optimal model. Moreover, extensive comparisons

were made between the introduced algorithm and the fol-

lowing competing clustering methods (SOM, K-Means,

DBSCAN, Gaussian Mixtures (GaMix) and Spectral

Clustering (SpClu)). Two to ten cluster centers were used

during experimentations.

For example, in the case of the k-means algorithm,

which is sensitive to the initial positions of the centers of

the clusters, ten initial configurations were created and then

the Sums of Squares were averaged. The optimal scenario

is when the minimum Sum of Squares is observed within a

cluster (how tight each cluster is).

The solutions were evaluated in terms of their homo-

geneity, according to the Coefficient of Variation (CV)

[38, 49]. CV is the index of dispersion, and it expresses the

homogeneity of a set of measurements of a random quan-

titative variable and the accuracy of an experimental

design. It is estimated by the following relation:

CV ¼ 100 � S
�
Y ð35Þ

where S standard deviation and Y arithmetic mean of the

samples. Values between 0:00\CV	 0:25 declare a high

level of homogeneity, 0:25\CV	 0:40 median level and

CV[ 0:40 low level. The results obtained for each method

are presented in Table 1.

To confirm the optimal number of clusters, the ‘‘Elbow’’

method was used. This approach calculates the sum of

squares for each proposed number of clusters [49]. The

Fig. 2 Attack model based on a process control loop
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optimal number is obtained in the case of the abrupt change

of inclination as shown in Fig. 6.

The ‘‘Silhouette’’ method was also used which calcu-

lates the average silhouette of the observations for different

number of clusters. It then calculates the variance within

the clusters for each case and compares them with their

expected values, under a zero-reference distribution of the

data [49]. The estimation of the optimal number of clusters

is the value that maximizes the mean silhouette in a range

of possible values, which means that the clustering struc-

ture is far from the random uniform distribution of points.

The ‘‘Silhouette’’ is presented in Fig. 7.

The following Figs. 8, 9 and 10 present in detail the

various versions of the instability indices of the clusters

related to the proposed model. The size of each node

corresponds to the number of samples in each cluster and

the arrows are colored according to the number of samples

received by each cluster. Transparent arrows are called

inbound node ratios and they show how samples from one

group end up in another. Also, this index shows the quality

of the cluster analysis [49, 68].

Table 1 Statistical analysis of

the data set
Proposed SOM k-Means DBSCAN GaMix SpClu

Clusters k 2 2 2 2 3 4

Within_ss 0.11 0.22 0.17 0.20 0.19 0.16

Between_ss 0.89 0.78 0.87 0.75 0.77 0.64

CV 0.12 0.27 0.19 0.29 0.31 0.42

Fig. 3 Historgram for each channel

Fig. 4 Scree plot

Fig. 5 Contribution of each variable
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The overall results of the anomaly detection process,

take into account the most important performance metrics

for the investigation of binary cases and they are presented

in Table 2 [68]. It should be noted that the comparison does

not include the GaMix and SpClu algorithms, as their

results were completely disappointing. The data set man-

agement for the above algorithms took into account 3 and 4

clusters, respectively, which did not offer a reliable model

for the problem under consideration.

Table 2 clearly shows the superiority of the proposed

ADVI RBM algorithm, which excels in all metrics, while

the performance error remains very low compared to the

other approaches. Specifically, the accuracy of the ADVI

RBM, exceeds by 2.7% the second-best method, while the

recorded error is significantly smaller. Even in terms of the

time it took to cluster the data, with the exception of the

k-means algorithm, which is clearly 170 s faster, the other

algorithms took about the same amount of time to run. In

general, this system of fully automated learning without

training is very promising and it can significantly improve

Fig. 6 Elbow method of the proposed algorithm

Fig. 7 The silhouette-plot

Fig. 8 Instability plot

Fig. 9 Instability plot A
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the safety of industrial infrastructure. The following

Table 3 presents the initial parameters of compared algo-

rithms used.

It is very important that it works very effectively on

unlabeled data, without having to define the number of

clusters in the system’s parameters (as it happens for the

k-means) and also without the need to set a threshold value.

These features strongly reinforce the belief that the pro-

posed system can effectively model real-world data.

Another important advantage is the fact that the RBM, as a

logarithmic approach, decides for itself which features are

relevant and how to best combine them to form patterns.

This feature is clearly demonstrated by the very high-per-

formance results it has achieved, as well as its ability to

generalize to new unknown situations.

Also, in the proposed RBM, the hidden modules are

conditionally independent, so we can quickly get an

unbiased sample from the rear distribution when given a

data vector. This process has been significantly enhanced

with the use of ADVI, so that the final system has the

ability to detect anomalies without the need for prior sys-

tem training and without the need to find a detailed solu-

tion. This makes it computationally accessible and

relatively fast (given that times with other algorithms are

almost similar). Obviously, the convergence response time

of the algorithm is something that needs to be improved,

but in any case, this process is recorded as positive.

6 Conclusions and future work

With the installation of sensors and the use of smart

applications, CoMo offers accurate, valid and timely data,

aiming at the proper management and maintenance of

industrial equipment. CoMo security event analysis for

real-time anomaly detection is an active approach to

security event management. Nonetheless, given that no tool

can accurately predict the future state of industrial equip-

ment, intelligent anomaly detection systems prove to be

particularly useful and reliable, as they are able to give a

clear picture of how these systems work.

This paper presents the innovative ADVI RBM system

that performs intelligent and unattended automatic learn-

ing, for the detection of abnormalities in industrial control.

It is an improved form of RBM, whose functionality is

enhanced by the advanced ADVI technique for the precise

determination of a posterior distribution without the need

of prior training, and without the need to find a detailed

solution. Specifically, to calculate the conditional proba-

bilities of a given hidden or visible neuron, the set of

visible variables has exponential complexity since it is a

sum over 2N situations. Consequently, the calculated

quantity cannot be solved even if the internal sum is fac-

torized in any existing way. The proposed approach does

not require the calculation or use of Jacobian matrix, nor

does it record a correlation between parameters. The latter

Fig. 10 Instability plot B

Table 2 Performance

comparison
ACC PRE REC F-SC ROC RMSE Time/s

Proposed ADVI RBM 0.989 0.990 0.990 0.990 0.995 0.1477 548

RBM 0.953 0.955 0.950 0.955 0.955 0.1901 984

VAE 0.971 0.970 0.970 0.970 0.975 0.1742 611

LSTM 0.959 0.960 0.960 0.960 0.960 0.1874 706

SOM 0.948 0.950 0.950 0.950 0.970 0.2468 583

k-Means 0.962 0.960 0.965 0.965 0.965 0.1993 374

DBSCAN 0.937 0.935 0.935 0.940 0.960 0.2815 537

ACC accuracy, PRE precision, REC recall, F-SC F-score, RO Receiver operating characteristic curve,

RMSE root mean squared error, VAE variational autoencoder, LSTM Long short-term memory network

SOM self organizing map neural network
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makes it very affordable and efficient due to its low com-

putational cost. Thus, the proposed methodology auto-

matically transforms the hidden variables into real

coordinate space. In this space, it chooses an approach that

is a function of the transformed variables and optimizes its

parameters with stochastic gradient ascent methods. Thus,

it can be applied to solve a wide range of models without

having to find a detailed solution for each of them. This

makes it computationally accessible. This process signifi-

cantly evolves the way RBMs operate, as computational

complexity and corresponding computational resource

requirements are marginalized.

The usual approach employed when using RBMs is the

CODI method. CODI is the most common approximation

technique for calculating the expected values in the

derivative of the logarithmic probability, under the model’s

distribution. The representative subset of model distribu-

tion samples would require continuous sampling of the

Markov chain for a long time until equilibrium was

reached. This is not possible for real-time applications due

to the computational cost, and an alternative approach is

required. As shown in Sect. 2, using Variational Distribu-

tion as a normal distribution of multiple variables, it is

possible to correlate the parameters to solve dynamic

problems at an affordable computational cost.

The high generalizability, as well as the convergence

stability of the proposed methodology, prove that it is

capable of performing even when the nature of the anomaly

is new and therefore unknown. Generalization refers to the

model’s ability to adapt properly to new, previously unseen

data, drawn from the same distribution as the one used to

create the model. The performance of the proposed algo-

rithm is based on the performance metrics (Accuracy,

Precision, Recall, F-Score, and ROC curves) that show

values of estimates of the generalization error through the

learning process. Table 2 clearly shows the superiority of

the proposed ADVI RBM algorithm, which excels in all

metrics, while the generalization error remains very low

compared to the other approaches.

This work proves that using Variational Distribution as a

normal distribution of multiple variables, it is possible to

correlate the parameters of a simple model such as the one

proposed, to solve dynamic problems at an affordable

computational cost.

Future research toward the improvement of the proposed

system, will include the process of finding convergence

solutions for in shorter times. Another optimization

approach will be used to enhance the anomaly detection

system with more advanced techniques, capable of esti-

mating hyperparameter values and of using meta-learning

methods. The structure of the algorithm should be exten-

sively studied and completed with data transformation

techniques, so that it can locate the optimal representations

of the data and extract only useful information.
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