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Abstract. Domain Generation Algorithm (DGA) has evolved as one of the 

most dangerous and “undetectable” digital security deception methods. The 

complexity of this approach (combined with the intricate function of the fast-

flux “botnet” networks) is the cause of an extremely risky threat which is hard 

to trace. In most of the cases it should be faced as zero-day vulnerability. This 

kind of combined attacks is responsible for malware distribution and for the in-

fection of Information Systems. Moreover it is related to illegal actions, like 

money mule recruitment sites, phishing websites, illicit online pharmacies, ex-

treme or illegal adult content sites, malicious browser exploit sites and web 

traps for distributing virus. Traditional digital security mechanisms face such 

vulnerabilities in a conventional manner, they create often false alarms and they 

fail to forecast them. This paper proposes an innovative fast and accurate evolv-

ing Smart URL Filter (eSURLF) in a Zone-based Policy Firewall (ZFW) which 

uses evolving Spiking Neural Networks (eSNN) for detecting algorithmically 

generated malicious domains names.   

Keywords: Domain generation algorithm · Fast-Flux · Evolving spiking neural 

network · Botnet · Feed forward neural network · Particle swarm optimization 

1 Introduction 

The most common malware types, aim for the recovery of communication with the 

Command & Control (C2RS) remote servers and its retention on a regular basis. This 

is done in order for the botmasters to gather or distribute information and upgrades 

towards the undermined devices (bots). This communication is usually achieved with 

the use of hardcoded address or with pool addresses which are controlled by the mal-

ware developer or by the botmaster. Modern programming techniques offer malware 

developers, the chance to use thousands alternating IP addresses of different subnet in 

order to communicate with the C2RS. However it is easy for the network engineers to 

trace these IPs, to put them in blacklists.    

It is a fact that most recent malware generations use new extremely complicated 

and smarter ways to communicate with the C2RS under the framework of botnets. 

More specifically, the communication is achieved by the use of custom distributed 
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dynamic DNS services which are executed in high port numbers. This is done in order 

to avoid to be traced by security programs located in the gateway of networks. In this 

way fast-flux botnets are created, whose target is the mapping of a fully qualified 

domain name to hundreds of  IP addresses. These IPs are interchanged too fast, with a 

combination of random IP addresses and a very small Time-To-Live (TTL) for each 

partial DNS Resource Record. In this way a domain name can change its correspond-

ing IP address very often (e.g. every 3 minutes). Another usual approach is the blind 

proxy redirection (BPR) technique. The BPR continuously redirects the applications 

received by frontend systems to backend servers, in order to spoil the traces and the 

data that designate an attack. In this way the complexity of the botnets increases [1]. 

DGA or “Domain Fluxing” is the most recent and smarter technique used by the 

creators of sophisticated malware. This method increases the complexity of the net-

works exponentially. Its algorithm creates a big number of domain names with specif-

ic specification characteristics that can be traced only by their creator. Some of these 

domains are the actual contact points with the C2RS of the botnets and they are used 

on a temporal basis and for minimum time intervals. This makes them much more 

difficult to be spotted. For example the following algorithm 1 creates domains accord-

ing to a DGA perspective, where each domain is determined based on a date.  

 

Algorithm 1. Generates a domain by the current date [2] 

1. defgenerate_domain(year, month, day): 

2.       """Generates a domain by the current date""" 

3.       domain = "" 

4. for i in range(32): 

5.       year = ((year ^ 8 * year) >> 11) ^ ((year &amp; 0xFFFFFFF0) << 17) 

6.       month = ((month ^ 4 * month) >> 25) ^ 9 * (month &amp; 0xFFFFFFF8) 

7.       day = ((day ^ (day << 13)) >> 19) ^ ((day &amp; 0xFFFFFFFE) << 12) 

8.       domain += chr(((year ^ month ^ day) % 25) + 97) 

9.       domain += '.com' 

10. return domain 

E.g., on June 18
th

, 2014, this method would generate the following domain names: 

 

 

k.com 

ka.com 

kaf.com 

kafp.com 

kafph.com 

kafpho.com 

kafphog.com 

kafphogv.com 

kafphogvi.com 

kafphogvif.com 

kafphogvifa.com 

kafphogvifah.com 

kafphogvifahu.com 

kafphogvifahut.com 

kafphogvifahutb.com 

kafphogvifahutbl.com  

 

Every time that the botmaster wishes to contact the bots in a predefined strike-time, 

it creates the proper DNS records for one of the newly created names in the C2RS. In 

the above example, the strike time is the 18
th

 of June 2014. At this point DNS records 

are activated only for the domain name kafphogvifah.com. Some minutes before the 

strike-time the C2RS are activated in order to establish communication. Right after-

wards, the botmaster deletes the registrations of the DNS service and deactivates the 
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C2RS. The thousands domains created by the DGA algorithm daily, the huge  com-

plexity of the fast-flux botnets and the distributed function of the C2RS for some 

minutes per day, make designation of these servers a very tedious task [3].     

This research paper proposes the development of an innovative system, capable of 

protecting from fast-flux botnets that use domain names created with the DGA me-

thodology. Existing methods focus in DNS traffic analysis [4] [5] [6]. This paper 

proposes an Evolving Smart URL Filter in a Zone-based Policy Firewall for detecting 

Algorithmically Generated Malicious Domains Names. It is a biologically inspired 

Artificial Intelligence (AI) security technique as it uses evolving Spiking Neural Net-

works. The eSNN are the third generation neural networks, emulating the function of 

the human brain in the most efficient way. This research effort is an enhancement of 

previous [7] [8] [9] [10].  The efficiency of the proposed eSURLF approach has been 

compared to other evolving and bio-inspired learning methods, namely: Feed Forward 

Neural Networks using Particle Swarm Optimization (FNNPSO) technique and Gene 

Expression Programming (GEP). 

1.1 Literature Review 

Gu et al. (2007) [11] proposed a method to detect the infection and coordination di-

alog of botnets by matching a state-based infection sequence model. Based on URL 

extraction from spam mail Ma, et al. [12], studied a number of machine learning me-

thods for classification web site. Characteristics, such as IP addresses, whois records 

and lexical features of phishing URLs have been analyzed by McGrath and Gupta 

[13]. Xie et al [14] in focus on detecting spamming botnets by developing regular 

expression based signatures from a dataset of spam URLs. Etienne, et al. [15] pro-

posed a technique for the detection and mitigating botnet infection on a network. 

They use multiple features from DNS queries such as A and NS Records, IP ranges, 

TTL and alphanumeric characters from domains. In their experiment, they applied 

Naive Bayesian. Nhauo et al. [16] proposed a method for Classification of Malicious 

Domains using Support Vector Machine and Bi-gram algorithm using only domain 

names and their results showed that features extracted by bi-gram were performing a 

lot better than single alphanumeric character. Antonakakis et. al. [17] uses a combina-

tion of clustering and classification algorithms to detecting the DGA-Based Malware. 

Zhao et al. [18] select a set of attributes from the network flows and then applies a 

Bayes network and a decision tree algorithm to classify malicious traffic. Also, a 

number of approaches have been studied in [19] [20] [21] [22] which use the spam 

emails as the primary information source, for detecting fast-flux domains.  

2 URL Filtering 

URL filtering is a technique which controls network traffic, by allowing or forbidding 

access to specific websites based on the information contained in the requested URL. 

Filters can be applied in various ways such as software, proxy servers, DNS services 

and firewalls. The ZFW method is an advanced technique used in modern firewalls. It 
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functions in a flexible way employing control zones. Each zone controls traffic based 

on the IP and the redirection of the requests from one zone to the other, according to 

the rules that have been defined for each security level by the system administrator 

[23]. ZFW offers URL filtering in the following manner:  

• Local URL List which can include URLs or ΙΡ addresses that have been traced as 

risky (black list records) and URLs in which the user wishes to have access 

(white list records). Before the use of a URL it is checked if it is included in one 

of the black or white lists and access is forwarded or stopped. The difficulty in 

regular updating this lists and the non-spotting of zero-day threats are the main 

disadvantages.   

• URL Filter Servers containing information related to the malware content, which 

are updated regularly. Before using a URL an HTTP request is sent to the URL 

filter server in order to be checked and to allow or restrict access. If the URL fil-

ter server is not responding the next one is searched. A serious drawback is the 

potential that filter servers do not respond whereas there is no mechanism for 

tracing zero-day threats.  

• Local URL lists with URL filter servers. It is a hybrid model of the above two 

cases that combines advantages and disadvantages.  

3 Datasets 

Two datasets namely the dga_timestamp and the dga_dictionary were constructed and 

used for testing. As legit domains 100,000 domain names were used. They were cho-

sen randomly from the database with the 1 million most popular domain names of 

Alexa [24]. For the malicious domains the updated list of the Black Hole DNS data-

base was used [25]. This list includes 16,374 records from domains that have been 

traced and characterized as dangerous. More over in the dga_time stamp dataset 

15,000 domain name records were added labeled as malicious. They were created  

based on the time stamp DGA algorithm, with length from 4 to 56 characters of the 

form 18cbth51n205gdgsar1io1t5.com.  In the dga_dictionary dataset 15,000 domain 

name records were added labeled as malicious, which were created with the use of 

words of phrases coming from an English dictionary. Their length varied from 4 to 56 

characters of the form hotsex4rock69burningchoir.com. In both of the cases the cha-

racteristics used as independent parameters were: length (the length of the strings of 

the domains) entropy (the entropy of each domain as degree of uncertainty, with the 

higher values met in the DGA domains), alexa_grams (the degree of coherence be-

tween the domain and the list of domains originating from Alexa. This is done with 

the technique of the probability linguistic model for the forecasting of the next n-gram 

element), word_grams (the degree of coherence between the domain and a list of 

479,623 words or widely used characters. It is estimated with the same method as in 

the previous one), differences (the difference between the values of alexa_grams and 

word_grams). The depended variable was the class of the domain (legit or malicious) 

[26]. Duplicate records and records with incompatible characters were removed. Also 

the outliers and the extreme values spotted were removed based on the Inter Quartile 
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Range (IQR) technique [27]. After this preprocessing operation the dga _time stamp 

dataset was left with 116,756 records from which the 90,338 are class legit and the 

rest 26,418 are class dga, whereas the dga_dictionary dataset includes 116,071 

records from which the 90,445 are class legit and the rest 25,626 class malicious. 

4 Methods and Materials 

4.1 Evolving Spiking Neural Network 

The eSNNs based on the “Thorpe” neural model [28] are modular connectionist-based 

systems that evolve their structure and functionality in a continuous, self-organized, 

on-line, adaptive, interactive way from incoming information [29]. In order to classify 

real-valued data sets, each data sample, is mapped into a sequence of spikes using the 

Rank Order Population Encoding (ROPE) technique [30] [31].  In this encoding 

method neurons are organized into neuronal maps which share the same synaptic 

weights. Whenever the synaptic weight is modified, the same modification is applied 

to the entire population of neurons within the map. Inhibition is also present between 

each neuronal map. If a neuron spikes, it inhibits all the neurons in the other maps 

with neighboring positions. This prevents all the neurons from learning the same 

pattern. When propagating new information, neuronal activity is initially reset to zero. 

Then, as the propagation goes on, each time one of their inputs fire, neurons are 

progressively desensitized. This is making neuronal responses dependent upon the 

relative order of firing of the neuron's afferents [32] [33]. Also in this model the 

neural plasticity is used to monitor the learning algorithm by using one-pass learning 

method. The aim of this learning scheme is to create a repository of trained output 

neurons during the presentation of training samples [34].  

4.2 Feed Forward Neural Networks and Heuristic Optimization Methods 

A common form of ANN are the feed forward ones (FNN) with three layers (Input, 

Hidden and Output). A typical training process includes the following steps [35]:  

• The weighted sums of the inputs are calculated based on function (1): 

 

sj= ∑ WijXi θj     j=1,2,…,hn
i=1                                        (1) 

 

where n,h,m are the number of input, hidden and output nodes respectively and Wij is 

the connection weight from the ith node of the input layer to the jth node of the hid-

den layer. Also θj is the bias (threshold).  

• The output for each hidden node is estimated with the following equation (2): 

 

Sj=sigmoid
sj

=
1

1+exp sj

j=1,2,…,h                                  (2) 

 

• The final output is estimated based on the equations (3) and (4) below: 
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ok= ∑ WjkSj θ'
k    k=1,2,…,m    h

j=1                                    (3) 

 

Ok=sigmoid
ok

=
1

1+exp ok
k=1,2,…,m                                (4) 

 

Various heuristic optimization methods have been used to train FNNs such as Ge-

netic Algorithms (GAs) and Particle Swarm Optimization (PSO) algorithms. General-

ly, there are three heuristic approaches used to train or optimize FNNs. First, heuristic 

algorithms are used to find a combination of weights and biases which provide the 

minimum error for a FNN. Second, heuristic algorithms are employed to find the op-

timal architecture for the network related to a specific case. The last approach is to 

use an evolutionary algorithm to tune the parameters of a gradient-based learning 

algorithm, such as the learning rate and momentum [36]. In this research effort PSO 

has been employed to provide the optimal FNN model.  

4.2.1   Particle Swarm Optimization 
PSO is an evolutionary computation technique which is proposed by Kennedy and 

Eberhart. It was inspired by social behavior of bird flocking or fish schooling. PSO 

shares many similarities with evolutionary computation techniques such as GA. The 

system is initialized with a population of random solutions and searches for optima by 

updating generations. However, unlike GA, PSO has no evolution operators such as 

crossover and mutation. In PSO, the potential solutions, called particles, fly through 

the problem space by following the current optimum particles. Each particle keeps 

track of its coordinates in the problem space which are associated with the best solu-

tion (fitness) it has achieved so far. (The fitness value is also stored.) This value is 

called “pbest”. Another "best" value that is tracked by the particle swarm optimizer is 

the best value obtained so far by any particle in its neighbors. This location is called 

“lbest”. When a particle takes all the population as its topological neighbors, the best 

value is a global best and is called “gbest”. According to the PSO at each time step 

there is a change in the velocity (acceleration) of each particle toward its pbest and 

lbest locations (local version of PSO). Acceleration is weighted by a random term, 

with separate random numbers being generated for acceleration toward pbest and 

lbest locations. PSO was mathematically modeled as follows [36]: 

 

vi
t+1=wvi

t+c1× rand× pbesti xi
t +c2×rand× gbest-xi

t                 (5) 

    

 xi
t+i=xi

t+vi
t+i                                                      (6) 

 

Where  is the velocity of particle i at iteration t, w is a weighting function, cj is an 

acceleration coefficient, rand is a random number between 0 and 1,  is the current 

position of particle i at iteration t, pbesti is the pbest of agent i at iteration t, and gbest 

is  the  best  solution  so  far. Where  ,  provides  exploration  ability for  PSO, the 

c1× rand× pbesti xi
t +c2×rand× gbest-xi

t                                 (7) 
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represent private thinking and collaboration of particles. The PSO starts by randomly 

placing the particles in a problem space. During each iteration, the velocities of par-

ticles are calculated using equation (5). After defining the velocities, the positions of 

particles can be calculated as shown in equation (6). The process of changing par-

ticles’ positions continues until an end criterion is met.  

4.3 Gene Expression Programming 

The GEP is an evolutionary algorithm that uses populations of individuals and choos-

es the optimal ones based on a fitness function. Then it imports new individuals or 

potential solutions in the population, by using one or more genetic operators. The 

substantial difference between the GEP and the GA and Genetic Programming (GP) is 

in the nature of the individuals. Specifically, GA uses a sequence of symbols of stable 

length whereas GP uses nonlinear entities (parse trees) of various length and shape. 

GEP employs both above forms of individuals. Initially they are encoded like linear 

strings of stable length (genotype of chromosome) and then they are expressed as 

expression trees (EXTR) with different shape and size (phenotype). The correlation 

between the chromosomes and the EXTR in GEP declares an exclusive translation 

system from the language of the chromosomes to the one of the EXTR. The set of the 

genetic operators applied to GEP and import new individuals they always create syn-

tactically correct EXTR [37]. 

5 Description of the Proposed Method  

The proposed herein methodology uses an eSNN classification approach in order to 

detect and verify the DGA domain names. The topology of the developed eSNN is 

strictly feed-forward, organized in several layers and weight modification occurs on 

the connections between the neurons of the existing layers. The encoding is per-

formed by ROPE technique with 20 Gaussian Receptive Fields (GRF) per variable. 

The data are normalized to the interval [-1, 1] and so the coverage of the Gaussians is 

determined by using i_min and i_max. Each input variable is encoded independently 

by a group of one-dimensional GRF. The GRF of neuron i is given by its center μi by 

equation (8) and width σ by equation (9)  

 

μi = Imin  
n +  

2i-3

2

Imax  
n

-  Imin
n

M-2
                                                  (8) 

 

σ=1

β
Imax
n Imin

n

M-2
                                                          (9) 

 

where 1≤β ≤2 and the parameter β directly controls the width of each Gaussian recep-

tive field. When a neuron reaches its threshold, it spikes and inhibits neurons at 

equivalent positions in the other maps so that only one neuron will respond at any 

location. Every spike triggers a time based Hebbian-like learning rule that adjusts the 

synaptic weights. For each training sample i with class label l which represent a legit 
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domains, a new output neuron is created and fully connected to the previous layer of 

neurons, resulting in a real-valued weight vector  with  denoting the 

connection between the pre-synaptic neuron j and the created neuron i. In the next 

step, the input spikes are propagated through the network and the value of weight  is computed according to the order of spike transmission through a synapse  

 

j: wj

(i)
=(ml)

order(j)  
                                                      (10) 

 

where j is the pre-synaptic neuron of i. Function order(j) represents the rank of the 

spike emitted by neuron j. The firing threshold  of the created neuron i is defined 

as the fraction R, 0 < < 1, of the maximal possible potential 

umax
(i)

: θ i
 ← clumax

i                                                        (11) 

 

   umax
(i)

 ← ∑ wj

(i)
j (ml)

order(j)                                                           
(12) 

The weight vector of the trained neuron is compared to the weights corresponding 

to neurons already stored in the repository. Two neurons are considered too “similar” 

if the minimal Euclidean distance between their weight vectors is smaller than a spe-

cified similarity threshold sl.  Both the firing thresholds and the weight vectors were 

merged according to equations (13) and (14): 

   wj

(k)
 ← 

   wj
(i)

+Nwj
(k)

1+N
                                                 (13) 

 

θ k
 ← 

θ i
+Nθ k

1+N
                                          (14) 

Integer N denotes the number of samples previously used to update neuron k. The 

merging is implemented as the average of the connection weights, and of the two 

firing thresholds. After merging, the trained neuron i is discarded and the next sample 

processed. If no other neuron in the repository is similar to the trained neuron i, the 

neuron i is added to the repository as a new output. 

6 Results 

The performance of the employed algorithms for the case of the dga_dictionary data-

set has been quite high as the obtained correlation shows. On the other hand, in the 

dga_timestamp dataset there was quite a lot of noise, due to the unstructured text of 

domain names that cannot be easily understood by machines. Regarding the overall 

efficiency of the methods, the results show that the eSNN has much better generaliza-

tion performance and more accurate classification output. The accuracy comparison 

of the evolving algorithms with 10-fold cross validation is shown in table 1 and the 

confusion matrices in tables 2, 3 and 4 
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Table 1. Accuracy (ACC) Comparison between FFNN PSO, GEP and eSNN 

 dga_dictionary dataset dga _timestamp dataset 

Classifier ACC ACC 

FNNPSO 95.5% 91.9% 

GEP 92.1% 90.6% 

eSNN 95.8% 92.4% 

 

Table 2. Confusion matrix for FNNPSO 

CONFUSION MATRIX FOR FFNNPSO 

 dga_dictionary dataset dga _timestamp dataset 

 Legit  DGA  Accuracy Legit  DGA  Accuracy 

Legit  86556 3889 95,7% 84105 6233 93,1% 

DGA  1204 24422 95,3% 2457 23961 90,7% 

 Overall Accuracy 95.5% Overall Accuracy 91.9% 

 

Table 3. Confusion matrix for GEP 

CONFUSION MATRIX FOR GEP 

 dga_dictionary dataset dga _timestamp dataset 

 Legit  DGA  Accuracy Legit  DGA  Accuracy 

Legit  83933 6512 92,8% 81666 8672 90,4% 

DGA  2204 23422 91,4% 2430 23988 90,8% 

 Overall Accuracy 92.1% Overall Accuracy 90.6% 

  

Table 4. Confusion matrix for eSNN 

CONFUSION MATRIX FOR eSNN 

 dga_dictionary dataset dga _timestamp dataset 

 Legit  DGA  Accuracy    

Legit  87732 2713 97% 84647 5691 93,7% 

DGA  1384 24242 94,6% 2351 24067 91,1% 

 Overall Accuracy 95.8% Overall Accuracy 92.4% 

7 Discussion – Conclusions 

An innovative biologically inspired artificial intelligence computer security technique 

has been introduced in this paper. An evolving Smart URL Filter in a Zone-based 

Policy Firewall proposed for detecting Algorithmically Generated Malicious Domains 

Names. It performs classification by using eSNN for the detection of DGA with high 

accuracy and generalization. The classification performance and the accuracy of the 

eSNN model were experimentally explored based on different datasets and compared 

with other evolving algorithms and reported very promising results. In this way it 

adds a higher degree of integrity to the rest of the security infrastructure of a ZFW. 
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As a future direction, aiming to improve the efficiency of the proposed method, it 

would be essential to try feature minimization using Principal Component Analysis or 

other existing approaches. Also additional computational intelligence methods could 

be explored and compared on the same security task. Finally the eSURLF could be 

improved towards a better online learning with self-modified parameter values. 
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