
© Springer International Publishing Switzerland 2015

A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 223–233, 2015.

DOI: 10.1007/978-3-319-17091-6_17

Evolving Smart URL Filter

in a Zone-Based Policy Firewall for Detecting

Algorithmically Generated Malicious Domains

Konstantinos Demertzis
()

 and Lazaros Iliadis

Democritus University of Thrace, 193 Pandazidou st., 68200 Orestiada, Greece

{kdemertz,liliadis}@fmenr.duth.gr

Abstract. Domain Generation Algorithm (DGA) has evolved as one of the

most dangerous and “undetectable” digital security deception methods. The

complexity of this approach (combined with the intricate function of the fast-

flux “botnet” networks) is the cause of an extremely risky threat which is hard

to trace. In most of the cases it should be faced as zero-day vulnerability. This

kind of combined attacks is responsible for malware distribution and for the in-

fection of Information Systems. Moreover it is related to illegal actions, like

money mule recruitment sites, phishing websites, illicit online pharmacies, ex-

treme or illegal adult content sites, malicious browser exploit sites and web

traps for distributing virus. Traditional digital security mechanisms face such

vulnerabilities in a conventional manner, they create often false alarms and they

fail to forecast them. This paper proposes an innovative fast and accurate evolv-

ing Smart URL Filter (eSURLF) in a Zone-based Policy Firewall (ZFW) which

uses evolving Spiking Neural Networks (eSNN) for detecting algorithmically

generated malicious domains names.

Keywords: Domain generation algorithm · Fast-Flux · Evolving spiking neural

network · Botnet · Feed forward neural network · Particle swarm optimization

1 Introduction

The most common malware types, aim for the recovery of communication with the

Command & Control (C2RS) remote servers and its retention on a regular basis. This

is done in order for the botmasters to gather or distribute information and upgrades

towards the undermined devices (bots). This communication is usually achieved with

the use of hardcoded address or with pool addresses which are controlled by the mal-

ware developer or by the botmaster. Modern programming techniques offer malware

developers, the chance to use thousands alternating IP addresses of different subnet in

order to communicate with the C2RS. However it is easy for the network engineers to

trace these IPs, to put them in blacklists.

It is a fact that most recent malware generations use new extremely complicated

and smarter ways to communicate with the C2RS under the framework of botnets.

More specifically, the communication is achieved by the use of custom distributed

kdemertz@fmenr.duth.gr

224 K. Demertzis and L. Iliadis

dynamic DNS services which are executed in high port numbers. This is done in order

to avoid to be traced by security programs located in the gateway of networks. In this

way fast-flux botnets are created, whose target is the mapping of a fully qualified

domain name to hundreds of IP addresses. These IPs are interchanged too fast, with a

combination of random IP addresses and a very small Time-To-Live (TTL) for each

partial DNS Resource Record. In this way a domain name can change its correspond-

ing IP address very often (e.g. every 3 minutes). Another usual approach is the blind

proxy redirection (BPR) technique. The BPR continuously redirects the applications

received by frontend systems to backend servers, in order to spoil the traces and the

data that designate an attack. In this way the complexity of the botnets increases [1].

DGA or “Domain Fluxing” is the most recent and smarter technique used by the

creators of sophisticated malware. This method increases the complexity of the net-

works exponentially. Its algorithm creates a big number of domain names with specif-

ic specification characteristics that can be traced only by their creator. Some of these

domains are the actual contact points with the C2RS of the botnets and they are used

on a temporal basis and for minimum time intervals. This makes them much more

difficult to be spotted. For example the following algorithm 1 creates domains accord-

ing to a DGA perspective, where each domain is determined based on a date.

Algorithm 1. Generates a domain by the current date [2]

1. defgenerate_domain(year, month, day):

2. """Generates a domain by the current date"""

3. domain = ""

4. for i in range(32):

5. year = ((year ^ 8 * year) >> 11) ^ ((year & 0xFFFFFFF0) << 17)

6. month = ((month ^ 4 * month) >> 25) ^ 9 * (month & 0xFFFFFFF8)

7. day = ((day ^ (day << 13)) >> 19) ^ ((day & 0xFFFFFFFE) << 12)

8. domain += chr(((year ^ month ^ day) % 25) + 97)

9. domain += '.com'

10. return domain

E.g., on June 18
th

, 2014, this method would generate the following domain names:

k.com

ka.com

kaf.com

kafp.com

kafph.com

kafpho.com

kafphog.com

kafphogv.com

kafphogvi.com

kafphogvif.com

kafphogvifa.com

kafphogvifah.com

kafphogvifahu.com

kafphogvifahut.com

kafphogvifahutb.com

kafphogvifahutbl.com

Every time that the botmaster wishes to contact the bots in a predefined strike-time,

it creates the proper DNS records for one of the newly created names in the C2RS. In

the above example, the strike time is the 18
th

 of June 2014. At this point DNS records

are activated only for the domain name kafphogvifah.com. Some minutes before the

strike-time the C2RS are activated in order to establish communication. Right after-

wards, the botmaster deletes the registrations of the DNS service and deactivates the

kdemertz@fmenr.duth.gr

 Evolving Smart URL Filter in a Zone-Based Policy Firewall 225

C2RS. The thousands domains created by the DGA algorithm daily, the huge com-

plexity of the fast-flux botnets and the distributed function of the C2RS for some

minutes per day, make designation of these servers a very tedious task [3].

This research paper proposes the development of an innovative system, capable of

protecting from fast-flux botnets that use domain names created with the DGA me-

thodology. Existing methods focus in DNS traffic analysis [4] [5] [6]. This paper

proposes an Evolving Smart URL Filter in a Zone-based Policy Firewall for detecting

Algorithmically Generated Malicious Domains Names. It is a biologically inspired

Artificial Intelligence (AI) security technique as it uses evolving Spiking Neural Net-

works. The eSNN are the third generation neural networks, emulating the function of

the human brain in the most efficient way. This research effort is an enhancement of

previous [7] [8] [9] [10]. The efficiency of the proposed eSURLF approach has been

compared to other evolving and bio-inspired learning methods, namely: Feed Forward

Neural Networks using Particle Swarm Optimization (FNNPSO) technique and Gene

Expression Programming (GEP).

1.1 Literature Review

Gu et al. (2007) [11] proposed a method to detect the infection and coordination di-

alog of botnets by matching a state-based infection sequence model. Based on URL

extraction from spam mail Ma, et al. [12], studied a number of machine learning me-

thods for classification web site. Characteristics, such as IP addresses, whois records

and lexical features of phishing URLs have been analyzed by McGrath and Gupta

[13]. Xie et al [14] in focus on detecting spamming botnets by developing regular

expression based signatures from a dataset of spam URLs. Etienne, et al. [15] pro-

posed a technique for the detection and mitigating botnet infection on a network.

They use multiple features from DNS queries such as A and NS Records, IP ranges,

TTL and alphanumeric characters from domains. In their experiment, they applied

Naive Bayesian. Nhauo et al. [16] proposed a method for Classification of Malicious

Domains using Support Vector Machine and Bi-gram algorithm using only domain

names and their results showed that features extracted by bi-gram were performing a

lot better than single alphanumeric character. Antonakakis et. al. [17] uses a combina-

tion of clustering and classification algorithms to detecting the DGA-Based Malware.

Zhao et al. [18] select a set of attributes from the network flows and then applies a

Bayes network and a decision tree algorithm to classify malicious traffic. Also, a

number of approaches have been studied in [19] [20] [21] [22] which use the spam

emails as the primary information source, for detecting fast-flux domains.

2 URL Filtering

URL filtering is a technique which controls network traffic, by allowing or forbidding

access to specific websites based on the information contained in the requested URL.

Filters can be applied in various ways such as software, proxy servers, DNS services

and firewalls. The ZFW method is an advanced technique used in modern firewalls. It

kdemertz@fmenr.duth.gr

226 K. Demertzis and L. Iliadis

functions in a flexible way employing control zones. Each zone controls traffic based

on the IP and the redirection of the requests from one zone to the other, according to

the rules that have been defined for each security level by the system administrator

[23]. ZFW offers URL filtering in the following manner:

• Local URL List which can include URLs or ΙΡ addresses that have been traced as

risky (black list records) and URLs in which the user wishes to have access

(white list records). Before the use of a URL it is checked if it is included in one

of the black or white lists and access is forwarded or stopped. The difficulty in

regular updating this lists and the non-spotting of zero-day threats are the main

disadvantages.

• URL Filter Servers containing information related to the malware content, which

are updated regularly. Before using a URL an HTTP request is sent to the URL

filter server in order to be checked and to allow or restrict access. If the URL fil-

ter server is not responding the next one is searched. A serious drawback is the

potential that filter servers do not respond whereas there is no mechanism for

tracing zero-day threats.

• Local URL lists with URL filter servers. It is a hybrid model of the above two

cases that combines advantages and disadvantages.

3 Datasets

Two datasets namely the dga_timestamp and the dga_dictionary were constructed and

used for testing. As legit domains 100,000 domain names were used. They were cho-

sen randomly from the database with the 1 million most popular domain names of

Alexa [24]. For the malicious domains the updated list of the Black Hole DNS data-

base was used [25]. This list includes 16,374 records from domains that have been

traced and characterized as dangerous. More over in the dga_time stamp dataset

15,000 domain name records were added labeled as malicious. They were created

based on the time stamp DGA algorithm, with length from 4 to 56 characters of the

form 18cbth51n205gdgsar1io1t5.com. In the dga_dictionary dataset 15,000 domain

name records were added labeled as malicious, which were created with the use of

words of phrases coming from an English dictionary. Their length varied from 4 to 56

characters of the form hotsex4rock69burningchoir.com. In both of the cases the cha-

racteristics used as independent parameters were: length (the length of the strings of

the domains) entropy (the entropy of each domain as degree of uncertainty, with the

higher values met in the DGA domains), alexa_grams (the degree of coherence be-

tween the domain and the list of domains originating from Alexa. This is done with

the technique of the probability linguistic model for the forecasting of the next n-gram

element), word_grams (the degree of coherence between the domain and a list of

479,623 words or widely used characters. It is estimated with the same method as in

the previous one), differences (the difference between the values of alexa_grams and

word_grams). The depended variable was the class of the domain (legit or malicious)

[26]. Duplicate records and records with incompatible characters were removed. Also

the outliers and the extreme values spotted were removed based on the Inter Quartile

kdemertz@fmenr.duth.gr

 Evolving Smart URL Filter in a Zone-Based Policy Firewall 227

Range (IQR) technique [27]. After this preprocessing operation the dga _time stamp

dataset was left with 116,756 records from which the 90,338 are class legit and the

rest 26,418 are class dga, whereas the dga_dictionary dataset includes 116,071

records from which the 90,445 are class legit and the rest 25,626 class malicious.

4 Methods and Materials

4.1 Evolving Spiking Neural Network

The eSNNs based on the “Thorpe” neural model [28] are modular connectionist-based

systems that evolve their structure and functionality in a continuous, self-organized,

on-line, adaptive, interactive way from incoming information [29]. In order to classify

real-valued data sets, each data sample, is mapped into a sequence of spikes using the

Rank Order Population Encoding (ROPE) technique [30] [31]. In this encoding

method neurons are organized into neuronal maps which share the same synaptic

weights. Whenever the synaptic weight is modified, the same modification is applied

to the entire population of neurons within the map. Inhibition is also present between

each neuronal map. If a neuron spikes, it inhibits all the neurons in the other maps

with neighboring positions. This prevents all the neurons from learning the same

pattern. When propagating new information, neuronal activity is initially reset to zero.

Then, as the propagation goes on, each time one of their inputs fire, neurons are

progressively desensitized. This is making neuronal responses dependent upon the

relative order of firing of the neuron's afferents [32] [33]. Also in this model the

neural plasticity is used to monitor the learning algorithm by using one-pass learning

method. The aim of this learning scheme is to create a repository of trained output

neurons during the presentation of training samples [34].

4.2 Feed Forward Neural Networks and Heuristic Optimization Methods

A common form of ANN are the feed forward ones (FNN) with three layers (Input,

Hidden and Output). A typical training process includes the following steps [35]:

• The weighted sums of the inputs are calculated based on function (1):

sj= ∑ ൫WijXi൯ െ θj j=1,2,…,hn
i=1 (1)

where n,h,m are the number of input, hidden and output nodes respectively and Wij is

the connection weight from the ith node of the input layer to the jth node of the hid-

den layer. Also θj is the bias (threshold).

• The output for each hidden node is estimated with the following equation (2):

Sj=sigmoid൫sj൯= 1ቀ1+exp൫ିsj൯ቁ j=1,2,…,h (2)

• The final output is estimated based on the equations (3) and (4) below:

kdemertz@fmenr.duth.gr

228 K. Demertzis and L. Iliadis

ok= ∑ ൫WjkSj൯ െ θ'
k k=1,2,…,m h

j=1 (3)

Ok=sigmoidሺokሻ= 1൫1+expሺିokሻ൯ k=1,2,…,m (4)

Various heuristic optimization methods have been used to train FNNs such as Ge-

netic Algorithms (GAs) and Particle Swarm Optimization (PSO) algorithms. General-

ly, there are three heuristic approaches used to train or optimize FNNs. First, heuristic

algorithms are used to find a combination of weights and biases which provide the

minimum error for a FNN. Second, heuristic algorithms are employed to find the op-

timal architecture for the network related to a specific case. The last approach is to

use an evolutionary algorithm to tune the parameters of a gradient-based learning

algorithm, such as the learning rate and momentum [36]. In this research effort PSO

has been employed to provide the optimal FNN model.

4.2.1 Particle Swarm Optimization
PSO is an evolutionary computation technique which is proposed by Kennedy and

Eberhart. It was inspired by social behavior of bird flocking or fish schooling. PSO

shares many similarities with evolutionary computation techniques such as GA. The

system is initialized with a population of random solutions and searches for optima by

updating generations. However, unlike GA, PSO has no evolution operators such as

crossover and mutation. In PSO, the potential solutions, called particles, fly through

the problem space by following the current optimum particles. Each particle keeps

track of its coordinates in the problem space which are associated with the best solu-

tion (fitness) it has achieved so far. (The fitness value is also stored.) This value is

called “pbest”. Another "best" value that is tracked by the particle swarm optimizer is

the best value obtained so far by any particle in its neighbors. This location is called

“lbest”. When a particle takes all the population as its topological neighbors, the best

value is a global best and is called “gbest”. According to the PSO at each time step

there is a change in the velocity (acceleration) of each particle toward its pbest and

lbest locations (local version of PSO). Acceleration is weighted by a random term,

with separate random numbers being generated for acceleration toward pbest and

lbest locations. PSO was mathematically modeled as follows [36]:

vi
t+1=wvi

t+c1× rand× ሺpbesti െ xi
tሻ+c2×rand×൫gbest-xi

t൯ (5)

 xi
t+i=xi

t+vi
t+i (6)

Where ݒ௜௧ is the velocity of particle i at iteration t, w is a weighting function, cj is an

acceleration coefficient, rand is a random number between 0 and 1, ݔ௜௧ is the current

position of particle i at iteration t, pbesti is the pbest of agent i at iteration t, and gbest

is the best solution so far. Where ݒݓ௜௧, provides exploration ability for PSO, the

c1× rand× ሺpbesti െ xi
tሻ+c2×rand×൫gbest-xi

t൯ (7)

kdemertz@fmenr.duth.gr

 Evolving Smart URL Filter in a Zone-Based Policy Firewall 229

represent private thinking and collaboration of particles. The PSO starts by randomly

placing the particles in a problem space. During each iteration, the velocities of par-

ticles are calculated using equation (5). After defining the velocities, the positions of

particles can be calculated as shown in equation (6). The process of changing par-

ticles’ positions continues until an end criterion is met.

4.3 Gene Expression Programming

The GEP is an evolutionary algorithm that uses populations of individuals and choos-

es the optimal ones based on a fitness function. Then it imports new individuals or

potential solutions in the population, by using one or more genetic operators. The

substantial difference between the GEP and the GA and Genetic Programming (GP) is

in the nature of the individuals. Specifically, GA uses a sequence of symbols of stable

length whereas GP uses nonlinear entities (parse trees) of various length and shape.

GEP employs both above forms of individuals. Initially they are encoded like linear

strings of stable length (genotype of chromosome) and then they are expressed as

expression trees (EXTR) with different shape and size (phenotype). The correlation

between the chromosomes and the EXTR in GEP declares an exclusive translation

system from the language of the chromosomes to the one of the EXTR. The set of the

genetic operators applied to GEP and import new individuals they always create syn-

tactically correct EXTR [37].

5 Description of the Proposed Method

The proposed herein methodology uses an eSNN classification approach in order to

detect and verify the DGA domain names. The topology of the developed eSNN is

strictly feed-forward, organized in several layers and weight modification occurs on

the connections between the neurons of the existing layers. The encoding is per-

formed by ROPE technique with 20 Gaussian Receptive Fields (GRF) per variable.

The data are normalized to the interval [-1, 1] and so the coverage of the Gaussians is

determined by using i_min and i_max. Each input variable is encoded independently

by a group of one-dimensional GRF. The GRF of neuron i is given by its center μi by

equation (8) and width σ by equation (9)

μi = Imin
n +

2i-3

2

Imax
n

- Imin
n

M-2
 (8)

σ=1

β
Imax
n ିImin

n

M-2
 (9)

where 1≤β ≤2 and the parameter β directly controls the width of each Gaussian recep-

tive field. When a neuron reaches its threshold, it spikes and inhibits neurons at

equivalent positions in the other maps so that only one neuron will respond at any

location. Every spike triggers a time based Hebbian-like learning rule that adjusts the

synaptic weights. For each training sample i with class label l which represent a legit

kdemertz@fmenr.duth.gr

230 K. Demertzis and L. Iliadis

domains, a new output neuron is created and fully connected to the previous layer of

neurons, resulting in a real-valued weight vector ݓሺ௜ሻ with ݓ௝ሺ௜ሻ א ܴ denoting the

connection between the pre-synaptic neuron j and the created neuron i. In the next

step, the input spikes are propagated through the network and the value of weight ݓ௝ሺ௜ሻ is computed according to the order of spike transmission through a synapse

j: wj

(i)
=(ml)

order(j)
 (10)

where j is the pre-synaptic neuron of i. Function order(j) represents the rank of the

spike emitted by neuron j. The firing threshold ߠሺ௜ሻ of the created neuron i is defined

as the fraction ܿ௟ R, 0 <ܿ௟< 1, of the maximal possible potentialא

umax
(i)

: θሺiሻ
 ← clumax

ሺiሻ (11)

 umax
(i)

 ← ∑ wj

(i)
j (ml)

order(j)
(12)

The weight vector of the trained neuron is compared to the weights corresponding

to neurons already stored in the repository. Two neurons are considered too “similar”

if the minimal Euclidean distance between their weight vectors is smaller than a spe-

cified similarity threshold sl. Both the firing thresholds and the weight vectors were

merged according to equations (13) and (14):

 wj

(k)
 ←

 wj
(i)

+Nwj
(k)

1+N
 (13)

θሺkሻ
 ←

θሺiሻ
+Nθሺkሻ
1+N

 (14)

Integer N denotes the number of samples previously used to update neuron k. The

merging is implemented as the average of the connection weights, and of the two

firing thresholds. After merging, the trained neuron i is discarded and the next sample

processed. If no other neuron in the repository is similar to the trained neuron i, the

neuron i is added to the repository as a new output.

6 Results

The performance of the employed algorithms for the case of the dga_dictionary data-

set has been quite high as the obtained correlation shows. On the other hand, in the

dga_timestamp dataset there was quite a lot of noise, due to the unstructured text of

domain names that cannot be easily understood by machines. Regarding the overall

efficiency of the methods, the results show that the eSNN has much better generaliza-

tion performance and more accurate classification output. The accuracy comparison

of the evolving algorithms with 10-fold cross validation is shown in table 1 and the

confusion matrices in tables 2, 3 and 4

kdemertz@fmenr.duth.gr

 Evolving Smart URL Filter in a Zone-Based Policy Firewall 231

Table 1. Accuracy (ACC) Comparison between FFNN PSO, GEP and eSNN

 dga_dictionary dataset dga _timestamp dataset

Classifier ACC ACC

FNNPSO 95.5% 91.9%

GEP 92.1% 90.6%

eSNN 95.8% 92.4%

Table 2. Confusion matrix for FNNPSO

CONFUSION MATRIX FOR FFNNPSO

 dga_dictionary dataset dga _timestamp dataset

 Legit DGA Accuracy Legit DGA Accuracy

Legit 86556 3889 95,7% 84105 6233 93,1%

DGA 1204 24422 95,3% 2457 23961 90,7%

 Overall Accuracy 95.5% Overall Accuracy 91.9%

Table 3. Confusion matrix for GEP

CONFUSION MATRIX FOR GEP

 dga_dictionary dataset dga _timestamp dataset

 Legit DGA Accuracy Legit DGA Accuracy

Legit 83933 6512 92,8% 81666 8672 90,4%

DGA 2204 23422 91,4% 2430 23988 90,8%

 Overall Accuracy 92.1% Overall Accuracy 90.6%

Table 4. Confusion matrix for eSNN

CONFUSION MATRIX FOR eSNN

 dga_dictionary dataset dga _timestamp dataset

 Legit DGA Accuracy

Legit 87732 2713 97% 84647 5691 93,7%

DGA 1384 24242 94,6% 2351 24067 91,1%

 Overall Accuracy 95.8% Overall Accuracy 92.4%

7 Discussion – Conclusions

An innovative biologically inspired artificial intelligence computer security technique

has been introduced in this paper. An evolving Smart URL Filter in a Zone-based

Policy Firewall proposed for detecting Algorithmically Generated Malicious Domains

Names. It performs classification by using eSNN for the detection of DGA with high

accuracy and generalization. The classification performance and the accuracy of the

eSNN model were experimentally explored based on different datasets and compared

with other evolving algorithms and reported very promising results. In this way it

adds a higher degree of integrity to the rest of the security infrastructure of a ZFW.

kdemertz@fmenr.duth.gr

232 K. Demertzis and L. Iliadis

As a future direction, aiming to improve the efficiency of the proposed method, it

would be essential to try feature minimization using Principal Component Analysis or

other existing approaches. Also additional computational intelligence methods could

be explored and compared on the same security task. Finally the eSURLF could be

improved towards a better online learning with self-modified parameter values.

References

1. www.damballa.com

2. www.crowdstrike.com

3. DGAs and Cyber-Criminals: A Case Study, Research Note. www.damballa.com

4. Yadav, S., Reddy, A.K.K., Reddy, A.L.N., Ranjan, S.: Detecting Algorithmically Generat-

ed Domain-Flux Attacks With DNS Traffic Analysis. ACM 20(5) (2012)

5. Perdisci, R., Corona, I., Giacinto, G.: Early Detection of Malicious Flux Networks via

Large-Scale Passive DNS Traffic Analysis. By the IEEE Computer Society (2012)

6. Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: EXPOSURE: Finding Malicious Domains

Using Passive DNS Analysis. TISSEC 16(4), Article No. 14 A (2014)

7. Demertzis, K., Iliadis, L.: A hybrid network anomaly and intrusion detection approach

based on evolving spiking neural network classification. In: Sideridis, A.B. (ed.)

E-Democracy 2013. CCIS, vol. 441, pp. 11–23. Springer, Heidelberg (2014)

8. Demertzis, K., Iliadis, L.: Evolving computational intelligence system for malware detec-

tion. In: Iliadis, L., Papazoglou, M., Pohl, K. (eds.) CAiSE Workshops 2014. LNBIP, vol.

178, pp. 322–334. Springer, Heidelberg (2014)

9. Demertzis, K., Iliadis, L.: Bio-Inspired hybrid artificial intelligence framework for cyber

security. In: Proceedings of the 2nd Conference on CryptAAF, Athens, Greece (2014)

10. Demertzis, K., Iliadis, L.: Bio-Inspired Hybrid Intelligent Method for Detecting Android

Malware. In: Proceedings of the 9th KICSS Conference, Limassol, Cyprus (2014)

11. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee W.: Bothunter: detecting malware in-

fection through ids-driven dialog correlation. In: 16th USENIX, pp. 1--16 (2007)

12. Ma, J.: Beyond blacklist: learning to detect malicious website from suspicious URLs. In:

SIGKDD Conference, Paris, France (2009)

13. McGrath, D.K., Gupta, M.: Behind phishing: an examination of phisher modi operandi. In:

USENIX on Large-scale Exploits and Emergent Threats (LEET) (2008)

14. Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., Osipkov, I.: Spamming botnets: sig-

natures and characteristics. ACM SIGCOMM Comp. Comm. Review (2008)

15. Stalmans, E.: A framework for DNS based detection and mitigation of malware infections

on a network. In: Information Security South Africa Conference (2011)

16. Nhauo, D., Sung-Ryul, K.: Classification of malicious domain names using support vector

machine and bi-gram method. J. of Security and its Applications 7(1) (2013)

17. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu, S., Lee, W., Dagon, D.:

From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware (2012)

18. Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A.: Botnet detection based on

traffic behavior analysis and flow intervals. J. Computer Security 39, 2–16 (2013)

19. Holz, T., Gorecki, C., Rieck, K., Freiling, F.: Measuring and detecting fast-flux service

networks. In: Network & Distributed System Security Symposium, NDSS 2008 (2008)

20. Passerini, E., Paleari, R., Martignoni, L., Bruschi, D.: Fluxor: detecting and monitoring

fast-flux service networks. In: DIMVA 2008 (2008)

kdemertz@fmenr.duth.gr

 Evolving Smart URL Filter in a Zone-Based Policy Firewall 233

21. Nazario, J., Holz, T.: As the net churns fast-flux botnet observations. In: MALWARE

(2008)

22. Konte, M., Feamster, N., Jung, J.: Dynamics of online scam hosting infrastructure. In: Pas-

sive and Active Measurement Conference, PAM 2009 (2009)

23. Cisco Router and Security Device Manager 2.4 User’s Guide. www.cisco.com

24. http://www.alexa.com/

25. http://www.malwaredomains.com/

26. https://www.clicksecurity.com/

27. Upton, G., Cook, I.: Understanding Statistics. Oxford University Press, p. 55 (1996)

28. Thorpe, S.J., Delorme, A., Rullen, R.: Spike-based strategies for rapid processing (2001)

29. Schliebs, S., Kasabov, N.: Evolving spiking neural network—a survey. Springer (2013)

30. Delorme, A., Perrinet, L., Thorpe, S.J.: Networks of Integrate-and-Fire Neurons using

Rank Order Coding. Pub. in Neurocomputing 38-40(1-4), 539–545 (2000)

31. Thorpe, S.J., Gautrais, J.: Rank order coding. In: CNS 1997: 6th Conf. on Computational

Neuroscience: Trends in Research, pp. 113–118. Plenum Pr. (1998)

32. Kasabov, N.: Evolving connectionist systems: Methods and Applications in Bioinformat-

ics, Brain study and intelligent machines. Springer (2002)

33. Wysoski, S.G., Benuskova, L., Kasabov, N.: Adaptive learning procedure for a network of

spiking neurons and visual pattern recognition. In: Blanc-Talon, J., Philips, W., Popescu, D.,

Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 1133–1142. Springer, Heidelberg

(2006)

34. Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated feature and parameter optimization

for an evolving spiking neural network. In: Köppen, M., Kasabov, N., Coghill, G. (eds.)

ICONIP 2008, Part I. LNCS, vol. 5506, pp. 1229–1236. Springer, Heidelberg (2009)

35. Iliadis, L.: Intelligent Information Systems and applications in risk estimation. A. Stamou-

lis publication, Thessaloniki (2008) ISBN: 978-960-6741-33-3

36. Mirjalili, S., Hashim, S., Sardroudi, H.: Training feedforward neural networks using hybrid

particle swarm optimization and gravitational search algorithm. Elsevier (2012)

37. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial In-

telligence, 2nd edn., Springer (2006)

kdemertz@fmenr.duth.gr

	‎C:\Users\user\Desktop\papers\eSURLF.pdf‎
	G:\Downloads\Desktop\Phd theory\15.Papers\6.SLDS_2015\eSURLF.pdf
	G:\Downloads\Desktop\Phd theory\15.Papers\6.SLDS_2015\My Publications.pdf
	In memory of Alexey Chervonenkis
	Preface
	Organization
	Contents
	Invited Papers
	Learning with Intelligent Teacher: Similarity Control and Knowledge Transfer
	1 Introduction
	2 Learning with Intelligent Teacher: Privileged Information
	2.1 Classical Model of Learning
	2.2 LUPI Model of Learning

	3 Statistical Analysis of the Rate of Convergence
	3.1 Key Observation: SVM with Oracle Teacher
	3.2 From Ideal Oracle to Real Intelligent Teacher

	4 SVM+ for Similarity Control in LUPI Paradigm
	5 Three Examples of Similarity Control Using Privileged Information
	5.1 Advanced Technical Model as Privileged Information
	5.2 Future Events as Privileged Information
	5.3 Holistic Description as Privileged Information

	6 Transfer of Knowledge Obtained in Privileged Information Space to Decision Space
	6.1 Knowledge Representation
	6.2 Scheme of Knowledge Transfer Between Spaces
	Finding Fundamental Elements of Knowledge.
	Fundamental Elements of Knowledge for Homogenous Quadratic Kernel.
	Finding Images of Frames in Space X.

	6.3 Algorithms for Knowledge Transfer
	6.4 Kernels Involved in Intelligent Learning
	6.5 Knowledge Transfer for Statistical Inference Problems
	6.6 General Remarks About Knowledge Transfer
	What Knowledge Does Teacher Transfer?
	What Are the Roots of Intelligence?
	Holistic Description and Culture.
	Quadratic Kernel.
	Some Philosophical Interpretations.

	7 Conclusions
	References

	Statistical Inference Problems and Their Rigorous Solutions
	1 Basic Concepts of Classical Statistics
	1.1 Cumulative Distribution Function
	1.2 General Problems of Probability Theory and Statistics
	1.3 Empirical Cumulative Distribution Functions
	1.4 The Glivenko-Cantelli Theorem and Kolmogorov Type Bounds
	1.5 Generalization to Multidimensional Case

	2 Main Problems of Statistical Inference
	2.1 Conditional Density, Conditional Probability, Regression, and Density Ratio Functions
	2.2 Direct Constructive Setting for Conditional Density Estimation
	2.3 Direct Constructive Setting for Conditional Probability Estimation
	2.4 Direct Constructive Setting for Regression Estimation
	2.5 Direct Constructive Setting of Density Ratio Estimation Problem

	3 Solution of Ill-Posed Operator Equations
	3.1 Fredholm Integral Equations of the First Kind
	3.2 Methods of Solving Ill-Posed Problems
	Inverse Operator Lemma.
	Regularization Method.

	4 Stochastic Ill-Posed Problems
	4.1 Regularization of Stochastic Ill-Posed Problems
	4.2 Solution of Empirical Inference Problems

	5 Solving Statistical Inference Problems with V-matrix
	5.1 The V-matrix
	Definition of Distance.
	Definition of Distance for Conditional Probability Estimation Problem.
	Distance for Regression Estimation Problem.
	Distance for Density Ratio Estimation Problem.

	5.2 The Regularization Functionals in RKHS
	Reproducing Kernel Hilbert Space.
	Explicit Form of Regularization Functional.

	6 Solution of Statistical Inference Problems
	6.1 Estimation of Conditional Probability Function
	6.2 Estimation of Regression Function
	6.3 Estimation of Density Ratio Function
	6.4 Two-Stage Method for Function Estimation: Data Smoothing and Data Interpolation
	Estimating Function Values at Observation Points.
	Function Interpolation.
	Additional Considerations.

	6.5 Applications of Density Ratio Estimation
	Data Adaptation Problem.
	Unbalanced Classes in Pattern Recognition.
	Estimation of Mutual Information.

	7 Concluding Remarks
	7.1 Comparison with Classical Linear Regression
	7.2 Comparison with SVM Methods for Pattern Recognition

	References

	Statistical Learning and Its Applications
	Feature Mapping Through Maximization
of the Atomic Interclass Distances
	1 Introduction
	2 The Feature Mapping Optimization Objective
	3 Algorithm Implementation
	4 Experimental Results
	References

	Adaptive Design of Experiments for Sobol Indices Estimation Based on Quadratic Metamodel
	1 Introduction
	2 Calculation of Sensitivity Indices Using Quadratic Metamodel
	2.1 Sensitivity Indices
	2.2 Metamodeling Approach

	3 Asymptotic Approximation
	4 Optimality Criterion and Procedure for Design Construction
	4.1 Optimization Details

	5 Experimental Results
	5.1 Description of Experiments
	5.2 Description of Results

	6 Conclusion
	References

	GoldenEye++: A Closer Look into the Black Box
	1 Introduction
	2 Method
	2.1 The GoldenEye Algorithm
	2.2 The GoldenEye++ Algorithm
	2.3 Experimental Setup

	3 Results
	3.1 UCI Datasets
	3.2 Analyzing Drug Interactions

	4 Concluding Remarks
	References

	Gaussian Process Regression for Structured Data Sets
	1 Introduction
	1.1 Approximation Problem
	1.2 Factorial Design of Experiments
	1.3 Gaussian Process Regression

	2 Proposed Approach
	2.1 Tensor and Related Operations
	2.2 Fast Exact Inference
	2.3 Anisotropy
	2.4 Initialization

	3 Experimental Results
	3.1 Rotating Disc Problem

	4 Conclusion
	References

	Adaptive Design of Experiments Based on Gaussian Processes
	1 Introduction
	2 Gaussian Process Regression
	3 Adaptive Design of Experiments
	4 One-Step Look-Ahead Solutions
	4.1 L2 Error Function

	4.2 L1 Error Function
	4.3 L∞ Error Function

	5 Towards More Robust Adaptive DoE Criterion
	6 Experiments
	6.1 Model Experiments
	6.2 Spring Design

	7 Conclusions
	References

	Forests of Randomized Shapelet Trees
	1 Introduction
	2 Background
	3 Forests of Randomized Shapelet Trees
	4 Experiments
	4.1 Experimental Setup
	4.2 Empirical Results

	5 Concluding Remarks
	References

	Aggregation of Adaptive Forecasting Algorithms Under Asymmetric Loss Function
	1 Introduction
	1.1 Time Series Forecasting

	2 Mixability of Asymmetric Games and Parameters of the Aggregating Algorithm
	2.1 Mixability of the Asymmetric Game
	2.2 Parameters ρ0 and S(x)

	2.3 Loss Process Bound

	3 Experiments
	3.1 Base Algorithms
	3.2 Compositions Based on the Aggregating Algorithm
	3.3 Comparison with Base Algorithms
	3.4 Comparison with Other Compositions

	4 Conclusion
	References

	Visualization and Analysis of Multiple Time Series by Beanplot PCA
	1 The Statistical Problem
	2 Beanplot Time Series
	3 Model-Based Beanplots: Parameterization
	4 Multiple Beanplot Time Series
	5 Application on Real Data
	6 Conclusions
	References

	Recursive SVM Based on TEDA
	1 Introduction
	2 SVM Model Formulation
	3 TEDA Approach Summary
	4 The TEDA SVM Statement
	5 TEDA Kernel
	6 TEDA SVM Incremental Update
	6.1 Adding new Samples
	6.2 Updating the Kernel
	6.3 Updating Box Constraints

	7 Suggestions on the Method Implementation
	8 Demonstrations for the Experimental Data
	9 Conclusion
	References

	RDE with Forgetting: An Approximate Solution for Large Values of k with an Application to Fault Detection Problems
	1 Introduction
	2 Recursive Density Estimation
	3 Recursive Density Estimation with Forgetting
	4 Case of Study
	5 Experiment and Results
	6 Conclusion
	References

	Sit-to-Stand Movement Recognition Using Kinect
	1 Introduction
	2 Movement Recognition: Analysis and Models
	3 Experimental Set-Up and Framework
	3.1 Data Visualization
	3.2 Analysis

	4 Evaluation
	4.1 Extracting Action Data
	4.2 Warp Distance Matrix

	4.3 Classification
	4.4 Decision Trees
	4.5 Random Forests
	4.6 K-Nearest Neighbours with Bagging

	5 Discussion and Conclusions
	References

	Additive Regularization of Topic Models for Topic Selection and Sparse Factorization
	1 Introduction
	2 Additive Regularization of Topic Models
	3 Number of Topics Determination
	4 Topic Selection in a Sparse Decorrelated Model
	5 Conclusions
	References

	Social Web-Based Anxiety Index's Predictive Information on S&P 500 Revisited
	1 Introduction
	2 Discussion on the Web Blog Based Anxiety Index
	2.1 Findings and Limitations

	3 Anxiety Index's Predictive Information on the Stock Market, Revisited
	4 Conclusion
	References

	Exploring the Link Between Gene Expression and Protein Binding by Integrating mRNA Microarray and ChIP-Seq Data
	1 Introduction
	2 Data and Methods
	2.1 Description of the Data
	2.2 Analysis of ChIP-seq Data
	2.3 A Brief Description of MRF Model
	2.4 Analysis of Microarray Data
	2.5 TSS Selection

	3 Results and Discussion
	3.1 ChIP-seq Analysis
	3.2 Expression Data versus Enrichment Probability

	4 Conclusion
	References

	Lattice-Theoretic Approach to Version Spaces in Qualitative Decision Making
	1 Motivation
	2 When the Local Utility Functions are Identity Maps
	3 When the Local Utility Functions are Known A Priori
	4 Concluding Remarks and Further Directions
	References

	Conformal Prediction and its Applications

	A Comparison of Three Implementations of Multi-Label Conformal Prediction
	1 Introduction
	2 Related Work
	2.1 Multi-Label Learning
	2.2 Conformal Predictor

	3 The Implementations of Multi-Label Conformal Predictor
	3.1 Instance Reproduction MLCP
	3.2 Binary Relevance MLCP
	3.3 Power Set MLCP

	4 Experimental Results
	4.1 Comparisons of Calibration Property
	4.2 Comparisons of Prediction Efficiency
	4.3 Comparisons of Computational Complexity

	5 Conclusion
	References

	Modifications to p-Values of Conformal Predictors
	1 Introduction
	2 Modifications of the P-value
	3 Empirical Results of Modified P-values
	4 Discussion
	References

	Cross-Conformal Prediction with Ridge Regression
	1 Introduction
	2 Conformal and Inductive Conformal Prediction
	3 Cross-Conformal Prediction for Regression
	4 Normalized Nonconformity Measures
	5 Experiments and Results
	6 Conclusion
	References

	Handling Small Calibration Sets in Mondrian Inductive Conformal Regressors
	1 Introduction
	2 Background
	2.1 Conformal Prediction
	2.2 Regression Trees as MICPs

	3 Method
	3.1 Suggested Solutions to Small Calibration Sets
	3.2 Experimental Setup

	4 Results
	5 Concluding Remarks
	References

	Conformal Anomaly Detection of Trajectories with a Multi-class Hierarchy
	1 Introduction
	2 Method
	3 Experiments and Data
	3.1 Experiment 1: Comparing pglobal, plocal and ptype Directly
	3.2 Experiment 2: Maintaining Computational Cost
	3.3 Experiment 3: Wrong Behaviour Type Anomalies
	3.4 Experiment 4: Hybrid Rule

	4 Results
	5 Conclusion
	References

	Model Selection Using Efficiency of Conformal Predictors
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	4 Empirical Study
	5 Conclusions and Future Work
	References

	Confidence Sets for Classification
	1 Introduction
	2 General Framework
	2.1 Notations
	2.2 General Definition of a Confidence Set
	2.3 -Confidence Set
	2.4 -Confidence Set for Gaussian Mixture

	3 Plug-in -Confidence Set
	4 Numerical Results
	5 Conclusion
	References

	Conformal Clustering and Its Application to Botnet Traffic
	1 Introduction
	2 Data Overview
	2.1 Periodicity Detection Based on PACF

	3 Conformal Clustering Approach
	3.1 Preprocessing and Dimensionality Reduction
	3.2 Conformal Clustering
	3.3 Non-conformity Measures

	4 Results
	5 Conclusions and Future Work
	References

	Interpretation of Conformal Prediction Classification Models
	1 Introduction
	2 Method
	3 Results
	3.1 Experimental Results on Fictitious Data
	3.2 Experimental Results on Ames Data

	4 Discussion
	References

	New Frontiers in Data Analysisfor Nuclear Fusion
	Confinement Regime Identification
Using Artificial Intelligence Methods
	1 Introduction
	2 The International ITPA L-H Database
	3 The Computational Problem
	4 The GAs Driven Models
	4.1 Brief Introduction to GAs
	4.2 GAs Application to the Problem

	5 Results
	5.1 Temperature Related Results
	5.2 Power Related Results
	5.3 Computational Cost

	6 Discussion
	References

	How to Handle Error Bars in Symbolic Regression
for Data Mining in Scientific Applications
	1 Introduction
	2 The Basic Version of Symbolic Regression via Genetic
Programming
	3 Geodesic Distance to Include the Effects of the Error Bars
and Application to Scaling Laws
	4 Example of Application: Scaling Laws
	4.1 Scaling Laws
	4.2 Numerical Results

	5 Discussion and Conclusions
	References

	Applying Forecasting to Fusion Databases
	1 Introduction
	2 TJ-II Fusion Database
	3 Approaches to Forecasting
	3.1 Forecasting with Classical Techniques
	3.2 Forecasting with Machine Learning Approaches

	4 Experimental Results
	4.1 Experimental Setup of Forecasting Methods
	4.2 Performance Assessment of Forecasting
	4.3 Results

	5 Summary and Future Works
	References

	Computationally Efficient Five-Class Image
Classifier Based on Venn Predictors
	1 Introduction
	2 Venn Predictors
	3 Image Pre-processing
	4 Results
	5 Discussion
	References

	SOM and Feature Weights Based Method for Dimensionality Reduction in Large Gauss Linear Models
	1 Introduction
	2 Variable Reduction
	3 Self Organized Maps
	4 Feature Weighting Method Based on SOM
	5 Experimental Results
	6 Conclusion and Aplicabilities
	References

	Geometric Data Analysis
	Assigning Objects to Classes of a Euclidean Ascending Hierarchical Clustering
	1 Assignment by Dichotomies to a System of Classes
	2 Distance from Object to Class
	3 Assignment Criterion
	4 Application to the Survey Data of Trust Barometer (CEVIPOF)
	4.1 Data Set
	4.2 Structure of the Space of Trust
	4.3 Clustering of Individuals
	4.4 Assignment of Individuals of Waves 4 and 5

	5 Conclusion
	References

	The Structure of Argument: Semantic Mapping of US Supreme Court Cases
	1 Introduction
	2 Data Preprocessing
	3 Semantic Mapping Through Correspondence Analysis and Classificatory Analysis
	4 Towards the Trajectory of Argument
	5 Conclusion
	References

	Supporting Data Analytics for Smart Cities: An Overview of Data Models and Topology
	1 Introduction
	2 Data Models for Smart Cities
	3 Topological Queries in Smart Cities
	4 Topological Consistency
	5 Conclusions
	References

	Manifold Learning in Regression Tasks
	1 Introduction
	2 Manifold Learning
	2.1 Conventional Manifold Learning Setting
	2.2 Manifold Learning as Manifold Reconstruction Problem
	2.3 Manifold Learning as Tangent Bundle Manifold Learning

	3 Grassmann & Stiefel Eigenmaps
	3.1 Structure of the GSE
	3.2 GSE: Preliminaries
	3.3 GSE: Tangent Manifold Learning Step
	3.4 Manifold Embedding Step
	3.5 Tangent Bundle Reconstruction Step

	4 Solution of the Regression Task
	5 Results of Numerical Experiments
	References

	Random Projection Towards the Baire Metric for High Dimensional Clustering
	1 Introduction
	1.1 Random Projection in Order to Cluster High Dimensional Data

	2 Dimensionality Reduction by Random Projection
	3 Random Projection
	4 Implementation of Algorithm
	5 Conclusions
	References

	Optimal Coding for Discrete Random Vector
	1 Introduction and Motivation
	2 Theoretical Framework
	2.1 Generalities
	2.2 Mutual Information

	3 Optimal Partition
	3.1 Mutual Information Explained by a Partition
	3.2 Existence of an Optimal Partition

	4 Computational Aspects
	4.1 Example
	4.2 Some Usual Multivariate Distributions

	5 Conclusions
	References

	Author Index

	‎C:\Users\user\Desktop\papers\xy Publications_2.pdf‎

