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A B S T R A C T   

The research on the application of machine learning (ML) methods in the field of earthquake engineering shows a 
continuous and rapid progress in the last two decades. ML methods and models belonging to the category of 
supervised, unsupervised and semi-supervised learning are applied for the assessment of seismic vulnerability of 
structures and estimation of the expected level of seismic damage. These models lead to the classification of 
seismic damage into predefined classes through the extraction of patterns from data collected from various 
sources. However, the lack of detailed knowledge can affect their performance and ultimately reduce their 
reliability, as well as the generalizability that should characterize them. Towards this direction, the present paper 
attempts to compare and evaluate for the first time the ability of an extensive number of ML methods in the 
correct classification of R/C buildings at the first stage pre- and post-seismic inspection considering three seismic 
damage categories. A database consisting of 5850 training samples is used for this evaluation. This database is 
generated by solving 90 R/C buildings for 65 actual seismic excitations applying nonlinear time history analyses. 
For each one of the training samples the maximum interstory drift ratio is calculated as a damage index. In 
addition, a major contribution of this paper is the presentation and extensive documentation of the procedures 
required for the preprocessing of the data. Finally, an auto hyperparameter tuning method for the winning al-
gorithm is proposed, so that the hyperparameters are automatically optimized utilizing Bayesian Optimization. 
The most significant conclusion extracted is that the studied ML algorithms extract very different classification 
results. In addition, the Support Vector Machine - Gaussian Kernel algorithm extracted the most accurate results 
of all the studied ML algorithms.   

1. Introduction 

A large number of existing buildings were constructed in countries 
with regions of high seismicity. These structures were designed using 
older seismic codes that did not incorporate the most recent provisions, 
thus leading to high seismic vulnerability under earthquake excitations. 
For these buildings it is especially crucial to develop a rapid, but also 
reliable and efficient, method for classifying the seismic damage po-
tential and for prioritizing the buildings with high seismic vulnerability, 
so that the authorities will be able to develop appropriate earthquake 
safety plans for seismic rehabilitation. Since now, several researchers 
have proposed such procedures, some of which were adopted by seismic 

code guidelines (e.g., see [1-8]). The most of these codes utilize 
simplified procedures in order to assess the seismic response and the 
structural damage level, based on certain input parameters such as 
structural configuration and seismic motion intensity measures. Addi-
tionally to these methods, a number of researchers have developed 
techniques for the rapid estimation of the buildings’ seismic vulnera-
bility based on the application of statistical theory, e.g., seismic fragility 
curves (e.g. [9-19]). These techniques are characterized by certain 
shortcomings (small number of input structural and seismic parameters, 
linear relationship between inputs and outputs, simple formulae for the 
estimation of the damage level based on the input variables), which 
make their use rather limited and, in many cases, not effective, as they 
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are not able to capture the full complexity of the relationship between 
damage and input parameters. 

In order to overcome the abovementioned limitations, in the last 
decades, modern methods based on the adoption of Machine Learning 
(ML) algorithms were developed. The up-to-date research on these 
methods has shown that they can provide a fast, reliable, and compu-
tationally easy way for classify the buildings’ the seismic damage po-
tential and that they can successfully identify structural performance 
under seismic motions by extracting patterns from data collected via 
various sources. Machine learning is one of the most important and 
widespread fields of artificial intelligence that includes those compu-
tational methods of studying and constructing algorithms which can 
learn from appropriate datasets. Their success is based on the thorough 
processing of the data that record the behavior of a system, so that by 
detecting the appropriate patterns valuable information can be extrac-
ted. Based on this experience the ML algorithms are able to make ac-
curate future predictions. The concept of experience refers to the hidden 
knowledge contained in the data collected from the field and related to 
the type of damage suffered by the buildings under investigation. In 
recent years it has been proven that ML algorithms have the ability to be 
successfully applied in many areas of modeling engineering problems, 
giving a serious breakthrough to modern earthquake engineering. More 
specifically, several research studies have found that ML methods, 
mainly Artificial Neural Networks (ANNs), can effectively assess the 
seismic response of complex structures. A thorough literature review of 
the most commonly used and recently proposed ML methods for the 
buildings’ seismic damage assessment has been made by Harirchian et. 
al [20], by Xie et al [21] and Sun et al. [22]. Next, a brief review of some 
of the most significant relevant researches oriented to earthquake en-
gineering is given. Rafiq et al [23] adopted several different types of 
ANNs (Multi-layer Perceptron, Radial Basis Networks and normalized 
Radial basis Networks) in order to solve engineering problems. Aoki 
et al. [24] tried to assess the seismic vulnerability of chemical industrial 
plants with different topologies with the aid of probabilistic ANNs. In 
another research study, Lautour and Omenzetter [25] investigated 2D 
reinforced concrete frames that varied in topology, stiffness, strength 
and damping and were subjected to a suite of ground motions. They 
established the ability of the ANNs to reliably estimate the earthquake- 
induced damage level of these structures. Tesfamariam and Liu [26] 
studied eight different statistical damage classification techniques in 
order to estimate the reported seismic induced damage and proved the 
feasibility and effectiveness of the selected statistical approaches to 
classify the damage of R/C buildings. Similarly, Arslan [27] created a 
dataset for the training of ANNs by means of incremental static pushover 
analyses in order to estimate the ANNs’ ability to predict the seismic 
damage level of medium and high-rise R/C buildings. Kia and Sensoy 
[28] used a combination of ANNs with SVM in order to classify the 
damage of R/C slab-column frames. Kostinakis and Morfidis carried out 
a number of research studies [29-34] in order to assess the efficiency of 
ANNs regarding the instant prediction and classification of R/C build-
ings’ seismic damage. More recently, Zhang et al. [35] used predictive 
models including classification and regression tree and Random Forests 
in order to probabilistically identify the structural safety state of an 
earthquake-damaged building. The same research team, in another 
research work [36], adopted several ML techniques for the adequate 
estimation of the residual structural capacity of damaged tall buildings. 
A different approach was given by Harirchian and Lahmer [37], who 
developed a novel method based on type-2 fuzzy for earthquake 
vulnerability assessment of buildings via Rapid Visual Screening. Man-
galathu et. al. [38], using data from the 2014 South Napa earthquake, 
examined the ability of ML methods, such as discriminant analysis, k- 
nearest neighbors, decision trees, and random forests, to rapidly esti-
mate seismic building damage. Other research teams conducted also a 
number of works [36,39-41] in an attempt to thoroughly investigate the 
applicability of a series of ML techniques to predict the potential of 
structures for earthquake-induced damage. Similar scientific 

investigation was conducted by Harirchian and his research teams [42- 
46]. In addition, the continuous research on the application of ML in 
earthquake engineering leads to a significant number of relative papers 
published in the last 2 years (see e.g. [47,48,49,50,51]). 

The results of the most research works established the capability of 
ML methods in the successful seismic damage classification of struc-
tures. However, there is a rather limited number of researches that used 
a large number of ML methods, structures and seismic motions in order 
to comparatively evaluate the ML techniques’ efficiency in estimating 
the seismic damage response with adequate reliability. Data-driven 
intelligent systems may translate human knowledge and experience 
into optimally correct and timely judgments. The lack of detailed 
knowledge and expertise associated with the use of complex machine 
learning architectures, on the other hand, can affect the performance of 
the intelligent model, prevent the adjustment of some critical hyper-
parameters, and ultimately reduce the algorithm’s reliability and 
generalization, which should characterize these systems. These draw-
backs restrict stakeholders, especially civil engineers, from trusting 
machine learning technologies and using them effectively and consis-
tently. To address the challenge mentioned above, this paper proposes a 
holistic system that automates the selection and application of the most 
appropriate algorithmic hyperparameters that optimally solve a prob-
lem under consideration, approaching it as a model for finding algo-
rithmic solutions where the problem is solved by mapping between 
input and output data. Specifically, the present paper attempts a 
comparative evaluation of a large number of Machine Learning algo-
rithms for the reliable classification of R/C buildings’ potential for 
seismic damage. Moreover, an extensive documentation of the proced-
ures required for the preprocessing of the data is given. For the most 
appropriate algorithm (winner algorithm), an auto fine-tuning tech-
nique based on the Bayesian Optimization (BO) method is proposed to 
identify the optimal hyperparameters which can optimally solve the 
given problem. The implementation is based on a fully automated 
intelligent way and does not require human intervention. For this aim, a 
training dataset consisting of 30 3D R/C buildings with different struc-
tural parameters was chosen. The buildings were designed based on the 
provisions of EN1992-1–1 [52] and EN1998-1 [53]. For each one of 
these buildings three different configurations as regards their masonry 
infills were considered (without masonry infills, with masonry infills in 
all stories and with masonry infills in all stories except for the ground 
story), leading to three different data subsets with 30 buildings each. 
Then, the buildings were analysed my means of the Nonlinear Time 
History Analyses method (NTHA) for 65 appropriately chosen real 
earthquake records. Both seismic and structural parameters widely used 
in the literature were selected as inputs in the process of Machine 
Learning methods. The quantification of the buildings’ damage level 
was done by means of the well-documented Maximum Interstory Drift 
Ratio (MIDR). The methodology of the proposed assessment/informa-
tion system uses and extends the most technologically advanced 
methods of forecasting, analysis, and modeling of seismic engineering, 
as it extracts the hidden knowledge found in digital data to adds intel-
ligence to the best decision support methods. At the same time, it gives 
the stimulus for the utilization of intelligent methods and their pene-
tration in the development sector, for giant innovative leaps and 
development of previously impossible activities. 

2. Dataset generation 

A large training dataset consisting of buildings with different struc-
tural characteristics was used to generate the database for the training 
and testing of the ML models. The structures have characteristics that 
are common to buildings designed and built on the basis of modern 
seismic codes and according to the construction practice in most euro-
pean countries with regions of high seismicity. In particular, 30 R/C 
buildings with structural systems consisting of members in two 
perpendicular directions (axes × and y) were selected. The buildings are 
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rectangular in plan (dimensions LxxLy) and regular in elevation and in 
plan according to the criteria set by EN1998-1 [53]. The structures differ 
in the total height Htot (Htot = (stories’ number) × (stories’ height: 3.2 
m)), the value of structural eccentricity e0 (i.e., the distance between the 
mass center and the stiffness center of stories) and the ratio of the base 
shear received by the walls along two horizontal orthogonal directions 
(axes × and y): nvx and nvy. A detailed description of the investigated 
buildings can be found in [31]. The influence of the masonry infill walls, 
the placement of which along the height of the buildings is part of the 
traditional building practice, on the structures’ seismic response and 
damage was considered taking into account for each one of the 30 
structures three different assumptions about their distribution. More 
specifically, three different training subsets were generated: (a) subset 
denoted as ROW_FORM_BARE consisting of the 30 buildings without 
masonry infills (bare structures), (b) subset denoted as 
ROW_FORM_FULL-MASONRY consisting of the 30 buildings with ma-
sonry infills uniformly distributed along the height (infilled structures) 
and (c) subset denoted as ROW_FORM_PILOTIS consisting of the 30 
buildings with the first story bare and the upper stories infilled (struc-
tures with pilotis). Consequently, the total number of buildings studied 
herein is 30 different structural systems × 3 different distributions of 
masonry infills = 90. The three subsets of the buildings were trained 
separately by the same Machine Learning methods, in order to draw 
conclusions about the possible differences in the predictive ability of the 
ML techniques, resulting from the influence of the infill walls on the 
seismic response of the buildings. The 30 selected bare buildings (no 
infill walls) were modeled, analyzed and designed based on the pro-
visions of EN1992-1–1 and EN1998-1. After the elastic modeling and 
design of the bare buildings, the three subsets mentioned above (bare, 
infilled, buildings with pilotis) were created and their nonlinear 
behavior was simulated, in order to analyze them by means of NTHA. 
Moreover, the masonry infills were modeled as single equivalent diag-
onal struts with stress–strain diagrams according to the model proposed 
by Crisafulli [54]. A detailed description and documentation of the 
design and modeling process of the investigated buildings can be found 
in [31]. A suite of 65 pairs of horizontal bidirectional earthquake records 
taken from the PEER [55] and the European Strong-Motion database 
[56] was chosen in such a way as to cover a large variety of conditions 
regarding tectonic environment, modified Mercalli intensity and closest 
distance to fault rapture, thus representing a wide range of intensities 
and frequency content. A detailed description and documentation of the 
selected earthquake records can be found in [31]. 

The 90 buildings (three subsets of 30 buildings each) were subjected 
to each one of the 65 earthquake ground motions, for which NTHA was 
conducted with the aid of Ruaumoko software [57]. As a consequence, a 
total of 5850 NTHA (90 buildings × 65 earthquake records) were con-
ducted herein. For each one of the analyses, the estimation of the seismic 
damage was determined using the Maximum Interstory Drift Ratio 
(MIDR), which corresponds to the maximum story’s drift among the 
perimeter frames. The MIDR is extensively adopted as a reliable indi-
cator of structural and nonstructural global damage of R/C buildings (e. 
g. [58,59]) and has been used by many researchers for the assessment of 
the building’ inelastic response. The values of MIDR have been classified 
by many researchers. Herein, the classification given by Masi et al. [60] 

(Table 1) has been adopted. Note that the number of the damage classes 
(three) was also selected in order to be compatible with the commonly 
used rationale of seismic damage classification in slight (green), mod-
erate (yellow) and heavy (red) damage states which are utilized in case 
of the rapid seismic assessment of buildings after strong events. 

3. Inputs and outputs 

For real problem modeling situations such as the one under consid-
eration, the input models come from the same boundary distribution or 
follow a common cluster structure. Thus, the classified data enable a 
learning process, providing useful information for exploring the data 
structure of the overall set and finding patterns capable of identifying 
the problem, thus creating an intelligent classification framework. The 
classification concerns the classification of each sample in one of the 
predefined classes after successful training. The training of a model of 
machine learning with the method of classification is called the process 
in which the function f̂ : RN→T is calculated, where T is a set of labels 
denoting the class. In this problem, the basic evaluation criterion was 
considered to be the error for a wrong prediction, which depends on the 
concept of the success of including a sample in the correct class. 

For the purposes of the study, both structural and seismic parameters 
were chosen as input features in the process of the ML methods. More 
specifically, the following structural parameters (see also Table 2), that 
are considered crucial for the vulnerability assessment of R/C buildings, 
were selected: the total height of buildings Htot, the ratios of the base 
shear that is received by R/C walls (if they exist) along two horizontal 
orthogonal directions × and y (ratio nvx and ratio nvy) and the structural 
eccentricity e0. 

Regarding the seismic parameters, the 14 seismic parameters pre-
sented in Table 3 were chosen (e.g. [61,62]). Regarding the output 
feature, the abovementioned MIDR was chosen, as a reliable damage 
measure that can adequately capture the damage level of the R/C 
buildings. 

4. Preprocessing of data 

The preprocessing of the data refers to the preliminary checks and 
work carried out on the abovementioned dataset before the use of the 
ML algorithms, in order to determine if the initial data suffer from 
various types of problems and if so, then to select the appropriate pro-
cedure to deal with them. This process is particularly important because, 
in case that the quality of the data used is not guaranteed, the perfor-
mance of the ML algorithms will not be satisfactory or will produce 
biased or untrue results. Finally, it should be noted that there are a 
number of techniques which can be used in the preprocessing proced-
ures and that the choice of the best strategy depends on the nature of the 
examined problem and on the corresponding available data used. In 
detail, the data pre-processing procedures that were applied to the 
present dataset include the checks [63,64] presented in the sub-sections. 

4.1. Missing values 

A Missing Values check was performed and it was found that there is 

Table 1 
Relation between MIDR and damage state.  
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no unavailable information that could mislead the algorithms and pro-
duce untrue results. 

4.2. Outliers 

An extreme value is defined as a point that is very far from the mean 
value of the corresponding random variable representing a feature. 
Samples with feature values very different from the mean value produce 
significant errors, especially if they are the result of noise during the 
measurement process, something which has disastrous results for the 
training process. Distance is measured relative to a threshold, which is 
usually a multiple of the standard deviation. For a random variable 
following a normal distribution, a distance that equals twice the stan-
dard deviation covers 95% of the points and a distance which equals 
three times the standard deviation covers 99% of the points. If the 
number of extreme values is small, then either the values remain and are 
appropriately modified or these samples are simply discarded, which is 
the most popular tactic. 

One of the most popular methods for finding extreme values is the 
Interquartile Range (IQR) technique. IQR is the difference between the 
3rd (Q3) and the 1st (Q1) quadrant, namely IQR = Q3 – Q1. Quadrants 
divide the data into 4 equal parts (quarters), with the intra-quadratic 
range comprising an intermediate 50% of observations. The remaining 
50% is outside this range, with the 25% of the observations being 
smaller than Q1 and the remaining 25% being larger than Q3. A depic-
tion of the IQR method is presented in the following Fig. 1. 

It should be emphasized that the extreme values in the case of the 
problem of seismic damage that is considered herein are important and 
consist the question of the problem, since, based on them, important 
decision-making mechanisms are activated (e.g., further detailed 
seismic evaluation of the building etc.), so it was considered appropriate 
to seek them, but not to isolate - remove them from the datasets. This 
decision was considered essential in order to create objective training 
samples, which will be able to generalize and to better respond to new 
data, as well as to be able to predict corresponding damage for future 
periods (forecasting). 

4.3. Normalization 

Normalization is a process of transforming data, in which numeric 
values are replaced by corresponding ones, but which are in a certain 
range of values. This process is usually performed in order to address 
problems related to the operation or performance of the algorithms. For 
example, some algorithms perform better when the input values lie in 
the range [0,1], while in case of algorithms that calculate the distances 
among the observations, the normalization of values is required in order 
to deal with the problem that the variables with large values are those 
that mostly determine the distance of the observations, while small- 
value variables have very little effect on the distance and, conse-
quently, play no role in calculating the result. In the present research 
study, the normalization was done with the aid of the method Max-Min. 
According to this method, all numerical values match with values that 
fluctuate within a predetermined range based on a linear trans-
formation. Considering a variable A, with maxA and minA being the 
largest and smallest values respectively, we can match all the values 
with corresponding ones that fluctuate within a range with a lower limit 
of new_minA and an upper limit of new_maxA according to the Eq. (1): 

x’ =
x − minA

maxA − minA
(new maxA − new minA)+ new minA (1)  

where x is the value of the variable A and x΄ is the new value. 
This method has the advantage that the user predefines the value 

range, setting new_minA and new_maxA, while maintaining the ratio be-
tween the values that existed in the original data. On the other hand, the 
normalization of Max-Min is not appropriate in cases where the data 
contain extreme values, as they gather the vast majority of values in a 
minimal part of the value range and use the rest of the part for 
exceptions. 

4.4. Feature reduction 

In most cases a set of data can contain too many features, which may 
be related to each other, provide irrelevant information to the specific 

Table 2 
The structural parameters of the R/C buildings used for the generation of the training dataset.   

Name nvx nvy Htot (m) Lx (m) Ly (m) Tx(sec) Ty(sec) e0 (m) 

1 SFxy_3  0.00  0.00  9.60  13.50  10.00  0.699  0.715  0.00 
2 SFxy_5  0.00  0.00  16.00  20.00  14.00  0.718  0.719  0.00 
3 SFxy_7  0.00  0.00  22.40  20.00  14.00  1.117  1.123  0.00 
4 SWxy_3  0.73  0.76  9.60  15.00  10.00  0.416  0.459  0.00 
5 SWxy_5  0.77  0.80  16.00  19.00  16.40  0.693  0.649  0.00 
6 SWxy_7  0.57  0.64  22.40  19.00  16.40  1.034  0.961  0.00 
7 SFExy_3  0.41  0.41  9.60  15.00  15.00  0.534  0.534  0.00 
8 SFExy_5  0.46  0.50  16.00  21.00  18.50  0.800  0.836  0.00 
9 SFExy_7  0.43  0.46  22.40  21.00  18.50  1.178  1.232  0.00 
10 SFExFy_3  0.43  0.00  9.60  17.00  12.50  0.513  0.704  0.00 
11 SFExFy_5  0.41  0.00  16.00  20.00  15.00  0.791  0.999  0.00 
12 SFExFy_7  0.38  0.00  22.40  20.00  15.00  1.135  1.446  0.00 
13 SWxFy_3  0.77  0.00  9.60  15.00  10.00  0.386  0.722  0.00 
14 SWxFy_5  0.68  0.00  16.00  20.00  15.00  0.666  0.999  0.00 
15 SWxFy_7  0.51  0.00  22.40  20.00  15.00  0.999  1.447  0.00 
16 AFxy_3  0.00  0.00  9.60  13.00  9.00  0.678  0.787  0.980 
17 AFxy_5  0.00  0.00  16.00  17.50  10.00  0.790  0.885  2.575 
18 AFxy_7  0.00  0.00  22.40  17.50  10.00  1.134  1.279  2.387 
19 AFExy_3  0.52  0.46  9.60  13.50  9.00  0.493  0.513  4.643 
20 AFExy_5  0.43  0.42  16.00  16.00  14.50  0.754  0.727  4.192 
21 AFExy_7  0.37  0.36  22.40  16.00  14.50  1.130  1.091  3.795 
22 AFExFy_3  0.47  0.00  9.60  13.50  9.00  0.515  0.775  2.226 
23 AFExFy_5  0.38  0.00  16.00  16.00  14.50  0.757  0.925  2.649 
24 AFExFy_7  0.35  0.00  22.40  16.00  14.50  1.092  1.303  2.491 
25 AWxFy_3  0.64  0.00  9.60  14.50  9.00  0.320  0.612  3.523 
26 AWxFy_5  0.69  0.00  16.00  14.00  16.00  1.014  0.590  3.012 
27 AWxFy_7  0.65  0.00  22.40  14.00  16.00  1.512  0.897  3.010 
28 AWxy_3  0.64  0.58  9.60  13.50  10.00  0.325  0.353  6.732 
29 AWxy_5  0.65  0.72  16.00  16.25  16.25  0.730  0.641  6.284 
30 AWxy_7  0.59  0.67  22.40  16.25  16.25  1.061  0.941  5.963  
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problem or produce noise, something which reduces the efficiency of the 
algorithm used. Two depictions of the correlation matrix of the dataset 
used (regression depiction in left and heat map depiction in right) are 
presented in the following Figs. 2 and 3. 

Also, if the vector space of features has many dimensions (i.e., many 
features), the volume of this space increases very fast, so the data for the 
problem will be sparse, causing problems for the methods that try to 
achieve statistical significance. The amount of data needed in order to be 
considered dense increases exponentially in relation to the dimension of 
the feature space. This phenomenon is also known as the “curse of 
dimensionality”. It should also be noted that a large number of features 
increases the number of parameters of the learning system, and, there-
fore, its complexity, without this meaning that it will have a corre-
spondingly better performance. Because of these observations, the 
number of features should be kept as small as possible in order to ach-
ieve high system performance. 

The solution to these problems is provided with the aid of techniques 
of dimensional reducing, which offer an efficient solution to managing 
multidimensional data, as they seek for a low-dimensional structure in 
multidimensional data. These techniques are considered necessary pre- 
processing procedures in such cases, as the distances between the data in 
the reduced space are calculated faster, the size of the dataset is reduced, 
the data structure which remains hidden in the original multidimen-
sional space is revealed and the efficiency of ML algorithms is signifi-
cantly improved. The most well-known linear dimensional reduction 
technique is Principal Component Analysis (PCA). 

This method tries to calculate the axes in which the maximum data 
scatter is observed. For example, for the data {X1,X2,⋯,Xn, } ∈ RD, the 
covariance table S = X • XT is calculated, then their average value μ is 
calculated, the eigenvalues Іi and the eigenvectors ei are calculated 
through of the process of self-analysis of S, Ii • ei = S • ei, and, finally, 
the d largest eigenvectors are selected and based on them the new var-
iables are calculated by the Eq. (2): 

Yi = [e1, e2,⋯, ed]
T
× (Xi − μ) (2) 

Subsequently, a PCA test was performed for the dataset considered in 
the present study, in order to detect data covariance and to apply, if 
necessary, a feature reduction. As can be seen from the scree plot in 
Fig. 4, the principal components retain less than 60% of the statistical 
data from the original data, so no feature reduction is required. 

4.5. Feature selection 

This is the process of the optimal selection of a subset of existing 
features without transformation, in order to retain the most important of 
them reducing this way their number and at the same time retaining as 
much useful information as possible. This step is crucial because if fea-
tures with low separating ability are selected, the resulting learning 
system will not have satisfactory performance, while if features that 
provide useful information are selected, the system that will be designed 

Table 3 
Examined ground motion parameters.  

Ground Motion 
Parameter 

Range of 
values 

Calculation procedure Category 

Peak Ground 
Acceleration: 
PGA 

(0.004 ÷
0.822) g 

max|a(t)|  
Seismic 
parameters 
determined from 
the time histories 
of the records. 

Peak Ground 
Velocity: PGV 

(0.86 ÷
99.35) 
cm/sec 

max|v(t)| 

Peak Ground 
Displacement: 
PGD 

(0.36 ÷
60.19) cm 

max|d(t)| 

Arias Intensity: 
Ia 

(≈0.0 ÷
5.592) m/ 
sec 

Ia = (π/2g) •
∫ ttot

0 [a(t) ]2dt 

Specific Energy 
Density: SED 

(1.24 ÷
16762.8) 
cm2/sec 

SED =
∫ ttot

0 [v(t) ]2dt 

Cumulative 
Absolute 
Velocity: CAV 

(14.67 ÷
2684.1) 
cm/sec 

CAV =
∫ ttot

0 |a(t) |dt 

Acceleration 
Spectrum 
Intensity: ASI 

(0.003 ÷
0.633) 
g⋅sec 

ASI =
∫ 0.5

0.1 Sa(ξ = 0.05)dT Seismic 
parameters 
determined from 
the response 
spectra of the 
records. 

Housner 
Intensity: HI 

(3.94 ÷
317.6) cm 

HI =
∫ 2.5

0.1 
PSV(ξ = 0.05,T)dT 

Effective Peak 
Acceleration: 
EPA 

(0.003 ÷
0.63) g 

EPA =

(1/2.5){Sa(ξ = 0.05,T) }0.5
0.1 

Vmax/Amax 

(PGV/ PGA) 
(0. 036 ÷
0.336) sec 

max|v(t)|/max|a(t)| Seismic 
parameters 
accounting for 
the earthquake’s 
frequency 
content. 

Predominant 
Period: PP 

(0.077 ÷
1.26) sec 

PP = T[maxSa(ξ = 0.05,T) ]

Time of Uniform 
Duration: 
TUD 

(≈0.0 ÷
17.68) sec 

Special algorithm 
(e.g. SeismoSoft [62]) 

Seismic 
parameters based 
on the 
earthquake’s 
duration. 

Time of 
Bracketed 
Duration: 
TBD 

(≈0.0 ÷
61.87) sec 

Time of 
Significant 
Duration: TSD 

(1.74 ÷
50.98) sec 

Where, a(t), v(t) and d(t) are the acceleration, velocity and displacement time 
history respectively, Sa is the acceleration spectrum, PSV is the pseudovelocity 
spectrum, ξ is the damping ratio, Time of Uniform Duration is the total time 
during which the ground acceleration is larger than a given threshold value 
(usually 5% of PGA), Time of Bracketed Duration is the total time elapsed be-
tween the first and the last excursions of a specified level of acceleration (usually 
5% of PGA), Time of Significant Duration is the interval of time over which a 
proportion of the total Arias Intensity is accumulated (usually the interval be-
tween the 5% and 95% thresholds). 

Fig. 1. Interquartile range.  
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will be simple and efficient. 
One of the strategies that can be followed is to examine the charac-

teristics one by one through a measure of class reparability and to reject 
those that have a low separating ability. The aim is to select these 
characteristics that lead to large distances between the groups of sam-
ples to and small variation among the same group. This means that the 
characteristics should get distant values for different classes and close 
values for the same class, a strategy known as filtering. One of the most 
popular filtering methods is Forward Selection, which starts with an 
empty set of selected features. Then, this method selects the most 
important of the other features, subtracts it from the original set and 
adds it to the set of selected features. Finally, from the remaining fea-
tures, the most important one is selected and it is added to the set of 
selected features. The process is repeated until an output condition is 
satisfied. 

Also, another approach to feature selection is achieved by examining 
the various combinations of features available and controlling those 
combinations that lead to higher performance, regardless of the quality 
of the individual features, an approach which is called wrapping. These 
methods, in order to select the important features, use the same algo-
rithm that will be applied to the final ML process. In other words, these 
are not independent methods the results of which can be separately dealt 
with, but methods that differ in terms of the algorithm and of the so-
lution search technique. 

In the present research work, taking into account the inability of 
classical correlation analysis methods to detect nonlinear correlations 
such as sinus wave, quadratic curve, etc., the Predictive Power Score 
(PPS) technique was chosen to summarize the most important features 
between available features. PPS can work with nonlinear relationships, 
but also with asymmetric relationships, explaining that variable A in-

Fig. 2. Correlation matrix (regression depiction).  
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forms variable B more than variable B informs variable A. Technically, 
the score is a measurement in space [0,1] of the success of a model in 
predicting a variable target with the aid of an off-sample variable pre-
diction, something which practically means that this method can in-

crease the efficiency of finding hidden patterns in the data and selecting 
appropriate prediction variables. The final process of capturing the 
predictive power of the individual characteristics was done with the PPS 
technique, where for the calculation of PPS in numerical variables the 

Fig. 3. Correlation matrix (heat map depiction).  

Fig. 4. Principle Component Analysis.  
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metric of Mean Absolute Error (MAE) was used, which is the measure of 
quantification of error between estimation or prediction and the 
observed values. MAE is given by the Eq. (3): 

MAE =
1
n

∑n

i=1
|fi − yi| =

1
n

∑n

i=1
|ei| (3)  

where fi is the estimated value and yi the true one. The average of the 
absolute value of the ratio between these values is defined as the abso-
lute error of their relation |ei| =

⃒
⃒fi − yi

⃒
⃒. The following Figs. 5, 6 and 7 

illustrate the predictive power of the features used in the present 
investigation: 

5. Methodology 

In order to carry out a thorough investigation of the ML algorithms’ 
ability to model the given problem based on the existing data, an 
extensive comparison of the most well-known algorithms was made. 
This comparison includes metrics for evaluating the performance of each 
algorithm, its execution time, generalization error, as well as the 
inherent behavior of the algorithm, in order to gain a deeper under-
standing of its theoretical basis. 

In order to identify the most effective algorithm that is capable to 
predict the R/C buildings’ seismic damage with high accuracy, an 
extensive comparison with the most widely used supervised ML models 
was made. Specifically, a comprehensive review of Support Vector 
Machines (SVMs) [65], Random Forest Classifier [66], CatBoost Classi-
fier [67], Light Gradient Boosting Machine [68], Extreme Gradient 
Boosting [69], Extra Trees Classifier [70], Decision Tree Classifier [71], 
Gaussian Process Classifier [72], k-Neighbors Classifier [73], Linear 
Discriminant Analysis (LDA) [74], Ridge Classifier [75], Quadratic 
Discriminant Analysis (QDA) [76], MLP Classifier [77], Naive Bayes 
[78], AdaBoost Classifier [79] and Logistic Classifier [80]. 

5.1. Data sampling 

In order to have an objective evaluation process of ML models, both 
as a way of self-evaluation and for their comparison with the corre-
sponding alternative models, there are various statistical techniques of 

distribution and handling of datasets, which are also called validation 
techniques. K-Fold is the most common cross-validation method, ac-
cording to which the dataset is randomly divided into k subsets, each of 
relatively equal population. Of the aforementioned k subsets, one is used 
as a test subset, while the all-theoretic compound of the remaining k-1 
subsets is used as a training subset. A total of k computing cycles is 
performed, so that, in turn, each of the k subsets is used as a test subset. 
The advantage of this evaluation method is that each data is used for 
training and definitely once for examination. The parameter k can attain 
any positive integer value, while the most popular choice in practical 
applications is the case where k = 10, which is called 10-Fold Cross 
Validation. 

5.2. Comparison results 

For the thorough evaluation of the buildings’ seismic damage clas-
sification in the respective categories of damage level, a thorough 
investigation study was carried out with various machine ML. The 
flowchart of Fig. 8 shows how the ML algorithm that performs the best 
was selected. This flowchart clearly shows the different criteria used in 
the comparison. 

We should mention that the following comparison is based on 
different performance metrics that are used to evaluate the different 
machine learning algorithms for the specific classification problem. 
Specifically, the classification performance metrics which used are Ac-
curacy, Receiver Operating Characteristic (ROC), Recall, Precision, F- 
Score, Cohen’s Kappa Statistics (CKS), and Matthews Correlation Coef-
ficient (MCC). All metrics are the simple ratios between the number of 
correctly classified points to the total number of points, in the test 
dataset (unseen data points). The best performance is achieved by the 
model with a value near 1. The results by descent accuracy order for 
each dataset are presented in the following Tables 4, 5 and 6. 

5.3. Best performance algorithm 

In all three cases examined the Support Vector Machine (SVM) - 
Gaussian Kernel algorithm produced the highest classification results. 
The basic function of SVMs [65] is to construct a super-level that plays 
the role of a decision-making surface, so that the margin of separation of 

Fig. 5. Feature Importance plot for Row_Form_Bare dataset.  
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Fig. 6. Feature Importance plot for Row_Form_Full-Masonry dataset.  

Fig. 7. Feature Importance plot for Row_Form_Pilotis dataset.  

Fig. 8. Flowchart of the proposed process to find the best model.  
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the categories is maximized. A key feature of SVMs that determines their 
function is the so-called support vectors, which consist a small subset of 
the training data used. Considering the problem of categorizing two 
categories, as described at one level in Fig. 9a, it is obvious that the two 

categories marked with the labels “+” and “o” are linearly separable. 
However, there are many lines ε1, ε2, ε3, … which are multiple possible 
decision surfaces that can achieve the same result. The SVM algorithm 
seeks for the single line (ε*) that separates the categories in such a way 

Table 4 
Performance Metrics in the Row_Form_Bare dataset.  

ID Model Accuracy ROC Recall Precision F-Score CKS MCC Time/sec 

1 SVM - Gaussian Kernel  0.8849  0.9739  0.8683  0.8844  0.8843  0.8205  0.8208  0.659 
2 Random Forest Classifier  0.8772  0.9691  0.8578  0.8756  0.8758  0.8081  0.8087  0.567 
3 CatBoost Classifier  0.8757  0.9747  0.8553  0.8744  0.8744  0.8056  0.8063  4.158 
4 Light Gradient Boosting Machine  0.8664  0.9724  0.8467  0.8659  0.8657  0.7915  0.7920  0.246 
5 Extreme Gradient Boosting  0.8649  0.9716  0.8455  0.8654  0.8645  0.7892  0.7898  6.954 
6 Extra Trees Classifier  0.8633  0.9635  0.8450  0.8630  0.8626  0.7868  0.7873  0.526 
7 Decision Tree Classifier  0.8548  0.8915  0.8388  0.8573  0.8552  0.7744  0.7751  0.022 
8 SVM - RBF Kernel  0.8471  0.9384  0.8228  0.8467  0.8449  0.7604  0.7623  0.359 
9 Gaussian Process Classifier  0.8402  0.9130  0.8192  0.8407  0.8395  0.7508  0.7517  2.553 
10 k-Neighbors Classifier  0.8224  0.9366  0.7992  0.8228  0.8213  0.7232  0.7245  0.120 
11 Linear Discriminant Analysis  0.8124  0.9479  0.7920  0.8172  0.8134  0.7098  0.7111  0.021 
12 SVM - Polynomial Kernel  0.8008  0.9308  0.7718  0.7968  0.7981  0.6885  0.6892  1.002 
13 Ridge Classifier  0.7985  0.0000  0.7452  0.7859  0.7773  0.6785  0.6895  0.020 
14 Quadratic Discriminant Analysis  0.7923  0.9419  0.7928  0.8186  0.7968  0.6854  0.6933  0.022 
15 MLP Classifier  0.7483  0.9023  0.7383  0.7781  0.7486  0.6158  0.6277  0.320 
16 Naive Bayes  0.7320  0.9205  0.7387  0.7820  0.7421  0.5992  0.6124  0.020 
17 SVM - Gaussian Kernel  0.6797  0.8178  0.6552  0.7575  0.6826  0.5124  0.5369  0.146 
18 Random Forest Classifier  0.6564  0.0000  0.5728  0.6130  0.5975  0.4246  0.4783  0.064  

Table 5 
Performance Metrics in the Row_Form_Full-Masonry dataset.  

ID Model Accuracy ROC Recall Precision F-Score CKS MCC Time/sec 

1 SVM - Gaussian Kernel  0.8949  0.9777  0.8770  0.8970  0.8941  0.8197  0.8218  0.244 
2 Random Forest Classifier  0.8942  0.9759  0.8745  0.8976  0.8935  0.8187  0.8211  15.896 
3 CatBoost Classifier  0.8926  0.9763  0.8710  0.8950  0.8921  0.8154  0.8172  4.328 
4 Light Gradient Boosting Machine  0.8918  0.9739  0.8685  0.8961  0.8918  0.8145  0.8169  0.562 
5 Extreme Gradient Boosting  0.8864  0.9747  0.8635  0.8914  0.8861  0.8053  0.8082  0.665 
6 Extra Trees Classifier  0.8834  0.9690  0.8577  0.8860  0.8830  0.7998  0.8018  0.516 
7 Decision Tree Classifier  0.8749  0.8986  0.8550  0.8779  0.8743  0.7865  0.7887  0.021 
8 SVM - RBF Kernel  0.8726  0.9498  0.8388  0.8765  0.8716  0.7806  0.7832  0.387 
9 Gaussian Process Classifier  0.8687  0.9494  0.8336  0.8700  0.8666  0.7727  0.7753  0.128 
10 k-Neighbors Classifier  0.8656  0.9290  0.8358  0.8705  0.8658  0.7707  0.7731  2.605 
11 Linear Discriminant Analysis  0.8324  0.9442  0.7966  0.8390  0.8340  0.7134  0.7150  0.023 
12 SVM - Polynomial Kernel  0.8184  0.9365  0.8051  0.8350  0.8235  0.6957  0.6994  0.021 
13 Ridge Classifier  0.8015  0.0000  0.7338  0.7896  0.7840  0.6453  0.6568  0.019 
14 Quadratic Discriminant Analysis  0.7837  0.8572  0.7465  0.8123  0.7898  0.6342  0.6411  0.149 
15 MLP Classifier  0.7443  0.8879  0.6845  0.7293  0.7322  0.5531  0.5577  0.988 
16 Naive Bayes  0.7405  0.9160  0.7636  0.7944  0.7525  0.5876  0.6040  0.020 
17 SVM - Gaussian Kernel  0.6988  0.8728  0.6076  0.6877  0.6541  0.4719  0.5056  0.322 
18 Random Forest Classifier  0.5476  0.0000  0.4867  0.5936  0.5150  0.2506  0.2980  0.067  

Table 6 
Performance Metrics in the Row_Form_Pilotis dataset.  

ID Model Accuracy ROC Recall Precision F-Score CKS MCC Time/sec 

1 SVM - Gaussian Kernel  0.8795  0.9744  0.8518  0.8823  0.8792  0.8109  0.8125  6.119 
2 Random Forest Classifier  0.8772  0.9754  0.8456  0.8776  0.8759  0.8067  0.8080  0.246 
3 CatBoost Classifier  0.8772  0.9749  0.8433  0.8776  0.8752  0.8064  0.8082  4.387 
4 Light Gradient Boosting Machine  0.8664  0.9710  0.8318  0.8673  0.8643  0.7895  0.7916  0.662 
5 Extreme Gradient Boosting  0.8626  0.9677  0.8285  0.8658  0.8623  0.7841  0.7857  0.561 
6 Extra Trees Classifier  0.8479  0.9622  0.8081  0.8505  0.8472  0.7607  0.7626  0.512 
7 Decision Tree Classifier  0.8402  0.8820  0.8040  0.8432  0.8404  0.7493  0.7505  0.022 
8 SVM - RBF Kernel  0.8370  0.9276  0.7900  0.8354  0.8326  0.7406  0.7440  0.363 
9 Gaussian Process Classifier  0.8216  0.8974  0.7863  0.8269  0.8228  0.7207  0.7221  2.571 
10 k-Neighbors Classifier  0.8162  0.9280  0.7772  0.8208  0.8161  0.7114  0.7135  0.122 
11 Linear Discriminant Analysis  0.8162  0.8382  0.7897  0.8323  0.8213  0.7150  0.7179  0.146 
12 SVM - Polynomial Kernel  0.8061  0.9375  0.7539  0.7991  0.8008  0.6927  0.6944  0.971 
13 Ridge Classifier  0.8054  0.9495  0.7777  0.8212  0.8111  0.6987  0.7008  0.024 
14 Quadratic Discriminant Analysis  0.7976  0.0000  0.7111  0.7769  0.7710  0.6705  0.6826  0.020 
15 MLP Classifier  0.7807  0.9413  0.7845  0.8412  0.7962  0.6704  0.6851  0.020 
16 Naive Bayes  0.7374  0.9003  0.6757  0.7679  0.7126  0.5884  0.6144  0.229 
17 SVM - Gaussian Kernel  0.7305  0.9251  0.7327  0.8013  0.7470  0.5977  0.6156  0.020 
18 Random Forest Classifier  0.6502  0.0000  0.5548  0.6278  0.5930  0.4302  0.4812  0.064  
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that the margin between the categories is maximized, as shown in 
Fig. 9b, and consists the optimal decision surface. 

In this case the data are linearly separable, something which gua-
rantees the error-free classification of the data. As a consequence, the 
problem is reduced to the simplest case of patterns’ classification, since 
the decision-making surface has the following simple form: 

wT x+ b = 0 (4)  

where × is the input vector, w is the vector of the weights and b is the 
bias constant to be calculated. Because the data are linearly separable, 
the categorizer is described by the following Eqs. (5) and (6): 

wT xk + b ≥ + 1, fortk = + 1 (5)  

or 

wT xk + b ≤ − 1, fortk = − 1 (6) 

The above two equations can be described together, using the Eq. (7): 

tk
(
wT xk + b

)
≥ + 1, k = 1, 2, 3,⋯,N (7) 

The goal of SVMs is to find the decision-making surface by maxi-
mizing the margin that separates the categories, which equals to 2

‖w‖2
. 

The vectors for which the equality of the above function applies are the 
so-called support vectors and are those vectors that lie closest to the 
decision-making surface and, therefore, those that are more difficult to 
categorize than all training vectors. Therefore, the problem of classifi-
cation becomes an optimization problem, in which the optimal surface 
(w*, b*) that reduces the cost J(w) = 1

2w
Tw satisfying some constraints is 

searched. This problem is defined as follows by the Eq. (8): 

min
w, b

{

J(w) =
1
2

wT w
}

(8)  

so that tk
(
wTxk +b

)
≥ + 1,k = 1,2,3,⋯,N.

In the above optimization problem, which is called primal, the cost 
function is convex and the constraints are linear with respect to w. The 
solution is achieved with the aid of the Lagrange multipliers method, 
based on which the following Lagrange function is formed by Eq. (9): 

L(w, b, a) =
1
2

wT w −
∑N

k=1
ak
[
tk
(
wT xk + b

)
− 1

]
(9)  

where the coefficients ak ≥ 0, k = 1,⋯,N are called Lagrange multi-
pliers. 

The solution of the initial optimization problem with constraints 
becomes an L(w,b,a) saddle point optimization problem. In particular, 
this point should be maximized with respect to α and minimized with 
respect to w and b, by Eq. (10): 

max
a

min
w, b

L(w, b, a) (10) 

Taking the derivatives of the function and setting them equal to zero, 
the following two Eqs. (11) and (12) arise: 

∂L(w, b, a)
∂w

= 0 (11)  

and 

∂L(w, b, a)
∂b

= 0 (12) 

From the two conditions of the function the following Eqs. (13) and 
(14) of a sigma point are derived: 

w =
∑N

k=1
aktkxk (13)  

and 

w =
∑N

k=1
aktk = 0 (14) 

Substituting the above value of w into the function the dual opti-
mization problem results, which is defined as follows by Eqs. (15) and 
(16): 

min
a

Q(a) =
∑N

k=1
ak −

1
2
∑N

l=1

∑N

m=1
alamtltmxT

l xm (15)  

and 

∑N

k=1
aktk = 0μεak ≥ 0, k = 1,⋯,N (16) 

The above becomes a Quadratic Programming problem, resulting in 
several non-zero ak solutions which are the requested support vectors. 

By finding the optimal Lagrange multipliers a*
k, the weights w* are 

calculated, while the corresponding bias b* is determined from one of 
the data separation cases. In the opposite case (which is the most 
probable as most problems are non-linearly separable due to uncer-
tainty, inaccuracy of representation and noise) there is a classification 
error, so the purpose of SVMs is to minimize this error. For this purpose, 
a new set of positive numbers called slack parameters is introduced, 
which measure the deviation of the data from the correct classification. 
In this case, the decision-making surface has the form of Eq. (17): 

tk
(
wT xk + b

)
≥ 1 − ξk, k = 1, 2, 3,⋯,N (17)  

where ξk ≥ 0 are the slack parameters, while the corresponding initial 
function optimization problem is transformed in the Eq. (18) as follows: 

Fig. 9. Problem of two linearly separable categories.  
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min
w, b

{

J(w, ξ) =
1
2
wT w+ c

∑N

k=1
ξk

}

(18)  

so that tk
(
wTxk +b

)
≥ 1 − ξk, ξk ≥ 0, k = 1,2, 3,⋯,N where c is a positive 

constant which is usually determined experimentally. The correspond-
ing Lagrange Eq. (19) will take the form: 

L(w, b, ξ, a) =
1
2
wT w+ c

∑N

k=1
ξk −

∑N

k=1
ak
[
tk
(
wT xk + b

)
− 1+ ξk

]
−

∑N

k=1
vkξk

(19)  

where vk ≥ 0, k = 1,⋯,N is a second (in addition to αk) set of Lagrange 
multipliers. 

In this case the sagmatic point optimization problem using slack 
parameters is described by Eq. (20) as follows: 

max
a, v

min
w, b, ξ

L(w, b, ξ, a, v) (20) 

Finally, the problem of Quadratic Programming with slack parame-
ters is defined by following Eqs. (21) and (22) as follows: 

min
a

Q(a) =
∑N

k=1
ak −

1
2
∑N

l=1

∑N

m=1
alamtltmxT

l xm (21)  

and 

∑N

k=1
aktk = 0, 0 ≤ ak ≤ c, k = 1,⋯,N (22)  

with the additional restriction ak ≤ c. The bias b* is calculated for those 
ak ≤ c for which ξk = 0. 

A major boost to the implementation of real problems was the 
development of nonlinear SVMs, which are based on the assumption that 
a nonlinearly separable pattern recognition problem can be transformed 
into a linearly separable one in a multidimensional space. The trans-
formation from a space with few dimensions (input space) to a multi- 
dimensional space (feature space) can be achieved by applying a non- 
linear mapping φ(x). In this case, the decision-making surface is 
defined by Eq. (23) as follows: 

∑m

i=1
wiφi(x)+ b = 0 (23)  

where m is the dimension of the whole set of the nonlinear trans-
formations φ(x), i.e. the dimension of the feature space, which is typi-
cally much larger than the dimension n of the input space. Assuming that 
φ0(x) = 1, ∀x, w0 = bκαιφ(x) = [φ0(x),φ1(x),⋯,φm(x) ]

T, the function 
can be written with the following form of the Eq. (24): 

∑m

i=1
wiφi(x) = wT φ(x) = 0 (24) 

Considering that by using the mapping functions φ(x) the problem 
has been reduced to a linear one with separable data in the space of the 
features, the solution of the Lagrange function for the whole set of the 
weights takes the form of the Eq. (25): 

w =
∑N

k=1
aktkφ(xk) (25) 

And so, it is transformed into Eq. (26): 

∑N

k=1
aktkφT(xk)φ(x) = 0 (26) 

The quantity φT(xk)φ(x) describes the interior product of two vectors 
in the feature space. This quantity is called the kernel and is denoted by 
Eq. (27): 

K(xk, x) = φT(xk)φ(x) (27)  

Based on Mercer’s theorem, the kernel can be represented by Eq. (28) as: 

K(xk, x) =
∑m

i=0
φi(xk)φi(x), k = 1, 2,⋯,N (28)  

a technique which is called kernel trick. A depiction of the kernel trick 
method is represented in Fig. 10. 

Therefore, the decision-making surface will have the form of Eq. 
(29): 

∑N

k=1
aktkK(xk, x) = 0 (29) 

The corresponding dual quadratic programming optimization prob-
lem is defined by Eqs. (30) and (31) as follows: 

min
a

Q(a) =
∑N

k=1
ak −

1
2
∑N

l=1

∑N

m=1
alamtltmK(xl, xm) (30)  

∑N

k=1
aktk = 0, ak ≥ 0, k = 1,⋯,N (31) 

By finding the Lagrange multipliers from the above optimization 
problem the set of optimal weights w* is calculated by the Eq. (32): 

w* =
∑N

k=1
a*

k tkφ(xk) (32)  

where the first weight of the vector w* corresponds to the optimal bias 
b*. 

It is worth noting that the selection of the appropriate kernel plays an 
important role in the performance of SVM. The only limitations that a 
kernel should satisfy are that the kernel must be symmetric. 

The kernels that were used in the present investigation are the 
following (Eqs. (33), 34 and 35): 

Kpolynomial(xk, x) =
(
τ + xT

k x
)d (33)  

KRBF(xk, x) = exp
(

−
1

2σ2‖x − xk‖
2
2

)

(34)  

Kgaussian(xk, x) = exp( − γ||u − v||2) (35)  

5.4. Results and discussion 

When building and optimizing a classification model, measuring 
how accurately it predicts the expected outcome is crucial. However, 
one metric alone can offer misleading results. There are several perfor-
mance evaluations metrics to help tease out more meaning in a model. 
The metrics to evaluate a machine learning model are very important as 
the choice of metrics influences how the performance of machine 
learning algorithms can be compared. Appropriate classification metrics 
were used in order to confirm the comparison results and to demonstrate 
the superiority of the machine learning algorithm that achieved the 
highest performance during the classification process. Specifically, 
given a pair of training vectors {xi, yi}, a classification model learns the 
parameters θ for an unknown function f(x), which can match each input 
vector xi to the estimated output f(xi). Successful training means the 
optimal adaptation of the internal parameters θ, in order to minimize an 
error or cost function, which evaluates the performance of the catego-
rizer based on some efficient and sound measures. The most popular 
evaluation measures, which are able to evaluate and compare with 
clarity, completeness and objectivity the classification algorithms are 
presented below [81,82]: 
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5.4.1 Confusion matrix 
Because incorrect classifications of different classes have different 

costs, it is important to assess the predictor’s ability to predict each class. 
To evaluate the performance for each class, the following terminology is 
used:  

1. Positive: The observations which belong to a value of the class.  
2. Negative: The observations which belong to the other value of the 

class.  
3. True Positive (TP): The number of successful predictions for positive 

observations. 
4. True Negative (TN): The number of successful predictions for nega-

tive observations.  
5. False Positive (FP): The number of failed predictions for negative 

observations.  
6. False Negative (FN): The number of failed predictions for positive 

observations. 

The evaluation of a classification model is based on the number of 
records in the control set that are correctly or incorrectly predicted by 
the model. This number is placed in a confusion matrix (Table 7), which 
is a two-dimensional table, where the columns correspond to the pre-
dictions and the rows correspond to the actual values of the class. 
Table 8.. 

The principle of the Confusion Matrix is that it recognizes the nature 
of the errors, as well as their quantity. Each snapshot fij shows the 
number of records from class i that are expected to belong to class j. The 
f01 snapshot is the number of records from class 0 that were incorrectly 
predicted to be placed in class 1. Based on the snapshots, the number of 
records correctly predicted is the sum of f00 και f11, while those predicted 
incorrectly are f01 and f10. Although the Confusion Matrix provides the 
exact information needed to evaluate a model, this information can be 
expressed with aid of a unique number that is easy to use for compari-
sons between different models. Most performance measures can be 
expressed in relation to the number of TP, TN, FP and FN classifications 
for each class. 

In the following Figs. 11, 12 and 13 are presented the confusion 
matrices of the seismic datasets by the SVM - Gaussian Kernel algorithm 

which produced the highest classification results. The Confusion 
Matrices visualizes the prediction score that takes a fitted classifier and a 
set of test X and y values and returns a report showing how each of the 
test values predicted classes compare to their actual classes. We use 
confusion matrices to understand which classes are most easily 
confused. Also, they provide deeper insight into the classification of 
individual data points. 

The above confusion matrices show each combination of the true and 
predicted classes for each test data set. The true mode is selected, 100% 
accurate predictions are highlighted in green. Is the fact that the line 
from the True Positives which are at the top-left corner to True Negatives 
which are at the down-right corner, includes in the three confusion 
matrices most of the correct predictions in comparison to the actual 
values of the class. 

5.4.2 Accuracy 

accuracy =
TP + TN

TP + TN + FP + FN
(36)  

expresses the percentage of classification of control plots that are 
correctly categorized. 

5.4.3 Precision 

precision =
TP

TP + FP
(37)  

expresses the percentage of classification of the positive results that the 
categorizer has correctly classified as positive and are indeed positive. 
The higher the percentage of precision, the lower the corresponding 
percentage of FP. 

5.4.4 Recall 

recall =
TP

TP + FN
(38)  

expresses the percentage of classification of the positive examples that 
the categorizer was able to classify. The higher its percentage, the fewer 
positive examples have been incorrectly classified. 

5.4.5 F-Score or F-measure or F1 
In an attempt to objectively deal with cases where a categorizer has 

disproportionately distributed classification errors, the metric F-Score 
was introduced, which is the harmonic mean between precision and 
recall and is calculated: 

Fig. 10. Kernel Trick.  

Table 7 
Confusion Matrix.   

Predicted Class 

Class 1 Class 0 

True Class Class 1 f11 TP f10 FN 
Class 0 f01 FP f00 TN  
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FScore =
2 × recall × precision

recall + precision
=

2TP
2TP + FP + FN

(39) 

The higher the percentage of the metric F-Score, the higher the 
respective two metrics. In the following Figs. 14, 15 and 16 are pre-
sented the classification reports plots by the SVM - Gaussian Kernel 
algorithm. 

Each classification report visualizer displays the precision, recall, F1, 
and support scores for the model. In order to support easier interpreta-
tion and problem detection, the report integrates numerical scores with 

a color-coded heatmap. All heatmaps are in the range (0.0, 1.0) to 
facilitate easy comparison of classification models across different 
classification reports. 

5.4.6 Receiver Operating Characteristic (ROC) 
This metric can be applied to categorizers that have as output trust. 

In this case, the categorizer predicts one class if its confidence for it 
exceeds a threshold. For the formation of the ROC Curve, various 
threshold values are used and the True Positive Rate (TPR) and False 
Positive Rate (FPR) percentages are noted for each of them. These value 

Table 8 
Performance Metrics by the SVM - Gaussian Kernel.  

ID Dataset HS Accuracy ROC Recall Precision F-Score % Improvement 

1 Row_Form_Bare BO  0.9113  0.9996  0.8906  0.9041  0.9017  2.98% 
2 GS  0.8947  0.9836  0.8770  0.8922  0.8914  1.07% 
3 RS  0.9018  0.9905  0.8829  0.8974  0.8959  1.89% 
4 Row_Form_Full-Masonry BO  0.9166  0.9990  0.8956  0.9137  0.9091  2.13% 
5 GS  0.9129  0.9956  0.8931  0.9117  0.9075  1.96% 
6 RS  0.9132  0.9960  0.8933  0.9119  0.9076  2.01% 
7 Row_Form_Pilotis BO  0.9055  0.9998  0.8734  0.9014  0.8960  2.96% 
8 GS  0.8941  0.9890  0.8645  0.8938  0.8895  1.61% 
9 RS  0.8960  0.9908  0.8659  0.8949  0.8904  1.85%  

Fig. 11. Confusion Matrix of the Row_Form_Bare dataset (for classes’ definition 
see Table 1). 

Fig. 12. Confusion Matrix of the Row_Form_Full-Masonry dataset (for classes’ 
definition see Table 1). 

Fig. 13. Confusion Matrix of the Row_Form_Pilotis dataset (for classes’ defi-
nition see Table 1). 

Fig. 14. Classification report of the Row_Form_Bare dataset.  
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pairs are plotted on a graph where the y-axis corresponds to the TPR and 
the x-axis to the FPR. The performance of each categorizer is represented 
by a point on the ROC curve. The advantages of this metric are that it 
gathers information about the prediction quality of the categorizer for 
different threshold values and is also independent of the class imbalance 
in the data. The following Figs. 17, 18 and 19 are presented the ROC 
curve plots by the SVM - Gaussian Kernel algorithm. 

The above ROC curves are the measure of the SVM - Gaussian Kernel 
classifier predictive quality that compares and visualizes the tradeoff 
between the model’s sensitivity and specificity. The higher the ROC, the 
better the model generally is. However, it is also important to inspect the 
“steepness” of the curve, as this describes the maximization of the true 
positive rate while minimizing the false positive rate. 

5.4.7. Error functions 
Estimator function or estimator is a function of the random sample 

used to estimate an unknown parameter of a distribution function. The 
estimators in the case of classification refer to cost or error functions, 
which are able to quantify the classification variance achieved by an 
algorithm. The two cost or error functions used to categorize this 
method are the following: 

1. Cohen’s Kappa Statistics (CKS): This is a statistical measurement 
that provides information about the amount of agreement between the 

Fig. 15. Classification report of the Row_Form_Full-Masonry dataset.  

Fig. 16. Classification report of the Row_Form_Pilotis dataset.  

Fig. 17. ROC curve of the Row_Form_Bare dataset.  

Fig. 18. ROC curve of the Row_Form_Full-Masonry dataset.  

Fig. 19. ROC curve of the Row_Form_Pilotis dataset.  
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truth map and the final ranking map. It is the percentage agreement 
between two raters, where each classifies N items into C mutually 
exclusive categories. The definition of CKS calculate by the following Eq. 
40: 

κ = p0 − pe
1− pe

= 1 −
1− p0
1− pe 

(40). 
where po is the relative observed agreement among raters (identical 

to accuracy), and pe is the hypothetical probability of chance agreement. 
The observed data are used to calculate the probabilities of each 
observer, to randomly see each category. More specifically, 0 = agree-
ment equivalent to chance, 0.1 – 0.20 = slight agreement, 0.21 – 0.40 =
fair agreement, 0.41 – 0.60 = moderate agreement, 0.61 – 0.80 = sub-
stantial agreement, 0.81 – 0.99 = near perfect agreement and 1 = per-
fect agreement. 

2. Matthews Correlation Coefficient (MCC): MCC is used in machine 
learning as a measure of the quality of classifications. It is considered a 
balanced measure that can be used even if the sizes of the classes are 
very different, as it calculates a correlation coefficient value of [-1, +1] 
with + 1 representing a perfect prediction, 0 an average random pre-
diction and − 1 a reverse prediction. It is calculated by the Eq. (41): 

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (41) 

The class prediction error chart provides a way to quickly understand 
how good the classifier is at predicting the right classes. The following 
Class Prediction Error plots show the support (number of training 
samples) for each class in the fitted classification model as a stacked bar 
chart. Each bar is segmented to show the proportion of predictions 
(including false negatives and false positives, like the Confusion Matrix) 
for each class. We use each Class Prediction Error plot to visualize which 
classes of the classifier is having a particularly difficult time with, and 
more importantly, what incorrect answers it is giving on a per-class 
basis. This enables us to better understand the strengths and weak-
nesses of each model and particular challenges unique to each dataset. 
The Figs. 20, 21 and 22 are presented the Class Prediction Error plots by 
the SVM - Gaussian Kernel algorithm. 

In the above example, while the classifier appears to be fairly good at 
correctly predicting classes 0 and 2 based on the features of the Row_-
Form_Bare dataset, it often incorrectly labels in class 1. Similar, in the 
above example, the classifier it often incorrectly labels in class 1. Also, in 
the above example, the classifier appears to be fairly good at correctly 
predicting class 2. Also, it often incorrectly labels in class 0 and 1. 

6. Auto hyperparameter tuning 

So, after the presentation of all the background material on Statis-
tical Learning and how the Support Vector Machine model is generated, 
the automatic optimization of the hyperparameters utilizing Bayesian 
Optimization (BO) will be described in this section. Hyperparameters in 
machine learning are determined a priori rather than during training. In 
equation form, hyperparameter optimization is expressed as [83-86]: 

x⋆ = argmin
x∈X

f (x) (42) 

In machine learning, hyperparameter optimization seeks to identify 
the hyperparameters of a given algorithm that produce the highest 
performance when compared against a validation set. The hyper-
parameters are the model settings that need to be tuned and, unlike 
model parameters, are set by the machine learning engineer before 
training. Here, f(x) is an objective score to minimize, such as RMSE or 
error rate, evaluated on the validation set and x* is the set of hyper-
parameters that provides the lowest score value (x can take any value in 
the domain X). We want to find the model hyperparameters that produce 
the highest score in test set. The issue with hyperparameter optimization 
is that evaluating the objective function to determine the score is 
expensive. Each time we experiment with alternative hyperparameters, 

Fig. 20. Class Prediction Error of the Row_Form_Bare dataset (for classes’ 
definition see Table 1). 

Fig. 21. Class Prediction Error of the Row_Form_Full-Masonry dataset (for 
classes’ definition see Table 1). 

Fig. 22. Class Prediction Error of the Row_Form_Pilotis dataset (for classes’ 
definition see Table 1). 
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we must train a model on training data, make predictions on validation 
data, and then calculate the validation measure. As a result, doing this 
process by hand gets increasingly difficult. Because we put up a grid of 
model hyperparameters and automatically conduct the train-predict- 
evaluate cycle in a loop, grid search and random search perform bet-
ter than manual tweaking. However, even these methods are inefficient, 
since they do not select the next hyperparameters to examine based on 
previous results. Grid and random search are completely ignorant by 
previous evaluations and, as a result, frequently waste time considering 
“poor” hyperparameters. 

When using the Gaussian kernel to train an SVM, two parameters 
must be considered: C and gamma. The parameter C, shared by all SVM 
kernels, trades off training example misclassification versus decision 
surface simplicity. A low C smoothest the decision surface, whereas a 
high C attempts to identify all training samples correctly. Gamma is the 
amount of influence that a single training example has. The greater the 
gamma, the closer the other instances must be to be influenced. The 
selection of C and gamma is essential to the performance of the SVM. To 
find suitable values, optimizing with C is recommended, and gamma 
spreads exponentially apart. The most often used method for tweaking 
hyperparameters in learning models is grid search. This heuristic tech-
nique tests many parameter possibilities before selecting the one that 
best matches the introduced fitted data. However, it is inefficient due to 
the many combinations to try. It is impossible to decide whether the 
variety discovered is the best even after a thorough search. This paper 
uses training with BO approaches to overcome this impact. 

The fundamental idea behind Bayesian model-based optimization is 
to limit the number of times the objective function must be run by 
evaluating only the most promising set of hyperparameters based on 
past calls to the evaluation function. The next set of hyperparameters is 
chosen based on a surrogate model of the objective function. The sur-
rogate function is a probability representation of the objective function 
constructed from past evaluations. Because it is a high-dimensional 
mapping of hyperparameters to the probability of a score on the 
objective function, this is sometimes referred to as a response surface. 
The selection function is the criteria used to select the next set of 
hyperparameters from the surrogate function. Expected Improvement 
(EI) is the most commonly used criterion: 

EIy* (x) =
∫ y*

− ∞
(y* − y)p(y|x)dy (43)  

Here, y* is the objective function’s threshold value, x is the suggested set 
of hyperparameters, y is the objective function’s actual value employing 
hyperparameters ×, and p(y|x) is the surrogate probability model rep-
resenting the probability of y given x. The goal is to maximize the Ex-
pected Improvement to x. Finding the optimum hyperparameters under 
the function p(y|x) is what this entails. If p(y|x) is zero everywhere that 
y < y*, then the hyperparameters × are unlikely to improve. If the in-
tegral is positive, the hyperparameters × are projected to outperform the 
threshold value. The BO, instead of directly representing p(y|x), em-
ploys the following: 

(y|x) =
p(x|y)*p(y)

p(x)
(44)  

where p(x|y) is the probability of the hyperparameters given the 
objective function score, represented as: 

p(x|y) =
{

l(x) if y < y*

g(x) if y ≥ y* (45)  

where y < y* represents a lower objective function value than the 
threshold. This equation explains that we make two different hyper-
parameter distributions: the objective function value is less than the 
threshold l(x), and the objective function value is greater than the 
threshold g(x). From this perspective, the predicted EI (which we are 

attempting to optimize) is: 

EIy* (x) =
γy*l(x) − l(x)

∫ y*

− ∞ p(y)dy
γl(x) + (1 − γ)g(x)

∝
(

γ +
g(x)
l(x)

(1 − γ)
)− 1

(46)  

This means that the EI is proportional to the ratio l(x)/g(x), and hence 
we should increase this ratio to maximize the EI. As a result, we should 
choose hyperparameter values that are more likely under l(x) than under 
g(x). Because l(x) is a distribution rather than a single value, the 
hyperparameters chosen are likely to be close but not strictly at the 
maximum of the projected improvement. Furthermore, because the 
surrogate is only an approximation of the objective function, the chosen 
hyperparameters may not result in a gain when evaluated, and the 
surrogate model will need to be modified. The present surrogate model 
and the history of objective function evaluations are used to update this 
model. The proposed methodology uses Bayesian Inference (BI) to 
address this issue. BI is a statistical inference approach that uses Bayes’ 
theorem to update the probability of a hypothesis as new data or in-
formation becomes available. The posterior probability is calculated by 
BI using two antecedents: a prior probability and a “likelihood function” 
obtained from a model for the observed data. BI calculates the posterior 
probability using Bayes’ theorem: 

P(H|E) =
P(E|H)⋅P(H)

P(E)
(47)  

The posterior probability is proportional to its prior probability and the 
newly acquired likelihood. Only the components P(H) and P(E | H) (both 
in the numerator) influence the value of P(H | E) for different values of 
H. Bayes’ rule can alternatively be written as: 

P(H|E)& =
P(E|H)P(H)

P(E)
=

P(E|H)P(H)

P(E|H)P(H) + P(E|¬H)P(¬H)

=
1

1 +
(

1
P(H)

− 1
) P(E|¬H)

P(E|H)

(48) 

Because 

P(E) = P(E|H)P(H)+P(E|¬H)P(¬H) (49) 

And 

P(H)+P(¬H) = 1 (50) 

Where ¬H is not H. Based on Rule of Multiplication: 

P(E ∩ H) = P(E|H)P(H) = P(H|E)P(E) (51) 

The prior distribution is the distribution of the parameters prior to 
the observation of any data, p(θ|α). 

The sampling distribution is the observed data distribution condi-
tional on its parameters, p(X|θ). 

The marginal likelihood is the minimized distribution of observed 
data over the parameters: 

p
(

X
⃒
⃒
⃒
⃒α
)

=

∫

p
(

X
⃒
⃒
⃒
⃒θ
)

p
(

θ
⃒
⃒
⃒
⃒α
)

dθ (52) 

The posterior distribution is the distribution of the parameters after 
taking the observed data into account: 

p(θ|X, α) = p(θ,X,α)
p(X, α) =

p(X|θ, α)p(θ, α)
p(X|α)p(α) =

p(X|θ, α)p(θ|α)
p(X|α) ∝p(X|θ, α)p(θ|α)

(53) 

So, the distribution of a new data point, marginalized over the pos-
terior, is the posterior predictive distribution: 

p(x̃|X, α) =
∫

p(x̃|θ)p(θ|X, α)dθ (54) 

And finally, the prior predictive distribution is a new data point that 
has been marginalized over the prior distribution: 
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p(x̃|α) =
∫

p(x̃|θ)p(θ|α)dθ (55) 

In order to prove the ability of the proposed Bayesian method against 
random search, we have conducted a sophisticated experiment. Using 
the datasets which are into consideration in this paper, we have tuned 
the SVM Gaussian Kernel model using Hyperparameter Search (HS). 
Specifically, we used the proposed BO, Grid Search (GS) and Random 
Search (RS) models in 20 iterations for all and the target is to minimizing 
RMSE. The process was repeated three times with different seeds and the 
results averaged. Below is the table with comparison results. 

As proved by the experiments, the proposed BO method maintains 
track of all assessments and utilizes the data to build a “surrogate 
probability model” that the machine learning model, the SVM Gaussian 
Kernel in this approach, can evaluate faster. Specifically, instead of 
simply sampling random configurations, the algorithm can choose 
which hyperparameters to assess next based on the prior and posterior 
distributions of the Bayesian Inference. In essence, this method creates a 
probability model of the objective function and then utilizes it to select 
the most promising hyperparameters to evaluate the objective function. 
The more combinations considered, the more informed the algorithm 
becomes, and the surrogate model becomes closer to the objective 
function. 

7. Conclusions 

The present paper investigates the classification of buildings’ po-
tential for seismic damage using a machine learning model with auto 
hyperparameter tuning. For this aim, a training dataset consisting of 30 
3D R/C buildings with different structural parameters was chosen. The 
buildings were designed based on the provisions of EC8 and EC2. For 
each one of these buildings three different configurations as regards 
their masonry infills were considered (without masonry infills, with 
masonry infills in all stories and with masonry infills in all stories except 
for the ground story), leading to three different data subsets with 30 
buildings each. Then, the buildings were analyzed my means of the 
Nonlinear Time History Analyses method for 65 appropriately chosen 
real earthquake records. Both seismic and structural parameters widely 
used in the literature were selected as inputs in the process of Machine 
Learning methods. The quantification of the buildings’ damage level 
was done by means of the well-documented Maximum Interstory Drift 
Ratio. As proved, the Machine Learning methods that are mathemati-
cally well-established and their operations that are clearly interpretable 
step by step can be used to solve some of the most sophisticated real- 
world problems in consideration. The findings of the present work can 
be summarized as follows:  

1. Different Machine Learning algorithms running on the same dataset 
can lead to different predictions with little or no overlap between 
them and, also, different parameters of the same algorithm can affect 
the results of the buildings’ damage assessment.  

2. The SVM method used is not prone to overfitting to a specific data set 
compared to other methods and is also a robust method against data 
noise and outliers.  

3. The important advantage of the SVM is that the optimization method 
that is used by the algorithm presents a total minimum, giving a 
unique optimal choice, which does not happen in other methods such 
as Neural Networks that can be trapped in local minima.  

4. Τhe performance of the SVM classifier depends not only on the 
algorithmic mechanism of the classifier itself (decision method) but 
also on the kernel to be applied to it, as its performance varies with 
the use of different kernels. Adjusting a kernel suitable to improve 
alignment with the samples of the training set which are labeled, 
significantly increases the fit with the samples of the test set, giving 
quite improved classification accuracy. Therefore, choosing the right 

kernel is a vital issue for the performance of the final classification 
model.  

5. The SVMs have significant generalizability to non-linearly separable 
data by incorporating the kernel trick. By applying kernel functions, 
it is possible to produce nonlinear models that lead to linearity in 
larger spaces. In addition, the number of parameters to be configured 
in SVMs is smaller compared to several corresponding methodolo-
gies. Also, for the classification of a new element in a class, the 
classification process is based only on the similarity of the element 
unknown to the algorithm and the most important elements of each 
class (support vectors), so the method reduces significantly the 
computational cost and the requirement resources.  

6. The proposed approach generates an auto hyperparameter tuning 
model of the SVM algorithm, which is then used to simplify the ML 
process by finding the most promising hyperparameters for evalu-
ating the used dataset.  

7. Instead of picking random configurations, the algorithm decides 
which hyperparameters to estimate next depending on the Bayesian 
Inference’s prior and posterior distributions.  

8. The results confirm the need for further and in-depth exploration of 
the results related to the thorough evaluation of similarity measures 
and/or distance functions used in statistical approaches to imple-
ment features of the similar issues, in order to reduce the uncertainty 
in the decisions that include the data used to predict damages.  

9. Because the approach adopted is mathematically well-interpretable, 
it can persuade stakeholders to trust and deploy intelligent tech-
nologies in the civil engineering sector. 

Future work on this topic could focus on applying all of the above 
learning and prediction methods/models to different data sets, in order 
to assess whether they perform equally well on different data. This is 
also a way to test the insides of other methods of experts in terms of their 
robustness, i.e. to compare their performance for different data and to 
see if their accuracy is around the same percentages, so that they can be 
considered reliable as models. Also, ensemble methods could be applied 
with different combinations of individual classifiers, in terms of the 
number and nature of the latter, for further analysis of their function. In 
addition, other Machine Learning or Deep Learning models could be 
considered, such as the method based on the expectation–maximization 
algorithm, LSTM Neural Networks, etc. Finally, it will be important to 
look at different ways of selecting features, as well as mixing different 
selection methods, where it is expected very little overlap of insides 
indicators, in order to see if mixing methodology can statistically or 
mechanically lead to increased performance of the methods. 
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