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Abstract: Attackers are perpetually modifying their tactics to avoid detection and frequently lever-
age legitimate credentials with trusted tools already deployed in a network environment, making 
it difficult for organizations to proactively identify critical security risks. Network traffic analysis 
products have emerged in response to attackers’ relentless innovation, offering organizations a re-
alistic path forward for combatting creative attackers. Additionally, thanks to the widespread adop-
tion of cloud computing, Device Operators (DevOps) processes, and the Internet of Things (IoT), 
maintaining effective network visibility has become a highly complex and overwhelming process. 
What makes network traffic analysis technology particularly meaningful is its ability to combine its 
core capabilities to deliver malicious intent detection. In this paper, we propose a novel darknet 
traffic analysis and network management framework to real-time automating the malicious intent 
detection process, using a weight agnostic neural networks architecture. It is an effective and accu-
rate computational intelligent forensics tool for network traffic analysis, the demystification of mal-
ware traffic, and encrypted traffic identification in real time. Based on a weight agnostic neural net-
works (WANNs) methodology, we propose an automated searching neural net architecture strat-
egy that can perform various tasks such as identifying zero-day attacks. By automating the mali-
cious intent detection process from the darknet, the advanced proposed solution is reducing the 
skills and effort barrier that prevents many organizations from effectively protecting their most crit-
ical assets. 

Keywords: darknet; traffic analysis; network management; malicious intent detection; weight ag-
nostic neural networks; real-time forensics; shapley value; power predicting score 
 

1. Introduction 
Interconnected heterogeneous information systems [1] exchange huge amounts of 

data per unit of time. This information consists of data at rest and data in motion. In the 
continuous flow model, the data arrive in successive streams in a continuous manner, 
resulting in it not being accessible by the storage mediums, either temporarily or perma-
nently. Flow data are usually large in size, difficult to be processed in real-time, and when 
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processed, they are either destroyed or archived and are very difficult to be recovered 
again, because the system’s memory is typically very small. 

The analysis, monitoring, and categorization of the Internet network traffic [2] is one 
of the most important tasks, and is characterized as a specialized solution and a valuable 
tool that can be used not only to effectively deal with the design, management, and mon-
itoring of the critical infrastructure of the system but also for the monitoring of attacks 
and the study of cybercrime [3]. 

The information exchanged can be requests, responses, or control data, fragmented 
in the form of network packets. When looking at individual network packets, it is ex-
tremely difficult to draw conclusions and exclude safe conclusions, because the infor-
mation transmitted between devices on the network is fragmented into a number of pack-
ets, which are interconnected, containing all the information. This arbitrary and occasional 
nature of the collection of network traffic, while providing some information for drawing 
statistical conclusions, makes the use of typical mathematical analysis methods a rather 
difficult task that favors the network traffic modeling approach [4]. 

Many organizations, in their efforts to improve and enhance their security, collect as 
much web traffic data as possible, analyze it, by correlating it with the services they rep-
resent, and compare it with historical log files in order to optimize their decision-making 
process. By analyzing network traffic, safe conclusions can be drawn about the network, 
the users, and the total data usage, making it possible to model traffic in order to optimize 
network resources according to the monitoring needs and the control for legal and secu-
rity issues [5,6]. More specifically, in cybersecurity, traffic analysis can be applied to secure 
services, guarantee critical data delivery, identify random sources of problems, adapt and 
optimize intrusion prevention and detection solutions, identify cybercriminals, and vali-
date forensic data [7]. The major weaknesses associated with traffic packet analysis tech-
nologies are the following [8]: 
1. While the techniques are very effective, especially the Deep Packet Inspection (DPI) 

method in preventing Denial-Of-Service (DoS)/Distributed DoS (DDoS) attacks, 
buffer overflow attacks, and specific types of malware, they can also be used to create 
similar attacks from the adversary side, depending on their mode of operation; 

2. They add complexity to the operation of active network security methods and make 
them extremely difficult to manage. In addition, they increase the requirements for 
computing resources and introduce significant delays in online transactions, espe-
cially in encrypted traffic, because the latter requires the reconstruction of messages 
and entities at higher levels; 

3. Although there are many possible uses, an adverse situation is related to the ease 
with which someone can identify the recipient, or the sender of the content they are 
analyzing, raising privacy concerns. 
They do not offer protection against zero-day attacks. The ever-increasing need for 

an organization to manage security incidents requires specialized analysis services, in or-
der to fully understand the network environment and potential threats. This information, 
combined with cyber threat intelligence from the global threat landscape, allows for an 
informed and targeted response to cyber-related incidents [9]. 

In essence, the information ecosystem and the importance of its applications require 
the creation of a cybersecurity environment with fully automated solutions. These solu-
tions include real-time incident handling, analysis, and other security information to iden-
tify known and unknown threats and reduce the risk for the critical data through a scala-
ble troubleshooting and logging approach [10,11]. 

In this paper, we propose a novel darknet traffic analysis and network management 
framework for real-time automating of the malicious intent detection process, using a 
weight agnostic neural network architecture. It is an effective and accurate computational 
intelligent forensics tool for network traffic analysis, the demystification of malware traf-
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fic, and encrypted traffic identification in real time. Based on weight agnostic neural net-
works (WANNs) methodology, we propose an automated searching neural-net architec-
ture strategy that can perform various tasks, such as identifying zero-day attacks. By au-
tomating the malicious intent detection process from the darknet, the advanced proposed 
solution is reducing the skills and effort barrier that prevents many organizations from 
effectively protecting their most critical assets. The dataset used in this study was based 
on CICDarknet2020, which includes darknet traffic as well as corresponding normal traf-
fic from Audio-Stream, Browsing, Chat, Email, P2P, Transfer, Video-Stream, VOIP, Files, 
Session and Authentication. These data are implemented either over Tor and Virtual Pri-
vate Network (VPN) infrastructure or not. Details regarding the well-known cyber secu-
rity dataset, their choice, and assessment can be found elsewhere [12]. Numerous publicly 
available real-world and simulated benchmark datasets have emerged from different 
sources, but their organization and adoption as standards have been inconsistent. As such, 
selecting and curating specific benchmarks remains an unnecessary burden. For this rea-
son, a well-known benchmark dataset was chosen for testing our hypothesis in order to 
make reliable comparison experiments. 

2. Literature Reviews 
The visible layer of the web that users can access through search engines is only a 

small part of the internet. The part of the internet that is not accessible by search engines 
is also known as the Deep Web. Darknet is a subset of the Deep Web, in the sense that it 
is also undetectable by search engines but can be accessed with special software such as 
the Tor browser (see Figure 1) [13]. Tor enables users to route their traffic through “users’ 
computers” so that traffic cannot be traced back to the originating users and conceal their 
identity. To pass the data from one layer to another layer, Tor has created “relays” on 
computers that carry information through its tunnels all over the world. The encrypted 
information is placed between the relays. Tor traffic as a whole passes through three relays 
and then it is forwarded to the final destination [14]. This mechanism ensures perfect for-
ward secrecy between the nodes and the hidden services of Tor, while at the same time it 
routinely communicates through Tor nodes (consensus) operated by volunteers around 
the world. 

 
Figure 1. The relationship between the Internet, Deep Web and Dark Web. 

Although the Tor network operates at Open Systems Interconnection (OSI) Level 4 
(Transport Layer), the onion proxy software displays to clients the Socket Secure (SOCKS) 
interface that operates at Level 5 (Session layer). Additionally, in this network, there is a 
continuous redirection of requests between the retransmission nodes (entry guards, mid-
dle relays, and exit relays), with the sender and recipient addresses as well as the infor-
mation being encrypted, so that no one at any point along the communication channel can 
directly decrypt the information or identify both ends [15]. 

The Tor network not only provides encryption; it is also designed to emulate the nor-
mal traffic of the Hypertext Transfer Protocol Secure (HTTPS) protocol, making the detec-
tion of Tor channels an extremely complex and specialized process, even for experienced 
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network engineers or analysts. Specifically, the Tor network can use the Transmission 
Control Protocol (TCP) port 443, which is also used by HTTPS, so monitoring and identi-
fying a session solely by the port is not a reliable method of determining this type of traffic 
[16]. 

A successful method for detecting Tor traffic involves statistically analyzing and 
identifying differences in the Secure Sockets Layer (SSL) protocol. SSL uses a combination 
of public-key and symmetric key encryption. Each SSL connection always starts with the 
exchange of messages from the server and the client until a secure connection (handshake) 
is achieved. The handshake allows the server to prove its identity to the client using pub-
lic-key encryption methods, and then allows the client and server to work together to cre-
ate a symmetric key to be used to quickly encrypt and decrypt the data exchanged be-
tween them. Optionally, the handshake also allows the client to prove his identity on the 
server. Each Tor client generates a self-signed SSL, using a random algorithmically gener-
ated domain that changes every three minutes or so; therefore, a network traffic statistical 
analysis based on the specifics and characteristics of SSL can identify Tor sessions on a 
network combined with HTTPS traffic [8,15–17]. 

There is an increasing interest in research related to the dark web. A big part of the 
conducted literature review in cybersecurity was focused on anomaly-based network in-
trusion detection systems [9,17–21]. In addition, there is research dedicated to network 
traffic classification [22–24], whereas the Internet of Things (IoT) has recently attracted a 
significant amount of attention in machine learning and in network traffic analysis 
[13,15,16,25]. Yang et al. [26] introduce the current mainstream dark network communi-
cation system TOR and develop a visual dark web forum post association analysis system 
to graphically display the relationship between various forum messages and posters, 
which helps analysts to explore deep levels. In addition, another paper [14] designs a 
framework based on Hadoop in hidden threat intelligence. The framework uses a Hadoop 
database-based (HBase-based) distributed database to store and manage threat intelli-
gence information, and a web crawler is used to collect data through the anonymous TOR 
tool in order to identify the characteristics of key dark network criminal networks, which 
is the basis for the later dark network research. Α survey of different techniques and in-
trusion classification on the Knowledge Discovery in Databases KDD-Cup 99 dataset was 
presented by Samrin et al. [9] and an effective technique was suggested which categorized 
and identified intrusions in these datasets. Summerville et al. in [18], unlabeled trading 
data were mapped onto a set of two-dimensional grids and formed a set of bitmaps that 
identified anomalous and normal sessions. In the survey work of Kwon et al. [19], a review 
was conducted on various intrusion detection models and methodologies for classifica-
tion and data volume reduction. Most of these works used the KDD-Cup 1999 dataset [20], 
or its successor NSL-KDD [6], which resolves some of the inherent issues of the first and 
has been widely adopted by the research community [17,21]. However, Zhang et al. [27] 
reported inefficiencies in most anomaly-based network intrusion detection systems em-
ploying supervised algorithms and suggested an unsupervised outlier detection scheme 
as a measure to overcome these inefficiencies. Other researchers suggested hybrid ap-
proaches for intrusion detection systems, with promising results; such as, for instance, 
Singh et al. [28], who combined a random forest classification technique and k-means clus-
tering algorithms, and the Song et al. [29] who proposed a combination of a deep autoen-
coder and ensemble k-nearest neighbor graphs, based anomaly detectors. 

Concerning network traffic classification technologies, Bayesian networks and deci-
sion tree algorithms were evaluated among others Soysal et al. in [22], and were found to 
suitable for traffic flow classification at high speed. Pacheco et al. in [23], a systematic 
review of traffic classification approaches for machine learning was made, and a set of 
trends is derived from the analysis performed, whereas Dhote et al. in [24], three major 
methods to classify different categories of Internet traffic are evaluated with their limita-
tions and benefits. Also, a hierarchical spatial–temporal feature-based intrusion detection 
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system (HAST-IDS) is proposed, which initially learns the low-level spatial network fea-
tures of network traffic using deep convolutional neural networks (CNNs) and then learns 
high-level temporal features using long short-term memory networks. According to the 
authors, the proposed scheme demonstrates a low false alarm rate (FAR), and high accu-
racy and detection rate. HaddadPajouh et al. in [13], a fast and large-scale monitoring 
system is presented for monitoring the traffic on the darknet consisting of two parts, pre-
processing and classifier. In the pre-processing part, darknet packets are transformed into 
a feature vector consisting of 17 traffic features on darknet traffic. In classifier data, fast 
online learning is actualized by training with traffic features of known distributed denial-
of-service (DDoS) attacks. The authors presented measurement results showing that the 
proposed solution detects backscatter packets caused by DDoS attacks with high accuracy. 
It also adapts very quickly to new attacks. 

On the contrary, novel research has demonstrated that the assumption that the data 
samples collected for training machine learning models are typically assumed to be inde-
pendent and identically distributed can be problematic because it simplifies the manifold 
of structured data. This has motivated different research areas such as data poisoning, 
model improvement, and the explanation of machine learning models [30]. The ability to 
explain, in understandable terms, why a machine learning model makes a certain predic-
tion is becoming immensely important, because it ensures trust and transparency in the 
decision process of the model. Shapley values provide accurate explanations, because they 
assign each feature an importance value for a particular prediction [31]. For example, Mes-
salas et al. [32] introduced a new metric, the top similarity method, which measures the 
similitude of two given explanations, produced by Shapley values, in order to evaluate 
the model-agnostic interpretability. Additionally, proposes a destructive method for op-
timizing the topology of neural networks based on the Shapley value, a game theoretic 
solution concept which estimates the contribution of each network element to the overall 
performance. More network elements can be simultaneously pruned, which can lead to 
shorter execution times and better results. An evolutionary hill climbing procedure is used 
to fine-tune the network after each simplification. 

3. Methodology and Dataset 
In recent years, it has been shown that advanced machine learning algorithms, such 

as neural networks, have the potential to be successfully applied in many areas of industry 
and the production process. Their success is based on the thorough processing of data that 
record the behavior of a system. By detecting patterns in the collected data, valuable in-
formation can be gleaned, and future predictions can be made that automate a set of pro-
cesses and provide serious impetus to modern industry for value creation. 

For example, multilayer neural networks, which are considered to be the easiest 
learning architecture, contain several linear layers that are laid out next to each other. Each 
of them takes an input from the previous level, multiplies it by some weights, adds a vec-
tor of bias to them, and passes the total vector through an activation function to produce 
the output of the level. This promotion process continues until the classification process 
is completed receiving the result from the final level. The final output is compared to the 
actual sorting values, where the sorting error is calculated using an appropriate loss func-
tion. To reduce the loss, the weights for all levels are updated one by one, using a stochas-
tic gradient descent. 

Nevertheless, their application to realistic problems remains a very complex and spe-
cialized case [33]. This is because data scientists, based on their hypotheses and experi-
ence, coordinate their numerous parameters, correlating them with the specific problems 
they intend to solve, utilizing the available training datasets. This is a long, tedious, and 
costly task. 
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3.1. MetaLearning 
MetaLearning is a novel holistic approach, which automates and solves the problem 

of the specialized use of machine learning algorithms. It aims for the use of automatic 
machine learning to learn the most appropriate algorithms and hyperparameters that op-
timally solve a machine learning problem [34]. In particular, machine learning can be seen 
as a search problem, approaching an unknown underlying mapping function between 
input and output data. Design options, such as algorithms, model parameters (weights), 
hyper-parametric characteristics, and their variability, limit or expand the scope of possi-
ble mapping functions, i.e., search space. 

MetaLearning techniques can discover the structures between data by allowing new 
tasks to be quickly learned using different types of metadata, such as the properties of the 
learning problem, the properties of the algorithm used (e.g., performance measures), or 
patterns derived from data from a previous problem. In other words, they use cognitive 
information from unknown examples sampled from the distribution followed by the ex-
amples in the real world, in order to enhance the result of the learning process. In this 
way, it is possible to learn, select, change, or combine different learning algorithms to ef-
fectively solve a given problem. 

A meta-learning system should combine the following three requirements [35–38]: 
1. The system must include a learning subsystem; 
2. Experience has to be gained by utilizing the knowledge extracted from metadata re-

lated to the dataset under process or from previous learning tasks that have been com-
pleted in similar or different fields; 

3. Learning bias must be chosen dynamically. 
Taking a holistic approach, a reliable meta-learning model should be trained in a va-

riety of learning tasks and optimized for better performance in generalizing tasks, includ-
ing potentially unknown cases. Each task is associated with a set of data D, containing 
attribute vectors and class tags on a supervised learning problem. The optimal parameters 
of the model are: 𝜃∗ = 𝑎𝑟𝑔ఏ௠௜௡𝐸஽~௉(஽)ሾ𝐿ఏ(𝐷)ሿ (1)

This looks similar to a normal learning process, but a dataset is considered a sample 
of data. 

Dataset D is often divided into two parts: a training set S and a set of B predictions 
for testing and testing: 𝐷 =  〈𝑆,𝐵〉 (2)

D datasets contain pairs of vectors and tags so that: 𝐷 =  {(𝑥௜ ,𝑦௜)} (3)

Each tag belongs to a known set of L tags. 
We assume a classifier 𝑓ఏ. The parameter θ derives the probability of a data point 

belonging to the class y given by the attribute vector 𝑥,𝑃ఏ (𝑦|𝑥). Optimal parameters 
should maximize the likelihood of detecting true tags in multiple 𝛣 ⊂ 𝐷 training batches: 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥ఏ𝐸(௫,௬)∈஽ሾ𝑃ఏ(𝑦|𝑥)ሿ (4)

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥ఏ𝐸஻⊂஽ ቎ ෍ 𝑃ఏ(𝑦|𝑥)(௫,௬)∈௯ ቏ (5)

The goal is to reduce the prediction error in data samples with unknown tags, given 
that there is a small set of support for fast learning that works as fine-tuning. 

It could be said that fast learning is a trick in which a fake dataset is created that 
contains a small subset of tags (to avoid exposing all the tags in the model), and various 
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modifications are made to the optimization process in order to achieve fast learning. A 
brief step-by-step description of the whole process is presented below: 
1. Creation of a subset of 𝐿௦ ⊂ 𝐿 tags; 
2. Creation of an 𝑆௅ ⊂ 𝐷 training subset and a 𝛣௅ ⊂ 𝐷 prediction set. Both of these sub-

sets include labeled data belonging to the subset 𝐿௦, y∈𝐿௦,∀(x,y)∈ 𝑆௅, 𝛣௅; 
3. The optimization process uses the 𝛣௅ subset to calculate the error and update the 

model parameters via error backpropagation, in the same way that it is used in a sim-
ple supervised learning model. 
In this way, it can be considered that each sample pair (𝑆௅ ,𝛣௅) is also a data point. 

Thus, the model is trained so that it can generalize to new, unknown datasets. 
A modification of the supervised learning model is the following function, to which 

the symbols of the meta-learning process have been added: 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥ఏ𝐸௅ೞ⊂௅ ൦𝐸ௌಽ⊂஽,஻ಽ⊂஽ ቎ ෍ 𝑃ఏ(𝑥, 𝑦, 𝑆௅)(௫,௬)∈௯ಽ ቏൪ (6)

It should be noted that retrospective neural networks with only internal memory, 
such as long short-term memory (LSTM), are not considered meta-learning techniques. 
On the contrary, the most appropriate meta-learning architecture for neural networks is 
neural architecture search (NAS) [39]. 

3.2. Neural Architecture Search 
This is an automated learning technique for automating the design of artificial neural 

networks, the most widely used domain in the field of machine learning. NAS has been 
used to design networks that are equivalent or superior to hand-drawn architecture. 

NAS methods can be categorized according to the search space, search strategy, and 
performance estimation strategy used [39–41]: 
1. The search area determines the types of neural networks that can be designed and 

optimized in order to find the optimal type of neural network that can solve the given 
problem, e.g., a forward neural network (FFNN), recurrent neural network (RNN), 
etc.; 

2. The search strategy determines the approach used to explore the search space, i.e., the 
structure of the architectural design in an internal search field of hyperparameters 
(levels, weights, learning rate, etc.); 

3. Performance appraisal strategy evaluates the performance of a potential neural net-
work by designing it without constructing and training it. 
In many NAS methods, both micro and macro structures are searched hierarchically, 

allowing the exploration of different levels of standard architecture. The three NAS strat-
egies and hierarchical search methods are shown in Figure 2. 

 
Figure 2. The three neural architecture search strategies. 

In a hierarchical search, the first level consists of the set of primitive functions, the 
second level of different patterns that connect primitive functions through a directed acy-
clic graph, and the third level of patterns that encode how the second level patterns are 
connected, etc. 
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NAS is closely related to hyper-parameter optimization and is a subfield of auto-
mated machine learning designed to follow best practices for reducing program load, 
providing stable and simple environments, minimizing the number of actions required 
for use, providing a clear methodology for discovering knowledge in unfamiliar environ-
ments [42]. 

Specifically, given a neural architecture search space F, where the input data D is 
divided into Dtrain and Dval and the cost function Cost (·) (e.g., accuracy, mean squared 
error, etc.), the goal is to find an optimal neural network f* ∈ F, which can achieve the 
lowest cost in the dataset D. 

Finding the optimal neural network f* is equivalent to: 𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛௙∈ி 𝐶𝑜𝑠𝑡(𝑓(𝜃∗),𝐷௩௔௟) (7)𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ఏ 𝐿(𝑓(𝜃),𝐷௧௥௔௜௡) (8)

where 𝜃∗ is the learning parameter of the network. 
A simplified NAS procedure is described in the following Algorithm 1: 

Algorithm 1 
# for the number of controller epochs  
for controller_epoch in range(controller_sampling_epochs): 
 # sample a set number of architecture sequences 
 sequences=sample_architecture_sequences(controller_model,samples_per_control-
ler_epoch) 
 # predict their accuracies using a hybrid controller 
 pred_accuracies = get_predicted_accuracies(controller_model, sequences) 
  # for each of these sequences 

  for i, sequence in enumerate(sequences): 

   # create and compile the model corresponding to the sequence 

   model = create_architecture(sequence) 

   # train said model 

   history = train_architecture(model) 

   # log the training metrics 

   append_model_metrics(sequence, history, pred_accuracies[i]) 

  # use this data to train the controller 

  xc, yc, val_acc_target = prepare_controller_data(sequences) 

  train_controller(controller_model, xc, yc, val_acc_target) 

The design of the NAS strategy has, as its primary objective, the definition of a neural 
network architecture that adapts to the nature of the dataset under consideration and to 
the precise coordination of ideal hyperparameters that can lead to a model with high ac-
curacy and generalizability to data outside of training and testing sets. Typical hyperpa-
rameters that can be optimized and need to be tuned include optimization algorithms 
(SGD, Adam, etc.), learning rate programming, regularization, etc. [39–41]. Essentially, 
they enable the creation of the best learning techniques with high-performance success, 
with very little effort and minimal know-how. 

The way the NAS strategy works can be combined with techniques based on the 
ways in which nature works, and in particular on finding proportions between techniques 
where instinct, such as a sexual characteristic, prevails over education. For example, some 
species in biology have predatory behaviors from the moment of their birth, which allows 
them to perform complex motion and sensory tasks without learning, which in many 
cases are completely satisfactory for the survival of the species. In contrast, in the training 
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of artificial neurons to perform a task, an architecture that is considered suitable for mod-
eling the task is usually chosen, and the search focuses mainly on finding the weight pa-
rameters using a learning algorithm. Inspired by social behaviors that evolved in nature, 
neural networks can be developed with architecture that is naturally capable of perform-
ing a given task even when weight parameters are randomized, so they can perform well 
without training, while their performance can be further maximized through training. 

3.3. Proposed Method 
A weight agnostic neural network (WANN) methodology [43] was used in this pa-

per. It is an evolving strategy in neural network development techniques that can perform 
a specialized task regardless of the weights of the connections in the building blocks of 
the neural network, which equates to a lack of training [44]. The logic of using WANNs is 
a basic investigation in the search for architectural neural networks with specific biases 
that can potentially categorize the given problem, even when using random weights. By 
exploring such architecture, it is possible to explore factors that can perform well in their 
interaction environment without the need for training, which is a digital security system 
that can create robust self-identifying systems capable of identifying zero-day attacks. 

The investigation of the WANN architectural structures used in this research fully 
exploits the theoretical approach of inductive bias for the production of biased results, 
due to the assumptions/choices made either for the representation of the case space or for 
the definition of the search engine in the field of assumptions. The unrestricted space of 
cases is potentially infinite. By choosing the type of knowledge, i.e., the representation, 
this space is limited, and the first level of bias is introduced. Even so, the search space is 
probably still too large to perform a full search. Thus, the second level of bias is intro-
duced, that of the search algorithm; the algorithm used does not perform a complete 
search in the area of possible solutions but approaches it heuristically or probabilistically. 
However, without these options, a learning algorithm would not be better than a random 
selection algorithm. 

Additionally, the training data used are finite, so they do not accurately reflect the 
reality, because the selection process and the assumption that these data will have the 
same distribution as in all cases introduces another level of bias. Therefore, by reducing 
the inductive learning hypothesis, it is implied that the model produced by a limited set 
of training data will describe new, unknown cases just as well. 

In conclusion, each learning algorithm has a specific bias in its elements such as rep-
resentation, algorithm, or data, and this is a fundamental, necessary feature, which is 
taken seriously into the investigation of appropriate architectural neural networks. 

Another very important process that will allow the identification of appropriate ar-
chitecture to solve the given problem concerns the interpretability of the methods used. 
Global interpretability offers a holistic picture of the model. It is about understanding how 
the model makes decisions, what its most important features are, and what interactions 
take place between the features. A full understanding is very difficult to achieve in prac-
tice; therefore, the explanations at the universal level concern a general global representa-
tion of the model, which is not detailed and accurate. Similarly, when the explanations 
focus on a small area of data, then there is local interpretability, where a single example 
of the dataset is analyzed, and it is explained why the model made a specific decision 
about it. In small areas of data, the prediction may depend only linearly or monotonously 
on certain features, instead of having a more complex dependence on them. 

Shapley values [30,31] are a very effective way of generating explanations from co-
operative/coalitional game theory. The payoff/gain of the players of a cooperative game 
is given by a real function that gives values to sets of players. The connection of Shapley 
values to the problem of explaining WANN architectural structures is done in the follow-
ing way. We consider the problem of WANN architectural structures as a cooperative 
game, whose players are the characteristics of the dataset, the profit function is the neural 
network model under consideration, and the model predicts the corresponding profits. In 
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this context, the Shapley values show the contribution of each feature and therefore the 
explanation of why the model made a specific decision. 

In conclusion, the Shapley value of characteristic i of a neural network model f is 
given by the following equation [45]: 𝜑௜ = ෍ |𝑆|! (𝑀 − |𝑆| − 1)!𝑀! ൣ𝑓ௌ∪{௜}൫𝑥ௌ∪{௜}൯ − 𝑓ௌ(𝑥ௌ)൧ௌ∈ி\{௜}  (9)

where F is the set of attributes, S is a subset of F, and Μ = |𝐹| is the sum of the set F. This 
relationship measures the weight of each attribute by calculating its contribution when it 
is present in the prediction and then subtracts it when it is absent. 

More specifically: 
1. 𝑓ௌ∪{௜}൫𝑥ௌ∪{௜}൯ is the output when the i∞ attribute is present, 
2. 𝑓ௌ(𝑥ௌ) is the output when the i∞ attribute is not present; 
3. ∑ |ௌ|!(ெି|ௌ|ିଵ)!ெ!ௌ∈ி\{௜}  is the weighted mean of all possible subsets S in F. 

The SHapley Additive exPlanations (SHAP) [46] method explains model decisions 
using Shapley values [47]. An innovation of SHAP is that it works as a linear model, and 
more specifically as a method of additional contributions of features. 

Intuitively with the SHAP approach, the explanation is a local linear approach to 
model behavior. In particular, while the model can be very complex as an integrated en-
tity, it is easy to approach a specific presence or absence of a variable. For this reason, the 
degree of linear correlation of the independent and dependent variables of the set with 
dispersion 𝜎௑ଶ  and 𝜎௒ଶ , respectively, and the covariance 𝜎௑௒ = 𝐶𝑜𝑣(𝑋,𝑌) = 𝐸(𝑋,𝑌) −𝐸(𝑋)𝐸(𝑌), which is measured by calculating the Pearson’s R correlation table, is defined 
as follows: 𝑅 = 𝜎௑௒𝜎௑𝜎௒ (10)

However, given the inability of the above method to detect nonlinear correlations 
such as sinus wave, quadratic curve, etc., or to explore the relationships between the key 
variables, the predictive power score (PPS) technique [48] was selected and used in this 
study for the predictive relationships between available data. PPS, unlike the correlation 
matrix, can work with non-linear relationships, with categorical data, but also with asym-
metric relationships, explaining that variable A informs variable B more than variable B 
informs variable A. Technically, scoring is a measurement in the interval [0, 1] of the suc-
cess of a model in predicting a variable target with the help of an off-sample variable pre-
diction, which practically means that this method can increase the efficiency of finding 
hidden patterns in the data and the selection of appropriate forecast variables. 

The use of the PPS method also focuses on the fact that a local explanation must be 
obtained of the models that are initially capable of operating without training and after 
being reinforced at a later time with training. However, the sensitivity of the SHAP 
method to explain the models in their hyper-parameter values, as well as the general ina-
bility to deal with the high data dimension, requires the implementation of feature selec-
tion before the application of the technique. In particular, the complexity of the problem 
in combination with the large number of explanations that must be given for the predic-
tions of the model, is significantly more difficult, because the distinction between relevant 
and irrelevant features, as well as the distances between data points, cannot fully be cap-
tured. 

Taking this observation seriously, feature selection was performed to optimally select 
a subset of existing features without transformation, to retain the most important of them, 
in order to reduce their number and at the same time retaining as much useful information 
as possible. This step is crucial because if features with a low resolution are selected, the 
resulting learning system will not perform satisfactorily, while if features that provide 
useful information are selected, the system will be simple and efficient. In general, the 
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goal is to select those characteristics that lead to long distances between classes and small 
variations between the same class. 

The process of feature selection was performed with the PPS technique, where for 
the calculation of PPS in numerical variables, the metric of mean absolute error (MAE) 
was used, which is the measurement of the error between the estimation or prediction in 
relation to the observed values and is calculated below [49]: 

MAE = 1𝑛෍|𝑓௜ − 𝑦௜| = 1𝑛෍|𝑒௜|௡
௜ୀଵ

௡
௜ୀଵ  (11)

where 𝑓௜  is the estimated value and 𝑦௜  is the true value. The average of the absolute 
value of the quotient of these values is defined as the absolute error of their relationship |𝑒௜| = |𝑓௜ − 𝑦௜|. 

Rescue and precision F-score (harmonic mean) was used for the categorical variables, 
respectively, implying that the higher the F-score, the higher the two metrics, respectively. 
The calculation is accomplished from the following relationship [49]: Fୗୡ୭୰ୣ = 2 × recall × precisionrecall + precision = 2TruePositives2TruePositives + FalsePositives + FalseNegatives (12)

In conclusion, to create a cybersecurity environment with fully automated solutions 
capable of recognizing content from the darknet, an NAS development strategy was im-
plemented based on the WANN technique, which was reinforced with explanations with 
Shapley values, having first preceded feature selection process with the PPS method. 

3.4. Dataset 
Darknet, as an overlay network, is only accessed with specific software, configura-

tions, or licenses, often using non-standard communication protocols and ports. Its ad-
dress space is not accessible for interaction with familiar web browsers, and any commu-
nication with the darknet is considered skeptical due to the passive nature of the network 
in managing incoming packets. 

The classification of darknet traffic is very important for the categorization of real-
time applications, while the analysis of this traffic helps in the timely monitoring of mal-
ware before an attack, but also in the detection of malicious activities after the outbreak. 

The selection, development, or comparison of machine learning methods in novel 
methods can be a difficult task based on the target problem and goals of a particular study. 
Numerous publicly available real-world and simulated benchmark datasets have 
emerged from different sources, although their organization and adoption as standards 
have been inconsistent. As such, selecting and curating specific benchmarks remains an 
unnecessary burden. For this reason, we needed a well-known benchmark dataset for test-
ing our hypothesis in order to make a reliable comparison experiment. The dataset used 
in this study was based on CICDarknet2020, which includes darknet traffic as well as cor-
responding normal traffic from Audio-Stream, Browsing, Chat, Email, P2P, Transfer, 
Video-Stream, VOIP, Files, Session and Authentication, which are implemented or not 
over Tor and VPN infrastructure. Table 1 provides details of the final categories used and 
the applications that implement them. Details regarding the dataset, their choice, and as-
sessment can be found in [12,50]. 

Table 1. Darknet network traffic details. 

ID Traffic Category Applications Used 
0 Audio-Stream Vimeo and YouTube 
1 Audio-Stream Crypto streaming platform 
2 Browsing Firefox and Chrome 
3 Chat ICQ, AIM, Skype, Facebook, and Hangouts 
4 Email SMTPS, POP3S and IMAPS 
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5 P2P uTorrent and Transmission (BitTorrent) 
6 File Transfer Skype, SFTP, FTPS using FileZilla and an external service 
7 File Transfer Crypto transferring platform 
8 Video-Stream Vimeo and YouTube 
9 Video-Stream Crypto streaming platform 

10 VOIP Facebook, Skype, and Hangouts voice calls 

4. Experiments and Results 
In multi-class classification, all of the indices presented below should be calculated 

in a one-versus-all approach. The magnitude of misclassifications is indicated by the false 
positive (FP) and false negative (FN) indices appearing in the confusion matrix. An FP is 
the number of cases where we wrongfully receive a positive result, and the FN is exactly 
the opposite. On the other hand, the true positive (TP) is the number of records where we 
correctly receive a positive result. The true negative (TN) is defined as the contrast. 

The true positive rate (TPR) is also known as sensitivity; the true negative rate is also 
known as specificity (TNR); and the total accuracy (TA) is defined by using the below 
equations: TPR = TPTP + FN (13)

TNR = TNTN + FP (14)

TA = TP + TNN  (15)

The precision (PRE), the recall (REC), and the F-score indices are defined in the below 
equations: PRE = TPTP + FP (16)

REC = TPTP + FN (17)

F − Score = 2 × PRE ×  RECPRE + REC  (18)

In order to have a level of comparison of the proposed methodology, the dataset 
specified in Section 3.4 was used to identify and categorize network traffic in Tor, non-
Tor, VPN, and non-VPN services in Table 1. The results of the categorization process are 
presented in detail for each algorithm, in Table 2. We also considered CPU time or speed 
(the total CPU time used by the process since it started, precise to hundredths of a second) 
and memory consumption as RAM hours (RAM-H) as estimates of computational re-
source usage. We have used a shell script based in the “top” command to monitor pro-
cesses and system resource usage on the Linux OS. 

Table 2. Classification performance metrics. 

Classifier Accuracy AUC Recall Precision F1 Kappa MCC TT (s) RAM-H 
Extreme Gradient Boost-

ing (XGB) 
0.9012 0.9953 0.7500 0.9014 0.8990 0.8751 0.8756 441.61 0.054 

CatBoost 0.8927 0.9942 0.7227 0.8936 0.8894 0.8642 0.8648 606.07 0.0662 
Decision Tree 0.8858 0.9477 0.7406 0.8845 0.8849 0.8561 0.8562 1.90 0.00016 

Random Forest 0.8846 0.9848 0.7245 0.8829 0.8835 0.8545 0.8545 19.83 0.00145 
Gradient Boosting 0.8801 0.9916 0.7106 0.8797 0.8764 0.8482 0.8488 645.38 0.0681 

Extra Trees 0.8775 0.9677 0.7201 0.8756 0.8762 0.8455 0.8455 11.61 0.00115 
k-Neighbors 0.8504 0.9663 0.6748 0.8462 0.8466 0.8105 0.8108 7.45 0.00091 

Light Gradient Boosting 
Machine 

0.7826 0.8986 0.5387 0.7911 0.7808 0.7247 0.7259 17.41 0.00137 
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Ridge Classifier 0.6664 0.0000 0.3276 0.6672 0.6221 0.5659 0.5727 0.40 0.00006 
Linear Discriminant 

Analysis 
0.6497 0.9136 0.4400 0.6439 0.6231 0.5535 0.5575 2.01 0.00025 

Quadratic Discriminant 
Analysis 

0.3858 0.8710 0.4026 0.6325 0.4394 0.2936 0.3144 0.71 0.000087 

Logistic Regression 0.3174 0.6756 0.1226 0.3089 0.2753 0.1237 0.1433 126.46 0.0135 
Naïve Bayes 0.2974 0.6328 0.1281 0.2303 0.2278 0.0960 0.1120 0.13 0.00019 

SVM—Linear Kernel 0.1937 0.0000 0.1037 0.2419 0.1248 0.0379 0.0485 130.74 0.0138 
Ada Boost 0.1626 0.7142 0.1521 0.0501 0.0713 0.0788 0.1193 14.27 0.00129 

AUC: Area under the Curve; MCC: Matthews Correlation Coefficient; TT: Training Time. 

Additionally, the receiver operating characteristic (ROC) curves, the confusion ma-
trix, and the class prediction error diagram of the XGBoost method, which achieved the 
highest success results (accuracy 90%), are presented in Figures 3–5. 

 

Figure 3. Receiver operating characteristic curves of the XGBoost classifier. 

In Figure 3, the colored lines in each axis represent the ROC curves. The ROC curve 
is a plot of the true positive rate (sensitivity) versus the false positive rate (1—specificity) 
as the threshold is varied. A perfect test would show points in the upper-left corner, with 
100% sensitivity and 100% specificity. 

 

Figure 4. Confusion matrix of the XGBoost classifier. 
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Figure 4 shows the confusion matrix for testing of the darknet dataset. The XGBoost 
model outputs are very accurate, as determined by the high numbers of correct responses 
in the green squares and the low numbers of incorrect responses in the light green squares. 

 
Figure 5. Class prediction error of the XGBoost classifier. 

The class prediction error chart shown in Figure 5 provides a way to quickly under-
stand how precise our classifier is in predicting the right classes. This plot shows the sup-
port (number of training samples) for each class in the fitted classification model as a 
stacked bar chart. Each bar is segmented to show the proportion of predictions (including 
FN and FP) for each class. We used the class prediction error to visualize which classes 
our classifier had particular difficulty with, and more importantly, what incorrect answers 
it is giving on a per-class basis. This enables better understanding of the strengths and 
weaknesses of the different models and the particular challenges associated with our da-
taset. 

The automated creation of network architecture that encodes search solutions 
through NAS can produce architecture that, once trained, goes beyond human-designed 
versions. With the architecture in question, and specifically with the methodology based 
on the AutoKeras NAS library [51] which is designed to provide stable and simple inter-
face environments, minimizing the number of user actions, the architecture shown in Ta-
ble 3 and in Figure 6 was implemented. The results are depicted in Table 4. 

Table 3. AutoKeras model. 

Layer (type) Output Shape Parameters 
input_1 (InputLayer)  [(None, 61)] 0 

multi_category_encoding (Mul (None, 61) 0 
normalization (Normalization (None, 61) 123 
dense (Dense) (None, 512) 31,744 
re_lu (ReLU) (None, 512) 0 

dense_1 (Dense) (None, 128) 65,664 
re_lu_1 (ReLU) (None, 128) 0 
dense_2 (Dense) (None, 11) 1419 

classification_head_1 (Softm (None, 11) 0 
Total parameters: 98,950 

Trainable parameters: 98,827 
Non-trainable parameters: 123 
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Figure 6. Depiction of the AutoKeras model. 

Table 4. Classification performance metrics of the AutoKeras model. 

Classifier Accuracy AUC Recall Precision F1 Kappa MCC TT (s) RAM-H 
AutoKeras Model 0.9268 0.9976 0.7915 0.9280 0.9105 0.8972 0.8977 917.23 0.089 

The networks in question created by NAS, although much slower and more complex 
(trainable parameters: 98,827), proved to be excellent after training, as evidenced by the 
results of the table above. 

In no case, however, can we assume that they are able to solve the given problem 
without training their weights. To produce architecture that satisfactorily encodes solu-
tions, the importance of weights must be minimized. Instead of judging networks by their 
performance with optimal weight values, they should be evaluated by their performance 
when their weight values come from a random distribution. Replacing weight training 
with weight sampling ensures that performance is only a product of network topology 
and not training. 

The architecture chosen to solve the given problem by a random selection of weights 
involves a recurring neural network with input, some sparsely connected hidden layers 
of reservoirs in which the choice of architecture is based on the NAS strategy, and a simple 
linear readout output. The connection weights in each reservoir, as well as the input 
weights, are random, and scaled in such a way as to ensure the echo state property, which 
is defined as a state where the reservoir is an “echo” of the entire input history and which 
is partly determined by its architecture. 

The discrete levels are only those of the u(n) input and the y(n) output, while the 
hidden levels (reservoirs) are grouped so that the neurons are connected to each other by 
a percentage that determines how sparse the network is. The synaptic compounds that 
unite the levels with each other are characterized by a value that determines the weights. 
Each input neuron is connected via Winij weights (i—input neuron; j—neuron to the reser-
voir) with weights that, although normal, are determined randomly prior to training, and 
their values are final because they do not change during training. Additionally, each neu-
ron from the reservoir is connected via Wjk weights (j—neuron in the reservoir; k—neuron 
in the reservoir, and j ≠ k) to any other neuron in the reservoir. The weights of these neu-
rons, although normal, are determined randomly before training and their values do not 
change. Finally, each neuron from the reservoir is connected via Woutjm weights (j—neuron 
in the reservoir; m—output neuron) to the output plane neurons. These weights that are 
in the readout layer are the only ones that are trained in order to obtain their final values 
[52]. 

The network architecture is characterized by a stacked hierarchy of reservoirs, where 
at each time step t, the first repeating layer is fed by the external input u(t), while each 
successive layer is fed by the output of the previous one in the stack [53]. Although their 
architectural organization allows for general flexibility in the size of each layer, for reasons 
of complexity we consider a hierarchical installation of reservoirs with repeating layers 
NL, each of which contains the same number of NR units. In addition, we use x(l)(t) ∈ 𝑅ேೃ 
to declare the state of the plane l at time t. By omitting the bias conditions, the first level 
state transition function is defined as follows [54]: 𝑥(ଵ)(𝑡) = ൫1 − 𝑎(ଵ)൯𝑥(ଵ)(𝑡 − 1) + 𝑎(ଵ) 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ ቀ𝑊௜௡𝑢(𝑡) + 𝑊෡ (ଵ)𝑥(ଵ)(𝑡 − 1)ቁ (19)
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For any level greater than l > 1, the equation is as follows: 𝑥(௟)(𝑡) = ൫1 − 𝑎(௟)൯𝑥(௟)(𝑡 − 1) + 𝑎(௟) 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ ቀ𝑊௟𝑥௟ିଵ(𝑡) + 𝑊෡ (௟)𝑥(௟)(𝑡 − 1)ቁ (20)

Where 𝑊௜௡ ∈ 𝑅ேೃ×ேೆ is the input weight table, 𝑊෡ (௟)∈ 𝑅ேೃ×ேೃ is the recurrent weight ta-
ble for level l, 𝑊(௟)∈ 𝑅ேೃ×ேೃ is the table relative to the connection weights between the 
levels from level l-1 to level l, 𝑎(௟)is the leaky parameter at level l, and 𝑡𝑎𝑛ℎ represents 
the elementary application of the tangent [55–58]. 

Random weights improve the generalization properties of the solution of a linear 
system because they produce almost rectangular (weakly correlated) features. The output 
of a linear system is always correlated with the input data; therefore, if the range of solu-
tion weights is limited, rectangular inputs provide a wider range of solutions than those 
supported by weights. Additionally, small weight fluctuations allow the system to be-
come more stable and noise resistant, because input errors will not be amplified at the 
output of a linear system with little correlation between input and output weights. Thus, 
the random classification of weights that produces weakly correlated characteristics at the 
latent level allows achieving a satisfactory solution and a good generalization perfor-
mance. 

Essentially, for random forward propagation architecture with a hidden plane and 
random representation of hidden plane neurons, the input data ARE mapped to a random 
L-dimensional space with a distinct set of training Ν, where (𝑥௜ , 𝑡௜), 𝑖 ∈ ⟦1,𝑁⟧ 𝜇𝜀 𝑥௜ ∈𝑅ௗ  𝜅𝛼𝜄 𝑡௜ ∈  𝑅௖. The network output is represented as follows [56,59]: 

𝑓௅(𝑥) = ෍𝛽௜ℎ௜(𝑥) = ℎ(𝑥)𝛽    𝑖 ∈ ⟦1,𝑁⟧௅
௜ୀଵ  (21)

where 𝛽 = ሾ𝛽ଵ, … ,𝛽௅ሿ் is the output of the weight table between the hidden nodes and 
the output nodes, ℎ(𝑥) = ሾ𝑔ଵ(𝑥), … ,𝑔௅(𝑥)ሿ are the outputs of the hidden nodes (random 
hidden attributes) for input x, and 𝑔ଵ(𝑥) is the exit of the i hidden node. The basis of an 
N set of training {(𝑥௜ , 𝑡௜)}௜ୀଵே , can solve the learning problem Ηβ = Τ, where 𝛵 = ሾ𝑡ଵ, … , 𝑡ேሿ் 
the target labels and the output table of the hidden level 𝐻 as below: 𝛨൫𝜔௝ ,𝑏௝ , 𝑥௜൯ = ሾ𝑔(𝜔ଵ𝑥ଵ + 𝑏ଵ) ⋯  𝑔(𝜔௟𝑥ଵ + 𝑏௟)  ⋮ ⋱ ⋮  𝑔(𝜔ଵ𝑥ே + 𝑏ଵ) ⋯  𝑔(𝜔௟𝑥ே + 𝑏௟) ሿே×௟ (22)

Prior to training, the input weight table ω and the bias vectors b are randomly gener-
ated in the interval [−1, 1], with 𝜔௝ = ൣ𝜔௝ଵ,𝜔௝ଶ, … ,𝜔௝௠൧ఁ and 𝛽௝ = ൣ𝛽௝ଵ,𝛽௝ଶ, … ,𝛽௝௠൧ఁ. The 
output level table of the hidden level H is calculated from the activation function and the 
use of the training data based on the following function: 𝛨 = 𝑔(𝜔𝑥 + 𝑏) (23)

The output weights β can be calculated from the relationship: 𝛽 = ൬𝛪𝐶 + 𝐻்𝐻൰ିଵ 𝐻்𝑋 (24)

where 𝐻 = ሾℎଵ, … ,ℎேሿ are the outputs of the hidden level and are the input data. β can be 
calculated from the generalized inverse Moore-Penrose table: 𝛽 = 𝛨ା𝑇 (25)

where 𝛨ା is the generalized inverse Moore–Penrose table for table H. 
In this case, the proposed standardization offers the possibility of managing multiple 

intermediate representations, because the hierarchical organization of random reservoirs 
architecture in successive layers naturally reflects the structure of the dynamics of the de-
veloped system. This scaling allows the progressive classification and exploration of input 
data interfaces across the levels of the hierarchical architecture, even if all levels share the 
same weight values. Furthermore, the multilevel architecture represents a transitional 
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state of how the internal representations of the input signals are determined, which guar-
antees high performance even for problems that require long internal memory intervals. 
It also has higher performance in cases where short-term network memory capabilities 
are required than the corresponding architecture, which would have to work with the 
same total number of iterative or retrospective units in order to achieve corresponding 
results. In addition, in terms of computational efficiency, the multilevel construction of 
reservoirs in the design of a neural system also results in a reduction in the number of 
non-zero repetitive connections, typically associated with other types of retrospective ar-
chitecture. This implies low complexity and time savings required to perform specialized 
tasks. 

These conclusions are reflected in Table 5 below, which shows the very high catego-
rization results (accuracy 94%) in combination with the very short processing time (290 s, 
which is 66% faster than the corresponding AutoKeras model): 

Table 5. Classification performance metrics of the reservoir model. 

Classifier Accuracy AUC Recall Precision F1 Kappa MCC TT (s) RAM-H 
Reservoir Model (13-

11-09)  
0.9451 0.9988 0.8122 0.9317 0.9242 0.9108 0.9094 290.08 0.0338 

However, even in this case there was weight training, and therefore the result of the 
process is a product of training. Unlike WANN, weight training is avoided. Focusing ex-
clusively on exploring solutions in the field of neural network topologies, using random 
common weights for each network level and recording the cumulative result during the 
test, reservoir architecture was used, without weight training. 

To identify the number of resulting solutions, the process was assisted with explana-
tions using the Shapley value methods, after first selecting features with the PPS method. 
The resulting network population was then ranked according to their performance and 
complexity so that the highest-ranking networks were selected to form a new solution 
population. The process was repeated until the best architecture was found. The architec-
ture was modified either by inserting a node by separating an existing connection, by 
adding a connection by connecting two previously unconnected nodes, and by changing 
the activation function which reassigns activation functions. 

Initially, the predictive power of the problem variables was analyzed to identify the 
variables with the highest PPS, in order to identify the most important ones that can solve 
the problem, simplifying the process, and at the same time without reducing the effective-
ness of the method. From the total of variables, 19 were selected with a significant score 
greater than 0.3, while the rest had a predictive capacity of less than 0.1. 

A summary of the 19-variable PPS capture table is presented in Table 6. 

Table 6. Predictive power score. 

Idle_Max Idle_Mean Idle_Min Packet_Length_Max 
0.471 0.444 0.430 0.399 

Packet_Length_Mean Average_Packet_Size Flow_IAT_Max Fwd_IAT_Max 
0.383 0.379 0.372 0.363 

Bwd_Packet_Length_Max Fwd_Packet_Length_Max Total_Length_of_Bwd_Packet Bwd_Packet_Length_Mean 
0.349 0.345 0.340 0.338 

Bwd_Segment_Size_Avg Total_Length_of_Fwd_Packet Packet_Length_Std Packet_Length_Variance 
0.338 0.338 0.330 0.330 

Fwd_Header_Length Subflow_Bwd_Bytes Fwd_Packet_Length_Mean 
- 

0.328 0.320 0.313 
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Extensive research was then conducted on evaluating the values of the variables, how 
they contribute to the prediction, and explaining each decision of the implemented mod-
els, using the Shapley values. Figure 7 shows the classification of the values of the varia-
bles used in the bar plot. 

 
Figure 7. SHapley Additive exPlanations (SHAP) value impact on model output (bar plot). 

In Figure 8 is presented the summary beeswarm plot, which is the best way to capture 
the relative effect of all the features in the whole dataset. Characteristics are classified 
based on the sum of Shapley values in all samples in the set. The most important features 
of the model are shown from top to bottom. Each attribute consists of dots, which sym-
bolize each attribute of the package, while the color of the dot symbolizes the value of the 
attribute (blue corresponds to a low value, while red corresponds to a high value). The 
position of the dot on the horizontal axis depends on its Shapley value. 
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Figure 8. SHAP value impact on model output. 

We see that the Average_Packet_Size attribute is the most influential for the model 
predictions. Additionally, for its high values (red dots), the Shapley value is also high, so 
it has a great positive effect, i.e., it increases the probability that the package under con-
sideration comes from the darknet. On the contrary, for its low values (blue dots), the 
Shapley value is low, so it has a negative effect on the forecast, i.e., it increases the proba-
bility that the package under consideration does not come from darknet. 

In Figure 9, a sample selection is used from the dataset to represent the typical attrib-
ute values, and then 10 samples are used to estimate the Shapley values for a given pre-
diction. This task requires 10 × 1 = 10 evaluations of the model. 

 
Figure 9. Explanation of a single prediction (10 evaluations). 

In this diagram, a local explanation is presented, where the base value refers to the 
average value of the model forecasts; in this case, the model predicts that the data package 
analyzed comes from the darknet with a probability of 12%. For this package, the forecast 
value is 89%, so the Shapley values show the change from the average forecast to the spe-
cific forecast. The red arrows push the prediction to the right, i.e., they help to increase the 
probability that this package comes from darknet, while the blue arrows push to the left, 
helping to reduce the probability that it comes from darknet. The length of each arrow 
symbolizes the magnitude of the effect on the prediction. In this example, we see that the 
Fwd_Packet_Length_Mean attribute helps to increase the likelihood that the package will 
come from the darknet (Shapley value 96.73), while the Total_Length_of_Fwd_Packet 
(Shapley value 20.31) and Fwd_Packet_Length_Mean (Shapley value 376.1), decrease this 
likelihood, etc. 

Shapley values also have universal explanation capabilities, summing the values of 
a set of samples. In the image below are used a selection of 100 samples from the dataset 
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to represent the standard attribute values, and then 500 samples are used to estimate the 
Shapley values for a given prediction. This task requires 500 × 100 = 50,000 model evalua-
tions. Figure 10 below represents the explanation of a single prediction of 50,000 evalua-
tions. 

 

Figure 10. Explanation of a single prediction (50,000 evaluations). 

In Figure 11, there is a diagram of the above process of 50,000 validations, but with 
an explanation of multiple predictions and their fixation in relation to their similarity. 

 

Figure 11. Explanation of many predictions by similarity. 

In Figure 12, the same procedure is captured based on the output values of the model. 

 
Figure 12. Explanation of many predictions by output value. 

In both cases, sampling is used to implement the explanation. It should be noted that 
for the evaluation of the architecture that was finally selected, thorough and long-term 
research was carried out on the effects of the features used in each prediction, taking into 
account local and universal explanations from the Shapley values methodology. 

The resulting architecture is presented in the Table 7, with the corresponding catego-
rization performance metrics. The values in parentheses indicate the size and depth of the 
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reservoirs; for instance, the Reservoir model (11-17-09) that performed with the highest 
results had a depth of 3, i.e., it included 3 reservoirs, which incorporated 11, 17, and 09 
neurons, respectively. 

Table 7. Classification performance metrics of the proposed Reservoir models. 

Classifier Accuracy AUC Recall Precision F1 Kappa MCC TT (s) RAM-H 
Reservoir (11-17-09) 0.8392 0.9904 0.7502 0.8910 0.9004 0.8973 0.8807 59.35 0.00676 

Reservoir (06-11-05-12) 0.7961 0.9892 0.7483 0.8884 0.8798 0.8657 0.8623 68.16 0.00843 
Reservoir (15-10-06-08) 0.7504 0.9879 0.7469 0.8534 0.8419 0.8479 0.8588 53.22 0.00663 

Reservoir (21-18-13) 0.7492 0.9809 0.7450 0.8511 0.8415 0.8468 0.8501 72.38 0.00897 
Reservoir (05-12-16-07) 0.7262 0.9654 0.7203 0.8397 0.8402 0.8414 0.8428 64.04 0.00781 

By attempting an evaluation of the above results, it is easy to conclude that the pro-
posed framework is a particularly remarkable learning system that in all evaluation cases 
achieved remarkable results in relation to the respective competing systems, always tak-
ing into account that the proposed system competes with corresponding systems which 
received training, while the competing ones did not. 

The characteristic of this is that the Reservoir model (11-17-09) that gave the highest 
results surpassed the algorithms Light Gradient Boosting Machine, Ridge Classifier, Lin-
ear Discriminant Analysis, Quadratic Discriminant Analysis, Logistic Regression, Naïve 
Bayes, SVM—Linear Kernel, and Ada Boost. This observation can be interpreted in the 
non-linearity that generally characterizes neural networks, especially in the case where it 
is examined where the mechanism of production of input signals is non-linear. The re-
sistance to structural errors of neural networks, and especially the sparse architecture of 
reservoirs, guarantees that the malfunction or destruction of a neuron or some connec-
tions is not able to significantly disrupt their function because the information they con-
tain is not located in a specific point but diffuse throughout the network, and especially 
in cases where the Echo State Property (ESP) property that characterizes reservoir archi-
tecture is achieved. 

Another important observation is that the method produces extremely accurate re-
sults without recurring problems of an undetermined cause because all the features in the 
dataset in question are handled very efficiently, based on the original feature selection 
processes performed on the basis of PPS. This resulted in the removal of insignificant fea-
tures in the network, which under certain conditions can be characterized as noise, with 
very negative effects on the final result. 

In addition, one of the main advantages gained from the results is the high reliability 
resulting from kappa prices (high reliability if k ≥ 0.70) [49], which can be considered as 
the result of data processing that allows the retention of the most relevant data for the 
forthcoming forecasts. 

Finally, the use of the reservoir technique in this work is related to the fact that very 
often in multifactorial problems of high complexity, such as the one under consideration, 
the prediction results are multivariate, which can be attributed to the sensitivity of the 
correlational models in the data. The two most important advantages of this technique 
focus on the fact that it offers better predictability and stability, because the overall behav-
ior of the model is less noisy while the overall risk of a particularly poor choice that may 
result from modeling is reduced. The above view is also supported by the dispersion of 
the expected error, which is concentrated close to the average error value, a fact that cate-
gorically states the reliability of the system and the generalization ability that it presents. 

An important weakness of the methodology followed is the highly specialized and 
time-consuming preprocessing procedure that must be followed to identify the appropri-
ate architecture that can perform satisfactorily, which adds research complexity to the 
data analysis and explanation models used. 

5. Discussion and Conclusions 
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In this paper, an innovative, reliable, low-demand, and highly efficient network traf-
fic analysis system was presented, which relies on advanced computing intelligence meth-
ods. The proposed framework implements and utilizes the advantages of meta-learning 
methodology, in order to identify malfunctions or deviations of the normal mode of op-
eration of the network traffic, which, in most cases, is the outcome of cyber-attacks. The 
proposed digital security system was tested on a complex dataset that responded to spe-
cialized operating scenarios of normal and malicious network behavior. Our motivation 
in this work was to explore the processes to which only neural network architecture, with-
out prior learning, can codify solutions and model a given task. The holistic approach 
proposed, which automates and solves the problem of specialized use of neural network 
finding algorithms without the need for human experience or intervention, is a promising 
approach to capture an unknown underlying mapping function between input and out-
put data in a given problem, without requiring system training. 

Under this consideration, this paper proposes an innovative and highly effective 
weight agnostic neural network framework for darknet traffic, big-data analysis, and net-
work management, to real-time automate the malicious intent detection process. The pro-
posed architecture, which is first implemented and presented in the literature, facilitates 
more specialized pattern recognition systems without prior training, which are capable of 
responding to changing environments. It is important to emphasize that the proposed 
method removes complexity from the way NAS strategies work, because it utilizes mul-
tiple functions of specialized methods for extracting useful intermediate representations 
in complex neural network architecture. The initial utilization of the predictive power of 
the independent variables significantly reduces the computing, producing improved 
training stability and remarkable categorization accuracy. In addition, the reservoir tech-
nology used leads for remarkable forecasting results, implementing a robust forecasting 
model capable of responding to highly complex problems. This ability was found in the 
high convergence speed of the proposed architecture, which was calculated by a simple 
array calculation, in contrast to reciprocating stochastic gradient descent models. To prove 
the validity of the proposed methodology, SHAP methodology was used, which is based 
on the evaluation of solutions based on Shapley values. This technique provided an un-
derstanding of how the model makes decisions and what interactions take place between 
the features used. Additionally, for the precise design of the specific search space of the 
best architectural prototypes that can optimally solve the problem, the relationships be-
tween the variables were explored and feature selection was implemented with the pre-
dictive power score technique, in order to briefly measure the predictive relationships be-
tween the available data. 

In conclusion, the paper presents a method for the development of interpretable neu-
ral networks by encoding the solution directly in the network architecture and not in the 
training of its weights. Compared to other learning methods, the proposed architecture is 
resistant in changes to node inputs, which could be the foundation for a robust defense 
against adversarial attacks or even damaged networks. 

Proposals for the development and future improvements of this framework should 
focus on the automated optimization of the appropriate parameters of method pre-train-
ing to achieve an even more efficient, accurate, and faster categorization process. It would 
also be important to study the expansion of this system by implementing more complex 
architecture with Siamese neural networks in an environment of parallel and distributed 
systems [60] or over blockchain [61,62]. Finally, an additional element that could be stud-
ied in the direction of future expansion concerns the operation of a network with methods 
of self-improvement and re-defining its parameters, so that the process of selecting the 
architectural hyper-parameters can be fully automated in order to identify dark web ser-
vices [63,64], exploits from the dark web [65–68], and classify malicious traffic from this 
network [69–71]. 
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