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A B S T R A C T   

Building seismic assessment is at the forefront of modern scientific research. Several researchers 
have proposed methods for estimating the damage response of buildings subjected to earthquake 
motions without conducting time-consuming analyses. The advancement of computer power has 
resulted in the development of modern soft computing methods based on the use of Machine 
Learning (ML) algorithms. However, a lack of expertise associated with the use of complex ML 
architectures can affect the performance of the intelligent model and, ultimately, reduce the al-
gorithm’s reliability and generalization which should characterize these systems. The current 
paper proposes a fully validated interpretable ML method for predicting seismic damage of R/C 
buildings. Specifically, the most efficient machine learning algorithms were used in a large-scale 
comparison study in a sophisticated dataset of 3D R/C buildings. Moreover, effective additional 
validation ensures that models are sound, have low complexity, are fair and provide clear ex-
planations for decisions made. Also, extensive experiments were done to make the final machine 
learning model explainable and the decisions interpretable. The proposed method aims to suggest 
that the civil protection mechanisms must include scientific methodology and appropriate tech-
nical tools into their technological systems, in order to make substantial innovative leaps in the 
new era.   

1. Introduction 

One of the most important, but also challenging, scientific issues in the field of earthquake engineering is the estimation of the 
structural response of buildings subjected to earthquake ground motions. Since now, numerous research studies have dealt with the 
above issue and proposed a vast variety of different methods aiming at the seismic assessment of structures. Many of these methods 
focus on the rapid determination of the earthquake damage response and on the seismic vulnerability assessment of large number of 
buildings without performing computationally hard analyses, in an attempt to overcome the difficulties resulting from the time- 
consuming conduction of demanding nonlinear analysis methods (e.g Refs. [1–6]), These procedures usually utilize methods based 
on the application of statistics theory. In the last decades, the increase of the computers’ power has led to the development of modern 
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statistical methods based on the adoption of Machine Learning (ML) algorithms. The up-to-date research on these methods revealed 
that they can provide a fast, reliable, and computationally easy way for screening of vulnerable structures and that they can be used as 
an efficient alternative to the conduction of demanding numerical simulations (e.g. Refs. [7–12]). The achievement of this goal is made 
through the creation of a relationship mapping that emulates the structure’s behavior. 

ML is one of the most important scientific fields of the new era that includes those algorithmic methods that can be learned from 
data. Data-driven intelligent systems can translate human knowledge and experience into right and timely decisions. They combine 
ideas from the sciences of statistics and probabilities to make accurate future predictions, while mathematical optimization techniques 
are used to improve the performance of a system. There are four distinct categories of ML with independent characteristics of learning: 
a) the information-based learning methodologies that employ concepts from information theory to build models (e.g. Decision Tree 
Algorithm), b) the similarity-based learning methods that build models based on comparing features of known and unknown objects or 
measure similarity between past and forthcoming occurrences (e.g. k-Nearest Neighbor), c) the probability-based learning techniques 
that build models based on measuring how likely it is that some event will occur (e.g. Naive Bayes Classifier) and, finally d) the error- 
based learning that builds models based on minimizing the total error through a set of training instances (e.g. Support Vector Machine). 
On the other hand, based on how to use the data, there are three main categories of ML algorithms: a) Supervised Learning in which the 
training process of the algorithm is based on samples of labeled data, b) Unsupervised Learning which is the ability of the algorithm to 
detect patterns in unknown data and, finally, c) Reinforcement Learning that employs algorithms for discovering the environment 
based on rewarded actions. 

Several research studies have proved that the ML methods, mainly Artificial Neural Networks (ANNs), can effectively assess the 
seismic response of complex structures. A comprehensive literature review of the most commonly used and newly developed ML 
techniques for the assessment of the buildings’ damage has been made by Harirchian et al. [13], by Xie et al. [14] and by Sun et al. 
[15]. A brief review of some of the most important research works is given below. Latour and Omenzetter [16] were among the first 
researchers who studied the ability of the ANNs to reliably estimate the earthquake-induced damage of planar R/C frames by using 
nonlinear time history analyses’ results. A similar investigation was carried out by Arslan [17], who studied the impact of certain 
structural parameters on the damage level of regular R/C buildings under seismic ground motions. Kia and Sensoy [18] investigated 
the impact of certain seismic parameters on the ability of ANNs to assess the seismic damage level of R/C concrete frames based on 
nonlinear time history analyses of a 2D moment resisting R/C frame. Kostinakis and Morfidis conducted a series of research studies 
[19–21] in an attempt to estimate the reliability of ANNs as regards the estimation of the seismic response of R/C buildings. More 
recently, Zhang et al. [22] proposed a ML framework for the assessment of the post-earthquake structural safety of a 4-story R/C special 
moment frame building. In another research conducted by the same research team [23] several ML methods were utilized in order to 
adequately estimate the residual structural capacity of damaged tall buildings. 

The results of most research studies established the ability of ML techniques to successfully solve engineering problems. However, 
all of the abovementioned researchers adopted black box ML methods for their research; namely, no study has attempted to utilize 
explainable techniques in order to evaluate their efficiency in assessing the damage response with adequate reliability. The present 
paper aims to evaluate extensively many Machine Learning algorithms for the reliable prediction of 3D R/C buildings’ seismic 
response. Moreover, for the winner algorithm, which produced training stability, high overall performance and a great generalization 
to estimate the ability to predict the damage response of buildings, a large-scale validation was made. Exact model validation is the 
best technique for mitigating the effects of this difficulty. This additional validation step checks the model’s predictions with an 
unknown/unseen dataset to assess the model’s predictive capacity and performance and, consequently, to increase the model’s output 
reliability. Note that this technique avoids the potential that the machine learning models would exhibit unexpected behaviors in 
response to random input data or malicious attacks, because the different validation phase analyzes the model to find weaknesses and 
evaluate its resilience. Also, extensive experiments were done in order to make the final machine learning model explainable and the 
decisions interpretable. 

2. Formulation of the problem in terms compatible to machine learning methods 

2.1. Overview of the procedure 

In this section the procedure adopted in order to formulate the problem in terms compatible to ML methods is presented. The 
procedure consists of the following steps:  

• Generation of the training dataset, which includes selection of a large number of representative R/C buildings, design and modeling 
of the inelastic properties of the them and selection of an adequate number of seismic motions.  

• Selection of the problem’s input (structural and seismic) parameters.  
• Conduction of Nonlinear Time History Analyses (NTHA), according to which the buildings are analyzed for the selected earthquake 

records and their seismic response is determined. Consequently, processing of the analyses’ results in order to compute the values of 
an appropriate seismic damage index (in the present study the MIDR (Maximum Interstory Drift Ratio) index), which is selected as 
the output parameter (target) of the ML procedures. 

2.2. Training dataset 

In order to fulfill the purposes of the present research study, a large training dataset consisting of buildings with a variety of 
structural characteristics was considered. An attempt was made to select structures that are representative of the buildings designed 
and built with the aid of modern seismic codes and according to the common construction practice in European countries with regions 
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of high seismicity. More specifically, a set of 30 R/C buildings was selected [20,21]. The buildings’ structural system consists of 
members in two perpendicular directions (denoted as axes x and y). Moreover, they are rectangular in plan and regular in elevation and 
in plan according to the criteria set by EN1998-1 [24]. The buildings possess different characteristics concerning the stories’ number 
nst (stories’ height: 3.2 m), the value of structural eccentricity eo (i.e. the distance between the mass center and the stiffness center of 
stories) and the ratio of the base shear received by the walls along two horizontal orthogonal directions (axes x and y): Vw1 and Vw2. 
The values of these structural parameters for the selected buildings are given in Table 1 (more details about the selected buildings can 
be found in Refs. [20,21]). 

In the above table, Lx and Ly are the dimensions of the rectangular shaped plans of the selected buildings and e0=(e0x
2 +e0y

2 )1/2, 
where e0x, e0y are the structural eccentricities along axes x and y respectively. 

In order to investigate the impact of the masonry infills on the seismic response and damage of the buildings, for each one of the 30 
structures three different assumptions about the distribution of the masonry infills were considered, leading to three different training 
subsets: (a) subset denoted as ROW_FORM_BARE consisting of the 30 buildings without masonry infills (bare structures), (b) subset 
denoted as ROW_FORM_FULL-MASONRY consisting of the 30 buildings with masonry infills uniformly distributed along the height 
(infilled structures) and (c) subset denoted as ROW_FORM_PILOTIS consisting of the 30 buildings with the first story bare and the 
upper stories infilled (buildings with pilotis). Consequently, the total number of buildings investigated herein is 30 different structural 
systems x 3 different distributions of masonry infills = 90. The three abovementioned subsets of the buildings, as a result of their 
different masonry infills’ configurations, were trained separately by the same ML methods, in order to draw conclusions about the 
possible differences in the predictive ability of the ML techniques, resulting from the influence of the infill walls on the seismic response 
of them. 

The 30 selected bare buildings were modeled, analyzed and designed according to the provisions of EN1992-1-1 [25] and 
EN1998-1 [24]. For the buildings’ elastic modelling all recommendations of EN1998-1 were followed (diaphragmatic behavior of the 
slabs, rigid zones in the joint regions of beams/columns and beams/walls, values of flexural and shear stiffness corresponding to 
cracked R/C elements). The buildings were classified as Medium Ductility Class (MDC) structures. The analyses and design were done 
with the aid of the modal response spectrum method, as defined in EN1998-1. All buildings were designed for the combination of 
vertical loads 1.35G+1.50Q, as well as the seismic combination G+0.3Q ± E, (where G, Q are the dead and live loads, and E is the 
seismic action expressed by the simultaneous application of the design spectrum of EN1998-1 along the direction of axes x and y). The 
design of the structural members was made following the provisions of EN1992-1-1 and EN1998-1, utilizing the professional program 
for R/C building analysis and design RAF [26]. 

After the elastic modeling and design of the bare buildings, the three subsets mentioned above (bare buildings, infilled buildings, 
buildings with pilotis) were created and their nonlinear behavior was simulated, in order to analyze them by means of NTHA. The 
modeling of the structures’ nonlinear behavior was made using lumped plasticity models (plastic hinges at the column and beam ends, 
as well as at the base of the walls). The Modified Takeda hysteresis rule [27] was adopted in order to model the material inelasticity of 
the structural members. Moreover, the effects of axial load-biaxial bending moments (P-M1-M2) interaction at columns and walls 
hinges were taken into consideration. The yield moments of the R/C elements and the parameters which were necessary for the 
determination of the P-M1-M2 interaction diagram of the vertical R/C elements’ cross sections were computed using the XTRACT 
software [28]. 

Regarding the infill walls’ modeling, in the present study, the equivalent diagonal strut model was adopted. This model is one of the 
most well-known and documented in the relevant literature macro-models [29,30]. It does not account for the local failure, but it 
participates in the building’s global collapse mechanism, which is the main objective of the present study. In particular, each infill 
panel was modeled as single equivalent diagonal strut with stress-strain diagram according to the model proposed by Crisafulli [31] 
(Fig. 1). Fig. 1 illustrates the simulation of the masonry infills based on the Crisafulli model, along with all the basic parameters used to 
define the properties of the diagonal struts. Note that the values of these parameters were computed with the aid of the code provisions 
given in EN1996-1-1 [32]. 

Table 1 
The values of structural parameters of the selected R/C buildings.  

No. nst Lx(m) Ly(m) eo(m) Vw1 (%) Vw2 (%) No. nst Lx(m) Ly(m) eo(m) Vw1 (%) Vw2 (%) 

1 3 13.5 10.0 0.0 0.0 0 16 3 13.0 9.0 0.98 0.0 0.0 
2 5 20.0 14.0 0.0 0.0 0.0 17 5 17.5 10.0 2.58 0.0 0.0 
3 7 20.0 14.0 0.0 0.0 0.0 18 7 17.5 10.0 2.39 0.0 0.0 
4 3 15.0 10.0 0.0 73.0 76.0 19 3 13.5 9.0 4.65 52.0 46.0 
5 5 19.0 16.2 0.0 77.0 80.0 20 5 16.0 14.5 4.19 43.0 42.0 
6 7 19.0 16.2 0.0 57.0 64.0 21 7 16.0 14.5 3.79 37.0 36.0 
7 3 15.0 15.0 0.0 41.0 41.0 22 3 13.5 9.0 2.23 47.0 0.0 
8 5 21.2 18.7 0.0 46.0 50.0 23 5 16.0 14.5 2.65 38.0 0.0 
9 7 21.2 18.7 0.0 43.0 46.0 24 7 16.0 14.5 2.49 35.0 0.0 
10 3 17.0 12.5 0.0 43.0 0.0 25 3 14.5 9.0 3.53 64.0 0.0 
11 5 20.2 15.2 0.0 41.0 0.0 26 5 14.0 16.0 3.01 0.0 69.0 
12 7 20.2 15.2 0.0 38.0 0.0 27 7 14.0 16.0 3.01 0.0 65.0 
13 3 15.0 10.0 0.0 77.0 0.0 28 3 13.5 10.0 6.73 64.0 58.0 
14 5 20.2 15.2 0.0 68.0 0.0 29 5 16.5 16.5 6.29 65.0 72.0 
15 7 20.2 15.2 0.0 51.0 0.0 30 7 16.5 16.5 5.96 59.0 67.0  
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2.3. Input parameters 

The Machine Learning methods are computational structures which are capable of approaching the solution of multi-parametric 
problems. This feature gives the flexibility to select the number of the parameters (input parameters) through which a problem can 
be formulated. For the present investigation’s purposes, both structural and seismic parameters were chosen in order to adequately 
describe the problem. Considering the structural parameters, four macroscopic characteristic, which are considered crucial for the 
vulnerability assessment of existing 3D R/C buildings were selected: the total height of buildings Htot, the ratios of the base shear that is 
received by R/C walls (if they exist) along two horizontal orthogonal directions x and y (ratio Vw1 and ratio Vw2) and the structural 
eccentricity e0 (Table 1). The above selected structural parameters are widely used in well-known methods of seismic vulnerability 
assessment of existing R/C buildings (e.g. Refs. [2,5]). They have also been recognized by the modern seismic codes as the parameters 
which have significant effect on R/C buildings seismic response (e.g. Ref. [24]). As regards the seismic parameters, it must be noticed 
that there are many definitions of them, which are obtained from the accelerograms records. For the present study, the 14 seismic 
parameters presented in Table 2 have been chosen [33,34], in an attempt to select the ones widely used by the relevant literature to 
describe better the seismic excitations and their impact to structures. The significantly larger number of seismic parameters selected 
(14) compared to the 4 structural parameters was based on the fact that the uncertainty associated with the seismic excitations is much 
larger than the uncertainty associated with the estimation of the structural parameters. Thus, the large number of selected seismic 
parameters, in combination with the selection of the 65 seismic excitations (Appendix A), has as a result to cover a wide range of values 
of these parameters, ensuring the effective performance of the examined machine learning methods. 

Fig. 1. Simulation of the masonry infill response using the method of diagonal struts.  

Table 2 
The selected seismic (ground motion) parameters and the ranges of their values corresponding to the 65 earthquakes.  

Ground Motion Parameter Minimum Value Maximum Value 

Peak Ground Acceleration - PGA 0.004 g 0.822 g 
Peak Ground Velocity - PGV 0.86 cm/s 99.35 cm/s 
Peak Ground Displacement - PGD 0.36 cm 60.19 cm 
Arias Intensity Ia ≈0.0 m/s 5.592 m/s 
Specific Energy Density - SED 1.24 cm2/s 16762.8 cm2/s 
Cumulative Absolute Velocity - CAV 14.67 cm/s 2684.1 cm/s 
Acceleration Spectrum Intensity - ASI 0.003 g s 0.633 g s 
Housner Intensity - HI 3.94 cm 317.6 cm 
Effective Peak Acceleration - EPA 0.003 g 0.63 g 
Vmax/Amax (PGV/PGA) 0.036 sec 0.336 s 
Predominant Period - PP 0.077 s 1.26 s 
Uniform Duration - UD ≈0.0 s 17.68 s 
Bracketed Duration - BD ≈0.0 s 61.87 s 
Significant Duration - SD 1.74 s 50.98 s  
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2.4. Output parameters - targets 

The exported result of the solution of the problem which is examined in the present paper is the estimation of the seismic damage 
state of R/C buildings, so a reliable measure that can adequately quantify their damage response must be adopted as a target (output 
parameter) for the Machine Learning algorithms. More specifically, the 90 R/C buildings presented above were analyzed by means of 
NTHA for a suite of 65 earthquake ground motions, accounting for the design vertical loads. As a consequence, a total of 5850 NTHA 
(90 buildings x 65 earthquake records) were conducted in the present research. The analyses were performed using the computer 
program Ruaumoko [35]. It must be mentioned that the conduction of such a large number of nonlinear analyses was a rather 
computationally-challenging task, so in order to accomplish it, a series of scripts was constructed using the Visual Basic programming 
language. Regarding the selection of the input earthquake motions, each of these consists of a pair of horizontal bidirectional seismic 
components, obtained from the PEER [36] and the European strong-Motion database [37]. The selection of the records was made 
bearing in mind the coverage of a large variety of realistic values for the 14 ground motion parameters considered as inputs. In Table 2 
the range of the ground motion parameters’ values that correspond to the 65 chosen strong motions is depicted. For the calculation of 
the above seismic parameters, the computer program SeismoSignal [34] was utilized. 

For each one of the nonlinear analyses, the assessment of the seismic damage was determined. In particular, the estimation of the 
seismic damages that are expected to occur in structural members of R/C buildings is accomplished through the calculation of certain 
measures which try to quantify the severity of the damage. The choice of a reliable damage measure, that can adequately capture the 
damage level of the building, is a very difficult task, since it depends on numerous parameters. The present research study, in order to 
express the buildings’ seismic damage, adopts the Maximum Interstory Drift Ratio (MIDR). More specifically, MIDR corresponds to the 
maximum story’s drift among the perimeter frames and it is calculated according to Fig. 2. The MIDR, which is extensively used as an 
effective indicator of structural and nonstructural damage of R/C buildings (e.g. Refs. [38,39]), has been adopted by many researchers 
for the assessment of the structures’ inelastic response. 

3. Presentation of used machine learning algorithms 

A lack of technical expertise and experience associated with the usage of complicated machine learning architectures, on the other 
hand, might influence the performance of the machine learning models and impede the proper design of some crucial hyper-
parameters. These potential misconfigurations decrease the algorithm’s dependability and generalizability in these systems. In order to 
identify the most effective algorithm that is capable to predict the R/C buildings’ seismic damage with high accuracy, an extensive 
comparison with the most widely used supervised ML models was made. A comprehensive review of the comparison models is 
summarized as follows:  

1. Light Gradient Boosting Machine: is a gradient boosting framework based on decision trees to increases the efficiency of the 
model and reduces memory usage [40].  

2. Gradient Boosting Regressor: This method produces an ensemble prediction model by a set of weak decision trees prediction 
models. It builds the model smoothly, allowing at the same time the optimization of an arbitrarily differentiable loss function 
[41].  

3. Random Forest Regressor: A Random Forest is a meta-learner that builds a number of classifying decision trees on various sub- 
samples of the dataset and uses averaging to improve the predictive accuracy and to control over-fitting [42].  

4. Extra Trees Regressor: Extra Trees is an information-based learning methodology. Specifically, it is an ensemble machine 
learning algorithm that combines the predictions from many decision trees [43].  

5. k-Nearest Neighbors Regressor: k-Nearest Neighbors Regressor is a similarity-based learning algorithm, according to which 
the target is predicted by local interpolation of the targets associated with the nearest neighbors in the training set [44].  

6. Linear Regression: Linear Regression is a model that assumes a linear relationship between the input variables (x) and the 
output variable (y), so that (y) can be calculated from a linear combination of the input variables (x). In linear regression, 
relationships are modeled using linear prediction functions whose unknown model parameters are estimated from the prob-
ability distribution of the prediction values [45].  

7. Bayesian Ridge: Bayesian Ridge is a type of linear regression algorithm that uses probability distributions rather than point 
estimates in order to solve a regression problem [46]. 

Fig. 2. Determination of the MIDR in the case of a n-story 3-D building with arbitrary plan-view.  
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8. Ridge Regression: Ridge Regression is a regression method that does not provide confidence limits. It uses regularization L2- 
norm in order to solve a high covariance problem, even if the errors come from an abnormal distribution [47].  

9. Decision Tree Regressor: A decision tree is a tree-based model including chance event outcomes, resource costs, in order to 
displays conditional control statements. Each node represents an attribute, each branch represents the outcome of an attribute 
test, and each leaf represents the decision taken after computing all attributes. The paths from the root to leaf represent the 
regression process [48].  

10. AdaBoost Regressor: It is a meta-learner that begins by fitting a regressor on the original dataset and then fits additional copies 
of the regressor on the same dataset where the weights of instances are adjusted according to the error of the current prediction 
[49].  

11. Elastic Net: The Elastic Net is a normalized regression method to fit data that linearly combines the L1 and L2 norms of the lasso 
and ridge regression methods [50].  

12. Lasso Regression: Least Absolute Shrinkage and Selection Operator Lasso Regression is a type of linear regression methodology 
that uses a shrinkage technique in which data are shrunk to a central point, such as the average value [51].  

13. Orthogonal Matching Pursuit: Orthogonal Matching Pursuit is a sparse approximation algorithm which finds the optimal 
multidimensional data projection fitting the data with high accuracy [52].  

14. Huber Regressor: Huber Regressor is a regression method which defines a threshold based on the distance between target and 
prediction that makes the loss function switch from a squared error to an absolute one [53].  

15. Least Angle Regression: Least Angle Regression is a linear regression algorithm for fitting high-dimensional data. The solution 
consists of a curve denoting the solution for each value of the L1 norm of the parameter vector in which the estimated pa-
rameters are increased in a direction equiangular to each one’s correlations with the residual [54]. 

4. Comparative assessment of the ML methods 

The abovementioned ML techniques were utilized for the statistical analysis of the training datasets in order to estimate their 
predictability in the estimation of the buildings’ seismic damage. The following regression metrics were used to compare the results 
and to detect the ML algorithm which is the most efficient: 

Coefficient of Determination - . In order to express the correlation between two random variables, R2 is used which is expressed in 
terms of percentage. This metric gives the rate of variability of the Y values calculated by X and vice versa. R2 is defined as follows: 

R2 = 1 −

∑n

i=1
(Yi − Ŷ i)

2

∑n

i=1
(Yi − Yi)

2
(1)  

where Yi are the observed values of the dependent variable, Ŷ i are the estimated values of the dependent variable, Y is the arithmetic 
mean of the observed values and n is the number of observations. R2 attains values in the interval [0,1], with optimal performance 
when its values approach the unit, indicating that the regression model adapts optimally to the data. 

Mean Absolute Error – MAE. MAE is the measure that quantifies the error between the estimated and the observed values. It is 
calculated by the formula: 

MAE=
1
n
∑n

i=1
|fi − yi| =

1
n
∑n

i=1
|ei| (2)  

where fi is the estimated values and yi is the observed ones. The average of the absolute value of the difference between these values is 
defined as the absolute error of their relation |ei| =

⃒
⃒fi − yi

⃒
⃒. 

Mean Square Error – MSE. MSE is the basic comparison measure that calculates how well a model approaches the number of 
control examples in a regression process. It is given by the following formula: 

MSE=
1
n
∑n

i=1
(Ŷi − Yi)

2 (3)  

where Y is an observed value and Ŷ is an estimated value for the n predictions. 
Root Mean Squared Error – RMSE. RMSE calculates the average error of the predicted values in relation to the actual values. 

RMSE is based on the following formula: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑n

j=1

(
P(ij) − Tj

)2

√
√
√
√ (4)  

where P(ij) is the value predicted by program i for a simple hypothesis j and Tj is the target value for the simple hypothesis j. The success 
of a regression model requires extremely small values for the RMSE, while the best case (absolute correlation between actual and 
predicted values and therefore absolute success of the model) is achieved when P(ij) − Tj = 0. 
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Mean Absolute Percentage Error – MAPE. MAPE provides an objective measure of the estimation error as a percentage of demand 
(e.g. the estimation error is on average 10% of actual demand) without depending on the order of magnitude of demand. It is given by 
the following formula where At is the actual value and Ft is the forecast value: 

MAPE= 100
∑T

t=1

[
|At − Ft |

At

]

T
(5) 

Generally speaking, RMSE gives more importance to the highest errors, hence it is more sensitive to outliers, whereas, on the other 
hand, MAE is more robust to outliers. RMSE and MSE work on the principle of averaging the errors, while MAE’s calculation is based on 
the median of the error. Finally, MAPE is a very intuitive interpretation in terms of relative error. 

In order to confirm the effectiveness of the ML algorithms, extensive ML tests were performed and the comparative results (ranked 
form the most efficient to the least efficient method) obtained for each one of the three datasets in terms of the abovementioned metrics 
are presented in the Tables given in Appendix B. Tables B1, B2, and B3 clearly show the superiority of the Light Gradient Boosting 
Machine (LightGBM) algorithm, which excels in all metrics, while the performance error remains very low compared to the other 
approaches. Specifically, the accuracy of the LightGBM, exceeds on average the second-best method by almost 3.5%, while the 
recorded error is significantly smaller. These features are clearly demonstrated by the very high-performance results that it has 
achieved, as well as its ability to generalize to new unknown situations and to effectively model real-world data. Specifically, the 
results revealed that using LightGBM it is possible to correlate sophisticated parameters in a simple way and to solve dynamic problems 
like the prediction of the R/C buildings’ seismic response with high accuracy and with an affordable computational cost. 

5. Description of the implementation of the most efficient algorithm: LightGBM 

In the following, a thorough description, along with analytical details, of the implementation of the most efficient ML algorithm 
(LightGBM) are given. LightGBM [40] is an information-based learning methodology, which belongs to the class of gradient boosting 
algorithms and uses a learning algorithm based on regression trees. Regression trees are a simple, easy-to-interpret technique that 
works best in single-dimensional data analysis (not multidimensional data such as photos, videos, etc.). Considering a set of the form 
(xi, yi) for i = 1,2,…,N with xi = (xi1, xi2,…, xip) and for j = 1,2,…,p, the construction of a regression tree is defined as follows:  

1. The set of target variable’s values yi is divided into М regions R1,R2,…,RM  
2. The variable is modeled as a constant cm in each region so that: 

f (x)=
∑M

m=1
cmI(x∈Rm) (6) 

Having as a criterion of minimization the sum of the squares 
∑

(yi − f(xi))
2 it is easy to calculate the optimal ĉm, which is the 

average of yi in the region m: 

cm = ave(xi|yi ∈Rm) (7) 

The problem which arises is that using the sum of the squares in order to find the best results, the algorithm becomes extremely 
time-consuming. For this reason, another approach is usually used, according to which in each step the target variable is divided into 
two areas through two branches, a variable Xj and the separation point s are selected, which results in the largest reduction in the sum 
of squares. Essentially, in this way a variable j and a point s are sought, in order to minimize the following function: 

∑

xi∈R1(j,s)

(yi − c1)
2
+
∑

xi∈R2(j,s)

(yi − c2)
2 (8)  

where R1(j, s) = {Х
⃒
⃒Х j≤ s} και R2(j,s) = {Х

⃒
⃒Х j> s}. Then, the process is repeated for each area created. The question that arises is 

how big the trees should be. Note that a large tree will be very specialized in data resulting in a low predictive ability for new data that 
they have never seen before, while a small tree may not have been properly trained resulting in yielding unsatisfactory results. One 
solution to the problem is to set a minimum threshold and only if the reduction in the sum of squares achieved by the division is larger 
than the threshold the separation takes place. This strategy is not always optimal, as a bad initial separation can then lead to a very 
good next one. The strategy that works best is pruning the tree. The idea is to grow a tree with a predetermined number of nodes and 
then to prune it using a criterion based on the complexity of the tree as follows:  

1. Firstly, a tree is trained at least Τ⊂T0, which can be any tree that resulted from the pruning of the tree T0.  
2. Setting the terminal nodes of Τ, with the node m representing the region Rm, then: 

ĉm =
1

Nm

∑

xi∈Rm

yi (9)  

Qm(T)=
∑

xi∈Rm

(yi − ĉm)
2 (10)  
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Ca(T)=
∑|T|

m=1
Qm(T) + a|T| (11) 

Essentially, the first term of the function Ca measures how well the tree adapts to the training data (small values indicate good 
adaptation) and the second term measures the complexity of the tree. The parameter α ≥ 0 indicates the counterpoint between 
complexity and good fit of the tree. For α = 0 the resulting tree is T0, as no cost is added for each node included in the tree. As the 
parameter α grows, the cost of the tree complexity increases, so it results in smaller trees which do not adapt as well to the training 
data. The smaller the parameter α the larger the tree that is constructed, resulting often in overfitting in the training data and, 
consequently, in a poor performance for other datasets. 

As mentioned above, LightGBM is a gradient boosting algorithm. The Boosting technique is based on the creation of successive 
trees. Each tree is trained using information from previous trees. The algorithm works as follows:  

1. For each observation in the set of training data fˆ(x) = 0 and εi = yi is set.  

2. In each round k a tree f̂ k̂ with d nodes is trained, having as a response variable the residuals of the operation (what is left over from 
the previous regression round) which are denoted by εi.  

3. A pruned version of the new tree is added so that: 

f̂ (x)← f̂ (x) + λf̂ k̂ (x) (12)    

4 Respectively: 

εi ← εi − λf̂ k̂ (x) (13)    

5. Repeating the process from step 2 for K times (K is defined by the user) the final form of the model is obtained: 

f̂ (x)= λ
∑K

k=1
f̂ k̂ (x) (14) 

In order the Boosting technique to be effective, the user must specify the number of trees to be created, the parameter λ and the 
number of nodes in each tree. A large number of trees can easily be over-adapted to training data resulting in a poor generalization 
ability. The λ parameter determines how fast the model will learn. Typical values of λ are from 0.001 to 0.1. The number of nodes 
controls the complexity of each tree. Often, trees of a single division, also known as branches, are satisfactory because the learning in 
the model is done slowly and in a controlled way. 

The Gradient Boosting technique is an extension of the Boosting technique, combining two methods, the Gradient Descent algo-
rithm and the Boosting technique. Gradient Descent is a first-class optimization method. In order to find the total minimum of a 
function using this technique, its derivative is firstly calculated and then the inverse process of finding the derivative is used. The 
derivative measures how much the value of a function J(θ) will change if the variable θ changes slightly. It is essentially the slope of the 
function. High values of the function indicate a large slope and therefore a large change in the value of (θ) for small changes of θ. This 
algorithm is iterative, namely it initializes a random value in θ, calculates the derivative of the function at the given point and modifies 
θ so that: 

θ= θ − ρ dj
dθ

(15)  

where the parameter ρ determines how fast it will move in the negative direction of the derivative. The process is repeated until the 
algorithm converges. 

In the case of Gradient Boosting, the algorithm suggests training trees in the negative derivative of the loss function. For example, 
taking as a loss function the sum of the squares of the residuals εi divided by 2 so that: 

L(yi, ŷi)=
1
2
∑N

i=1
(yi − ŷi)

2 (16) 

Calculating the derivative: 

dL(yi, ŷi)

dŷi
= ŷi − yi (17)  

That is, the negative derivative of the loss function equals to the residuals εi. So, essentially, the process involves training a tree based 
on the εi residuals, to which a pruned by ρ version of the new tree is added. In this way, the Gradient Boosting technique adds suc-
cessive trees at any given time t to the negative derivative of the loss function so that: 

ŷ(t)
i =

∑K

t=1
ft(xi), ft ∈ F (18) 
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where F = {f(x)= wq(x)} and q : Rm → T,w ∈ RT that q represents the structure of each tree, T represents the number of leaves and each 
ft corresponds to an independent tree structure q with the leaf weights being denoted as w. In the LightGBM technique, trees of different 
structure q are combined, with the structure of each tree being the number of nodes that are created. The loss function that is 
minimized at any time t is given by the formula: 

L(t) =
∑n

i=1
l
(
yi, ŷt

i

)
+
∑T

k=1
Ωf (t) (19) 

The first term measures how well the model adapts to the training data (small values indicate good adaptation) and the second term 
measures the complexity of each tree, where a new term is introduced in addition to the number of leaves (Τ), something that results in 
a reduction in the weights of leaves: 

Ωf (t) = γT +
1
2

λ
∑T

j=1
w2

j (20) 

The parameter γ indicates the penalty value for the growth of the tree, so that large values of γ will lead to small trees and small 
values of γ will lead to large trees. The parameter λ regulates how well the tree weights will shrink, namely an increase of its value leads 
to the tree weights’ shrinkage. Thus: 

ŷ(t)
i =

∑K

t=1
ft(xi)= ŷ(t− 1)

i + ft(xi) (21) 

Thus, the problem is deciding which ft(xi) minimizes the loss function at time t: 

L(t) =
∑n

i=1
l
(

yi, ŷ(t)
i

)
+
∑T

k=1
Ωf (t) =

∑n

i=1
l
(

yi, ŷ(t− 1)
i + ft(xi)

)
+
∑T

k=1
Ωf (t) (22) 

From the power series expansion Taylor it follows: 

f (x+Δx)≅ f (x)+ f
′

(x)Δx +
1
2
f ′′(x)(Δx)2 (23) 

Thus, the resulting relation is: 

L(t) ≅
∑n

i=1

[

l
(

yi, ŷ(t− 1)
i

)
+gift(xi)+

1
2
hif 2

t (xi)

]

+Ωf (t) (24)  

where gi = d
ŷ
(t− 1)
i

l(yi, ŷ
(t− 1)
i ) and hi = d2

ŷ
(t− 1)
i

l(yi, ŷ
(t− 1)
i ).

Subtracting the constants, the loss function becomes: 

L
′ (t)

≅
∑n

i=1

[

gift(xi)+
1
2
hif 2

t (xi)

]

+Ωf (t) (25) 

Putting Ij = {i|g(xi)= j} the set of observations on sheet j, the above relation is reformulated as follows: 

L′ (t)
≅
∑n

i=1

[

giwq(xi)+
1
2
hiw2

q(xi)

]

+Ωf (t) =
∑T

i=1

[(
∑

i∈Ij

gi

)

wj +
1
2

(
∑

i∈Ij

hi + λ

)

w2
j

]

+ γT (26) 

Setting Gj =
∑

i∈Ij
gi and Нj =

∑

i∈Ij
hi the following relation emerges: 

L′ (t)
=
∑T

i=1

[

Gjwj +
1
2
(
Нj + λ

)
w2

j

]

+ γT (27) 

Assuming that the structure of the tree (q(x)) is known, the optimal weight on each leaf is obtained by minimizing the above 
relation with respect to wj, so that: 

wj = −
Gj

Нj + λ
(28) 

Subsequently, by replacing wj, the following equation results, which also calculates the quality of the structure of the new tree: 

L′ (t)
= −

1
2
∑T

j=1

G2
j

Нj + λ
+ γT (29) 

Finally, the algorithm creates divisions using the following function: 
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Gain=
1
2

[
G2

L

НL + λ
+

G2
R

НR + λ
−

(GL + GR)
2

НL + НR + λ

]

− γ (30)  

where the first fraction is the score of the left part of the separation, the second fraction is the score of the right part of the separation, 
the third fraction is the score in case that the separation does not take place and γ measures the cost of the complexity of the separation. 

The process of solving a problem begins with creating a tree and growing it up to a specific user-defined depth. The tree is pruned in 
the divisions with a negative Gain and, then, a truncated version of the new tree is added to the model. The procedure is repeated for Κ 
times (Κ: parameter defined by the user). It is important to note that the LighGBM algorithm, which is characterized by its efficiency, 
accuracy and speed, creates histograms and uses the generated classes instead of the entire range of each variable’s values, achieving a 
significant reduction in training time. It also grows vertically, which means that it grows at the level of leaf (leaf-wise method, Fig. 3), 
while other algorithms grow at depth (depth-wise method (Fig. 4)), choosing to grow the leaf with the maximum difference of the cost 
function. During the leaf-wise tree growth, the algorithm becomes very efficient, as it can significantly reduce the losses, thus gaining 
accuracy, while at the same time the regression processes are completed quickly. 

Another important feature that makes LightGBM one of the most complete and widespread algorithms in Machine Learning is that 
it does not use all the training data, but a sample of them, which results from the Gradient One Side Sampling method (GOSS). The 
basic idea of the GOSS methodology focuses on the fact that not all observations contribute the same to the training of the algorithm, 
since those with a small cost function’s first derivative are better trained than those with a large one. Ignoring the observations with a 
small derivative result in the creation of biased samples and in a definite change in the distribution of data, something which leads to a 
separation that is greater than the optimal one and to an obvious over-adaptation of the model to the sample. To address the problem, 
random observations with a small cost function’s derivative are selected, which are sorted according to the absolute value of their 
derivative. Finally, the α × 100% with the largest derivative and the b × 100% from the rest are selected. For the calculation of the loss 
function the observations with a small derivative are multiplied by 1− a

b , thus giving more importance to the poorly trained, without 
significantly differentiating the distribution of the data. By training only one sample in each iteration, a significant increase in the 
process of the algorithm learning is achieved, resulting in its fast convergence to the optimal solution. Specifically, for a training set of 
T with n cases such that Τ = {x1, x2,…,xn}, where each xi is a vector with dimension s in the space Xs. In each iteration of the gradient 
boosting algorithm, the negative slopes of the cost function in relation to the output of the model are denoted as G = {g1, g2,…,gn}. 
Implementing the GOSS method, the cases are classified according to the absolute values of their degrees in descending order. Thus, a 
set A with the a × 100% larger slopes, a set Ac consisting of (1 − α) × 100% cases with the smallest slopes and a subset В with size b×
|Ac| are created. Then, all cases are classified according to the estimated variance cost in vector Vj(d) on the set A⊂ B, so that: 

Vj(d)=
1
n

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(
∑

xi∈Al

gi +
1− a

b

∑

xi∈Bl

gi

)2

nj
l(d)

+

(
∑

xi∈Ar

gi +
1− a

b

∑

xi∈Br

gi

)2

nj
r(d)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(31)  

where Al = {xi ⊂А : xij ⊂d}, Ar = {xi ⊂А : xij ⊂d}, Bl = {xi ⊂B : xij ⊂d} and Br = {xi ⊂B : xij ⊂d}, while the coefficient 1− a
b is used to 

normalize the sum of the slopes above В with respect to the magnitude of Ac. 
Different statistical strategies for the distribution and management of datasets, also known as validation techniques, may be used to 

evaluate ML models objectively, both for self-evaluation and for comparison with the corresponding alternative models. In the present 
study it was used the most frequent and reliable cross-validation approach, the k-fold, in which the dataset is randomly divided into k 
sections of nearly equal population. One of the k-above subsets is employed as a test subset, while the all-theoretic compound of the 
remaining k-1 subsets is used as a training subset. A total of k computation cycles are done, with each k subset being used as a test 
subset in turn. The benefit of this evaluation method is that each dataset is only used once for training and once for testing. The 
parameter k can attain any positive integer value, although the most common choice in practical applications is k = 5, known as 5-Fold 
Cross Validation. Fig. 5 depicts the 5-Fold Cross Validation procedure. 

The performance metrics of the LighGBM algorithm for the three datasets considered herein were given in Tables B1, B2, and B3 

Fig. 3. Leaf-wise method.  
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(Appendix B). Generally, the LighGBM algorithm achieves the highest coefficient of determination, while the error fluctuation remains 
very low in comparison to the other methods. This gives a clear explanation that a large percentage of data points (91% in the first 
dataset, 78% in the second dataset, and 89% in the third dataset) fall within the results of the regression equation, therefore the method 
adapts optimally to the data. Note that in the above Tables some of the most valid error metrics are compared, since, in the forecasting 
procedure by ML methods, the error measurement between the estimated value and the actual value is useful both to assess the 
performance of the model and to define the objective function of the model. In any case, the LightGBM approach produces the lowest 
error, which is explained as high overall performance, training stability, and generalization ability. Finally, the algorithm has satis-
factory training times, which can be further improved if the training data are pre-sorted. 

Diagrams of the methodology, that show its superiority and the way the LightGBM algorithm works, as well as the way of modeling 
the problem, are presented in the following. The plots of algorithm for the dataset of the bare buildings are presented in the following 
Figs. 6–9: 

The plots of LightGBM algorithm for the dataset of the infilled buildings are presented in the following Figs. 10–13: 
The plots of LightGBM algorithm for the dataset of the buildings with pilots are presented in the following Figs. 14–17: 
More specifically, the prediction error plot shows the actual targets from each dataset against the predicted values generated by the 

model. This allows identifying how much variance exists in the model by comparing them against the 45◦ line, where the prediction 
matches exactly the model. Also, the residual plot is a graph that shows the residuals on the vertical axis and the independent variable 
on the horizontal axis. If the points in a residual plot are randomly dispersed around the horizontal axis, a linear regression model is 
appropriate for the data; otherwise, a nonlinear model is more appropriate. Moreover, a learning curve is a plot that shows time or 
experience on the x-axis and learning or improvement on the y-axis. The model is evaluated on the training dataset after each update 
during training and depicts the measured performance. Finally, the validation curve is a graphical technique that can be used to 
measure the influence of a single hyperparameter. By looking at this curve, it can be determined if the model is underfitting, overfitting 
or just-right for some range of hyperparameter values. 

6. Additional validation and interpretability of machine learning model 

The proposed approach employs specialized tools to assess the method and explain why the model reached a particular decision to 
make the preceding procedure and findings more understandable. Specifically, it uses an additional validation process to make the 
produced complete-trust model and extensive experiments in order to be the final model interpretable. By combining these two 
methods, a completely transparent model can be created, which will explain the hidden correlations that may appear between model 

Fig. 4. Depth-wise method.  

Fig. 5. 5-Fold cross validation.  

K. Demertzis et al.                                                                                                                                                                                                     



Journal of Building Engineering 63 (2023) 105493

12

Fig. 6. Prediction Error for LightGBM for 30 iterations.  

Fig. 7. Residuals for LightGBM for 30 iterations.  

Fig. 8. Learning curve for LightGBM.  
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Fig. 9. Validation curve for LightGBM.  

Fig. 10. Prediction Error for LightGBM for 30 iterations.  

Fig. 11. Residuals for LightGBM for 30 iterations.  
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Fig. 12. Learning curve for LightGBM.  

Fig. 13. Validation curve for LightGBM.  

Fig. 14. Prediction Error for LightGBM for 30 iterations.  
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parameters and data, the data features with the highest predictability, as well as the influence of each feature on the final prediction in 
unknown data. So, engineers without technical expertise and experience in machine learning architectures can produce or trust 
complicated, intelligent data-driven models. 

6.1. Additional validation 

The extra validation process is critical in directing adequate understanding, mitigation, and evaluation of the model’s inherent and 
foreign hazards. It produces model quality assurance and control, making machine learning development and deployment more 
interpretable, dependable, and productive. When a model’s failure substantially impacts the entire machine learning application, the 

Fig. 15. Residuals for LightGBM for 30 iterations.  

Fig. 16. Learning curve for LightGBM.  

Fig. 17. Validation curve for LightGBM.  
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importance of model validation cannot be overstated. The proposed extra validation process analyzes the LightGBM model to ensure 
that it is risk-free (at least to an acceptable degree) before production. It is a model risk assessment exercise that assists in compre-
hending the worst-case scenario and its impact on associated hazards, including data and idea drifts, low training data quality, ma-
licious attacks, runtime framework defects and issues, model training and evaluation bugs, model explainability issues, fairness 
assessment concerns and distinguishing production environments from development settings. The suggested approach ensures that 
models are validated before being sent to production and that their compliance is monitored while in production. A depiction of the 
classical machine learning pipeline against the machine learning pipeline with additional validation is presented in Fig. 18 below. 

The suggested method provides deep extra validations (inspection parameters) by using a series of inspections/checks that deliver 
reports on insights on data or model configuration errors. The processes are exposed to inspection circumstances that provide prompts 
such as pass, fail, warning and results while measuring and monitoring performance metrics on the deployment model whilst engaging 
with real situations. 

The first check is about the performance report in unknown data. The following Fig. 19 summarizes the given scores on an unknown 
dataset [55–57]. 

As perceived, the train-test scores’ relative degradation is not greater than 0.2. Specifically, Neg RMSE: train = − 0.17, test = − 0.29 
and Neg MAE: train = − 0.1, test = − 0.17. So, reproducibility/robustness, a critical problem in numerical domains such as applied 
machine learning, was proved in the best way possible. This demonstrates that the acquired findings are not artifacts of a single study 
lab’s unique configuration. Also, the performance score segmented by 2 top (HI and Vw1) features in a heatmap, presented in Fig. 20. 

The next check is the regression systematic error using the bias ratio. The bias ratio was developed as a result of research into the 
behavior of data values as they address projected expectations with the valuation of data that determines their performance. It is a 
tangible statistic that identifies valuation bias or purposeful data manipulation of the regression process by a comparable data point 
without needing the actual choice to be disclosed (transparent). This metric detects deviations in return distributions that suggest the 
existence of bias in subjective predictions. A systematic error threshold in model predictions is shown by a non-zero mean of the error 
distribution. In the present approach, the bias ratio is 2.05E-11, which means that the error distribution indicates the non-presence of 
systematic error in proposed model predictions. The regression systematic error is presented in Fig. 21 [58–61]. 

Also, Fig. 22 shows the check regression error distribution. 
The kurtosis value was found equal to 23.71598. In probability theory and statistics, kurtosis describes the shape of a probability 

distribution. Higher kurtosis corresponds to the greater extremity of deviations (or outliers) and not to the data configuration near the 
mean. The largest over and under estimation of the unknown dataset instances are presented in Tables 3 and 4. 

To estimate the unknown parameters in the regression function, it is required to understand how the data at each location in the 
explanatory variable space relate to the associated regression function value. For example, if the measurement system is used to track 
how the response variable’s values change over time, the deterministic variation in the data would equal the sum of the drift function 
and the actual regression function. Consequently, to achieve the regression function, either the data must be altered before fitting the 

Fig. 18. Classical machine learning pipeline vs machine learning pipeline with additional validation.  
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model or the fitted model must be adjusted after the fact. In either situation, information concerning the drift function’s shape would 
be required. So, the next check is to calculate the prediction drift between train dataset and the test dataset, using statistical measures. 

As shown in Fig. 23, the categorical drift score≤0.15 and numerical drift score≤0.075. The model prediction Earth Mover’s Dis-
tance drift score was found to be 0.02. The drift score is a measure of the difference between two distributions, in this check - the test 

Fig. 19. Performance report.  

Fig. 20. Segment Performance on unknown data.  

Fig. 21. Regression Systematic Error check.  
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and train distributions [62–64]. 
Since it would be difficult to generalize an activity like drift correction to a generic process, and since it would also be unnecessary 

for many processes, most process modeling methods rely on having data in which the observed responses are directly equal, on 
average, to the regression function values. Another way of expressing this idea is to say the mean of the random errors at each 
combination of explanatory variable values is zero. 

The next check is about overfitting caused by using too many iterations in a gradient boosted model. The check restricts the 
boosting model to employing up to N estimators per run and displaying the Neg RMSE obtained for each subgroup of estimators for 
both the training and test datasets. The process’s threshold is when the test score does not deviate from the best result across iterations 
by more than 5%. 

The proposed model performs accurately against unseen data, achieving its purpose, as depicted in Fig. 24. The generalization of 
the model to new, unseen data ultimately allows to use it to make predictions. In addition, a check of the Predictive Power Score of all 
features was made to estimate each feature ability to forecast the correct value. A depiction of the process is presented in Fig. 25. 

The PPS is used to measure a feature’s capacity to predict the label independently. In the graph above, we should be suspicious of 
data errors if: 

Fig. 22. Histogram of prediction regression error distribution.  

Table 3 
Largest over estimation errors.  

Instance MIDR Predicted MIDR MIDR Prediction Difference 

21 7.12 4.92 2.20 
240 3.29 1.85 1.44 
1878 4.25 3.22 1.03  

Table 4 
Largest under estimation errors.  

Instance MIDR Predicted MIDR MIDR Prediction Difference 

335 3.27 4.16 − 0.89 
216 1.96 2.80 − 0.84 
1195 2.07 2.83 − 0.76  

Fig. 23. Prediction Drift check.  
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1. The PPS values in the training dataset are high: This can indicate that this feature’s effectiveness in predicting the label is due to 
data leaking, implying that the feature formerly held information based on the label.  

2. The difference in train and test PPS (train PPS is higher) is significant: An even more strong signal of data leakage may be explained 
by leaking in the train that is irrelevant to a new dataset, as a feature that was powerful in the train but not in the test.  

3. The difference between test and train PPS (test PPS is greater) is significant: An abnormal value might suggest drift in the test 
dataset, resulting in a coincidental association to the target label. 

Finally, an Outlier Probability Score was computed to calculate the local divergence of a particular sample’s density concerning its 
neighbors. The following Table 5 presents the results of the process. 

These outlier scores are directly interpretable as a probability of an object being an outlier. 

6.2. Model Explainer [55–69] 

On the other hand, when machine learning models are employed in ways that affect people’s lives, it is crucial not only to 
generalize but also to understand what impacts model behavior in cases such as model debugging (Why did my model make this 
mistake? How can I develop my model?), human-AI cooperation (How can I understand and trust the model’s decisions?), and reg-
ulatory compliance (Does my model meet legal requirements?). The interpretability component adds to the “diagnose” step of the 
model lifecycle process by creating human-understandable descriptions of a Machine Learning model’s predictions. It gives different 
perspectives on a model’s behavior: global explanations (for example, what attributes impact the overall behavior of a decision) and 
local explanations (e.g., why a datapoint was predicted or not). Model explanations may also be shown for a particular cohort as a 
subset of data points. This is useful for examining the fairness of model predictions for choices in a specific data group. 

Model predictions for many instances may be explained using either global model interpretation techniques (on a modular level) or 

Fig. 24. Boosting Overfit check.  

Fig. 25. Feature label correlation change by predictive power score.  

Table 5 
Outlier sample detection.  

Instance Outlier Probability Score MIDR 

1280 0.85 1.25 
80 0.79 1.99 
1900 0.78 1.68 
600 0.78 2.17  
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individual instance explanations. The global methods may be used on a collection of instances by treating them as the whole dataset 
and applying the global approaches to this subset. Individual explanation techniques may be applied to each instance before listing or 
aggregating the results for the entire group. To identify the global and local interpretability of the discussed model, Contributions Plots 
were used that show the marginal effect that each feature has on the predicted result of the model. In particular, a typical example of 
the process is shown in Fig. 26 below. 

Table 6 shows each individual feature’s contribution to the prediction for a specific observation. The contributions (starting from 
the population average) add to the final prediction. This allows to explain exactly how each individual prediction has been built up 
from all the individual ingredients in the model. From the table we can see that HI has the maximum contribution among the seismic 
and structural parameters, something which can be explained by the fact that HI captures the energy induced by the seismic motion to 
the structural systems. This observation has been also shown in other research studies, for example [19]. Considering the parameters 
that have the least contribution (TSIGN, TUD, TBRAC), it was found that they are based on the earthquake’s duration. This finding is in 
accordance with previous research studies [19]. However, no certain pattern was found, as it depends on the special characteristics of 
the individual problem (structures, seismic motions, ML methods). 

Also, the Partial Dependency Plot depicts the relationship between the target response and a subset of input characteristics of 
relevance, while marginalizing the values of all other input features (the complement features). 

Fig. 27 depicts how the model prediction changes when one attribute changes. The figure represents a sample of observations and 
how they might alter with this feature (gridlines). The average impact is shown in grey. The effect of modifying a characteristic for a 
single Index is shown in blue. The number of observations sampled for the average, the number of gridlines shown, and the number of 
points along the x-axis for which model predictions are calculated (gridpoints) clearly explain how the model can be changed in a 
particular situation. 

The following plot (Figs. 28 and 29) shows the relation between feature values and Shapley’s values. Shapley values are a very 
effective way of generating explanations from cooperative game theory. The payoff/gain of the players of a cooperative game is given 
by a real function that gives values to sets of players. 

These plots allow investigating the general relationship between feature value and impact on the prediction and relation between 
feature value and Shap interaction value. Generally speaking, the Shap values is a highly accurate method that can check whether the 
model uses features in line with intuitions or about the relationships that have been learned between the input features and the 
predicted outcome. 

7. Conclusions 

In the present paper an extensive comparative evaluation of a large number of Machine Learning algorithms for the reliable 
prediction of 3D R/C buildings’ seismic response was carried out. In order to accomplish this aim, a large training dataset consisting of 
30 R/C buildings with different structural parameters (the number of stories, the structural eccentricity and the ratio of base shear 
received by R/C walls (if they exist) along the two orthogonal horizontal axes) was selected. The buildings were designed on the basis 
of provisions of EC8 and EC2. For each one of these buildings three different configurations regarding their masonry infill walls were 

Fig. 26. Contributions plot.  
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assumed (without masonry infills, with masonry infills in all stories and with masonry infills in all stories except for the ground story), 
leading to three different data subsets consisting of 30 buildings each. The selected buildings were analyzed for 65 appropriately 
chosen real earthquake records using Nonlinear Time History Analyses. As inputs in the process of Machine Learning methods both 
seismic and structural parameters widely used in the literature were chosen. The well-documented Maximum Interstory Drift Ratio was 
selected as the damage index for the R/C buildings. Based on the research study’s results, the following conclusions can be drawn: 

Table 6 
Contributions table.  

ID Reason Effect ID Reason Effect 

1 HI = 14.550909996032715 − 0.79 10 EPA = 0.0538799986243248 − 0.01 
2 PGV = 3.620490074157715 − 0.11 11 Vmax/amax = 0.06503999978303909 +0.01 
3 PGA = 0.05674000084400177 − 0.08 12 PP = 0.17664000391960144 − 0.01 
4 ecc_tot = 0.0 − 0.07 13 SED = 30.67694091796875 − 0.01 
5 Ia = 0.07670000195503235 − 0.04 14 TSIGN = 22.64423942565918 − 0.0 
6 Htot = 9.600000381469727 +0.04 15 CAV = 312.87738037109375 +0.0 
7 PGD = 2.2482900619506836 +0.03 15 TUD = 0.05477000027894974 +0.0 
8 Vw2 = 0.0 +0.02 17 TBRAC = 2.1169300079345703 +0.0 
9 Vw1 = 0.4300000071525574 − 0.02 18 Other features combined +0.0 

Average of population 1.18 
Final prediction 0.14  

Fig. 27. Partial Dependency Plot for feature HI.  

Fig. 28. Shap Dependence (relationship between feature value and Shap value).  
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• Historical data can be utilized in order to develop a realistic model, capable to effectively simulate the earthquake response and to 
predict with great accuracy the seismic damage of structures belonging to different types. 

• The general methodology of the proposed procedure uses the most technologically advanced methods in the field of civil engi-
neering and expands them significantly, as it extracts the hidden knowledge found in structural and seismic data in order to add 
intelligence to the methods of seismic response prediction, as well as to the mechanisms for optimal decision-making related to 
seismic risk.  

• The high generalizability of the LightGBM algorithm, as well as the convergence stability of the proposed methodology, proves that 
it is capable of performing well even when the problem is multiparametric. 

• The GOSS technique used by the LightGBM algorithm handles with great precision the noisy scattered points of incorrect classi-
fication, something those other methodologies cannot handle.  

• The tree segmentation method utilized by the algorithm leads to results characterized by remarkable prediction, while offering 
generalization, which is one of the key requirements in the field of machine learning. Moreover, it reduces bias and variance, as 
well as eliminates overfitting, implementing a robust forecast model.  

• The proposed method, as a problem of multiple spatial-temporal variables, argues that machine learning methods can be utilized in 
order to solve dynamic problems of high complexity with affordable computational costs.  

• The suggested methodology uses specialized tools to analyze the process and explain the model’s choice n order to make the 
procedure and results more robust, transparent, and explainable.  

• The proposed procedure constitutes a very promising methodology, which can significantly improve the safety of structures and 
infrastructure in general under earthquake excitations. 

The suggested approach is simple to implement during the research phase and may be described as a collection of offline methods to 
improve data validation, identify possible methodological difficulties and validate and analyze scenarios. The most important task for 
the evolution of the proposed methodology is, initially, the process of finding optimization solutions to achieve higher accuracy results. 
Also, of great importance is the detection of the optimal hyperparameters of the algorithm, in order to enhance the predictive process. 
Moreover, the training dataset can be expanded to buildings with different structural characteristics and to earthquake records with 
seismic features of greater range. Finally, the expansion of the methodology with data transformation techniques should be considered, 
so that the algorithm can locate the optimal representations of the input variables in order to make it easier to extract the useful 
information. We strongly believe that the proposed methodology can update the civil protection mechanisms to include scientific 
methods and appropriate technical or modeling tools in their technological systems to make substantial innovative leaps in the new 
era. 
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Appendix. А  

Table А1 
Data for the 65 selected seismic excitations  

No Earthquake name Date Magnitude (Ms) Distance to fault (km) Component (deg) PGA (g) 

1 Imperial Valley 15/10/1979 6.9 23.8 225/315 0.128/0.078 
2 Imperial Valley 15/10/1979 6.9 28.7 012/282 0.27/0.254 
3 Kocaeli, (Turkey) 17/8/1999 7.8 144.6 090/180 0.06/0.049 
4 Landers 28/6/1992 7.4 128.3 000/270 0.057/0.046 
5 Loma Prieta 18/10/1989 7.1 28.2 090/180 0.247/0.215 
6 Whittier Narrows 1/10/1987 5.7 25.2 000/090 0.221/0.124 
7 Northridge 17/1/1994 6.7 25.4 177/267 0.357/0.206 
8 Northridge 17/1/1994 6.7 30 020/110 0.474/0.439 
9 N. Palm Springs 8/7/1986 6 43.3 270/360 0.144/0.132 
10 Northridge 17/1/1994 6.7 13 000/270 0.41/0.482 
11 Northridge 17/1/1994 6.7 6.4 090/360 0.604/0.843 
12 Northridge 17/1/1994 6.7 12.3 000/090 0.303/0.443 
13 Whittier Narrows 1/10/1987 5.7 10.8 048/318 0.426/0.443 
14 Cape Mendocino 25/4/1992 7.1 9.5 000/090 0.59/0.662 
15 Chi-Chi (Taiwan) 20/9/1999 7.6 2.94 N/W 0.251/0.202 
16 Chi-Chi (Taiwan) 20/9/1999 7.6 10.04 N/W 0.393/0.742 
17 Chi-Chi (Taiwan) 20/9/1999 7.6 4.01 N/W 0.162/0.134 
18 Chi-Chi (Taiwan) 20/9/1999 7.6 7.31 N/W 0.821/0.653 
19 Chi-Chi (Taiwan) 20/9/1999 7.6 11.14 N/W 0.44/0.353 
20 Chi-Chi (Taiwan) 20/9/1999 7.6 10.33 N/W 0.13/0.147 
21 Chi-Chi (Taiwan) 20/9/1999 7.6 5.92 N/W 0.188/0.148 
22 Erzincan (Turkey) 13/3/1992  2.0 NS/EW 0.515/0.496 
23 Loma Prieta 18/10/1989 7.1 12.7 000/090 0.367/0.322 
24 Loma Prieta 18/10/1989 7.1 14.4 000/090 0.555/0.367 
25 Loma Prieta 18/10/1989 7.1 14.5 000/090 0.529/0.443 
26 Northridge 17/1/1994 6.7 7.1 090/360 0.583/0.59 
27 Northridge 17/1/1994 6.7 8.9 270/360 0.753/0.939 
28 Northridge 17/1/1994 6.7 14.6 000/090 0.877/0.64 
29 Northridge 17/1/1994 6.7 6.2 052/142 0.612/0.897 
30 Campano Lucano (Italy) 23/11/1380 6.9 39 E-W/N-S 0.047/0.048 
31 Spitak (Armenia) 7/12/1988 6.7 20 E-W/N-S 0.183/0.183 
32 Izmit (Turkey) 17/8/1999 7.6 29 W-E/S-N 0.129/0.091 
33 Duzce (Turkey) 12/11/1999 7.2 18 E-W/N-S 0.8/0.745 
34 Duzce (Turkey) 12/11/1999 7.2 113 S-N/E-W 0.022/0.021 
35 Duzce (Turkey) 12/11/1999 7.2 98 030/120 0.018/0.016 
36 Duzce (Turkey) 12/11/1999 7.2 94 E-W/N-S 0.042/0.041 
37 Izmit (Turkey) 17/8/1999 7.6 80 E-W/N-S 0.114/0.11 
38 Duzce (Turkey) 6/6/2000 6.1 158 LONG/TRAN 0.004/0.004 
39 Strofades (Greece) 18/11/1997 6.6 54 261/351 0.053/0.054 
40 Aigion (Greece) 15/6/1995 6.5 138 065/155 0.013/0.013 
41 Friuli (Italy) 11/9/1976 5.5 7 E-W/N-S 0.105/0.23 
42 Volvi (Greece) 4/7/1978  15 E-W/N-S 0.099/0.115 
43 Dinar (Turkey) 1/10/1995 6.4 0 W-E/S-N 0.319/0.273 
44 Izmit (Turkey) 17/8/1999 7.6 5 E-W/N-S 0.244/0.296 
45 Duzce (Turkey) 12/11/1999 7.2 0 W-E/S-N 0.513/0.377 
46 Imperial Valley 15/10/1979 6.9 43.6 262/352 0.238/0.351 
47 Loma Prieta 18/10/1989 7.1 16.1 000/090 0.417/0.212 
48 Loma Prieta 18/10/1989 7.1 77.4 180/270 0.195/0.244 
49 Northridge 17/1/1994 6.7 30.9 155/245 0.465/0.322 
50 Northridge 17/1/1994 6.7 36.9 090/180 0.29/0.264 
51 Duzce, Turkey 12/11/1999 7.3 17.6 000/090 0.728/0.822. 
52 Northridge 17/1/1994 6.7 32.7 090/180 0.103/0.186 
53 Imperial Valley 15/10/1979 6.9 54.1 075/345 0.122/0.167 
54 Superstition Hills 24/11/1987 6.6 18.2 225/315 0.156/0.116 
55 Duzce (Turkey) 12/11/1999 7.3 8.2 180/270 0.348/0.535 
56 Imperial Valley 15/10/1979 6.9 7.6 002/092 0.213/0.235 
57 Imperial Valley 15/10/1979 6.9 4.2 140/230 0.485/0.36 
58 Imperial Valley 15/10/1979 6.9 1 140/230 0.519/0.379 
59 Imperial Valley 15/10/1979 6.9 1 140/230 0.41/0.439 

(continued on next page) 
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Table А1 (continued ) 

No Earthquake name Date Magnitude (Ms) Distance to fault (km) Component (deg) PGA (g) 

60 Livermore 27/1/1980 5.5 3.6 270/360 0.258/0.233 
61 Superstition Hills 24/11/1987 6.6 13.9 000/090 0.358/0.258 
62 Superstition Hills 24/11/1987 6.6 13.3 090/180 0.172/0.211 
63 Morgan Hill 24/4/1984 6.1 12.8 270/360 0.224./0.348 
64 Imperial Valley 15/10/1979 6.9 12.6 140/230 0.364/0.38 
65 Morgan Hill 24/4/1984 6.1 3.4 150/240 0.156/0.312  

Appendix B  

Table B1 
Performance metrics of the compared algorithms for the bare buildings (dataset ROW_FORM_BARE)   

Machine Learning 
Algorithm 

Regression Metric 

R2 MAE MSE RMSE MAPE TT (Sec) 

Light Gradient Boosting Machine 0.9076 0.1722 0.0867 0.2902 0.1899 0.082 
Gradient Boosting Regressor 0.8968 0.1904 0.0968 0.3068 0.2452 0.205 
Random Forest Regressor 0.8883 0.1887 0.1035 0.3184 0.1752 0.823 
Extra Trees Regressor 0.8840 0.1884 0.1064 0.3237 0.1706 0.657 
k-Nearest Neighbors Regressor 0.8343 0.2406 0.1542 0.3875 0.2377 0.065 
Linear Regression 0.8312 0.2757 0.1585 0.3939 0.5849 0.019 
Bayesian Ridge 0.8312 0.2757 0.1588 0.3941 0.5835 0.018 
Ridge Regression 0.8283 0.2768 0.1622 0.3981 0.5804 0.017 
Decision Tree Regressor 0.7897 0.2565 0.1941 0.4378 0.2318 0.024 
AdaBoost Regressor 0.7721 0.3527 0.2099 0.4578 0.9696 0.143 
Elastic Net 0.7650 0.3100 0.2224 0.4675 0.3449 0.020 
Lasso Regression 0.7647 0.3100 0.2227 0.4678 0.3484 0.018 
Orthogonal Matching Pursuit 0.7550 0.3202 0.2318 0.4776 0.3477 0.018 
Huber Regressor 0.7378 0.3438 0.2478 0.4919 0.7261 0.065 
Least Angle Regression 0.5082 0.4422 0.4716 0.5778 1.6721 0.021 

*TT (Sec) = Training Time in seconds.  

Table B2 
Performance metrics of the compared algorithms for the infilled buildings (dataset ROW_FORM_FULL-MASONRY)   

Machine Learning 
Algorithm 

Regression Metric 

R2 MAE MSE RMSE MAPE TT (Sec) 

Light Gradient Boosting Machine 0.7833 0.1535 0.2979 0.3861 0.9794 0.078 
Bayesian Ridge 0.7385 0.2045 0.3217 0.4217 1.5333 0.016 
Ridge Regression 0.7367 0.2049 0.3230 0.4228 1.4272 0.017 
Linear Regression 0.7366 0.2052 0.3240 0.4230 1.4559 0.017 
Least Angle Regression 0.7342 0.2082 0.3249 0.4247 1.5213 0.019 
k-Nearest Neighbors Regressor 0.6760 0.1549 0.3447 0.4532 0.2621 0.063 
Elastic Net 0.6423 0.2640 0.3752 0.4868 2.3327 0.017 
Orthogonal Matching Pursuit 0.6378 0.2504 0.3786 0.4880 1.4332 0.016 
Decision Tree Regressor 0.6352 0.2614 0.3809 0.4893 1.4516 0.017 
Lasso Regression 0.6300 0.2711 0.3814 0.4941 2.2259 0.018 
Huber Regressor 0.5998 0.2856 0.4016 0.5117 2.4230 0.060 
Gradient Boosting Regressor 0.4942 0.1759 0.4125 0.5323 0.5681 0.182 
Random Forest Regressor 0.3898 0.1538 0.4435 0.5410 0.2347 0.764 
Extra Trees Regressor 0.2019 0.1567 0.5402 0.5937 0.2384 0.633 
AdaBoost Regressor 0.0737 0.3369 0.6196 0.6696 4.8885 0.117 

*TT (Sec) = Training Time in seconds.  

Table B3 
Performance metrics of the compared algorithms for the buildings with pilotis (dataset ROW_FORM_PILOTIS)  

Machine Learning 
Algorithm 

Regression Metric 

R2 MAE MSE RMSE MAPE TT (Sec) 

Light Gradient Boosting Machine 0.8943 0.2450 0.1999 0.4410 0.2660 0.080 
Extra Trees Regressor 0.8812 0.2634 0.2251 0.4698 0.2304 0.660 
Random Forest Regressor 0.8792 0.2688 0.2274 0.4726 0.2295 0.808 
Gradient Boosting Regressor 0.8717 0.2884 0.2405 0.4854 0.3973 0.197 
Decision Tree Regressor 0.8012 0.3373 0.3768 0.6093 0.2777 0.027 
Linear Regression 0.7607 0.4667 0.4580 0.6704 1.6584 0.021 

(continued on next page) 
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Table B3 (continued ) 

Machine Learning 
Algorithm 

Regression Metric 

R2 MAE MSE RMSE MAPE TT (Sec) 

Ridge Regression 0.7603 0.4653 0.4604 0.6717 1.6361 0.015 
Bayesian Ridge 0.7602 0.4655 0.4603 0.6717 1.6418 0.019 
Least Angle Regression 0.7423 0.4920 0.4876 0.6925 1.6390 0.021 
AdaBoost Regressor 0.7411 0.5538 0.4823 0.6919 2.5560 0.145 
k-Nearest Neighbors Regressor 0.7350 0.3926 0.5102 0.7037 0.4030 0.063 
Huber Regressor 0.6656 0.5199 0.6555 0.7974 1.3578 0.063 
Elastic Net 0.6638 0.5223 0.6512 0.7975 1.0582 0.016 
Lasso Regression 0.6520 0.5394 0.6736 0.8112 1.1689 0.017 
Orthogonal Matching Pursuit 0.6402 0.5574 0.6961 0.8255 1.2555 0.017 

*TT (Sec) = Training Time in seconds. 
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