
A Bio-Inspired Hybrid Artificial Intelligence

Framework for Cyber Security

Konstantinos Demertzis and Lazaros Iliadis

Abstract Confidentiality, Integrity, and Availability of Military information is a

crucial and critical factor for a country’s national security. The security of military

information systems (MIS) and Networks (MNET) is a subject of continuous

research and design, due to the fact that they manage, store, manipulate, and

distribute the information. This study presents a bio-inspired hybrid artificial

intelligence framework for cyber security (bioHAIFCS). This framework combines

timely and bio-inspired Machine Learning methods suitable for the protection of

critical network applications, namely military information systems, applications and

networks. More specifically, it combines (a) the hybrid evolving spiking anomaly

detection model (HESADM), which is used in order to prevent in time and accu-

rately, cyber-attacks, which cannot be avoided by using passive security measures,

namely: Firewalls, (b) the evolving computational intelligence system for malware

detection (ECISMD) that spots and isolates malwares located in packed executables

untraceable by antivirus, and (c) the evolutionary prevention system from SQL

injection (ePSSQLI) attacks, which early and smartly forecasts the attacks using

SQL Injections methods.

1 Introduction

Application of high protection level measures by the army, in order to secure its

information systems (IS), can offer a serious advantage in the evolution of a crisis,

in tactical and operational level. It is a fact that the necessity to ensure secrecy

of military IS and Confidentiality of information control and management systems

(C4I) is a critical stabilization factor between opposite forces and a matter of honor

for each side. The opposite can have serious consequences difficult to estimate in

terms of material or moral cost. Thus, the development of network security systems

following military specifications and demands is absolutely necessary. They could

combine smart techniques capable of preventing attacks of zero-day nature.

K. Demertzis (�) • L. Iliadis

Department of Forestry & Management of the Environment & Natural Resources,

Democritus University of Thrace, Xanthi 671 00, Greece

e-mail: kdemertz@fmenr.duth.gr; liliadis@fmenr.duth.gr

© Springer International Publishing Switzerland 2015

N.J. Daras, M.Th. Rassias (eds.), Computation, Cryptography,

and Network Security, DOI 10.1007/978-3-319-18275-9_7

161

kdemertz@fmenr.duth.gr

mailto:kdemertz@fmenr.duth.gr
mailto:liliadis@fmenr.duth.gr

162 K. Demertzis and L. Iliadis

The most popular attack techniques aiming to gain access in important or

sensitive data use one of the methods below:

• Direct invasion to the system with attacks of DoS,

• Dispersion and installation of malware software

• Exploitation of potential weaknesses in the security of the system and mainly

in the security of the network applications with attacks of SQL Injections type.

In the case of direct attack in a network, the usual security measures are the

installation of a Firewall, in order to prevent non-authorized access in certain

services and the installation of an intrusion detection system (IDS). The IDS are

network and event monitoring and analysis systems. The target is to spot indications

of potential intrusion efforts or efforts aiming to deviate the security mechanisms by

external non-authorized users or users with limited authorization. The protection in

this case is based on passive measures that use statistical analysis of events. There

are network based (NIDS) and host based (HIDS) IDSs. Some of them are looking

for specific signatures of known threats, whereas others are spotting anomalies by

comparing traffic patterns against a baseline [1].

There are three basic approaches for designing and building IDS, namely: the

Statistical, the Knowledge based, and the Machine Learning one which has been

employed in this research effort. The concept of the statistical-based systems (SBID)

is simple: it determines “normal” network activity and then all traffic that falls

outside the scope of normal is flagged as anomalous (abnormal). These systems

attempt to learn network traffic patterns on a particular network. This process of

traffic analysis continues as long as the system is active, so, assuming network

traffic patterns remain constant, the longer the system is on the network, the more

accurate it becomes. The knowledge based intrusion detection systems (KBIDES)

classify the data vectors based on a carefully designed Rule Set or they use models

obtained from past experience in a heuristic mode. The Machine Learning approach

automates the analysis of the data vectors, and they result in the implementation of

systems that have the capacity to improve their performance as time passes.

This research effort aims in the development and application of an innovative

hybrid evolving spiking anomaly detection model (HESADM) [2], which employs

classification performed by evolving spiking neural networks (eSNN), in order to

properly label a potential anomaly (PAN) in the net. On the other hand, it uses a

multi-layer feed forward (MLFF) ANN to classify the exact type of the intrusion.

The second attack approach is the dispersion and installation of malwares which

are untraceable by the usual antivirus systems. Malware is a kind of software

used to disrupt computer operation, gather sensitive information, or gain access to

private computer systems. To identify already known malware, existing commercial

security applications search a computer’s binary files for predefined signatures.

However, obfuscated viruses use software packers to protect their internal code

and data structures from detection. Antivirus scanners act like file filters, inspecting

suspicious file loading and storing activities. Malicious programs with obfuscated

content can bypass antivirus scanners. Eventually, they are unpacked and executed

in the victim’s system [3].

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 163

Code packing is the dominant technique used to obfuscate malicious code, to

hinder an analyst’s understanding of the malware’s intent and to evade detection

by Antivirus systems. Malware developers transform executable code into data, at

a post-processing stage in the whole implementation cycle. This transformation

uses static analysis and it may perform compression or encryption, hindering an

analyst’s understanding. At runtime, the data or hidden code is restored to its

original executable form, through dynamic code generation using an associated

restoration routine. Execution then resumes as normal to the original entry point,

which marks the entry point of the original malware, before the code packing

transformation is applied. Finally, execution becomes transparent, as both code

packing and restoration have been performed. After the restoration of one packing,

control may transfer another packed layer. The original entry point is derived from

the last such layer [4].

Code packing provides compression and software protection of the intellectual

properties contained in a program. It is not necessarily advantageous to flag all

occurrences of code packing as indicative of malicious activity. It is advisable to

determine if the packed contents are malicious, rather than identifying only the fact

that unknown contents are packed. Unpacking is the process of stripping the packer

layers off packed executables to restore the original contents in order to inspect

and analyze the original executable signatures. Universal unpackers, introduce a

high computational overhead, low convergence speed, and computational resource

requirements. The processing time may vary from tens of seconds to several minutes

per executable. This hinders virus detection significantly, since without a priori

knowledge on the nature of the executables to be checked for malicious code all

of them would need to be run through the unpacker. Scanning large collections of

executables may take hours or days. This research effort aims in the development

and application of an innovative, fast, and accurate evolving computational intelli-

gence system for malware detection (ECISMD) [5] approach for the identification

of packed executables and detection of malware by employing eSNN. A multilayer

evolving classification function (ECF) model has been employed for malware

detection, which is based on fuzzy clustering. Finally, an evolutionary genetic

algorithm (GA) has been applied to optimize the ECF network and to perform

feature extraction on the training and testing datasets. A main advantage of ECISMD

is the fact that it reduces overhead and overall analysis time, by classifying packed

or not packed executables.

The third way widely used to overcome the security measures by exploiting

the gaps in the control systems is the SQL injections one. This approach tries to

exploit vulnerabilities in the security of network applications. SQL injection is a

code injection technique, used to attack data driven applications, in which malicious

SQL statements area SQL injection attack consists of insertion or “injection” of a

SQL query via the input data from the client to the application. A successful SQL

injection exploit can read sensitive data from the database, modify database data

(Insert/Update/Delete), execute administration operations on the database (such as

shutdown the DBMS), recover the content of a given file present on the DBMS file

system, and in some cases issue commands to the operating system. SQL injection

kdemertz@fmenr.duth.gr

164 K. Demertzis and L. Iliadis

attacks are a type of injection attack, in which SQL commands are injected into

data-plane input in order to effect the execution of predefined SQL commands [6].

This study proposes a bio-inspired Artificial Intelligence model named evolutionary

prevention system from SQL injection (ePSSQLI) Αttacks. It combines the use

of MLFF ANN with optimization techniques of genetic algorithms (evolutionary

optimization), in order to handle the potential intrusion attacks, based on SQL

injection type.

2 Literature Review

Artificial Intelligence and data mining algorithms have been applied as intrusion

detection methods in finding new intrusion patterns [7–10], such as clustering

(unsupervised learning) [11–13] or classification (supervised learning) [14–17].

Also, a few hybrid techniques were proposed like Neural Networks with Genetic

Algorithms [18] or Radial Based Function Neural Networks with Multilayer

Perceptron [19, 20]. Besides, other very effective methods exist such as Sequential

Detection [21], State Space [22], Spectral Methods [23], and combinations of those.

Dynamic unpacking approaches monitor the execution of a binary in order

to extract its actual code. These methods execute the samples inside an isolated

environment that can be deployed as a virtual machine or an emulator [24].

The execution is traced and stopped when certain events occur. Several dynamic

unpackers use heuristics to determine the exact point where the execution jumps

from the unpacking routine to the original code. Once this point is reached, the

memory content is bulk to obtain an unpacked version of the malicious code. Other

approaches for generic dynamic unpacking have been proposed that are not highly

based on heuristics such as PolyUnpack [25] Renovo [26], OmniUnpack [27], or

Eureka [28].

However, these methods are very tedious and time consuming, and cannot

counter conditional execution of unpacking routines, a technique used for anti-

debugging and anti-monitoring defense [29]. Another common approach is using

the structural information of the executables to train supervised machine-learning

classifiers to determine if the sample under analysis is packed or if it is suspicious

of containing malicious code (e.g., PEMiner [30], PE-Probe [31], and Perdisci et al.

[32]). These approaches that use this method for filtering, previous to dynamic

unpacking, are computationally more expensive and time consuming and less

effective to analyze large sets of mixed malicious and benign executables [33–35].

Artificial Intelligence and data mining algorithms have been applied as malicious

detection methods and for the discovery of new malware patterns [36]. In the

research effort of Babar and Khalid [29], boosted decision trees working on n-grams

are found to produce better results than Naive Bayes classifiers and support vector

machines (SVMs). Ye et al. [37] use automatic extraction of association rules

on Windows API execution sequences to distinguish between malware and clean

program files. Chandrasekaran et al. [38] used association rules, on honeytokens

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 165

of known parameters. Chouchan et al. [39] used Hidden Markov Models to detect

whether a given program file is (or is not) a variant of a previous program file. Stamp

et al. [40] employ profile hidden Markov Models, which have been previously used

for sequence analysis in bioinformatics. Artificial Neural Networks (ANN) to detect

polymorphic malware is explored in [41]. Yoo [42] employs Self-Organizing Maps

to identify patterns of behavior for viruses in Windows executable files. These

methods have low accuracy as a consequence, packed benign executables would

likely cause false alarm, whereas malware may remain undetected.

Vulnerability pattern approach is used by Livshits et al. [43], they propose static

analysis approach for finding the SQL injection attack. The main issue of this

method is that it cannot detect the SQL injection attack patterns that are not known

beforehand. Also, AMNESIA mechanism to prevent SQL injection at run time is

proposed by Halfond et al. [44]. It uses a model based approach to detect illegal

queries before it sends for execution to database. The mechanism which filters

the SQL Injection in a static manner is proposed by Buehrer et al. [45]. The SQL

statements by comparing the parse tree of a SQL statement before and after input

and only allowing to SQL statements to execute if the parse trees match. Marco

Cova et al. [46] proposed a Swaddler, which analyzes the internal state of a web

application and learns the relationships between the application’s critical execution

points and the application’s internal state.

There exists machine learning related works in the wild [47–51]. In this work

we focus on the detection at the spot between application and database, detecting

anomalous SQL statements (the SQL statement returns a result set of records from

one or more tables), which are malicious in the sense that they include parts of

injected code or differ from the set of queries usually issued within an application.

Valeur et al. [52] proposed the use of an IDS based on a machine learning technique

which identifies queries that do not match multiple models of typical queries at

runtime, including string model and data type-independent model. It is trained by

a set of typical application queries, and the quality depends on the quality of the

training set. Wang et al. presented a novel method for learning SQL statements

and apply machine learning techniques, such as one class classification, in order to

detect malicious behavior between the database and application [53]. The approach

incorporates the tree structure of SQL queries as well as input parameter and

query value similarity as characteristic to distinguish malicious from benign queries.

Rawat et al. use SVM for classification and prediction of SQL-Injection attack [54].

This work contains the idea that compares SQL query strings and blocks suspicious

SQL-query and passes original SQL-query. Huang et al. present a new method

to prevent SQLI attack based on machine learning [55]. This approach identifies

SQL injection codes by HTTP parameters’ attributes and the Bayesian classifier.

This technique depends on the choices of patterns’ attributes and the quality of the

training set. They choose two values as attributes of patterns, and invent a way to

generate the real-world patterns automatically. In addition Huang et al. designed

a system based on machine learning for preventing SQL injection attack, which

utilizes pattern classifiers to detect injection attacks and protect web applications

[56]. The system captures parameters of HTTP requests, and converts them into

kdemertz@fmenr.duth.gr

166 K. Demertzis and L. Iliadis

numeric attributes. Numeric attributes include the length of parameters and the

number of keywords of parameters. Using these attributes, the system classifies

the parameters by Bayesian classifier for judging whether parameters are injection

patterns.

3 Methodologies Comprising the bioHAIFCS

The bioHAIFCS uses three biologically inspired Artificial Intelligence methods,

namely: eSNN, MLFF, and ECF and their corresponding optimization approach

with GA, in order to create a high level security framework. It acts in a smart

and preemptive manner to spot the threats by making the minimum consumption of

resources. These methods are presented below:

3.1 Evolving Spiking Neural Networks

The eSNN that has been developed and discussed herein is based on the “Thorpe”

neural model [57] which intensifies the importance of the spikes taking place in

an earlier moment, whereas the neural plasticity is used to monitor the learning

algorithm by using one-pass learning. In order to classify real-valued data sets, each

data sample is mapped into a sequence of spikes using the rank order population

encoding (ROPE) technique [58, 59]. The topology of the developed eSNN is strictly

feed-forward, organized in several layers and weight modification occurs on the

connections between the neurons of the existing layers.

The details of eSNN architecture described below:

3.1.1 Rank Order Population Encoding

The ROPE method [58, 59] is an alternative to conventional rate coding scheme

that uses the order of firing neuron’s inputs to encode information which allows

the mapping of vectors of real-valued elements into a sequence of spikes. Neurons

organized into neuronal maps which share the same synaptic weights. Whenever

the synaptic weight of a neuron is modified, the same modification is applied to the

entire population of neurons within the map. Inhibition is also present between each

neuronal map. If a neuron spikes, it inhibits all the neurons in the other maps with

neighboring positions. This prevents all the neurons from learning the same pattern.

When propagating new information, neuronal activity is initially reset to zero. Then,

as the propagation goes on, neurons are progressively desensitized each time one of

their inputs fires, thus making neuronal responses dependent upon the relative order

of firing of the neuron’s afferents. More precisely, let AD {a1, a2, a3 . . . am-1, am} be

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 167

the ensemble of afferent neurons of neuron i and W ={w1,i, w2,i, w3,i. . . wm-1,i, wm,i}

the weights of the m corresponding connections; let mod 2 [0,1] be an arbitrary

modulation factor. The activation level of neuron i at time t is given by Eq. (1):

Activation(i,t)D
X

j2[1,m]

modorder(aj) wj,i (1)

where order(aj) is the firing rank of neuron aj in the ensemble A. By convention,

order(aj)DC8 if a neuron aj is not fired at time t, sets the corresponding term in

the above sum to zero. This kind of desensitization function could correspond to

a fast shunting inhibition mechanism. Whenever a neuron reaches its threshold, it

spikes and inhibits neurons at equivalent positions in the other maps so that only

one neuron will respond at any particular location. Every spike also triggers a time

based Hebbian-like learning rule that adjusts the synaptic weights. Let te be the date

of arrival of the excitatory postsynaptic potential (EPSP) at synapse of weight W

and ta the date of discharge of the postsynaptic neuron.

if te < ta then dW = a(1-W)e-|�o|� (2)

else dW = -aWe-|�o|�

where
o is the difference between the date of the EPSP and the date of the neuronal

discharge (expressed in terms of order of arrival instead of time), as is a constant that

controls the amount of synaptic potentiation and depression [58].

ROPE technique with receptive fields allows the encoding of continuous values

by using a collection of neurons with overlapping sensitivity profiles [60]. Each

input variable is encoded independently by a group of one-dimensional receptive

fields (Fig. 2). For a variable n, an interval [In
min; In

max] is defined. The Gaussian

receptive field of neuron i is given by its center �i:

�i = In
min +

2i-3

2

In
max - In

min

M-2
(3)

The width � is given by Eq. (4):

� =
1

ˇ

In
max - In

min

M-2
(4)

where 1�ˇ �2 and the parameter ˇ directly controls the width of each Gaussian

receptive field.

Figure 1 depicts an example encoding of a single variable. For the diagram

(ˇD 2) the input interval [In
min, In

max] was set to [�1.5, 1.5] and MD5 receptive

fields were used. For an input value vD0.75 (thick straight line in left figure) the

intersection points with each Gaussian is computed (triangles), which are in turn

translated into spike time delays (right figure).

kdemertz@fmenr.duth.gr

168 K. Demertzis and L. Iliadis

Fig. 1 The evolving spiking

neural network (eSNN)

architecture [23]

data

sample

receptive

fields

input

neurons

evolving neuron

repository

Class 1

Class 2

0.6

0.1

0.9

0.3

1.0

E
x
c
it
a

ti
o

n

F
ir
in

g
 T

im
e

0.8

0.6

0.4

0.2

0.0

-2 -1 0

Input Interval

1 2

0 1
Neuron ID

Receptive Fields

Input Value

2 3 4

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 2 Population encoding based on Gaussian receptive fields [23]

3.1.2 One-Pass Learning

The aim of the one-pass learning method is to create a repository of trained output

neurons during the presentation of training samples. After presenting a certain input

sample to the network, the corresponding spike train is propagated through the

SANN which may result in the firing of certain output neurons. It is also possible

that no output neuron is activated and in this case the network remains silent and

the classification result is undetermined. If one or more output neurons have emitted

a spike, the neuron with the shortest response time among all activated output

neurons is determined. The label of this neuron represents the classification result

for the presented input sample. The procedure is described in detail in the following

Algorithm 1 [23, 60] (Fig. 2).

For each training sample i with class label l 2 L a new output neuron is created

and fully connected to the previous layer of neurons resulting in a real-valued weight

vector w.i/with w
.i/
j 2R denoting the connection between the pre-synaptic neuron j

and the created neuron i. In the next step, the input spikes are propagated through

the network and the value of weight w
.i/
j is computed according to the order of spike

transmission through a synapse j: w
(i)
j =(ml)

order(j), 8jjj pre-synaptic neuron of i.

Parameter ml is the modulation factor of the Thorpe neural model. Differently

labeled output neurons may have different modulation factors ml. Function order(j)

represents the rank of the spike emitted by neuron j. The firing threshold � .i/ of the

created neuron I is defined as the fraction cl 2 R, 0 < cl < 1, of the maximal possible

potential u.i/
max :

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 169

Algorithm 1 Training an Evolving Spiking Neural Network (eSNN) [23]

Require: ml, sl , cl for a class label l 2 L

1: initialize neuron repository Rl = {}

2: for all samples X.i/ belonging to class l do

3: w
(i)

j (ml)
order(j), 8 j | j pre-synaptic neuron of i

4: u(i)
max

P

j w
(i)
j (ml)

order(j)

5: � (i)
 clu

(i)
max

6: if min(d(w.i/, w.k/)) < sl, w.k/
2Rl then

7: w(k)
 merge w(i) and w(k) according to Eq. (6)

8: � (k)
 merge � (i) and � (k) according to Eq. (7)

9: else

10: Rl Rl [\\{w(i)\\}

11: end if

12: end for

� .i/ clu
.i/
max (5)

u(i)
max

X

j

w
(i)
j (ml)

order(j) (6)

The fraction cl is a parameter of the model and for each class label l 2 L

a different fraction can be specified. The weight vector of the trained neuron

is then compared to the weights corresponding to neurons already stored in the

repository. Two neurons are considered too “similar” if the minimal Euclidean

distance between their weight vectors is smaller than a specified similarity threshold

sl (the eSNN object uses optimal similarity threshold sD0.6). All parameters

modulation factor ml, similarity threshold sl, PSP fraction cl, l 2 L of ESNN which

were included in this search space, are optimized according to the versatile quantum-

inspired evolutionary algorithm (vQEA) [61]. In this case, both the firing thresholds

and the weight vectors are merged according to Eqs. (7) and (8):

w
(k)
j

w
(i)
j +Nw

(k)
j

1+N
;8j | j pre-synaptic neuron of i (7)

� .k/
� .i/+N� .k/

1+N
(8)

It must be clarified that integer N denotes the number of samples previously used

to update neuron k. The merging is implemented as the (running) average of the

connection weights, and the (running) average of the two firing thresholds. After

the merging, the trained neuron i is discarded and the next sample processed. If no

other neuron in the repository is similar to the trained neuron i, the neuron i is added

to the repository as a new output neuron.

kdemertz@fmenr.duth.gr

170 K. Demertzis and L. Iliadis

3.2 Multilayer Feed-Forward Neural Network

Artificial neural networks are biologically inspired classification algorithms that

consist of an input layer of nodes, one or more hidden layers, and an output layer.

Each node in a layer has one corresponding node in the next layer, thus creating the

stacking effect [62]. Artificial neural networks are the very versatile tools and have

been widely used to tackle many issues [63–67].

Feed-forward neural networks (FNN) are one of the popular structures among

artificial neural networks. These efficient networks are widely used to solve complex

problems by modeling complex input–output relationships [68, 69]. Each neuron in

one layer has directed connections to the neurons of the subsequent layer. In many

applications the units of these networks apply a sigmoid function as an activation

function.

The universal approximation theorem for neural networks states that every

continuous function that maps intervals of real numbers to some output interval

of real numbers can be approximated arbitrarily closely by a multi-layer perceptron

with just one hidden layer. This result holds only for restricted classes of activation

functions, e.g. for the sigmoidal functions.

Feed-forward networks often have one or more hidden layers of sigmoid neurons

followed by an output layer of linear neurons. Multiple layers of neurons with

nonlinear transfer functions allow the network to learn nonlinear relationships

between input and output vectors. The linear output layer is most often used for

function fitting (or nonlinear regression) problems.

Multi-layer networks use a variety of learning techniques, the most popular being

back-propagation. Here, the output values are compared with the correct answer to

compute the value of some predefined error-function. By various techniques, the

error is then fed back through the network. Using this information, the algorithm

adjusts the weights of each connection in order to reduce the value of the error

function by some small amount. After repeating this process for a sufficiently large

number of training cycles, the network will usually converge to some state where

the error of the calculations is small. In this case, one would say that the network

has learned a certain target function. To adjust weights properly, one applies a

general method for nonlinear optimization that is called gradient descent. For this,

the derivative of the error function with respect to the network weights is calculated,

and the weights are then changed such that the error decreases (thus going downhill

on the surface of the error function).

3.3 Evolving Connectionist Systems

Evolving connectionist systems (ECOS) [70] are multi-modular, connectionist ar-

chitectures that facilitate modeling of evolving processes and knowledge discovery

[60]. An ECOS may consist of many evolving connectionist modules. An ECOS

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 171

Input Hidden Layer Output Layer

a1= tansig (IW1,1p1 +b1) a2= purelin (LW2,1a1 +b2)

P1

b1

2 4 3

1 1

4 x 1

4 x 1

4 x 1

3 x 4

3 x 1

3 x 1

3 x 1

4 x 2

2 x 1
IW1,1 LW2,1

n1

a1

n2

a3-y

b2

Fig. 3 Architecture of the multilayer feed-forward artificial neural network (http://www.

mathworks.com/)

is a neural network that operates continuously in time and adapts its structure and

functionality through a continuous interaction with the environment and with other

systems according to:

• a set of parameters that are subject to change during the system operation;

• an incoming continuous flow of information with unknown distribution;

• a goal (rational) criterion (also subject to modification) that is applied to

optimize the performance of the system over time.

The ECOS evolve in an open space, using constructive processes, not necessarily of

fixed dimensions. Moreover, they learn in on-line incremental fast mode, possibly

through one pass of data propagation. Life-long learning is a main attribute of this

procedure. They operate as both individual systems and as part of an evolutionary

population of such systems. They learn locally and locally partition the problem

space, thus allowing for a fast adaptation and tracing processes over time. They

facilitate different kinds of knowledge representation and extraction, mostly—

memory based statistical and symbolic knowledge [60, 71, 72] (Fig. 3).

ECOS are connectionist structures that evolve their nodes (neurons) and connec-

tions through supervised incremental learning from input–output data pairs.

Their architecture comprises of five layers: input nodes, representing input

variables; input fuzzy membership nodes, representing the membership degrees

of the input values to each of the defined membership functions; rule nodes,

representing cluster centers of samples in the problem space and their associated

output function; output fuzzy membership nodes, representing the membership

degrees to which the output values belong to defined membership functions; and

output nodes, representing output variables [60, 71, 72].

ECOS learn local models from data through clustering of the data and associating

a local output function for each cluster. Rule nodes evolve from the input data

stream to cluster the data, and the first layer W1 connection weights of these nodes

represent the coordinates of the nodes in the input space. The second layer W2

represents the local models (functions) allocated to each of the clusters.

kdemertz@fmenr.duth.gr

http://www.mathworks.com/
http://www.mathworks.com/

172 K. Demertzis and L. Iliadis

Clusters of data are created based on similarity between data samples either in

the input space or in both the input space and the output space. Samples that have

a distance to an existing cluster center (rule node) N of less than a threshold Rmax

are allocated to the same cluster Nc. Samples that do not fit into existing clusters

form new clusters as they arrive in time. Cluster centers are continuously adjusted

according to new data samples and new clusters are created incrementally. The

similarity between a sample S D (x, y) and an existing rule node N D (W1, W2)

can be measured in different ways, the most popular of them being the normalized

Euclidean distance:

d.S; N/ D
1

n

"

n
X

i=1

|xi-W1N |
2

#
1
2

(9)

where n is the number of the input variables.

ECOS learn from data and automatically create a local output function for each

cluster, the function being represented in the W2 connection weights, thus creating

local models. Each model is represented as a local rule with an antecedent—the

cluster area, and a consequent—the output function applied to data in this cluster.

The following is a corresponding example of such a local Rule:

• IF (data is in cluster Nc), THEN (the output is calculated with a function Fc)

• In the case of DENFIS [32], first order local fuzzy rule models are derived

incrementally from data. The following rule is a characteristic example:

• IF (the value of x1 is in the area defined by a Gaussian function with a center at

0.7 and a standard deviation of 0.1) AND (the value of x2 is in the area defined

by a Gaussian function with a center at 0.5 and a deviation of 0.2), THEN (the

output value y is calculated with the use of the formula y= 3.7 + 0.5x1�4.2x2).

3.3.1 Evolving Classification Function

ECF, a special case of ECOS used for pattern classification, generates rule nodes

in an N dimensional input space and associate them with classes. Each rule node is

defined with its center, radius (influence field), and the class it belongs to. A learning

mechanism is designed in such a way that the nodes can be generated.

The ECF model used here is a connectionist system for classification tasks

that consists of four layers of neurons (nodes). The first layer represents the

input variables; the second layer—the fuzzy membership functions; the third layer

represents clusters centers (prototypes) of data in the input space; and the fourth

layer represents classes [60, 70–72].

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 173

3.4 Genetic Algorithm

The genetic algorithm (GA) is a method for solving both constrained and

unconstrained optimization problems that is based on natural selection, the

process that drives biological evolution (http://www.mathworks.com/). The GA

repeatedly modifies a population of individual solutions. At each step, the GA

selects individuals at random from the current population to be parents and uses

them to produce the children for the next generation. Over successive generations,

the population “evolves” toward an optimal solution. You can apply the GA to

solve a variety of optimization problems that are not well suited for standard

optimization algorithms, including problems in which the objective function is

discontinuous, nondifferentiable, stochastic, or highly nonlinear. Also the GA can

address problems of mixed integer programming, where some components are

restricted to be integer-valued.

The GA uses three main types of rules at each step to create the next generation

from the current population:

• Selection rules select the individuals, called parents, that contribute to the

population at the next generation.

• Crossover rules combine two parents to form children for the next generation.

• Mutation rules apply random changes to individual parents to form children.

The GA differs from a classical, derivative-based, optimization algorithm in two

main ways, as follows:

• Classical Algorithm

– Generates a single point at each iteration. The sequence of points

approaches an optimal solution.

– Selects the next point in the sequence by a deterministic computation.

• Genetic Algorithm

– Generates a population of points at each iteration. The best point in the

population approaches an optimal solution.

– Selects the next population by computation which uses random number

generators.

3.4.1 Genetic Algorithm for Offline ECF Optimization

A GA is applied to a population of solutions to a problem in order to “breed”

better solutions. Solutions, in this case the parameters of the ECF network, are

encoded in a binary string and each solution is given a score depending on how

well it performs. Good solutions are selected more frequently for breeding, and are

subjected to crossover and mutation (loosely analogous to those operations found

in biological systems). After several generations, the population of solutions should

converge on a “good” solution.

kdemertz@fmenr.duth.gr

http://www.mathworks.com/

174 K. Demertzis and L. Iliadis

Given that the ECF system is a neural network that operates continuously in

time and adapts its structure and functionality through a continuous interaction with

the environment and with other systems according to a set of parameters P that

are subject to change during the system operation; an incoming continuous flow of

information with unknown distribution; a goal (rationale) criteria (also subject to

modification) that is applied to optimize the performance of the system over time.

The set of parameters P of an ECOS can be regarded as a chromosome of “genes”

of the evolving system and evolutionary computation can be applied for their

optimization. The GA algorithm for offline ECF Optimization runs over generations

of populations and standard operations are applied such as: binary encoding of

the genes (parameters); roulette wheel selection criterion; multi-point crossover

operation for crossover. Genes are complex structures and they cause dynamic

transformation of one substance into another during the whole life of an individual,

as well as the life of the human population over many generations.

Micro-array gene expression data can be used to evolve the ECF with inputs

being the expression level of a certain number of selected genes and the outputs

being the classes. After the ECF is trained on gene expression rules can be

extracted that represent [73]. The ECF model and the GA algorithm for Offline

ECF Optimization are parts from NeuCom software (http://www.kedri.aut.ac.nz/)

which is a Neuro-Computing Decision Support Environment, based on the theory

of ECOS [60, 70–72].

4 Description of the Proposed Hybrid Framework

Considering that the aim of the partial proposed systems is to carry out acts in a

common environment, the architecture of the bioHAIFC can be simulated by a dis-

tributed multi-agent AI system. The agents are the three proposed Machine Learning

systems, namely: (HESADM, ECISMD and ePSSQLI). These systems dynamically

control the predefined sectors with a potential threat [74]. The synchronization of

the Agents is achieved either with negotiation or with cooperation, as none of them

has the full information package, there is no central control in the system, the data

are distributed and the calculations are done in an asynchronous manner. The Agent

communication and information exchange is done by a hybrid system of temporal

programming in order to phase (in an optimal way) the potential contradiction of

intensions and contradiction in the management of resources, based on priorities

related to the extent of the threat and risk.

The results of the characterization of a threat are sent to the administrator of

the network in a form of logs. The administrator tries to take necessary prevention

actions in order to avoid the risk. Also the framework automates the potential direct

termination of the TCP connection operation with the attacker for higher security

and control (e.g., tcpkill host 192.168.1.2 or tcpkill host host12.blackhut.com).

The analytical description of the partial systems of the bioHAIFCS is described

below:

kdemertz@fmenr.duth.gr

http://www.kedri.aut.ac.nz/

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 175

4.1 Hybrid Evolving Spiking Anomaly Detection Model

The HESADM methodology uses eSNN classification approach and Multi-Layer

Feed Forward ANN in order to classify the exact type of the intrusion or anomaly

in the network with minimum computational power. The dataset which used and the

general algorithm are described in detail below:

4.1.1 Data

The KDD Cup 1999 data set [75] was used to test the herein proposed approach.

This data set was created in the LincolnLab of MIT and it is the most popular free

data set used in evaluation of IDS. It contains recordings of the total network flow of

a local network which was installed in the Lincoln Labs and it simulates the military

network of the USA air force. The method of events’ analysis includes a connection

between a source IP address and a destination IP, during which a sequence of TCP

packages is exchanged, by using a specific protocol and a strictly defined operation

time.

The KDD Cup 1999 data includes 41 characteristics which are organized in

the following four basic categories: Content Features, Traffic Features, Time-based

Traffic Features, Host-based Traffic Features. Also the attacks are divided into four

categories, namely: DoS, r2l, u2r, and probe.

Using the eSNN Traf_Red_Full.data In the first classification case, all (41)

features were used. The data were classified as normal or abnormal. The dataset

Traf_Red_Full.data has 145,738 records and the 75 % (109,303 rec.) used as

train_data and the 25 % (36,435 rec.) used as test_data.

Using the SNN normalFull.data In the second classification case, the relevant

normal features comprising of 11 features were used. The data were classified as

normal or abnormal. The dataset normalFull.data has 145,738 records and the 75 %

(109,303 rec.) were used as train_data and the 25 % (36,435 rec.) as test_data.

4.1.2 Algorithm

• Step 1

We choose to use the traffic oriented data, which is related to only nine features.

We import the required classes that use the variable Population Encoding. This

variable controls the conversion of real-valued data samples into the corresponding

time spikes. The encoding is performed with 20 Gaussian receptive fields per

variable (Gaussian width parameter betaD1.5). We also normalize the data to the

interval [�1,1] and so we indicate the coverage of the Gaussians using i_min and

i_max. For the normalization processing the following function 10 was used:

kdemertz@fmenr.duth.gr

176 K. Demertzis and L. Iliadis

x1norm
D 2�

�

x1 � xmin

xmax � xmin

�

� 1; x2R (10)

The data is classified into two classes namely: class 0 which contains the normal

results and class 1 which comprises of the abnormal ones (DoS, r2l, u2r and probe).

The eSNN object using modulation factor mD0.9, firing threshold ratio cD0.7 and

similarity threshold sD0.6 in agreement with the vQEA algorithm [23, 61].

• Step 2

We train the eSNN with 75 % of the dataset vectors (train_data) and we test the

eSNN with 25 % of the dataset vectors (test_data). The training process is described

in Algorithm 1.

• Step 3

If the result of the classification is normal, the eSNN classification process is

repeated but this time the relevant normal data vectors are used. These vectors are

comprised of 11 features [9]. If the result is normal, then the process is terminated. If

the result of the classification is abnormal, a two-layer feed-forward neural network

with sigmoid function both in hidden and output layer with scaled conjugate

gradient backpropagation as the learning algorithm is used to perform pattern

recognition of the attack type with all features of KDD dataset (41 inputs and 5

outputs).

The outcome of the pattern recognition process is submitted in the form of an

Alert signal to the network administrator. A Graphical display of the complete

HESADM methodology can be seen in Fig. 4.

The performance metric used is the mean squared error (MSE). The MLFF ANN

was developed with 41 input neurons, corresponding to the 41 input parameters of

the KDD cup 1999 dataset, 33 neurons in the Hidden Layer, and 5 in the output

one corresponding to the following output parameters: DoS, r2l, u2r, Probe, normal.

In the hidden layer 33 neurons are used, based on the following empirical function

11 [76]:

-6 -4 -2 0 2 4 6

-6
-4

-2
0

2
4

6

Rule 1:if
X1 is (2: 0.50)

X3 is (1: 0.95)
X4 is (1: 0.95)
X5 is (1: 0.94)
X6 is (1: 0.52)
X7 is (1: 0.95)
X8 is (2: 0.87)
X9 is (2: 0.82)
then Class is [1]
Radius = 0.022719 , 20 in node

X2 is (1: 0.69)

Fig. 4 Rule of the evolving connectionist system [60, 70–72]

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 177

�

2

3
�Inputs

�

C Outputs D

�

2

3
�41

�

C 5 D 33 (11)

The KDD cup 1999 dataset was divided randomly into 70 % (102,016 rec.) the

train_data, 15 % (21,861 rec.) as test_data and the rest 15 % (21,861 records) as

validation_data.

4.2 Evolving Computational Intelligence System

for Malware Detection

The proposed herein, hybrid ECISMD methodology uses an eSNN classification

approach to classify packed or unpacked executables with minimum computational

power combined with the ECF method in order to detect packed malware. Finally it

applies Genetic Algorithm for ECF Optimization, in order to decrease the level of

false positive and false negative rates (Fig. 5).

The dataset which used and the general algorithm are described below:

4.2.1 Dataset

The full_dataset comprised of 2598 packed viruses from the Malfease Project

dataset (http://malfease.oarci.net), 2231 non-packed benign executables collected

from a clean installation of Windows XP Home plus, several common user applica-

tions and 669 packed benign executables.

The dataset was divided randomly into two parts:

• A training dataset containing 2231 patterns related to the non-packed benign

executable and 2262 patterns related to the packed executables detected using

unpacked software

• A testing dataset containing 1005 patterns related to the packed executables that

even the best known unpacked software was not able to detect. These datasets

are available at http://roberto.perdisci.googlepages.com/code [32].

The virus dataset containing 2598 malware and 669 benign executables is divided

into two parts:

• A training dataset containing 1834 patterns related to the malware and 453

patterns related to the benign executables

• A test dataset containing 762 patterns related to the malware and 218 benign

executables. In order to translate each executable into a pattern vector Perdisci

et al. [32] use binary static analysis, to extract information such as the name of

the code and data sections, the number of writable-executable sections, the code

and data entropy.

kdemertz@fmenr.duth.gr

http://malfease.oarci.net
http://roberto.perdisci.googlepages.com/code

178 K. Demertzis and L. Iliadis

Fig. 5 Bio-inspired hybrid artificial intelligence framework for cyber security

In the first classification performed by the ECISMD, the eSNN approach was

employed in order to classify packed or not packed executables.

In the second classification performed by the ECISMD, the ECF approach was

employed in order to classify malware or benign executables.

4.2.2 Algorithm

• Step 1

The train and test datasets are determined and formed, related to n features. The

required classes (packed and unpacked executables) that use the variable Population

Encoding are imported. This variable controls the conversion of real-valued data

samples into the corresponding time spikes. The encoding is performed with 20

Gaussian receptive fields per variable (Gaussian width parameter betaD1.5). The

data are normalized to the interval [�1,1] and so the coverage of the Gaussians is

determined by using i_min and i_max. For the normalization processing function

10 is used (Fig. 6).

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 179

Fig. 6 The hybrid evolving spiking anomaly detection model (HESADM) methodology

The data is classified into two classes, namely: Class 0 which contains the

unpacked results and Class 1 which comprises of the packed ones. The eSNN

object using modulation factor mD0.9, firing threshold ratio cD0.7, and similarity

threshold sD0.6 in agreement with the vQEA algorithm [23, 61].

• Step 2

The eSNN is trained with the packed_train dataset vectors and the testing

is performed with the packed_test vectors. The training process is described in

Algorithm 1.

kdemertz@fmenr.duth.gr

180 K. Demertzis and L. Iliadis

• Step 3

If the result is unpacked, then the process is terminated and the executable file

goes to the antivirus scanner. If the result of the classification is packed, the new

classification process is initiated employing the ECF method. This time the malware

data vectors are used. These vectors comprise of nine features and two classes

malware and benign.

The learning algorithm of the ECF according to the ECOS is as follows:

• If all input vectors are fed, finish the iteration; otherwise, input a vector from

the data set and calculate the distances between the vector and all rule nodes

already created using Euclidean distance.

• If all distances are greater than a max-radius parameter, a new rule node is

created. The position of the new rule node is the same as the current vector in

the input data space and the radius of its receptive field is set to the min-radius

parameter; the algorithm goes to step 1; otherwise it goes to the next step.

• If there is a rule node with a distance to the current input vector less than or

equal to its radius and its class is the same as the class of the new vector, nothing

will be changed; go to step 1; otherwise.

• If there is a rule node with a distance to the input vector less than or equal to its

radius and its class is different from those of the input vector, its influence field

should be reduced. The radius of the new field is set to the larger value from the

two numbers: distance minus the min-radius; min radius. New node is created

as in to represent the new data vector.

• If there is a rule node with a distance to the input vector less than or equal to

the max-radius, and its class is the same as of the input vector’s, enlarge the

influence field by taking the distance as a new radius if only such enlarged field

does not cover any other rule nodes which belong to a different class; otherwise,

create a new rule node in the same way as in step 2, and go to step 1 [77].

• Step 4

To increase the level of integrity the Offline ECF Optimization with GA is used.

• Step 5

If the result of the classification is benign, the executable file goes to antivirus

scanner and the process is terminated. Otherwise, the executable file is marked as

malicious, it goes to the unpacker, to the antivirus scanner for verification and finally

placed in quarantine and the process is terminated (Fig. 7).

4.3 Evolutionary Prevention System from SQL Injection

The proposed ePSSQLI model uses an MFFNN which has optimized with a GA.

Generally, there are three methods of using a GA for training MFFNNs. Firstly, GA

is utilized for finding a combination of weights and biases that provide the minimum

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 181

Fig. 7 Graphical display of the ECISMD algorithm

error for an MFFNN. Secondly, GA is employed to find a proper architecture for

an MFFNN in a particular problem. The last method is to use a GA to tune the

parameters of a gradient-based learning algorithm, such as the learning rate and

momentum. In the first method, the architecture does not change during the learning

process. The training algorithm is required to find proper values for all connection

weights and biases in order to minimize the overall error of the MFFNN. In the

second approach, the structure of the MFFNNs varies. In this case, a training

algorithm determines the best structure for solving a certain problem. Changing the

structure can be accomplished by manipulating the connections between neurons,

the number of hidden layers, and the number of hidden nodes in each layer. In this

study the GA is applied to minimize the error of MFFNN in order to classify SQL

injections with high accuracy.

The dataset which used and the general algorithm are described below:

kdemertz@fmenr.duth.gr

182 K. Demertzis and L. Iliadis

4.3.1 Dataset

The dataset used includes a list of 13,884 SQL statements that have been selected by

various sources. Actually, 12,881 of them are malicious (SQL Injections) and 1003

are legit. With the help of the SQLparse module (https://github.com/andialbrecht/

sqlparse) in Python, which is a non-validating SQL one, we have searched the way

of syntax and use of certain SQL symbols in the construction of SQL injections

commands. Also we investigated the correlation of SQL statements with the attacks

of SQL injections’ type.

Finally, the n-gram technique was used to search the correlation of the SQL

statements sequence, with the syntax of the SQL injections commands (https://

github.com/ClickSecurity/data_hacking). In the fields of computational linguistics

and probability, an n-gram is a contiguous sequence of n items from a given

sequence of text or speech. The items can be phonemes, syllables, letters, words,

or base pairs according to the application. The n-grams in this case are collected

from an SQL statements.

Various malicious και legit scores constitute the statistical output of the SQL

statements and they were used as features. In information theory, entropy is a

measure of the uncertainty associated with a random variable. The term by itself

in this context usually refers to the Shannon entropy, which quantifies, in the

sense of an expected value, the information contained in a message, usually in

units such as bits. Equivalently, the Shannon entropy is a measure of the average

information content one is missing when one does not know the value of the random

variable [78].

After its adjustment, the dataset includes the following parameters:

• Length

• Entropy

• Malicious_score

• Legit_score

• Difference_score

• Class

In the pre-processing of data remove extreme values and outliers. The extreme

value is a point which is far away from the average value of a parameter. The

distance is measured based on a threshold which is a multiplicand of the standard

deviation (Fig. 8).

We know that for a random parameter that is under normal distribution, the

95 % of all the values fall up to the value of 2*stdev whereas 99 % fall up to

the value of 3*stdev. Extreme values cause significant errors in a potential model.

Things become even worse when these extreme values are noise results during

measurements procedure. If the number of extreme values is small, then they are

removed from the data set.

The estimation of the extreme values was done under the Inter Quartile Range

method [79]. This method spots extreme values and outliers based on (InterQuartile

Ranges—IQR). The IQR is the difference between the third (Q3) and the first (Q1)

kdemertz@fmenr.duth.gr

https://github.com/andialbrecht/sqlparse
https://github.com/andialbrecht/sqlparse
https://github.com/ClickSecurity/data_hacking
https://github.com/ClickSecurity/data_hacking

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 183

Q1-1.5x1QR

IQR

Median

Q1

-6σ -5σ -4σ -3σ

-2.698σ
-0.6745σ 0.6745σ 2.698σ

-2σ -1σ 1σ 2σ 3σ 4σ 5σ 6σ0

24.65% 24.65%

50%

-6σ -5σ -4σ -3σ -2σ -1σ 1σ 2σ 3σ 4σ 5σ 6σ0

Q3

Q3+1.5XIQR

Fig. 8 Graphical display of inter quartile range method

quartile, IQRD Q3 – Q1. The quartiles divide the data into four equal parts. The

IQR includes the imtermediate 50 % of the data whereas the rest 25 % is less than

Q1 and the rest 25 % is higher than Q3 [2]. The calculation of the Extreme values

was done as follows:

• Outliers:

– Q3 C OF*IQR < x <D Q3 + EVF*IQR or Q1 - EVF*IQR <D x < Q1 -

OF*IQR

• Extreme values:

– x > Q3 + EVF*IQR or x < Q1 - EVF*IQR

Key: Q1D25 % quartile, Q3D75 % quartile, IQRDInterquartile Range difference

between Q1 and Q3, OFDOutlier Factor, EVFDExtreme Value Factor.

With the use of the above method 12 outliers and three extreme values were

removed from the data set which was reduced to 13,869 cases (12,881 malicious,

988 legit).

Also the data were Normalized so that they can have the proper input for the

Learning Algorithms in the interval [�1;C1].

After a relative observation we can realize that we have created an imbalanced

dataset which includes 13,869 cases from which 12,881 are malicious and 988 legit

(0.0723 %). Imbalanced data sets are a special case for classification problem where

the class distribution is not uniform among the classes. Typically, they are composed

kdemertz@fmenr.duth.gr

184 K. Demertzis and L. Iliadis

by two classes: The majority (negative) class and the minority (positive) class. The

problem with class imbalances is that standard learners are often biased towards the

majority class. That is because these classifiers attempt to reduce global quantities

such as the error rate, not taking the data distribution into consideration. As a result

examples from the overwhelming class are well classified whereas examples from

the minority class tend to be misclassified.

To resolve the certain problem we use the technique synthetic minority over-

sampling technique (SMOTE) in order to resample the dataset. [80]. Re-sampling

provides a simple way of biasing the generalization process. It can do so by

generating synthetic samples accordingly biased and controlling the amount and

placement of the new samples. SMOTE is a technique which combines Informed

oversampling of the minority class with random undersampling of the majority

class. SMOTE is a technique which is combines Informed oversampling of the

minority class with random undersampling of the majority class and produce

the best results as far as re-sampli ng and modifying the probabilistic estimate

techniques.

For each minority sample, SMOTE works as follows:

• Find its k-nearest minority neighbors.

• Randomly select j of these neighbors.

• Randomly generate synthetic samples along the lines joining the minority

sample and its j selected neighbors (j depends on the amount of oversampling

desired).

By applying the SMOTE approach we re-created the dataset, which includes 21,773

cases, from which 12,881 are malicious and 8892 are legit.

4.4 Algorithm

The MLFF ANN was developed with five input neurons, corresponding to the five

input parameters of the dataset, five neurons in the Hidden Layer and two in the

output one corresponding to the following output parameters: malicious or legit. In

the hidden layer five neurons are used, based on the empirical function 11.

This adds a greater degree of integrity to the rest of security infrastructure MFF

ANN, optimized with GA. The following outline summarizes how the GA works:

• The algorithm begins by creating a random initial population.

• The algorithm then creates a sequence of new populations. At each step, the

algorithm uses the individuals in the current generation to create the next

population.

• To create the new population, the algorithm performs the following steps:

– Scores each member of the current population by computing its fitness

value.

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 185

– Scales the raw fitness scores to convert them into a more usable range of

values.

– Selects members, called parents, based on their fitness.

– Some of the individuals in the current population that have lower fitness are

chosen as elite. These elite individuals are passed to the next population.

– Produces children from the parents. Children are produced either by making

random changes to a single parent—mutation—or by combining the vector

entries of a pair of parents—crossover.

– Replaces the current population with the children to form the next genera-

tion.

– The algorithm stops when one of the stopping criteria is met.

5 Results

Each subsystem was tested based on multiple scenarios and different datasets

were used for each case of threat. The results obtained are very encouraging as

the accuracy is as high as 99 %, resulting in a reduction of the false alarms to

the minimum. This fact, combined with the flexibility of the proposed system and

with its generalization ability and the spotting of zero-day threats, makes its use

suitable for critical applications like the one of military networks protection. The

results of each case are presented below:

5.1 Hybrid Evolving Spiking Anomaly Detection Model

5.1.1 eSNN Approach

• In the first classification using the eSNN Traf_Red_Full.data the data classified

as normal or abnormal. The results are shown below:

– Classification Accuracy: 97.7 %

– No. of evolved neurons: Class 0: 794 neurons, Class 1: 809 neurons

– The average accuracy after applying tenfold Classification in the

Traf_Red_Full.data was as high as 97.2 %.

• In the second classification case using the SNN normalFull.data, the relevant

normal features comprising of 11 features were used. The data were classified

as normal or abnormal. The results are shown below:

– Classification Accuracy: 99.99 %

– No. of evolved neurons: Class 0: 646 neurons, Class 1: 136 neurons

– The average accuracy after applying tenfold Classification in the normal-

Full.data was as high as 99.76 %.

kdemertz@fmenr.duth.gr

186 K. Demertzis and L. Iliadis

Fig. 9 ROC analysis

Fig. 10 Confusion matrix

5.1.2 MLFF ANN Approach

The classification accuracy is as high as 99.9% and all the performance metrics

support the high level of convergence of the model.

In Fig. 9 the colored lines in each axis represent the ROC curves. The ROC

curve is a plot of the true positive rate (sensitivity) versus the false positive rate

(1-specificity) as the threshold is varied. A perfect test would show points in the

upper-left corner, with 100 % sensitivity and 100 % specificity. For this problem,

the network performs very well.

Figure 10 shows the confusion matrices for training, testing, and validation, and

the three kinds of data combined. The network outputs are very accurate, by the

high numbers of correct responses in the green squares and the low numbers of

incorrect responses in the red squares. The lower right blue squares illustrate the

overall accuracies.

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 187

5.2 ECISMD Results

Table 1 reports the average accuracy which computed over tenfold cross-validation

obtained with RBF ANN, Naïve Bayes, multi layer perceptron (MLP), Support

Vector Machine (SVM), k-Nearest-Neighbors (k-NN), and eSNN. The best results

on the testing dataset were obtained by using the eSNN classifier, to classify packed

or not packed executables.

Table 2 reports the results obtained with six classifiers and optimized ECF

network (RBF Network, Naïve Bayes, MLP, Lib SVM, k-NN, ECF, and optimized

ECF). The best results on the testing dataset were obtained by using the optimized

ECF which classifies virus or benign executables (Table 3).

5.3 ePSSQLI Results

5.3.1 MFF ANN

The classification accuracy of the MFF ANN that uses tenfold Cross Validation

before the optimization is equal to 97.7 %. The rest of the measurements and the

confusion matrix are presented below (Table 4):

Table 1 Comparison of

various approaches for the

packed dataset

Packed dataset

Classifier Train accuracy (%) Test accuracy (%)

RBFNetwork 98.3085 98.0859

NaiveBayes 98.3975 97.1144

MLP 99.5326 96.2189

LibSVM 99.4436 89.8507

k-NN 99.4436 96.6169

eSNN 99.8 99.2

Table 2 Comparison of

various approaches for the

virus dataset

Virus dataset

Classifier Train accuracy (%) Test accuracy (%)

RBFNetwork 94.4031 93.0612

NaiveBayes 94.0533 92.3469

MLP 97.7551 97.289

LibSVM 94.6218 94.2857

k-NN 98.1198 96.8367

ECF 99.05 95.561

Optimized ECF 99.87 97.992

kdemertz@fmenr.duth.gr

188 K. Demertzis and L. Iliadis

Table 3 Metrics of the MFF ANN

TP rate FP rate Precision Recall F-measure ROC area Class

0.986 0.034 0.976 0.986 0.981 0.986 Malicious

0.966 0.014 0.980 0.966 0.973 0.986 Legit

Table 4 Confusion matrix of

the MFF ANN
Malicious Legit

12,702 179

306 8586

Table 5 Metrics of the MFF ANN with GA

TP rate FP rate Precision Recall F-measure ROC area Class

0.997 0.003 0.998 0.997 0.997 0.998 Malicious

0.997 0.003 0.996 0.997 0.996 0.998 Legit

Table 6 Confusion matrix of

the MFF ANN with GA
Malicious Legit

12,845 36

31 8861

5.3.2 MFF ANN Optimized with GA

The initial parameters of GA are as below (Table 5):

• Selection: Roulette wheel

• Crossover: Single point (probabilityD 1)

• Mutation: Uniform (probabilityD 0.01)

• Population size: 200

• Maximum number of generations: 250

The classification accuracy of the MFF ANN that uses tenfold Cross Validation after

its optimization with GA is 99.6 %. The rest of the measurements and the confusion

matrix are presented below (Table 6):

The good performance and reliability of the proposed scheme that uses MFF

ANN with GA is shown in Table 7 below. Table 7 presents the results of the

categorization with the same dataset and by employing tenfold Cross Validation

and other Machine Learning approaches.

6 Discussion: Conclusions

This paper proposes the use of a Bio-Inspired Hybrid Artificial Intelligence

Framework for Cyber Security, which is based on the combination of three timely

methods of Artificial Intelligence.

kdemertz@fmenr.duth.gr

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 189

Table 7 Comparison of

various approaches for the

SQLI dataset

SQLI dataset

Classifier Accuracy (%)

MFF ANN with GA 99.6

RBFNetwork 97.3

fNaiveBayes 95.6

BayesNet 98.7

SVM 98.5

k-NN 98.3

Random forest 99.1

The function of the subsystems aims in the time spotting of the cyber-attacks

which are untraceable with the classical passive protection approaches.

More specifically, this paper proposes the HESADM system, which spots

potential anomalies of a network and the attacks that might bypass the firewall and

the IDS. The second subsystem is ECISMD which scans the packed executable files

and then spots malicious code untraceable by antivirus. The third one is ePSSQLI

which spots in time the SQL Injections attacks. The result of each categorization is

sent to the administrator of the system so that he/she can impose proper actions. An

automatic disconnection from the attacker is also included.

The combination of the subsystems under the proposed framework takes place

based on a temporal scheduling which succeeds the optimal distribution of the

resources and the maximum availability and performance of the system. The use of

the proposed systems can be done regardless of the framework.

The testing has resulted in an accuracy level of 99 %. Also a comparative analysis

has revealed that the proposed algorithm outperforms the existing ones.

As a future direction, aiming to improve the efficiency of biologically realistic

ANN for pattern recognition, it would be important to evaluate the eSNN model with

ROC analysis and to perform feature minimization in order to achieve minimum

processing time. Other coding schemes could be explored and compared on the same

security task. Also, the ECISMD could be improved towards a better online learning

with self-modified parameter values. Finally, the MFF ANN with GA which used

in the ePSSQLI system could be compared with other optimization schemes like

particle swarm optimization.

References

1. Garcıa Teodoro, P., Dıaz-Verdejo, J., Macia-Fernandez, G., Vazquez, E.: Anomaly-based

network intrusion detection: techniques, systems and challenges. Elsevier Comput. Security

28, 18–28 (2009)

2. Demertzis, K., Iliadis, L.: A hybrid network anomaly and intrusion detection approach based on

evolving spiking neural network classification. In: E-Democracy, Security, Privacy and Trust in

a Digital World. Communications in Computer and Information Science, vol. 441, pp. 11–23.

(2014). doi:10.1007/978-3-319-11710-2_2

kdemertz@fmenr.duth.gr

190 K. Demertzis and L. Iliadis

3. Yan, W., Zhang, Z., Ansari, N.: Revealing packed malware. IEEE Secur. Priv. 6(5), 65–69

(2007)

4. Cesare, S., Xiang, Y.: Software Similarity and Classification. Springer, New York (2012)

5. Demertzis, K., Iliadis, L.: Evolving computational intelligence system for malware detection.

In: Advanced Information Systems Engineering Workshops. Lecture Notes in Business

Information Processing, vol. 178, pp. 322–334. (2014). doi:10.1007/978-3-319-07869-4_30

6. Open Web Application Security Project (OWASP): (2014) https://www.owasp.org

7. Dorothy, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13, 222–232 (1987).

doi:10.1109/TSE.1987.232894

8. Puketza, N., Zhang, K., Chung, M., Mukherjee, B., Olsson, R.A.: A methodology for testing in-

trusion detection system. IEEE Trans. Softw. Eng. 22, 719–729 (1996). doi:10.1109/32.544350

9. Bharti, K., Jain, S., Shukla, S.: Fuzzy K-mean clustering via random forest for intrusiion

detection system. Int. J. Comput. Sci. Eng. 02(06), 2197–2200 (2010)

10. Mehdi B., Mohammad B.: An overview to software architecture in intrusion detection system.

Int. J. Soft Comput. Softw. Eng. (2012). doi:10.7321/jscse.v1.n1.1

11. Muna, M., Jawhar, T., Monica, M.: Design network intrusion system using hybrid fuzzy neural

network. Int. J. Comput. Sci. Secur. 4(3), 285–294 (2009)

12. Jakir, H., Rahman, A., Sayeed, S., Samsuddin, K., Rokhani, F.: A modified hybrid fuzzy

clustering algorithm for data partitions. Aust. J. Basic Appl. Sci. 5, 674–681 (2011)

13. Suguna, J., Selvi, A.M.: Ensemble fuzzy clustering for mixed numeric and categorical data.

Int. J. Comput. Appl. 42, 19–23 (2012). doi:10.5120/5673-7705

14. Vladimir, V.: The Nature of Statistical Learning Theory, 2nd edn., p. 188. Springer, New York

(1995). ISBN-10: 0387945598

15. John, G.H.: Estimating continuous distributions in bayesian classifiers. In: Proceedings of the

Eleventh Conference on Uncertainty in Artificial Intelligence, (UAI’ 95), pp. 338–345. Morgan

Kaufmann Publishers Inc., San Francisco (1995)

16. Sang-Jun, H., Sung-Bae, C.: Evolutionary neural networks for anomaly detection based

on the behavior of a program. IEEE Trans. Syst. Man Cybern. 36, 559–570 (2005)

doi:10.1109/TSMCB.2005.860136

17. Mehdi, M., Mohammad, Z.: A neural network based system for intrusion detection and

classification of attacks. In: IEEE International Conference on Advances in Intelligent Systems

- Theory and Applications (2004)

18. Zhou, T.-J.: The research of intrusion detection based on genetic neural network. In:

Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern

Recognition, pp. 276–281, 30–31 Aug 2008. IEEE Xplore Press, Hong Kong (2008).

doi:10.1109/ICWAPR.2008.4635789

19. Novikov, D., Yampolskiy, R.V., Reznik, L.: Anomaly detection based intrusion detec-

tion. In: Proceedings of the Third International Conference on Information Technology:

New Generations, pp. 420–425, 10–12 April 2006. IEEE Xplore Press, Las Vegas (2006)

doi:10.1109/ITNG.2006.33

20. Dahlia, A., Zainaddin, A., Mohd Hanapi, Z.: Hybrid of fuzzy clustering neural network over nsl

dataset for intrusion detection system. J. Comput. Sci. 9(3), 391–403 (2013). ISSN: 1549-3636

2013. doi:10.3844/jcssp.2013391 403 [Science Publications]

21. Tartakovskya, A.G., Rozovskii, B.L., Rudolf, B., Blazek, R.B., Kim, H.J.: A novel ap-

proach to detection of intrusions in computer networks via adaptive sequential and batch-

sequential change-point detection methods. IEEE Trans. Signal Process. 54(9) (2006).

doi:10.1109/TSP.2006.879308

22. Mukhopadhyay, I.: Implementation of Kalman filter in intrusion detection system. In: Proceed-

ing of ISCI Technologies, Vientiane (2008)

23. Simei Gomes, W., Lubica, B., Kasabov Nikola, K.: Adaptive learning procedure for a network

of spiking neurons and visual pattern recognition. In: Advanced Concepts for Intelligent Vision

Systems. Springer, New York (2006)

24. Babar, K., Khalid, F.: Generic unpacking techniques., Computer, Control and Communication,

2nd International Conference on IC4 IEEE (2009), DOI:10.1109/IC4.2009.4909168 (2009)

kdemertz@fmenr.duth.gr

https://www.owasp.org
http://dx.doi.org/10.3844/jcssp.2013391 403

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 191

25. Royal, P., Halpin, M., Dagon, D., Edmonds, R.: Polyunpack: automating the hidden-code

extraction of unpack-executing malware. In: ACSAC (2006)

26. Kang, M., Poosankam, P., Yin, H.: Renovo: a hidden code extractor for packed executables. In:

2007 ACM Workshop on Recurring Malcode (2007)

27. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: fast, generic, and safe unpacking of

malware. In: Proceedings of the ACSAC, pp. 431/441 (2007)

28. Yegneswaran, V., Saidi, H., Porras, P., Sharif, M.: Eureka: a framework for enabling static

analysis on malware. Technical Report SRI-CSL-08-01 (2008)

29. Danielescu, A.: Anti-debugging and anti-emulation techniques. Code-Breakers J. 5(1), 27–30

(2008)

30. Farooq, M.: PE-Miner: mining structural information to detect malicious executables in

realtime. In: 12th Symposium on Recent Advances in ID, pp. 121–141. Springer, New York

(2009)

31. Shaq, M., Tabish, S., Farooq, M.: PE-probe: leveraging packer detection and structural

information to detect malicious portable executables. In: Proceedings of the Virus Bulletin

Conference (2009)

32. Perdisci, R., Lanzi, A., Lee, W.: McBoost: boosting scalability in malware collection and

analysis using statistical classiffication of executables. In: Proceedings of the 2008 Annual

Computer Security Applications Conference, pp. 301/310 (2008). ISSN: 1063–9527

33. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild.

J. ML Res. 7, 2721–2744 (2006)

34. Ugarte-Pedrero, X., Santos, I., Bringas, P.G., Gastesi , M., Esparza, J.M.: Semi-supervised

Learning for Packed Executable Detection, Network and System Security (NSS), 5th Interna-

tional Conference on, (2011). DOI: 10.1109/ICNSS.2011.6060027

35. Ugarte-Pedrero, X., Santos, I., Laorden, C., Sanz, B., Bringas, G.P.: Collective classification

for packed executable identification. In: ACM CEAS (2011)

36. Gavrilut, D., Cimpoes, M., Anton, D., Ciortuz, L.: Malware detection using machine learning.

In: Proceedings of the International Multiconference on Computer Science and Information

Technology, pp. 735–741 (2009). ISBN: 978-83-60810-22-4

37. Ye, Y., Wang, D., Li, T., Ye, D.: Imds: Intelligent Malware Detection System. ACM, New York

(2007)

38. Chandrasekaran, M., Vidyaraman, V., Upadhyaya S.J.: Spycon: emulating user activities to

detect evasive spyware. Performance, Computing, and Communications Conference, 2007. In:

IPCCC 2007. IEEE International Conference on (2007). DOI:10.1109/PCCC.2007.358933

39. Chouchane, M.R., Walenstein, A., Lakhotia, A.: Using Markov Chains to filter machine-

morphed variants of malicious programs. In: 3rd International Conference on Malicious and

Unwanted Software, 2008, MALWARE 2008, pp. 77–84 (2008)

40. Stamp, M., Attaluri, S., McGhee, S.: Profile hidden marko v models and metamorphic virus

detection. J. Comput. Virol. 5(2):151-169 (2009). DOI: 10.1007/s11416-008-0105-1

41. Santamarta, R.: Generic detection and classification of polymorphic malware using neural

pattern recognition, white paper, ReverseMode. http://www.reversemode.com/ (2006)

42. Yoo, I.: Visualizing windows executable viruses using self-organizing maps. In:

VizSEC/DMSEC ’04: ACM Workshop (2004)

43. Livshits, V.B., Lam, M.S.: Finding Security vulnerability in Java applications with static

analysis. In: Proceedings of the 14th USS, August 2005

44. Halfond, W.G.J., Orso, A., Manolios, P.: WASP: protecting web applications using positive

tainting and syntax-aware evaluation. IEEE Trans. Softw. Eng. 34, 181–191 (2008)

45. Buehrer, G.T., Weide, B.W., Sivilotti, Using Parse tree validation to prevent SQL injection

attacks. In: Proceeding of the 5th International Workshop on Software Engineering and

Middleware (SEM ’056), pp. 106–113, September 2005

46. Cova, M., Balzarotti, D., Felmetsger, V., Vigna, G.: Swaddler: an approach for the anamoly

based character distribution models in the detection of SQL injection attacks. In: Recent

Advances in Intrusion Detection System, pp. 63–86. Springerlink, New York (2007)

kdemertz@fmenr.duth.gr

http://www.reversemode.com/

192 K. Demertzis and L. Iliadis

47. Gerstenberger, R.: Anomaliebasierte Angriffserkennung im FTP-Protokoll. Master’s Thesis,

University of Potsdam, Germany (2008)

48. Dùssel, P., Gehl, C., Laskov, P., Rieck, K.: Incorporation of application layer protocol syntax

into anomaly detection. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352,

pp. 188–202. Springer, Heidelberg (2008)

49. Bockermann, C., Apel, M., Meier, M.: Learning sql. for database intrusion detection using

context-sensitive modelling. In: Detection of Intrusions and Malware, and Vulnerability

Assessment, vol. 5587/2009, pp. 196–205. Springer Berlin/Heidelberg (2009)

50. Dewhurst, R.: Damn Vulnerable Web Application (DVWA). http://www.dvwa.co.uk/ (2012)

51. Bernardo Damele, A.G., Stampar, M.: Sqlmap: automatic SQL injection and database takeover

tool. http://sqlmap.sourceforge.net/ (2012)

52. Valeur, F., Mutz, D., Vigna, G.: A Learning-based approach to the detection of SQL attacks.

In: Proceedings of the Conference on Detection of Intrusions and Malware and Vulnerability

Assessment, Vienna, pp. 123–140 (2005)

53. Wang, Y., Li, Z.: SQL injection detection with composite kernel in support vector machine.

Int. J. Secur. Appl. 6(2), 191 (2012)

54. Romi Rawat, R., Kumar Shrivastav, S.: SQL injection attack detection using SVM. Int. J.

Comput. Appl. 42(13), 0975–8887 (2012)

55. Huang, Z., Hong Cheon, E.: An approach to prevention of SQL injection attack based

on machine learning. In: Proceedings of the First Yellow Sea International Conference on

Ubiquitous Computing, Weihai (2011)

56. Hong Cheon, E., Huang, Z., Sik Lee, Y.: Preventing SQL injection attack based on machine

learning. Int. J. Adv. Comput. Technol. 5(9), (2013). doi:10.4156/ijact.vol5.issue9.115

57. Thorpe, S.J., Arnaud, D., van Rullen, R.: Spike-based strategies for rapid processing. Neural

Netw. 14(6–7), 715–725 (2001)

58. Delorme A., Perrinet L., Thorpe S.J., Networks of integrate-and-fire neurons using rank

order coding b: spike timing dependant plasticity and emergence of orientation selectivity.

Neurocomputing 38–40(1–4), 539–545 (2000)

59. Thorpe, S.J., Gautrais, J.: Rank order coding. In: CNS ’97: Proceding of the 6th Annual

Conference on Computational Neuroscience: Trends in Research, pp. 113–118. Plenum Press,

New York (1998)

60. Nikola, K.: Evolving Connectionist Systems: The Knowledge Engineering Approach. Springer,

New York (2006)

61. Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated feature and parameter optimization for

an evolving spiking neural network. In: 15th International Conference, ICONIP 2008. Lecture

Notes in Computer Science, vol. 5506, pp. 1229–1236, 25–28 Nov 2008. Springer, New York

(2009)

62. Shrivastava, S., Singh, M.P.: Performance evaluation of feed-forward neural network with

soft computing techniques for hand written English alphabets. Appl. Soft Comput. 11(1),

1156–1182 (2011)

63. Shao, Y.E., Hsu, B.-S.: Determining the contributors for a multivariate SPC chart signal using

artificial neural networks and support vector machine. J. ICIC 5(12(B)), 4899–4906 (2009)

64. Chou, P.-H., Hsu, C.-H., Wu, C.-F., Li, P.-H., Wu, M.-J.: Application of back-propagation

neural network for e-commerce customers patterning. ICIC Express Lett. 3(3(B)), 775–785

(2009)

65. He, C., Li, H., Wang, B., Yu, W., Liang, X.: Prediction of compressive yield load for metal

hollow sphere with crack based on artificial neural network. ICIC Express Lett. 3(4(B)),

1263–1268 (2009)

66. Wu, J.K., Kang, J., Chen, M.H., Chen, G.T.: Fuzzy neural network model based on particle

swarm optimization for short-term load forecasting. In: Proceedings of CSU-EPSA 19(1),

63–67 (2007)

67. Li, D.K., Zhang, H.X., Li, S.A.: Development cost estimation of aircraft frame based on BP

neural networks. FCCC 31(9), 27–29 (2006)

kdemertz@fmenr.duth.gr

http://www.dvwa.co.uk/
http://sqlmap.sourceforge.net/
http://dx.doi.org/10.4156/ijact.vol5.issue9.115

A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 193

68. Karimi, B., Menhaj, M.B., Saboori, I.: Multilayer feed forward neural networks for controlling

decentralized large-scale non-affine nonlinear systems with guaranteed stability. Int. J. Innov.

Comput. Inf. Control 6(11), 4825–4841 (2010)

69. ZareNezhad, B., Aminian, A.: A multi-layer feed forward neural network model for accurate

prediction of fue gas sulfuric acid dew points in process industries. Appl. Therm. Eng. 30(6–7),

692–696 (2010)

70. Huang, L., Song, Q., Kasabov, N.: Evolving connectionist system based role allocation

for robotic soccer. Playing, Intelligent Control, 2005. Proceedings of the IEEE Interna-

tional Symposium on (2005). Mediterrean Conference on Control and Automation (2005).

DOI:10.1109/.2005.1466988

71. Kasabov, N.: Evolving fuzzy neural networks for on-line supervised/ unsupervised,

knowledge–based learning. IEEE Trans. Cybern. 31(6), 902–918 (2001)

72. Song, Q., Kasabov, N.: Weighted data normalization and feature selection. In: Proceedings 8th

Intelligence Information Systems Conference (2003)

73. Kasabov, N., Song Q.: GA-parameter optimization of evolving connectionist systems for

classification and a case study from bioinformatics. In: 9th Conference on Neural Information

ICONIP ’02, IEEE ICONIP. 1198128 (2002)

74. Vlassis, N.: A Concise Introduction to Multiagent Systems and Distributed Artificial Intelli-

gence. Morgan and Claypool Publishers, San Rafael (2008). ISBN: 978-1-59829-526-9

75. Stolfo Salvatore, J., Wei, F., Lee, W., Andreas, P., Chan, P.K.: Cost-based modeling and

evaluation for data mining with application to fraud and intrusion detection: results from the

JAM project. In: Proceedings of DARPA Information Survivability Conference and Exposition,

DISCEX ’00 (2000)

76. Jeff, H.: Introduction to Neural Networks with Java, 1st edn. (2008). ISBN: 097732060X

77. Goh, L., Song, Q., Kasabov, N.: A novel feature selection method to improve classification of

gene expression data. In: 2nd Asia-Pacific IT Conference, vol. 29 (2004)

78. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423

(1948)

79. Zwillinger, D., Kokoska, S.: CRC Standard Probability and Statistics Tables and Formulae,

CRC Press Print (1999). ISBN: 978-1-58488-059-2, eBook ISBN: 978-1-4200-5026-4

80. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: J. Artif. Intell. Res., 16(1),

321–357 (2002)

kdemertz@fmenr.duth.gr

	‎C:\Users\user\Desktop\papers\bioHAIFCS.pdf‎
	G:\Downloads\Desktop\Phd theory\15.Papers\4.2nd_CryptAAF\bioHAIFCS.pdf
	G:\Downloads\Desktop\Phd theory\15.Papers\4.2nd_CryptAAF\My Publications.pdf
	Preface
	Contents
	Transformations of Cryptographic Schemes Through Interpolation Techniques
	1 Introduction
	2 Explicit Forms of Cryptographic Functions
	3 Interpolation and Inverse Interpolation Methods
	3.1 The Aitken and Neville Interpolation and Inverse Interpolation Methods
	3.2 Inverse Interpolation Methods for the Lucas Logarithm Problem

	4 Interpolation of Cryptographic Functions for a Given Set of Data
	5 The Double Discrete Logarithm and the Root of the Discrete Logarithm
	6 Matrix Factorization in Cryptography
	6.1 Vandermonde Matrices
	6.2 LU Factorization in Cryptography

	7 Synopsis
	References

	Flaws in the Initialisation Process of Stream Ciphers
	1 Introduction
	2 The Initialisation Process
	2.1 Loading Phase
	2.2 Diffusion Phase
	2.3 Keystream Generation

	3 Flaws in the Initialisation Process
	3.1 Compression
	3.2 State Convergence
	3.3 Slid Pairs and Shifted Keystream
	3.4 Weak Key-IV Combinations

	4 Case Study: A5/1
	4.1 Compression and A5/1
	4.2 State Convergence in A5/1
	4.3 Slid Pairs and Synchronisation Attacks
	4.3.1 Attack Algorithm

	4.4 Weak Key-IV Combinations
	4.4.1 One Register All Zeros
	4.4.2 Two Registers All Zeros
	4.4.3 Attack Algorithm

	5 Initialisation Flaws in Other Ciphers
	5.1 Compression
	5.2 State Convergence
	5.3 Slid Pairs
	5.4 Weak Key-IV Combinations
	5.5 Summary

	6 Conclusion
	References

	Producing Fuzzy Inclusion and Entropy Measures
	1 Introduction
	2 Preliminaries and Notation
	2.1 Basic Notation
	2.2 Fuzzy Intersections and Implications
	2.3 Fuzzy Entropy
	2.4 Young's Axioms and Theorem

	3 Our Proposition
	3.1 Basic Idea
	3.2 R-Implications and Kosko's Measure
	3.3 An Alternative Axiomatization
	3.4 New Measures
	3.5 A Noticeable Observation

	4 A First Comparison of The Inclusion Measures
	5 Entropy Measures
	6 Conclusion
	References

	On Some Recent Results on Asymptotic Behavior of Orthogonal Polynomials on the Unit Circle and InsertingPoint Masses
	1 Orthogonal Polynomials on the Unit Circle
	1.1 Recurrence Relations
	1.2 Integral Representation and Kernel Polynomials
	1.3 GGT Matrices
	1.4 Szegő Extremum Problem and S Class
	1.5 N Class

	2 Adding the Derivative of a Dirac's Delta
	2.1 Mass Point on the Unit Circle
	2.2 Outer Relative Asymptotics
	2.3 Mass Points Outside the Unit Circle

	3 Sobolev Inner Products
	3.1 Outer Relative Asymptotics
	3.2 Zeros

	References

	On the Unstable Equilibrium Points and System Separations in Electric Power Systems: A Numerical Study
	1 Introduction
	2 Mathematical Preliminary
	2.1 Nonlinear Dynamical System and Equilibrium Point
	2.2 Power System and Transient Stability Model

	3 Numerical Scheme and Simulation Results
	4 Conclusions and Final Remarks
	References

	Security and Formation of Network-Centric Operations
	1 Introduction
	2 Background Information
	2.1 Cyber Warfare
	2.2 Information Warfare
	2.3 C4ISR Concept of Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance
	2.4 Network Centric Warfare

	3 The Main Thematic Pillars of NCO Approach
	4 Applying Graph Theory Concepts to NCO
	4.1 The Multi-Layer Graph Model of NCOs
	4.1.1 Foundations of the General Theory
	4.1.2 Further Description of Layer and Interlayer Relationships

	4.2 Definition of NCO-Layered Graph Metrics
	4.2.1 Out-Degree
	4.2.2 In-Degree
	4.2.3 Density
	4.2.4 Reachability
	4.2.5 Point Connectivity
	4.2.6 Distance
	4.2.7 Number of Geodesics
	4.2.8 Maximum Flow
	4.2.9 Network Centrality
	4.2.10 Freeman Degree Centrality
	4.2.11 Betweenness Centrality
	4.2.12 Closeness Centrality
	4.2.13 Edge Betweenness
	4.2.14 Flow Betweenness

	4.3 Advantages of the Multi-Layer NCO Model

	5 Security of NCOs
	5.1 Vertex Pursuit Games in NCO Security Modeling
	5.2 Results

	6 Network Centric Strategic Formation
	6.1 Distance-Based Operational Product Utility of NCO
	6.2 Two-Layer Distance-Based Operational Utilities: Best Response NCO-Graphs
	6.3 Pairwise Operational Stability in NCO
	6.4 NCO-Formation with Arbitrary Operational Utility Functions

	References

	Integral Estimates for the Composition of Green's and Bounded Operators
	1 Introduction
	2 Local Estimates
	3 Global Estimates
	References

	A Survey of Reverse Inequalities for f-Divergence Measurein Information Theory
	1 Introduction
	2 Some Examples
	3 A Reverse Inequality Due to Dragomir and Ionescu
	4 Further Reverse Inequalities
	5 Applications for the Hölder Inequality
	6 Applications for f-Divergence
	7 More Reverse Inequalities
	8 Applications for the Hölder Inequality
	9 Applications for f-Divergence
	10 A Refinement and Another Reverse
	11 Applications for the Hölder Inequality
	12 Applications for f-Divergence
	References

	On Geometry of the Zeros of a Polynomial
	1 Introduction
	2 Results Due to Gauss, Cauchy, and Bounds for Zeros as Functions of All the Coefficients
	3 Zeros of Composite Polynomials, Linear Combination of Polynomials, and Some Results of Peretz and Rassias
	3.1 Grace's Apolarity Theorem and Its Applications to Zeros of Polynomials
	3.2 Zeros of Linear Combination of Polynomials
	3.3 Some Results of Peretz and Rassias

	4 Location of Zeros for Lacunary Polynomials, and Trinomials and Quadrinomials
	4.1 Results Due to Dehmer Concerning Special Lacunary Polynomial
	4.2 Location of Zeros of Trinomials and Quadrinomials

	5 Some Recent Results Concerning Cauchy Theorem on the Location of Zeros of a Polynomial
	5.1 Disk Containing All the Zeros of a Polynomial
	5.2 Annuli Containing All the Zeros of a Polynomial

	References

	Approximation by Durrmeyer Type Operators Preserving Linear Functions
	1 Introduction
	2 Basic Results
	3 Convergence Estimates
	References

	Revisiting the Complex Multiplication Method for the Construction of Elliptic Curves
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Theory of the Equation y2=x3+ax+b

	3 Complex Multiplication Method and Shimura Reciprocity Law
	4 Class Invariants and Invariant Theory
	5 Selecting the Discriminant
	6 Conclusions
	References

	Generalized Laplace Transform Inequalities in Multiple Weighted Orlicz Spaces
	1 Introduction
	2 Definitions and Statement of the Main Results
	3 Proof of Theorem 4
	References

	Threshold Secret Sharing Through Multivariate BirkhoffInterpolation
	1 Introduction
	2 Secret Sharing and Threshold Secret Sharing Schemes
	2.1 Secret Sharing Schemes
	2.2 Threshold Secret Sharing Schemes
	2.3 Shamir's Scheme Through Lagrange Interpolation

	3 Birkhoff Interpolation
	4 Tassa's Scheme Through Univariate Birkhoff Interpolation
	5 The Proposed Approach
	5.1 The Main Idea of Our Approach
	5.2 Illustrative Examples
	5.3 The Linear Polynomial Case
	5.4 Perspectives for Future Work

	6 Synopsis
	References

	Advanced Truncated Differential Attacks Against GOST Block Cipher and Its Variants
	1 Introduction
	2 GOST Block Cipher
	2.1 Structure of GOST
	2.2 Key Schedule Algorithm
	2.3 Addition Modulo 232
	2.4 S-Boxes and Variants of GOST
	2.5 Internal Connections in GOST

	3 Cryptanalysis of GOST
	3.1 Brute-Force Attack on 256-Bit GOST Keys
	3.2 Existing Attacks on Full GOST
	3.3 Differential Cryptanalysis and GOST
	3.4 Computing the Probability of a Differential Characteristic
	3.5 Differentials vs. Differential Characteristics
	3.6 Key Recovery Attacks
	3.7 Truncated Differentials and GOST
	3.7.1 General Open Sets

	4 Propagation of Differentials in GOST
	4.1 Statistical Distinguishers
	4.2 20-Round Distinguishers in GOST

	5 Parametric Attacks against Full GOST
	5.1 Conclusions and Further Research

	References

	A Supply Chain Game Theory Framework for Cybersecurity Investments Under Network Vulnerability
	1 Introduction
	2 The Supply Chain Game Theory Model of Cybersecurity Investments Under Network Vulnerability
	2.1 Variational Inequality Formulations
	2.2 Qualitative Properties

	3 The Algorithm
	3.1 Explicit Formulae for the Euler Method Applied to the Supply Chain Game Theory Model

	4 Numerical Examples
	5 Summary and Conclusions
	References

	A Method for Creating Private and Anonymous Digital Territories Using Attribute-Based Credential Technologies
	1 Introduction
	2 Digital Territories
	3 Privacy Threats and Protection Strategies
	4 The Semantic Web and Its Implications on Individuals' Privacy
	5 A New Privacy Preserving Authentication Technology
	5.1 A Generic ABC Architecture
	5.2 A Privacy Preserving ABC Architecture for DTs

	6 Conclusions
	References

	Quantum Analogues of Hermite�Hadamard Type Inequalities for Generalized Convexity
	1 Introduction
	2 Preliminaries of Quantum Calculus
	2.1 q-Differentiation
	2.2 q-Antiderivatives
	2.3 Riemann-Type q-Integral

	3 Quantum Calculus on Finite Intervals
	4 Basic Concepts and Results for Generalized Convexity
	5 Some Quantum Estimates of Hermite�Hadamard Type Inequalities Via Generalized Convexity
	References

	A Digital Signature Scheme Based on Two Hard Problems
	1 Introduction
	2 The Proposed Signature Scheme
	2.1 Public and Private Key Generation
	2.2 Signature Generation
	2.3 Verification

	3 The Elliptic Curve and the Pairing
	4 The Map to Point Function
	5 Performance Analysis
	6 Example
	7 Security of the Scheme
	8 Conclusion
	References

	Randomness in Cryptography
	1 Introduction
	2 Pseudo-Random Number Generator
	2.1 How to Generate a Seed
	2.2 Example: How to Construct a Pseudo-Random Generator

	3 Theoretical Point of View
	3.1 Definition of a Pseudo-Random Number Generator
	3.2 Distinguisher
	3.3 Prediction
	3.4 A Static Version of Yao's Theorem
	3.5 Family of Pseudo-Random Generators
	3.6 Asymptotic Behavior

	References

	Current Challenges for IT Security with Focus on Biometry
	1 Introduction
	2 Trends and Challenges in Information Security
	2.1 Recent Evolution
	2.2 The Advent of Biometry

	3 Overview of Biometry
	3.1 Fingerprints
	3.2 Iris
	3.3 Palm
	3.4 Face
	3.5 Hand Veins
	3.6 Various Other Biometries
	3.7 Present Applications

	4 ``Hashes'' for Biometry
	4.1 The Fuzzy Commitment Scheme
	4.1.1 Enrollment
	4.1.2 Verification
	4.1.3 Security
	4.1.4 Designing Problems

	4.2 Fingerprints and its Minutiae
	4.2.1 Fuzzy Commitment Scheme for Fingerprint Minutiae

	4.3 The Fuzzy Vault Scheme
	4.3.1 Enrollment
	4.3.2 Verification
	4.3.3 Brute-Force Security
	4.3.4 Pre-alignment
	4.3.5 Implementations

	4.4 Fundamental Security Limit
	4.4.1 Combination with Passwords
	4.4.2 Slow-Down Functions
	4.4.3 Multiple Fingerprint/Multiple Biometric Modalities

	4.5 Attacks Via Record Multiplicity
	4.5.1 Correlation Attack in a Fuzzy Vault Scheme
	4.5.2 Decodability Attack in a Fuzzy Commitment Scheme
	4.5.3 Unlinkable Minutiae-Based Fuzzy Vault
	4.5.4 A Compact Fuzzy Vault Scheme

	4.6 The Future of Biometric ``Hashes''

	References

	Generalizations of Entropy and Information Measures
	1 Introduction
	2 Information Measures and Generalizations
	3 Entropy, Information, and the Generalized Gaussian
	3.1 Shannon Entropy and Generalization
	3.2 Generalized Entropy Power
	3.3 Rényi Entropy
	3.4 Generalized Fisher's Entropy Type Information
	3.5 Kullback�Leibler Divergence

	4 Complexity and the Generalized Gaussian
	5 Discussion
	References

	Maximal and Variational Principles in Vector Spaces
	1 Vector EVP on Separable Ordered Convergence Spaces
	1.1 Introduction
	1.2 Preliminaries
	1.3 Main Results
	1.4 Local Versions

	2 Maximality Principles in Triangular Structures
	2.1 Introduction
	2.2 Preliminaries
	2.3 Pasicki Approach
	2.4 Transitive Brezis�Browder Principles
	2.5 Main Results
	2.6 Converse Question

	3 GTZ Maximal Principles in Topological Vector Spaces
	3.1 Introduction
	3.2 Brezis�Browder Principles
	3.3 Bao�Mordukhovich Approach
	3.4 Main Result
	3.5 Particular Aspects

	References

	All Functions g: N →N Which have a Single-Fold Diophantine Representation are Dominated by a Limit-Computable Function f: N {0} →N Which is Implemented in MuPADand Whose Computability is an Open Problem
	References

	Image Encryption Scheme Based on Non-autonomous ChaoticSystems
	1 Introduction
	2 The Duffing�Van Der Pol System
	3 The Chaotic Random Bit Generator
	3.1 Statistical Tests

	4 The Image Encryption Scheme
	5 Statistical and Security Analysis
	5.1 Statistical Analysis
	5.1.1 Histogram Analysis
	5.1.2 Correlation Analysis
	5.1.3 Entropy Analysis

	5.2 Security Analysis
	5.2.1 Key Space and Sensitivity
	5.2.2 Differential Analysis

	6 Conclusion
	References

	Multiple Parameterize Yang-Hilbert-Type Integral Inequalities
	1 Introduction
	2 Some Lemmas
	3 Main Results and Applications
	4 Some Examples
	References

	Parameterized Yang�Hilbert-Type Integral Inequalities and Their Operator Expressions
	1 Introduction
	2 Yang�Hilbert-Type Integral Inequalities
in the First Quadrant

	2.1 Definition of Weight Function and a Lemma
	2.2 Two Equivalent Inequalities as well as the Reverses with the Best Possible Constant Factors
	2.3 Yang�Hilbert-Type Integral Inequalities in the First Quadrant with Multi-Variables
	2.4 Hardy-Type Integral Inequalities with Multi-Variables
	2.5 Yang�Hilbert-Type Operators and Hardy-Type Operators
	2.6 Some Examples

	3 Yang�Hilbert-Type Integral Inequalities in the Whole Plane
	3.1 Weight Functions and a Lemma
	3.2 Equivalent Inequalities with the Best Possible Constant Factors
	3.3 Yang�Hilbert-Type Integral Inequalities in the Whole Plane with Multi-Variables
	3.4 Hardy-Type Integral Inequalities in the Whole Plane
	3.5 Yang�Hilbert-Type Operators and Hardy-Type Operators in the Whole Plane
	3.6 Some Examples

	References

	A Secure Communication Design Based on the Chaotic Logistic Map: An Experimental Realization Using Arduino Microcontrollers
	1 Introduction
	2 Problem Statement
	3 The Logistic Map
	4 Experimental Implementation
	4.1 Description of the Communication System
	4.2 Experimental Results

	5 Conclusion
	Appendix
	Arduino Transmitter Code
	Arduino Receiver Code

	References

	‎C:\Users\user\Desktop\papers\xy Publications_2.pdf‎

