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Abstract: One of the promises of AI in the military domain that seems to guarantee its adoption is 
its broad applicability. In a military context, the potential for AI is present in all operational domains 
(i.e., land, sea, air, space, and cyber-space) and all levels of warfare (i.e., political, strategic, opera-
tional, and tactical). However, despite the potential, the convergence between needs and AI techno-
logical advances is still not optimal, especially in supervised machine learning for military applica-
tions. Training supervised machine learning models requires a large amount of up-to-date data, 
often unavailable or difficult to produce by one organization. An excellent way to tackle this chal-
lenge is federated learning by designing a data pipeline collaboratively. This mechanism is based 
on implementing a single universal model for all users, trained using decentralized data. Further-
more, this federated model ensures the privacy and protection of sensitive information managed by 
each entity. However, this process raises severe objections to the effectiveness and generalizability 
of the universal federated model. Usually, each machine learning algorithm shows sensitivity in 
managing the available data and revealing the complex relationships that characterize them, so the 
forecast has some severe biases. This paper proposes a holistic federated learning approach to ad-
dress the above problem. It is a Federated Auto-Meta-Ensemble Learning (FAMEL) framework. 
FAMEL, for each user of the federation, automatically creates the most appropriate algorithm with 
the optimal hyperparameters that apply to the available data in its possession. The optimal model 
of each federal user is used to create an ensemble learning model. Hence, each user has an up-to-
date, highly accurate model without exposing personal data in the federation. As it turns out exper-
imentally, this ensemble model offers better predictability and stability. Its overall behavior smooth-
ens noise while reducing the risk of a wrong choice resulting from under-sampling. 

Keywords: federated learning; model-agnostic; meta-learning; ensemble learning; military opera-
tions; cyber defense 
 

1. Introduction 
With an increasing pace, artificial intelligence (AI) is becoming a significant and in-

tegral part of modern warfare because it offers new opportunities for the complete auto-
mation of large-scale infrastructure and the optimization of numerous defence or cyber-
defence systems [1]. One of the promises of AI in the military domain [2] that seems to 
guarantee its adoption is its broad applicability. In a military context, the potential for AI 
is present in all operational domains (i.e., land, sea, air, space, and cyber-space) and all 
levels of warfare (i.e., political, strategic, operational, and tactical) [3]. Still, at the same 
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time, the complexity is growing exponentially as the number of interconnected systems 
involved in continuous interconnection and uninterrupted information exchange services 
expands in real-time [4]. From a generalized point of view, it can be said that AI will have 
a significant impact on the following missions: 
1. Too fast missions with reaction times of seconds or less to be executed in high com-

plexity (data, context, type of mission). 
2. Missions with operation duration beyond human endurance or implying high oper-

ational (personnel) costs over a long period. 
3. Missions involving an overwhelming complexity which requires agility and adapta-

tion to evolutions in context and objectives. 
4. Missions challenging operational contexts implying severe risks to war fighters. 

Applications supporting the missions above that monitor events in real-time are re-
ceiving a constant, unlimited stream of observations of interlinked approaches. These data 
exhibit high variability because their features vary substantially and unexpectedly over 
time, altering their typical, expected behaviour. The latest data are the most important in 
the typical case, as ageing is based on their timing. 

Military AI-enabled intelligent systems that utilize data can transform military com-
manders' and operators' knowledge and experience into optimal valid and timely deci-
sions [3,4]. However, the lack of detailed knowledge and expertise associated with using 
complex machine learning architectures can affect the performance of the intelligent 
model, prevent the periodic adjustment of some critical hyperparameters and ultimately 
reduce the algorithm's reliability and the generalization that should characterize these 
systems. These disadvantages are preventing stakeholders of defence, at all echelons of 
the command chain, from trusting and making effective and systematic use of machine 
learning systems. In this context and given the inability of traditional decision-making 
systems to adapt to the changing environment, the adoption of intelligent solutions is im-
perative. 

Furthermore, a general difficulty that reinforces distrust of machine learning systems 
in defence is the prospect of adopting a single data warehouse for the overall training of 
intelligent models [1], which could create severe technical challenges and severe issues of 
privacy [5], logic, and physical security due to the need of establishing a potential single 
point of failure and a potential strategic/primary target for the adversaries [6]. Accord-
ingly, the exchange of data that could make more complete intelligent categorizers that 
would generalize also poses risks to the security and privacy of sensitive data, which mil-
itary commanders and operators do not want to risk [7].  

To overcome the above double challenge, this work proposes FAMEL. It is a holistic 
system that automates selecting and using the most appropriate algorithmic hyperparam-
eters that optimally solve a problem under consideration, approaching it as a model for 
finding algorithmic solutions where it is solved by mapping between input and output 
data. The proposed framework uses meta-learning to identify similar knowledge accumu-
lated in the past to speed up the process [8]. This knowledge is combined using heuristic 
techniques, implementing a single, constantly updated intelligent framework. Data re-
mains in the local environment of the operators, and only the parameters of the models 
are exchanged through secure processes, thus making it harder for potential adversaries 
to intervene with the system [9,10]. 

2. Proposed Framework 
In the proposed FAMEL framework, each user uses an automatic meta-learning sys-

tem in a horizontal federated learning approach (horizontal federated learning uses da-
tasets with the same feature space across all devices. Vertical federated learning uses dif-
ferent datasets of different feature space to jointly train a global model). The most appro-
priate algorithm with the optimal hyperparameters is selected in a fully automated way, 
which can optimally solve the given problem. The implementation is based on the entity's 
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available data and is not required to be disposed of in a remote repository or shared with 
a third party [11].  

The whole process is described in Figure 1.  

 
Figure 1. The proposed block diagram of the FAMEL framework. 

Specifically: 
5. Step 1—Fine-tune the best local model. The fine-tuning process will help to improve 

the accuracy of each machine learning model by integrating data from an existing 
dataset and using it as an initialization point to make the training process time- and 
resource-efficient. 

6. Step 2—Upload the local model to the federated server.  
7. Step 3—Ensemble the model by the federated server. This ensemble method uses 

multiple learning algorithms to obtain a better predictive performance than could be 
obtained from any of the constituent learning algorithms alone. 

8. Step 4—Dispatch the ensemble model to local devices. 
The best models (winner algorithm) that result from the process are channelled to a 

federated server, where an ensemble learning model through a heuristic mechanism is 
created. This ensemble model essentially incorporates the knowledge represented by the 
local best models, which, as mentioned, came from the local data held by the users [12]. 
Hence, collectively, the ensemble model offers high generalization, better predictability, 
and stability. Its general behaviour smoothens noise while lowering the overall danger of 
making a false choice due to modelling or prejudice in handling scenarios of local data 
[13,14].  

2.1. Federated Learning 
Assuming that 𝐹𝐹𝑖𝑖 = 1,2, … ,𝑁𝑁 data owners want to train a machine learning model 

using their data D = {𝐷𝐷𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑁𝑁}. A traditional way would be to collect all data into 
a single set 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐷𝐷1  ∪  𝐷𝐷1 ∪···∪  𝐷𝐷𝑁𝑁  to train a model 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 . The proposed federated 
learning system creates a single universal model [15]:  
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𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓 = �
𝑛𝑛𝑘𝑘
𝑛𝑛
𝑤𝑤𝑡𝑡+1𝑘𝑘

𝐾𝐾

𝑘𝑘=1

  

where K is the total number of nodes used in the process, n is the data points, and t is the 
number of federated learning rounds [16]. The model comes from local models 
Δ𝑤𝑤1,Δ𝑤𝑤2, … ,Δ𝑤𝑤𝐾𝐾, which are trained from the 𝐷𝐷𝑖𝑖 of each federal user separately. Data D1 
of the user F1 is not exposed to other federal users. In addition, the accuracy 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 and 
𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠of the models 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓, must be close or equal. Specifically, if 𝛿𝛿 is a negative 
number, then the federal learning method suffers from a loss of accuracy, as indicated in 
the following formula [11,13]: 

�𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 � < 𝛿𝛿   

The Auto-Machine Learning technique is used to develop an accurate and robust 
federal system that will remain stable in new information without the ability to generalize 
or suffer a considerable loss of 𝛿𝛿-accuracy [17,18]. 

2.2. Auto-Machine Learning 
Initially, each federation member has a set of 𝐷𝐷 data containing attribute vectors and 

class tags on a supervised problem linked with a job. Data set 𝐷𝐷 is specifically divided 
into two parts: a set of training S and a set of forecasts B for testing and testing so that 
𝐷𝐷 =  〈𝑆𝑆,𝐵𝐵〉. Furthermore, the data set 𝐷𝐷  contains vector-label pairings such that 𝐷𝐷 =
 {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}. Each label represents a known class and belongs to a known set of 𝐿𝐿 labels [19].  

Considering 𝑃𝑃(𝐷𝐷) the distribution of aggregate data held by federal agencies, we 
can sample the issuance of an individual data set such that 𝑃𝑃𝑓𝑓 = 𝑃𝑃𝑓𝑓(𝐱𝐱,𝑦𝑦). Our problem 
lies in creating a trained classifier ℳ𝜆𝜆: 𝐱𝐱 ↦ 𝑦𝑦 which is fully and optimally configured with 
λ ∈ Λ so that it can automatically generate predictions for samples from the 𝑃𝑃𝑓𝑓 distribu-
tion minimizing the expected generalization error so that [20]: 

𝐺𝐺𝐺𝐺(ℳ𝝀𝝀) = 𝔼𝔼(𝐱𝐱,𝑦𝑦)∼𝑃𝑃𝑑𝑑[ℒ(ℳ𝝀𝝀(𝐱𝐱),𝑦𝑦)]  

The first phase is the best model selection procedure, which appears to be a standard 
learning procedure in which a data set is regarded as a sample of data. Furthermore, given 
that each data set of each independent body can only be observed through a set of 𝑛𝑛 in-
dependent observations, i.e.,: 

𝐷𝐷𝑓𝑓 = {(𝐱𝐱1,𝑦𝑦1), … , (𝐱𝐱𝑛𝑛, 𝑦𝑦𝑛𝑛)} ∼ 𝑃𝑃𝑓𝑓  

Implies that we can only empirically approach the generalization error in data sam-
ples, i.e., [20,21]: 

𝐺𝐺𝐺𝐺� (ℳ𝝀𝝀,𝒟𝒟𝑓𝑓) = 1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 ℒ(ℳ𝝀𝝀(𝐱𝐱𝑖𝑖),𝑦𝑦𝑖𝑖)   

From the above, we conclude that we have access to unconnected, finite samples in 
practice where 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 and 𝐷𝐷𝑡𝑡𝑓𝑓𝑠𝑠𝑡𝑡 (𝐷𝐷𝑓𝑓,𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛,𝐷𝐷𝑓𝑓,𝑡𝑡𝑓𝑓𝑠𝑠𝑡𝑡  ∈ 𝑃𝑃𝑓𝑓). Therefore, to search for the best 
machine learning algorithm, we only have access to 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛. However, in the end, the per-
formance is calculated once in 𝐷𝐷𝑡𝑡𝑓𝑓𝑠𝑠𝑡𝑡.  

Assume a classifier𝑓𝑓𝜆𝜆, the parameter 𝜆𝜆 obtains the likelihood that a data point be-
longs to the class 𝑦𝑦 specified by the attribute vector 𝑥𝑥,𝑃𝑃𝜆𝜆 (𝑦𝑦|𝑥𝑥). The best model should 
increase the likelihood of correctly detecting tags over several training batches 𝛣𝛣 ⊂ 𝐷𝐷 so 
that [18,22]: 

𝜆𝜆∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝜆𝜆𝔼𝔼𝐵𝐵⊂𝐷𝐷 � � 𝑃𝑃𝜆𝜆(𝑦𝑦|𝑥𝑥)
(𝑥𝑥,𝑦𝑦)∈𝛣𝛣

�   

Given that there is only a limited collection of quick learning support that can act as 
fine-tuning, the objective, as with any other work using machine learning, is to minimize 
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the prediction error made on data samples with unknown labels. It is possible that obtain-
ing the best model is challenging to undertake. A fake data set is created with only a tiny 
fraction of labels to prevent releasing all labels in the model. The optimization technique 
is modified to make it easier to acquire knowledge quickly. According to this interpreta-
tion, each sample pair can be regarded as a data point. As a direct consequence, the model 
has been educated to the point where it can generalize to fresh, untested data sets. To 
summarize, the process of computing the best model through the application of the meta-
learning approach is represented by the following function [20]: 

𝜆𝜆∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝜆𝜆𝔼𝔼𝐿𝐿𝑠𝑠⊂𝐿𝐿 �𝔼𝔼𝑆𝑆𝐿𝐿⊂𝐷𝐷,𝐵𝐵𝐿𝐿⊂𝐷𝐷�∑ 𝑃𝑃𝜆𝜆(𝑥𝑥,𝑦𝑦, 𝑆𝑆𝐿𝐿)(𝑥𝑥,𝑦𝑦)∈𝛣𝛣𝐿𝐿 ��   

Therefore, the proposed framework performs an automatic search in the solutions 
area to identify the optimal ℳ𝜆𝜆∗: 

ℳ𝜆𝜆∗ ∈ argmin
𝜆𝜆∈Λ

𝐺𝐺𝐺𝐺� (ℳ𝝀𝝀,𝒟𝒟train )   

For the calculation of GE, with cross-validation k-fold, the following relation is used 
[17,20,23]: 

𝐺𝐺𝐺𝐺�CV(ℳ𝜆𝜆,𝒟𝒟train ) = 1
𝐾𝐾
∑  𝐾𝐾
𝑘𝑘=1 𝐺𝐺𝐺𝐺� �ℳ𝜆𝜆

𝒟𝒟train 
(train,𝑘𝑘)

,𝒟𝒟train 
(val ,𝑘𝑘)�   

where ℳ𝜆𝜆
𝒟𝒟train 

(train ,𝑘𝑘)

 denote that ℳ𝜆𝜆  was trained based on the k-fold dataset 𝒟𝒟train 
(train ,𝑘𝑘)  ⊂

  𝒟𝒟train  and then evaluated by: 

𝒟𝒟train 
(val ,𝑘𝑘) =  𝒟𝒟train 

𝒟𝒟train 
(train ,𝑘𝑘)   

Accordingly, the problem of optimizing the hyperparameters 𝜆𝜆 ∈  𝛬𝛬  of the best 
learning algorithm 𝐴𝐴 is essentially similar to selecting the best model. Some significant 
characteristics are that hyperparameters are frequently continuous, hyperparameter 
spaces are often vast, and we can benefit from the correlation between different hyperpa-
rameter settings 𝜆𝜆1,  𝜆𝜆2, … , 𝜆𝜆𝑛𝑛  ∈  𝛬𝛬.  

Specifically, when 𝑛𝑛 hyperparameters 𝜆𝜆1,  𝜆𝜆2, … , 𝜆𝜆𝑛𝑛  ∈  𝛬𝛬, the hyperparameter space 
𝐿𝐿 includes the subsets𝛬𝛬1,  𝛬𝛬2, … ,𝛬𝛬𝑛𝑛. This logic strictly defines each subset, so some hy-
perparameter settings make other hyperparameters inactive.  

Specifically, the hyperparameter 𝜆𝜆𝑖𝑖 is subject to the sub-constraints of another hy-
perparameter 𝜆𝜆𝑗𝑗, if 𝜆𝜆 is active only if the hyperparameter 𝜆𝜆𝑗𝑗 takes values from a given 
set 𝑉𝑉𝑖𝑖(𝑗𝑗) ⊊ Λ𝑗𝑗 . Based on this logic, the hyperparameters in the proposed framework create 
a structured solution space which is determined on the basis of a pair of variables with 
𝐵𝐵 = 〈𝐺𝐺,𝛩𝛩〉(where 𝐺𝐺 a graph). Graph 𝐺𝐺 conveys the assumption that each variable 𝜆𝜆𝑖𝑖 
is independent of the inheritance undertaken by 𝐺𝐺. It determines the parameters of the 
network and, in particular, the whole 𝜃𝜃𝜆𝜆𝑖𝑖|𝜋𝜋𝑖𝑖 = 𝑃𝑃𝐵𝐵(𝜆𝜆𝑖𝑖|𝜋𝜋𝑖𝑖) for each 𝜆𝜆𝑖𝑖  ⊂  Λ𝑖𝑖  based on the 
constraint condition 𝜋𝜋𝑖𝑖 , for the set of constraints in 𝐺𝐺 . Therefore, 𝐵𝐵 defines a unique 
probability distribution such that [24]: 

𝑃𝑃𝐵𝐵 = (𝛬𝛬1,𝛬𝛬2, … ,𝛬𝛬𝑛𝑛) = �𝑃𝑃𝐵𝐵(𝜋𝜋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= �𝜃𝜃𝜆𝜆𝑖𝑖|𝜋𝜋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

  

Finding the optimal graph path based on the Markov inequality is calculated as 
[25,26]: 

�  
𝑛𝑛

𝑘𝑘=𝜔𝜔

�𝑛𝑛𝑘𝑘� (𝑘𝑘 − 1)!𝑝𝑝𝑘𝑘 = �  
𝑛𝑛

𝑘𝑘=𝜔𝜔

∏  𝑘𝑘−1
𝑖𝑖=0 (𝑛𝑛 − 𝑖𝑖)

𝑛𝑛𝑘𝑘
𝜆𝜆𝑘𝑘

𝑘𝑘
≤ �  

𝑛𝑛

𝑘𝑘=𝜔𝜔

𝜆𝜆𝑘𝑘 = 𝑂𝑂(𝜆𝜆𝜔𝜔)  

Hence, with the following equation, the calculation of its expectation is performed 
by 𝛬𝛬𝑛𝑛: 
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𝔼𝔼[𝛬𝛬𝑛𝑛] = ∑  𝑛𝑛
𝑘𝑘=3 �

𝑛𝑛
𝑘𝑘� (𝑘𝑘 − 1)! 𝑝𝑝𝑘𝑘   

It follows from the above equation: 

𝑙𝑙𝑖𝑖𝑚𝑚
𝑛𝑛→∞

 𝔼𝔼(𝛬𝛬𝑛𝑛) = 𝑙𝑙𝑖𝑖𝑚𝑚
𝑛𝑛→∞

 �  
𝑛𝑛

𝑘𝑘=3

∏  𝑘𝑘−1
𝑖𝑖=0 (𝑛𝑛 − 𝑖𝑖)

𝑛𝑛𝑘𝑘
𝜆𝜆𝑘𝑘

𝑘𝑘
∼�  

∞

𝑘𝑘=3

𝜆𝜆𝑘𝑘

𝑘𝑘
= −log (1 − 𝜆𝜆) − 𝜆𝜆 −

𝜆𝜆2

2

= 𝑎𝑎(𝜆𝜆) 

 

Hence, its r-to factor momentum 𝛬𝛬𝑛𝑛 is: 

𝔼𝔼[(𝛬𝛬𝑛𝑛)𝑡𝑡] = 𝜃𝜃� �  
𝑛𝑛

𝑘𝑘1=3

�  
𝑛𝑛−𝑘𝑘1

𝑘𝑘2=3

… �  

𝑛𝑛−∑  𝑟𝑟−1
𝑖𝑖=1 𝑘𝑘𝑖𝑖

𝑘𝑘𝑟𝑟=3

�
𝑛𝑛

𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝑡𝑡 ,𝑛𝑛 − 𝑘𝑘1 − ⋯− 𝑘𝑘𝑡𝑡�  

� 
𝑡𝑡

𝑖𝑖=1

(𝑘𝑘𝑖𝑖 − 1)! 𝑝𝑝𝑘𝑘𝑖𝑖  

Finally, given the above-structured solution space, the hyperparameter optimization 
issue is as follows [27,28]: 

𝜆𝜆∗ ∈ argmin
𝜆𝜆∈Λ

1
𝑘𝑘
∑  𝑘𝑘
𝑖𝑖=1 ℒ�𝐴𝐴𝝀𝝀,𝒟𝒟train 

(𝑖𝑖) ,𝒟𝒟valid 
(𝑖𝑖) �   

The Meta-Ensemble Learning technique is used for the proposed framework to lead 
to stable prediction models while offering generalization, minimizing bias, reducing var-
iance, and eliminating overfitting. 

2.3. Meta-Ensemble Learning  
Once the above procedure has identified the most appropriate algorithm with the 

optimal hyperparameters to create a single model that improves generalization, the pro-
posed framework creates a boosting ensemble model of all the optimal models that 
emerged by auto-machine learning.  

The proposed technique is based on the logic of the boosting process, where through 
the creation of successive tree structures, information transfer is applied to solve a distrib-
uted problem [29]. Specifically, it is set𝑓𝑓̂(𝑥𝑥) = 0 and 𝜀𝜀𝑖𝑖 = 𝑦𝑦𝑖𝑖 for each observation in the 
set of training data of each body.  

The winning algorithm from the process of auto-machine learning 𝑓𝑓�̂�𝑘� is trained in 
each round 𝑘𝑘 with 𝑑𝑑 nodes having as response variable the categorization errors result-
ing from the previous classification round (auto-machine learning process), which are de-
noted by 𝜀𝜀𝑖𝑖. For the most efficient, effective, and computable feasible implementation of 
the proposed framework, we consider a tree and even pruned version of a new tree so 
that [12,30]: 

𝑓𝑓(𝑥𝑥) ← 𝑓𝑓(𝑥𝑥) + 𝜆𝜆𝑓𝑓̂𝑘𝑘�(𝑥𝑥) or 𝜀𝜀𝑖𝑖 ← 𝜀𝜀𝑖𝑖 − 𝜆𝜆𝑓𝑓̂𝑘𝑘�(𝑥𝑥)   

Repeating the procedure 𝐾𝐾 times (the user-specified 𝐾𝐾), the final form of the model 
is obtained: 

𝑓𝑓(𝑥𝑥) = 𝜆𝜆∑ 𝑓𝑓̂𝑘𝑘�(𝑥𝑥)𝐾𝐾
𝑘𝑘=1    

For the proposed technique to be effective, the user must specify the number and 
depth of trees to be created. The incredible depth of the trees can easily create over-adap-
tation processes and cannot be generalized. Accordingly, the number of trees controls the 
complexity of the process [31]. The 𝜆𝜆 parameter defines the learning rate of the model.  

Its derivative is first calculated to find the total minimum of the function using the 
proposed technique, and then the inverse procedure of finding the derivative is used. The 
derivative measures whether the value of a process will change 𝐽𝐽(𝜃𝜃) if the variable 𝜃𝜃 
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(slope of the function) changes slightly. High values of the function indicate a significant 
slope and, therefore, a substantial change in its value 𝐽𝐽(𝜃𝜃) for small changes of 𝜃𝜃.  

This algorithm is iterative, initializes a random value in 𝜃𝜃, calculates the derivative 
of the function at the given point, and changes 𝜃𝜃 so that [28,32]: 

𝜃𝜃 = 𝜃𝜃 − 𝜌𝜌 𝑓𝑓𝑗𝑗
𝑓𝑓𝑑𝑑

   

Taking as a function of loss the sum of the squares of the incorrect classifications 𝜀𝜀𝑖𝑖 
is divided by two so that: the parameter 𝜌𝜌 determines how fast it will move in the nega-
tive direction of the derivative. The process is repeated until the algorithm converges, 
which proposes training trees in the negative derivative of the loss function: 

𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖) = 1
2
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1    

Calculating the above derivative, we have: 
𝑓𝑓𝐿𝐿(𝑦𝑦𝑖𝑖,𝑦𝑦�𝑖𝑖)

𝑓𝑓𝑦𝑦�𝑖𝑖
= 𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖   

The negative derivative of the loss function is equal to the classification errors 𝜀𝜀𝑖𝑖. 
Hence, essentially, the procedure provides for the training of a tree based on the classifi-
cation errors 𝜀𝜀𝑖𝑖, to which a pruned version of the new tree is added. In this manner, the 
approach adds successive trees to the negative derivative of the loss function at each given 
time 𝑡𝑡, such that [33,34]: 

𝑦𝑦�𝑖𝑖
(𝑡𝑡) = ∑ 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖),𝐾𝐾

𝑡𝑡=1  𝑓𝑓𝑡𝑡 ∈ 𝐹𝐹   

where 𝐹𝐹 = �𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑞𝑞(𝑥𝑥)� and 𝑞𝑞:𝑅𝑅𝑠𝑠 → 𝑇𝑇,𝑤𝑤 ∈ 𝑅𝑅𝑇𝑇. The 𝑞𝑞 represents the structure of each 
tree, the 𝑇𝑇 the number of leaves, and each 𝑓𝑓𝑡𝑡 corresponds to an independent tree struc-
ture 𝑞𝑞 with the leaf weights plotted as 𝑤𝑤. The loss function that is minimized at any time 
𝑡𝑡 has a formula: 

𝐿𝐿(𝑡𝑡) = ∑ 𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
𝑡𝑡� +𝑛𝑛

𝑖𝑖=1  ∑ 𝛺𝛺𝑓𝑓(𝑡𝑡)
𝑇𝑇
𝑘𝑘=1    

Two terms are important: the model's capacity for learning from training data (low 
values imply good learning) and the complexity of each tree (adding a new term to the 
number of leaves (𝛵𝛵), which shrinks the weights of leaves so that: 

Ω𝑓𝑓(𝑡𝑡) = 𝛾𝛾𝑇𝑇 +
1
2
𝜆𝜆 �𝑤𝑤𝑗𝑗2

𝑇𝑇

𝑗𝑗=1

  

The parameter 𝛾𝛾 indicates the penalty value for the tree's growth so that large values 
of 𝛾𝛾 will lead to small trees. Respectively small values of 𝛾𝛾 will lead to large trees. The 
parameter 𝜆𝜆 regulates whether the tree weights will shrink so that as its value increases, 
the tree weights will shrink.  

Thus, it follows that [33,35]: 

𝑦𝑦�𝑖𝑖
(𝑡𝑡) = �𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) = 𝑦𝑦�𝑖𝑖

(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)
𝐾𝐾

𝑡𝑡=1

  

Therefore, the problem now is deciding which 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) minimizes the time loss func-
tion 𝑡𝑡: 

𝐿𝐿(𝑡𝑡) = ∑ 𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡)� +𝑛𝑛

𝑖𝑖=1  ∑ 𝛺𝛺𝑓𝑓(𝑡𝑡)
𝑇𝑇
𝑘𝑘=1 = ∑ 𝑙𝑙 �𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖

(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)�𝑛𝑛
𝑖𝑖=1 + ∑ 𝛺𝛺𝑓𝑓(𝑡𝑡)

𝑇𝑇
𝑘𝑘=1    

Taylor’s Development shows: 

𝑓𝑓(𝑥𝑥 + 𝛥𝛥𝑥𝑥) ≅ 𝑓𝑓(𝑥𝑥) + 𝑓𝑓′(𝑥𝑥)𝛥𝛥𝑥𝑥 + 1
2
𝑓𝑓′′(𝑥𝑥)(𝛥𝛥𝑥𝑥)2   

Hence, the resulting relationship is [33,35]: 
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𝐿𝐿(𝑡𝑡) ≅ ∑ �𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)�+𝑎𝑎𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1

2
ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖)� + 𝛺𝛺𝑓𝑓(𝑡𝑡)

𝑛𝑛
𝑖𝑖=1    

where: 

𝑎𝑎𝑖𝑖 = 𝑑𝑑𝑦𝑦�𝑖𝑖(𝑡𝑡−1)𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)� 𝑎𝑎𝑛𝑛𝑑𝑑 ℎ𝑖𝑖 = 𝑑𝑑

𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)

2 𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)�  

Subtracting the constants, the loss function becomes: 

𝐿𝐿′(𝑡𝑡) ≅��𝑎𝑎𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) +
1
2
ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖)� + Ω𝑓𝑓(𝑡𝑡)

𝑛𝑛

𝑖𝑖=1

  

where: 

𝐼𝐼𝑗𝑗 = {𝑖𝑖|𝑎𝑎(𝑥𝑥𝑖𝑖) = 𝑗𝑗}  

The set of observations on a leaf 𝑗𝑗 in the above relation is recorded as follows: 

𝐿𝐿′(𝑡𝑡) ≅ ∑ �𝑎𝑎𝑖𝑖𝑤𝑤𝑞𝑞(𝑥𝑥𝑖𝑖) + 1
2
ℎ𝑖𝑖𝑤𝑤𝑞𝑞2(𝑥𝑥𝑖𝑖)� + 𝛺𝛺𝑓𝑓(𝑡𝑡) =𝑛𝑛

𝑖𝑖=1 ∑ ��∑ 𝑎𝑎𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗 �𝑤𝑤𝑗𝑗 + 1
2
�∑ ℎ𝑖𝑖 + 𝜆𝜆𝑖𝑖∈𝐼𝐼𝑗𝑗 �𝑤𝑤𝑗𝑗2�𝑇𝑇

𝑖𝑖=1 + 𝛾𝛾𝑇𝑇   

where:  

𝐺𝐺𝑗𝑗 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗  𝑎𝑎𝑛𝑛𝑑𝑑 𝛨𝛨𝑗𝑗 = ∑ ℎ𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗    

The following relation emerges: 

𝐿𝐿′(𝑡𝑡) = ∑ �𝐺𝐺𝑗𝑗𝑤𝑤𝑗𝑗 + 1
2
�𝛨𝛨𝑗𝑗 + 𝜆𝜆�𝑤𝑤𝑗𝑗2�𝑇𝑇

𝑖𝑖=1 + 𝛾𝛾𝑇𝑇   

If the structure of the tree(𝑞𝑞(𝑥𝑥)) is given, the optimal weight on each sheet is obtained 
by minimizing the concerning 𝑤𝑤𝑗𝑗 in the above relationship so that [22,36,37]: 

𝑤𝑤𝑗𝑗 = −
𝐺𝐺𝑗𝑗

𝛨𝛨𝑗𝑗+𝜆𝜆
   

Finally, with its replacement 𝑤𝑤𝑗𝑗, the following equation is obtained, which calculates 
the quality of the new tree: 

𝐿𝐿′(𝑡𝑡) = −
1
2
�

𝐺𝐺𝑗𝑗2

𝛨𝛨𝑗𝑗 + 𝜆𝜆

𝑇𝑇

𝑗𝑗=1

+ 𝛾𝛾𝑇𝑇  

Finally, the algorithm creates divisions using the formula: 

𝐺𝐺𝑎𝑎𝑖𝑖𝑛𝑛 = 1
2
� 𝐺𝐺𝐿𝐿

2

𝛨𝛨𝐿𝐿+𝜆𝜆
+ 𝐺𝐺𝑅𝑅

2

𝛨𝛨𝑅𝑅+𝜆𝜆
− (𝐺𝐺𝐿𝐿+𝐺𝐺𝑅𝑅)2

𝛨𝛨𝐿𝐿+𝛨𝛨𝑅𝑅+𝜆𝜆
� − 𝛾𝛾   

where the first fraction is the score of the left part of the partition, the second is the score 
of the right amount of the division, the third is the score if the division is not made, and 
𝛾𝛾 measures the cost of the complexity of the partition. 

3. Experiments and Results 
For the experimental implementation of the proposed FAMEL and the performance 

of the scenario, a collaborative network of three federated partners (domain_alpha, do-
main_bravo and domain_charlie) was simulated (Figure 2). 
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Figure 2. FAMEL architectural modelling. 

We consider that the optimal model created by the Auto-Machine Learning process 
is an internal affair of each domain, which is implemented on a local server based on the 
respective architecture of each domain. In the Demilitarized Zone (DMZone) is the Fed-
erated Learning Server (LFS), which creates the ensemble model by applying the algorith-
mic process of assembling the optimal models with the technique discussed above. The 
proposed intelligent system was evaluated using one of the most extensive datasets for 
web traffic analysis called CICDoS2019. This dataset was developed under the supervi-
sion of the Canadian Institute for Cybersecurity. The evaluation's primary objective was 
to identify well-organized attacks in which the intruder’s identity remained a legal com-
ponent of a third party [31]. Each domain includes 70 independent variables: characteris-
tics or statistics of network analysis and six classes (Benign, Infiltration, SSH-Bruteforce, 
FTP-BruteForce, DoS Attack-Hulk, and DDOS attack-HOIC). The individual sets include 
Alpha_dataset 70553, Bravo_dataset 69551, and Charlie_dataset 70128 instances [38].  

The initial results of the Auto-Machine Learning process based on the data available 
in each domain are presented in Tables 1–9 below, as well as the parameters of each opti-
mal model that emerged for each collaborative domain. We used the Area under the ROC 
Curve (AUC) metric, which represents the degree or measure of separability. It tells how 
much the model is capable of distinguishing between classes. Specifically, AUC (also 
known as AUROC) is the Area beneath the entire ROC curve. AUC provides a convenient, 
single performance metric for our classifiers independent of the specific classification 
threshold. This enables us to compare models without even looking at their ROC curves. 
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Table 1. The best model for the Domain Alpha. 

Domain Alpha 
Model Accuracy AUC Recall Precision F1-Score 
Light Gradient Boosting Machine 0.879 0.926 0.876 0.879 0.879 
Gradient Boosting Classifier 0.878 0.926 0.875 0.878 0.878 
K Neighbours Classifier 0.876 0.927 0.873 0.876 0.876 
Logistic Regression 0.873 0.924 0.869 0.873 0.873 
SVM—Linear Kernel  0.870 0.925 0.867 0.870 0.870 
Ada Boost Classifier 0.868 0.000 0.865 0.868 0.868 
Random Forest Classifier 0.865 0.926 0.862 0.865 0.865 
Linear Discriminant Analysis 0.864 0.924 0.861 0.864 0.864 
Ridge Classifier 0.860 0.000 0.857 0.860 0.860 
Extra Trees Classifier 0.853 0.920 0.852 0.853 0.853 
Decision Tree Classifier 0.824 0.883 0.824 0.824 0.824 
Naive Bayes 0.747 0.904 0.733 0.770 0.734 
Quadratic Discriminant Analysis 0.367 0.900 0.405 0.575 0.321 

Table 2. Best parameters of the winner model of the Domain Alpha. 

Domain_Alpha 
Best Model Best Parameters of the Winner Model 

LGBMClassifie
r 

boosting_type = 'gbdt', class_weight = None, colsample_bytree = 1.0, 
importance_type = 'split', learning_rate = 0.1, max_depth = -1, 
min_child_samples = 20, min_child_weight = 0.001, min_split_gain = 0.0, 
n_estimators = 100, n_jobs = -1, num_leaves = 31, objective = None, 
random_state = 1599, reg_alpha = 0.0, reg_lambda = 0.0, 
silent='warn',subsample = 1.0, subsample_for_bin = 200,000, 
subsample_freq = 0 

Table 3. The best model for the Domain Bravo. 

Domain_Bravo 
Model Accuracy AUC Recall Precision F1-Score 
Gradient Boosting Classifier  0.877 0.926 0.875 0.877 0.877 
Light Gradient Boosting Machine 0.876 0.926 0.874 0.876 0.876 
K Neighbours Classifier 0.876 0.926 0.873 0.874 0.875 
Ada Boost Classifier 0.870 0.925 0.868 0.870 0.870 
Random Forest Classifier 0.870 0.923 0.868 0.870 0.870 
Linear Discriminant Analysis 0.865 0.923 0.863 0.865 0.865 
SVM—Linear Kernel 0.865 0.000 0.863 0.865 0.865 
Logistic Regression  0.863 0.925 0.861 0.863 0.862 
Ridge Classifier 0.861 0.000 0.859 0.862 0.861 
Extra Trees Classifier 0.849 0.920 0.849 0.849 0.849 
Decision Tree Classifier 0.816 0.878 0.816 0.816 0.815 
Naive Bayes 0.739 0.905 0.727 0.765 0.724 
Quadratic Discriminant Analysis 0.594 0.917 0.570 0.572 0.545 
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Table 4. Best parameters of the winner model of the Domain Bravo. 

Domain_Bravo 
Best Model Best Parameters of the Winner Model 

GradientBoostingClassi
fier 

ccp_alpha = 0.0, criterion = 'friedman_mse', init = None, 
learning_rate = 0.1, loss = 'deviance', max_depth = 3, 
max_features = None, max_leaf_nodes = None, 
min_impurity_decrease = 0.0, min_impurity_split = None, 
min_samples_leaf = 1, min_samples_split = 2, 
min_weight_fraction_leaf = 0.0, n_estimators = 100, 
n_iter_no_change = None, presort = 'deprecated', random_state = 
8515, subsample = 1.0, tol = 0.0001, validation_fraction = 0.1, 
verbose = 0, warm_start = False 

Table 5. The best model for the Domain Charlie. 

Domain_Charlie 
Model Accuracy AUC Recall Precision F1-Score 
k-Neighbours Classifier 0.866 0.927 0.864 0.867 0.866 
Light Gradient Boosting Machine 0.865 0.926 0.864 0.866 0.866 
Gradient Boosting Classifier 0.865 0.926 0.865 0.865 0.866 
Ada Boost Classifier 0.861 0.921 0.861 0.861 0.861 
Logistic Regression 0.860 0.922 0.860 0.861 0.860 
SVM—Linear Kernel 0.855 0.923 0.852 0.855 0.855 
Random Forest Classifier 0.853 0.925 0.851 0.853 0.853 
Linear Discriminant Analysis 0.851 0.923 0.849 0.852 0.851 
Extra Trees Classifier  0.847 0.921 0.847 0.848 0.849 
Ridge Classifier 0.847 0.920 0.848 0.849 0.848 
Decision Tree Classifier 0.819 0.880 0.821 0.820 0.819 
Naive Bayes 0.687 0.900 0.668 0.680 0.644 
Quadratic Discriminant Analysis 0.542 0.914 0.536 0.662 0.528 

Table 6. Best parameters of the winner model of the Domain Charlie. 

Domain_Charlie 
Best Model Best Parameters of the Winner Model 

KNeighborsClassifi
er 

algorithm = 'auto', leaf_size = 30, metric = 'minkowski', 
metric_params = None, n_jobs = -1, n_neighbors = 5, p = 2, weights = 
'uniform' 
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Table 7. Ensemble model for the Domain Alpha. 

Domain_Alpha 
Model Accuracy AUC Recall Precision F1-Score 
Ensemble model 0.898 0.933 0.899 0.897 0.898 
Light Gradient Boosting Machine 0.879 0.926 0.876 0.879 0.879 
Gradient Boosting Classifier 0.878 0.926 0.875 0.878 0.878 
k-Neighbors Classifier 0.876 0.927 0.873 0.876 0.876 
Logistic Regression 0.873 0.924 0.869 0.873 0.873 
SVM—Linear Kernel  0.870 0.925 0.867 0.870 0.870 
Ada Boost Classifier 0.868 0.000 0.865 0.868 0.868 
Random Forest Classifier 0.865 0.926 0.862 0.865 0.865 
Linear Discriminant Analysis 0.864 0.924 0.861 0.864 0.864 
Ridge Classifier 0.860 0.000 0.857 0.860 0.860 
Extra Trees Classifier 0.853 0.920 0.852 0.853 0.853 
Decision Tree Classifier 0.824 0.883 0.824 0.824 0.824 
Naive Bayes 0.747 0.904 0.733 0.770 0.734 
Quadratic Discriminant Analysis 0.367 0.900 0.405 0.575 0.321 

Table 8. Ensemble model for the Domain Bravo. 

Domain_Bravo 
Model Accuracy AUC Recall Precision F1-Score 
Ensemble model 0.891 0.930 0.890 0.890 0.892 
Gradient Boosting Classifier  0.877 0.926 0.875 0.877 0.877 
Light Gradient Boosting Machine 0.876 0.926 0.874 0.876 0.876 
k-Neighbors Classifier 0.876 0.926 0.873 0.874 0.875 
Ada Boost Classifier 0.870 0.925 0.868 0.870 0.870 
Random Forest Classifier 0.870 0.923 0.868 0.870 0.870 
Linear Discriminant Analysis 0.865 0.923 0.863 0.865 0.865 
SVM—Linear Kernel 0.865 0.000 0.863 0.865 0.865 
Logistic Regression  0.863 0.925 0.861 0.863 0.862 
Ridge Classifier 0.861 0.000 0.859 0.862 0.861 
Extra Trees Classifier 0.849 0.920 0.849 0.849 0.849 
Decision Tree Classifier 0.816 0.878 0.816 0.816 0.815 
Naive Bayes 0.739 0.905 0.727 0.765 0.724 
Quadratic Discriminant Analysis 0.594 0.917 0.570 0.572 0.545 
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Table 9. Ensemble model for the Domain Charlie. 

Domain_Charlie 
Model Accuracy AUC Recall Precision F1-Score 
Ensemble model 0.871 0.929 0.871 0.871 0.872 
k-Neighbors Classifier 0.866 0.927 0.864 0.867 0.866 
Light Gradient Boosting Machine 0.865 0.926 0.864 0.866 0.866 
Gradient Boosting Classifier 0.865 0.926 0.865 0.865 0.866 
Ada Boost Classifier 0.861 0.921 0.861 0.861 0.861 
Logistic Regression 0.860 0.922 0.860 0.861 0.860 
SVM—Linear Kernel 0.855 0.923 0.852 0.855 0.855 
Random Forest Classifier 0.853 0.925 0.851 0.853 0.853 
Linear Discriminant Analysis 0.851 0.923 0.849 0.852 0.851 
Extra Trees Classifier  0.847 0.921 0.847 0.848 0.849 
Ridge Classifier 0.847 0.920 0.848 0.849 0.848 
Decision Tree Classifier 0.819 0.880 0.821 0.820 0.819 
Naive Bayes 0.687 0.900 0.668 0.680 0.644 
Quadratic Discriminant Analysis 0.542 0.914 0.536 0.662 0.528 

AUC is measured on a scale of 0 to 1, with higher numbers indicating better perfor-
mance. Scores in the [0.5, 1] range indicate good performance, while anything less than 
0.5 indicates very poor performance. An AUC of 1 indicates a perfect classifier, while an 
AUC of 0.5 indicates a perfectly random classifier. A model that always predicts a nega-
tive sample is more likely than a positive sample to have a positive label. It will have an 
AUC of 0, indicating a severe modelling failure.  

It should be noted that all the tests were performed with 10-fold cross-validation. 
Each of the ten subsets was used for the algorithm's training and certainly once for its 
evaluation, so there was no case of misleading the algorithmic result. 

Meta-Ensemble Learning is created with an ensemble model that includes the best 
classifiers. The ensemble model returns through the Federated Learning process in each 
domain and retests in each local dataset (Alpha_dataset, Bravo_dataset, and Charlie_da-
taset). Then, the three best models from each domain (LGBMClassifier, Gradient Boost-
ingClassifier, and k-NeighborsClassifier) are sent with the Federated Learning process to 
FLS. Again, it should be emphasized that all the tests were performed with the method of 
10-fold cross-validation so that there was no case of misleading the algorithmic result. The 
results of the process are presented in the following tables. 

The ensemble model ensures an improved categorization accuracy and smoothening 
of the system. This dramatically simplifies trend detection and visualization by eliminat-
ing or reducing statistical noise in the data. The experimental results suggest that using 
the ensemble model ensures improved categorization accuracy. The categorization be-
comes more accurate with each instance, providing critical pointers to the failure prob-
lems that an individual algorithm's bias could generate [39]. This allows for a precise di-
agnosis before embarking on a new condition or occurrence associated with adversarial 
attacks or zero-day exploits. This is one of the most effective strategies for predicting a 
trend's strength and the likelihood of shifting direction [40]. 

The convergence achieved by employing multiple models provides more outstand-
ing reliability than any of them could provide separately. This revelation, directly related 
to the experimental outcomes, significantly accelerates arriving at the optimum decision 
in ambiguous situations [41]. It is also important to remember that this process is dynamic, 
which must be emphasized. This dynamic process ensures the system's adaptability by 
providing impartiality and generalization, resulting in a system that can respond to highly 
complicated events [42,43]. 
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4. Conclusions 
Applying machine learning to real-world problems is still particularly challenging 

[44]. This is because highly trained engineers and military specialists who have a wealth 
of experience and information will be required to coordinate the numerous parameters of 
the respective algorithms, correlate them with the specific problems, and use the data sets 
that are currently available. This is a lengthy, laborious, and expensive undertaking. How-
ever, the hyperparametric features of algorithms and the design choices for ideal param-
eters can be viewed as optimization problems because machine learning can be thought 
of as a search problem that attempts to approach an unknown underlying mapping func-
tion between input and output data. 

Utilizing the above view, in the present work, FAMEL was presented, extending the 
idea of formulating a general framework of automatic machine learning with effective 
universal optimization, which operates at the federal level. It uses automated machine 
learning to find the optimal local model in the data held by each federal user and then, 
making extensive meta-learning, creates an ensemble model, which, as shown experimen-
tally, can generalize, providing highly reliable results. In this way, the federal bodies have 
a dedicated, highly generalized model, the training of which does not require exposure to 
the federation of the data in their possession. In this regard, FAMEL can be applied to 
several military applications where continuous learning and environmental adaptation 
are critical for the supported operations and where the exchange of information might be 
difficult or not possible due to security reasons. For example, which is the case in the real-
time optimization of information sharing concerning tasks and situations. The application 
of FAMEL would be of special interest in congested environments where IoT sensor grids 
are deployed, and many security constraints need to be met. Similarly, it can be applied 
in cyberspace operations to find and identify potential hostile activities in cluttered infor-
mation environments and complex physical scenarios in real-time, including countering 
negative digital influence [45,46]. It must be noted that the proposed technique can be 
extended to cover a wider scientific area without reducing the main points that are cur-
rently described. It is a universal technic that develops and produces an open-frame ho-
listic federated learning approach.  

Although, in general, the methodology of the federated learning technique, the en-
semble models, and recently the meta-learning methods have occupied the research com-
munity intensely, and relevant work has been proposed that has upgraded the relevant 
research area, this is the first time that such a comprehensive framework is presented in 
the international literature. The methodology offered herein is an advanced form of learn-
ing. The computational process is not limited to solving a problem but through a produc-
tive method of searching the solution space and selecting the optimal one in a meta-heu-
ristic way [47,48].  

On the other hand, the federated learning model should apply average aggregation 
methods to the set of cooperative training data. This raises serious concerns for the effec-
tiveness of this universal approach and, therefore, for the validity of federated architec-
tures in general. Generally, it flattens the unique needs of individual users without con-
sidering the local events to be managed. How one can create personalized intelligent mod-
els that solve the above limitations is currently a prominent research problem. For exam-
ple, the study [49] is based on the needs and events that each user must address in a fed-
erated format. Explanations are the assortment of characteristics of the interpretable sys-
tem, which, in the case of a specified illustration, helped to bring about a conclusion and 
provided the function of the model on both local and global levels. Retraining is suggested 
only for those features for which the degree of change is considered quite important for 
the evolution of its functionality. 

Essential topics that could expand the research area of the proposed framework con-
cern the Meta-Ensemble Learning process and, specifically, how to solve the problem of 
creating trees and their depth so that the process is automatically fully simplified. An au-
tomated process should also be identified for pruning each tree with optimal separations 
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to avoid negative gain. Finally, explore procedures to add an optimally trimmed tree ver-
sion to the model to maximize frame efficiency, accuracy, and speed. 
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