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Abstract. Training a model using batch learning requires uniform data storage in a repository. This approach is intrusive, as
users have to expose their privacy and exchange sensitive data by sending them to central entities to be preprocessed. Unlike the
aforementioned centralized approach, training of intelligent models via the federated learning (FEDL) mechanism can be carried
out using decentralized data. This process ensures that privacy and protection of sensitive information can be managed by a user or
an organization, employing a single universal model for all users. This model should apply average aggregation methods to the
set of cooperative training data. This raises serious concerns for the effectiveness of this universal approach and, therefore, for
the validity of FEDL architectures in general. Generally, it flattens the unique needs of individual users without considering the
local events to be managed. This paper proposes an innovative hybrid explainable semi-personalized federated learning model,
that utilizes Shapley Values and Lipschitz Constant techniques, in order to create personalized intelligent models. It is based on
the needs and events that each individual user is required to address in a federated format. Explanations are the assortment of
characteristics of the interpretable system, which, in the case of a specified illustration, helped to bring about a conclusion and
provided the function of the model on both local and global levels. Retraining is suggested only for those features for which the
degree of change is considered quite important for the evolution of its functionality.
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1. Introduction1

The complete transformation of supply chain (SC)2

in a truly integrated and fully automated process as-3

sumes the continuous and endless collection of digital4

information from every stage of the production [1]. Fol-5

lowing this idea, the history of services and products6

per stage of the supply chain, can be investigated. The7

emerging continuous need of connectivity, raises seri-8

ous concerns for the protection of personal data and for9

digital security as a whole [2].10

At the same time, the heterogeneity of the sys-11

tems included in the supply chain as well as the non-12
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conventional interoperability, in terms of hardware and 13

software, results to even more serious concerns related 14

to the security and protection of these systems [3,4]. 15

Recently, the authors developed and presented a spe- 16

cialized and technologically up-to-date framework for 17

the protection of digital security, privacy and industrial 18

confidentiality. Specifically, the developed framework 19

is related to an advanced adaptive federated auto met- 20

alearning mechanism (AFAMM), which operates on a 21

blockchain and applies advanced encryption techniques, 22

to fully ensure privacy and industrial secrecy [5]. The 23

security and privacy focused architecture of this frame- 24

work, has three main characteristics, namely: a) no sen- 25

sitive data is transmitted through communication chan- 26

nels b) the data is not stored in a central point of attack 27

and c) the learning algorithms are constantly upgrading 28

their predictability [2,5]. 29
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Fig. 1. The blockchained adaptive federated auto meta-learning architecture.

An intelligent control mechanism has been devel-30

oped to detect malfunctions in the processes of a com-31

munication network running under an Industry 4.0 en-32

vironment [6]. This system is based on the analysis of33

network traffic and on the development of an automatic34

intelligent neural network for the control and detec-35

tion of abnormalities. The training and updating of the36

model were performed using federated learning and the37

communication of all involved parts was done through38

blockchain methods. The modules of this architecture39

are illustrated in Fig. 1.40

Under this framework, when a device wants to com-41

municate with another, the proposed intelligent mecha-42

nism is activated, implementing a network traffic con-43

trol to detect anomalies. In the first phase, the features44

of the network’s traffic are exported in order to form45

the input vectors to a Neural Network (NN) that is au-46

tomatically developed following the Neural Architec-47

ture Search technique. The model is initially trained48

on the host server with some initial data, in order for49

the training process to begin. Then, it is encrypted with50

homomorphic encryption and it is sent via blockchain51

(BLCH) to nodes that will use it. The nodes in question52

receive the model and improve it by exploiting the data53

at their disposal [7–9]. The obtained enhanced version54

is encrypted and returned via blockchain to the host55

server. In this stage, the best models are aggregated, and56

the weighted average is selected using the Grid Search57

Weighted Average Ensemble method. The final model58

is returned back to the nodes using BLCH. If the traffic59

is characterized as normal, further communication is60

allowed. Otherwise, communication is forbidden and an61

alarm is sent to the control center, for further analysis62

of the transaction [10].63

The federated module allows remote devices to 64

download and run the original trained machine learn- 65

ing model that is developed by the neural search ap- 66

proach. This is populated with local data, improving its 67

accuracy, and then it is sent back to the federated mod- 68

ule, which summarizes the changes using the Dynamic 69

Weighted Average technique. The updated version, is 70

fed back to the network nodes, through the blockchain 71

module [11,12]. 72

Based on this architecture, the initial experiments 73

give the impression that there is a continuous improve- 74

ment of the intelligent model, and that end users can 75

have constant access to an ever-upgraded NN. After 76

extensive observation, it was demonstrated that learning 77

a single universal model by aggregating the best mod- 78

els and selecting the weighted average via Dynamic 79

Weighted Average (DWA), could not satisfy the local 80

needs of the users. This is due to the fact that the events 81

they had to deal with, were significantly different in 82

terms of the data threats they process. For example, 83

mobile users face different threats than the Internet of 84

Things’ (IoT) devices or SCADA industrial network 85

terminals [10,13]. 86

While constant upgrade increases generalization, it 87

raises serious concerns for its efficiency at local level. 88

Figure 2 shows the noticeable decrease of the local 89

model’s accuracy, compared to the global and to the 90

original ones. 91

As it can be seen after the first 30 iterations, the local 92

model has significantly higher accuracy than the global 93

one. This is explained by the fundamental hypothesis 94

related to the development of any supervised machine 95

learning model (MLM), according to which, the data 96
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Fig. 2. Local vs global models’ accuracy.

Fig. 3. Drift data by classes.

under considerarion, mimic real-world cases. No matter97

how accurate the MLM, the predictions are correct only98

if the used data is identical or statistically equivalent99

to the training vectors. Minor changes (drifts) that a100

realistic problem is capable of bringing to the data [14,101

15], might result in a reduction of the classification102

accuracy, as it is shown in Fig. 2.103

In this research paper, a drift analysis has been per-104

formed to identify the response of local models to105

changes in the data, and to estimate how they affect106

the properties of the classes that the learning system is107

trying to discover. In cases where changes occur (drift)108

a sensitivity analysis can provide accurate information109

about the quality of the universal model, produced by110

the federated learning system [16].111

Initially, p-values [17] were calculated to detect112

changes in the data and to estimate how likely is that the113

data will not change (null-hypothesis). The resulting 114

p values for each feature were less than 0.05, which 115

proves strong evidence against null-hypothesis, as there 116

is less than a 5% probability that null-hypothesis is cor- 117

rect. Therefore, the null-hypothesis is rejected, and an 118

alternative hypothesis is adopted, i.e., that there is a drift 119

in our data. To this regard, the Exponentially Weighted 120

Moving Average (EWMA) algorithm was used, which 121

renews the estimation of a variable by combining the 122

most recent estimates of all previous measurements 123

based on the following Eq. (1) [18]: 124

Xt = azt + (1− a)Xt−1 →
(1)

Xt =Xt−1 + a (zt −Xt−1)

where Xt is the moving average, zt is the last measure- 125

ment and α is the weight in the interval [0, 1], given by 126

the last measurement. The target of the algorithm is to 127
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Fig. 4. Drift data in BwdPacketLengthMax future.

Fig. 5. Drift data in BwdPacketLengthMax future by classes.

generate an estimate that gives more weight to recent128

measurements, assuming that they are more likely to be129

relevant. Based on the performed EWMA tests, 95.45%130

of the dataset’s features (63 out of 66) appear to be131

drifted, as shown in the following Fig. 3.132

A specific example of the BwdPacketLengthMax fea-133

ture and its dispersion, appears in the following Figs 4134

and 5.135

From the above analysis it was concluded that there136

are three options that can be followed to effectively137

address the problem [3,18,19]:138

1. The first is retraining the system. This approach is139

characterized by high computational costs that are140

considered unacceptable, while in practice, this141

methodology did not perform well.142

2. The second is the use of Adaptive Learning meth-143

ods [20] that are capable to follow changes pre-144

sented by the data stream. The methodology in145

question is first checked for the accuracy of the146

categorization it can produce. It also requires147

mechanisms that forget outdated examples and148

therefore address the problem of catastrophic for-149

getting. Finally, it develops requirements for the150

model to be reviewed on an ongoing basis, which151

creates serious computational costs, while its uti-152

lization would be preferable for data flow analy-153

sis.154

3. The third is detecting changes and retraining only155

those features of the model for which the degree156

of change is considered sufficiently significant. 157

The methodology in question, requires strategies 158

to detect and quantify potential changes in the 159

data that modify their distribution over time. It 160

also needs a reliable model for identifying those 161

features of the model that require retraining. 162

This paper follows the third option as the preferable 163

methodology, in order to explore the personalization 164

potential of federated learning for each user. Thus, only 165

the necessary characteristics of the model are retrained, 166

based on the respective needs and the events that it is 167

called to face. 168

2. Related research 169

The methodology of the federated learning technique, 170

has been of great interest to the research community. In 171

this section related work will be presented. 172

For example, in [11] it is presented a comprehensive 173

study with an experimental analysis of federated deep 174

learning approaches for cyber security in IoT applica- 175

tions. Specifically, it is provided an exploratory analysis 176

of federated learning model with three deep learning 177

approaches, namely, Recurrent Neural Network (RNN), 178

Convolutional Neural Network (CNN), and Deep Feed- 179

forward Neural Network (DNN). For each deep learn- 180

ing model, the performance of centralized and federated 181
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learning under three real IoT traffic datasets is studied.182

Furthermore, the article aims to provide important in-183

formation on federated deep learning approaches with184

emerging technologies for cyber security. In addition, it185

demonstrates that federated deep learning approaches186

outperform the classic/centralized versions of machine187

learning (non-federated learning) in assuring the pri-188

vacy of IoT device data and providing higher accuracy189

in detecting attacks.190

However, since adversaries can track and derive par-191

ticipants’ privacy from the shared gradients, federated192

learning is still exposed to various security and privacy193

threats. In [21], the authors consider two major issues194

in the training process over deep neural networks: 1)195

how to protect user’s privacy (i.e., local gradients) in196

the training process and 2) how to verify the integrity197

(or correctness) of the aggregated results returned from198

the server. Several approaches focusing on secure or199

privacy-preserving federated learning have been pro-200

posed and applied in diverse scenarios to solve the201

above problems. However, it is still an open problem202

enabling clients to verify whether the cloud server is203

operating correctly while guaranteeing users’ privacy204

in the training process. Therefore, a model named Ver-205

ifyNet is proposed which is a privacy-preserving and206

verifiable federated learning framework. Specifically,207

the authors presented a double-masking protocol to208

guarantee the confidentiality of users’ local gradients209

during the federated learning. Then, a cloud server is210

required to provide proof about the correctness of its211

aggregated results to each user. Also, it is claimed that212

it is impossible that an adversary can deceive users by213

forging evidence unless it can solve the NP-hard prob-214

lem adopted in their model. In addition, VerifyNet is215

also supportive of users dropping out during the training216

process. The extensive experiments conducted on real-217

world data also demonstrate the functional performance218

of the proposed scheme.219

Due to lacking effective incentives and trust, data220

from different operators cannot be shared directly.221

In [22], the authors proposed an approach on blockchain222

-based federated learning for implementing asynchrono-223

us collaborative machine learning between distributed224

agents that own data. This method performs distributed225

machine learning without a trusted central server. The226

blockchain smart contract is used to realize the man-227

agement of the entire federated learning. Using the his-228

torical data collected from real systems, the learning229

agent in the federated learning method adopts a sup-230

port vector machine (SVM) based, intelligent control231

model. The authors optimize classic SVM, by assigning232

different penalty factors to the majority and minority 233

classes to deal with the imbalanced data. The data sets 234

are mapped to a high dimension using kernel functions 235

to make it linearly separable. Also, they construct a 236

mixing kernel function composed of polynomial and ra- 237

dial basis function (RBF) kernel functions, which uses 238

a dynamic weight factor to improve the model accuracy. 239

The simulation results demonstrate the efficiency and 240

accuracy of their proposed intelligent control method. 241

On the other hand, because the outcomes of attack 242

detection are critical to cybersecurity, every decision 243

should be supported by compelling arguments. Deep 244

learning methods can extract valuable features directly 245

from original data. However, this model is complex and 246

considered a “black box,” resulting in low model in- 247

terpretability. As a result, interpretability has become 248

a bottleneck for deep learning methods used in attack 249

detection. The authors of [23] proposed a deep learn- 250

ing method that can be interpreted based on spatial do- 251

main attention. The model can detect and locate fea- 252

ture strings in packets, providing a meaningful seman- 253

tic explanation for the detection results. The authors 254

conducted qualitative and quantitative experiments on 255

the following datasets DARPA1998, UNSW-NB15, and 256

CIC-IDS-2017. The experimental results show that our 257

method’s interpretability outperforms state-of-the-art 258

interpretable models in quantifiable criteria while re- 259

taining comparable classification accuracy. 260

In addition, to balance Transient Stability Assess- 261

ment (TSA) accuracy and transparency, this paper [24] 262

proposes an interpretable DL-based TSA model. The 263

proposed method combines a deep neural network’s 264

strong nonlinear modeling capability with the inter- 265

pretability of a Decision Tree (DT). The proposed in- 266

terpretable DL-based TSA method can visually explain 267

the TSA decision-making process by regularizing the 268

DL-based model with the average DT path length dur- 269

ing the training process. The simulation results show 270

that the proposed method can produce highly accurate 271

TSA results and interpretable TSA decision-making 272

rules, which can be used to design preventive control 273

actions. 274

Finally, the feed forward (FF) designed convolutional 275

neural network (FF-CNN) is a network that can be in- 276

terpreted. The model’s parameter training does not ne- 277

cessitate backpropagation (BP) or Stochastic Gradient 278

Descent optimization algorithms (SGD). The entire net- 279

work is built on the previous layer’s statistical data, and 280

the current layer’s parameters are obtained in a single 281

pass. Because FF design reduces network complexity 282

compared to the BP algorithm, FF-CNN outperforms 283
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the BP training method in semi-supervised learning,284

ensemble learning, and continuous subspace learning.285

However, the FF-CNN training process or model re-286

lease results in leakage of training data privacy. The287

authors of this paper [25] analyze and demonstrate that288

an attacker can obtain the private information of the289

original training data after mastering the FF-CNN train-290

ing parameters and partial output responses. As a result,291

training in data privacy protection is critical. However,292

because of the unique characteristics of the FF-CNN,293

existing deep learning privacy protection technology is294

inapplicable. To protect the training data in FF-CNN,295

the authors are proposing a differential privacy sub-296

space approximation technique with adjusted bias (DP-297

Saab). They design the privacy budget allocation based298

on the ratio of the eigenvalues and allocate a larger299

privacy budget to the filter with a significant contribu-300

tion, and vice versa, based on the different contributions301

of the model filters to the output response. Extensive302

experiments on MNIST, Fashion-MNIST and CIFAR-303

10 datasets show that the DPSaab algorithm outper-304

forms existing privacy protection technologies in terms305

of utility.306

3. Methodology307

The proposed methodology uses Shapley Values [26,308

27] to generate global and local interpretabilities ca-309

pable of explaining why the model reaches a specific310

decision. Respectively, it can detect how the Lipschitz311

Constant [28,29] evolves during the training of the indi-312

vidual characteristics of the intelligent model, in order313

to evaluate the methodology [30,31].314

Thus, by combining these two methods, a completely315

transparent model is realized, capable to reveal the fol-316

lowing [32]:317

a) the actual source of the data; b) the implemented318

training strategy; c) the type of the employed in-319

telligent model; d) the hyperparameters used for320

the training and testing data sets; e) the features321

introduced to the model and the analysis of obvious322

and hidden existing correlations; f) the character-323

istics of the model with the highest predictability;324

g) the influence of each characteristic on the final325

prediction in both training and testing and in the326

accurate measurement of the model’s performance327

by evaluating unknown data [33–35].328

3.1. Shapley values329

A thorough approach using the Global and Local330

Interpretability methodology was performed to obtain a331

holistic picture of the network, in terms of how it makes 332

decisions, what are its most important features, and 333

what interactions are taking place between the features 334

in this methodology [36]. 335

Global interpretability provides an overview of the 336

model, while Local interpretability focuses on expla- 337

nations from a small data area, which analyzes a single 338

instance of the data set and explains why the model has 339

reached a specific decision. This is because in small ar- 340

eas of data, the prediction may depend only linearly or 341

monotonously on certain features of the model, rather 342

than having a more complex dependence on them. Thus, 343

the global and local interpretabilities of the model’s 344

features could be identified. Moreover, this could deter- 345

mine the parameters that would be part of the local or 346

the global model [37]. 347

Shapley values are a very effective way of generating 348

explanations on how a model works. Its mathematical 349

background comes from the Cooperative/Coalitional 350

Game Theory, where the payoff/gain of a cooperative 351

game’s players, is realized by a real function which 352

gives values to sets of players [26]. 353

Specifically, the problem of a neural network’s archi- 354

tectural structures is considered as a cooperative game, 355

whose players are the characteristics of the data set, 356

the profit function is the NN’ model under consider- 357

ation, and the predictions are the corresponding win- 358

nings [38,39]. 359

In this content, the Shapley values show the contribu- 360

tion of each feature and therefore the explanation why 361

the model made a specific decision. 362

More specifically, the Shapley value of a NN’ charac- 363

teristic i, is given by the following relation [26,32,37]: 364

ϕi =
∑

S∈F\{i}

|S|!(M − |S| − 1)!

M !
(2)[

fS∪{i}
(
xS∪{i}

)
− fS (xS)

]
where F is the set of attributes, S is a subset of F and 365

M = |F | the absolute number of attributes. This re- 366

lation measures the weight of each attribute by calcu- 367

lating its contribution when it is present in the forecast 368

and then subtracts it when it is absent. 369

More specifically: 370

1. fS∪{i}
(
xS∪{i}

)
: is the output when the i∞ char- 371

acteristic is present. 372

2. fS (xS): is the output when the i∞ characteristic 373

is absent. 374

3.
∑

S∈F\{i}
|S|!(M−|S|−1)!

M ! : is the weighted aver- 375

age of all the potential subsets of S in F . 376
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The Shapley method uses the linear correlation of377

the independent and dependent variables which is mea-378

sured by calculating the Pearson R correlation table.379

The proposed architecture, is considering the inability380

of the Pearson’s method to detect nonlinear correlations381

such as sinus wave, quadratic curve. It uses the Pre-382

dictive Power Score (PPS) technique to summarize the383

predictive data between available forecasts [40]. More384

specifically, it explains how variable A informs variable385

B, more than variable B informs variable A. Techni-386

cally, scoring is a measurement in the interval [0, 1] of a387

model’s success in predicting a variable target with the388

help of an off-sample variable prediction. This practi-389

cally means that this method can increase the efficiency390

and transparency of finding hidden patterns in the data,391

and thus it can facilitate the selection of appropriate392

prediction variables [41]. The use of the PPS method393

also focuses on the fact that a local explanation of the394

model’s parameters must be obtained. As a result, this395

data should be ultimately capable of operating without396

retraining and of course without being reinforced in the397

second phase of training. For the calculation of PPS in398

numerical variables the metric of Mean Absolute Error399

(MAE) was used, which is the measure used for the400

quantification of the error between the estimated and401

the observed values. It is calculated by the following402

formula [17]:403

MAE =
1

n

n∑
i=1

|fi − yi| =
1

n

n∑
i=1

|ei| (3)

where fi is the estimated value, whereas the yi is the404

actual value. The average of the above absolute differ-405

ences of these values is defined as the absolute error of406

their relation |ei| = |fi − yi|.407

Moreover, the FScore the Recall and the Precision408

indices were used:409

FScore =
2TP

2TP + FP + FN
(4)

3.2. Lipschitz Constant410

Lipschitz Constant (LIPC) [28] was used to evalu-411

ate and confirm the final efficiency of the local model,412

that was obtained by the application of the Shapley413

methodology. Using LIPC the behavior of the Scat-414

tering Transformation can be studied, when a set with415

similar inputs are entered as inputs. This transforma-416

tion can approach the operation of a simple neural net-417

work architecture, allowing the study of how neural418

networks succeed in solving difficult problems that re-419

quire multistage extraction of features [42,43]. At the420

same time, the properties of this transformation can 421

explain the way in which a neural network can achieve 422

immutability in the displacement of the input, as well as 423

in small deformations of the input, as in cases of elastic 424

deformation [29]. 425

Specifically, new inputs are generated, when we add 426

at the input h a very small change p which results in a 427

new input h+ p, which is classified differently than the 428

original input, using a properly selected input function 429

p as follows [32,44]: 430

‖S[m](h+ p)− S[m](h)‖ 6 ‖p‖

It turns out that the output for a new variable input 431

is no different from the original input more than ‖p‖. 432

So, if the transformation follows the constraints of the 433

Scattering transformation, i.e.: 434

N∑
i=1

∣∣∣ψ̂(i,j)(ω)

∣∣∣2 6
C2

N
,
∣∣ϕ̂(ω)

∣∣2 6 C2 (5)

This means, that the C constant is a determinant of 435

how vulnerable the transformation is to input changes 436

of p. 437

As the Lipschitz constant determines the classifier’s 438

ability to correspond to new inputs, it is proposed its use 439

in order to detect how this constant evolves during the 440

training of a neural network’s local parameters [32]. In 441

particular, let the input of a Convolutional Neural Net- 442

work (CNN) be in the form of a vector. Let f (xin, c) be 443

the output of the network for class c and xin the input. 444

Let yin, hin two different input vectors with respective 445

output f (yin, c) , f (hin, c) and yik, hik the output of 446

the kth layer in channel i for each one of the two inputs. 447

The CNN comprises of convolution layers, pooling lay- 448

ers and ReLU activation functions [45]. Thus, for each 449

of the three layer-types we have [3,19]: 450

1. Let k layer be a convolution layer. As we express 451

inputs as one-dimensional vectors, convolution 452

with a two-dimensional core ψijk, connecting ith 453

output channel with the jth input channel u, is 454

done by multiplying the input vector with a table 455

Aijk that is produced by the initial core such as: 456

xik =

Nk∑
j=1

Aijkxj(k−1) i = 1, 2, . . . ,Mk(6)

where Nk is the number of the input channels and 457

Mk is the number of the output channels of the 458

Convolutional layer k. Thus: 459

‖yik − hik‖2 =

∥∥∥∥∥∥
Nk∑
j=1

Aijkyj(k−1)
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−
Nk∑
j=1

Aijkhj(k−1)

∥∥∥∥∥∥
2∥∥∥∥∥∥

Nk∑
j=1

Aijk

(
yj(k−1) − hj(k−1)

)∥∥∥∥∥∥
2

6
Nk∑
j=1

∥∥Aijk

(
yj(k−1) − hj(k−1)

)∥∥
2

(7)

6
Nk∑
j=1

‖Aijk‖2 ‖yj(k−1) − hj(k−1)‖2(13)

⇒ ‖yik − hik‖2 6
Nk∑
j=1

‖Aijk‖2 ‖yj(k−1)

−hj(k−1)‖2
2. Let k be the Pooling Layer in which there is no460

overlapping of the areas:461

‖yik − hik‖2 6
∥∥yj(k−1) − hj(k−1)∥∥2 (8)

3. Let k be the ReLU layer, then the output layer has462

the form:463

xik =


xik(1)
xik(2)

...
xik(m)

 (9)

The output xik (t) is obtained as follows:464

xik(t) = max
(
0, xi(k−1)(t)

)
‖yik − hik‖22 =

m∑
t=1

| max
(
0, yi(k−1)(t)

)
− max

(
0, hi(k−1)(t)

)∣∣2
6

m∑
t=1

∣∣yj(k−1)(t)− hj(k−1)(t)∣∣2 (10)

=
∥∥yj(k−1) − hj(k−1)∥∥22

⇒ ‖yjk − hjk‖2
6
∥∥yj(k−1) − hj(k−1)∥∥2

where |max(0, α)−max(0, β)| 6 |α− β|.465

Using the above equations, the constant Lik can be466

estimated, for which the following condition should be467

met:468

‖yjk − hjk‖2 6 Lik ‖y10 − h10‖2 (11)

The constant is defined recursively, as Lik = 1. For469

any type of layer, we have the following:470

1. Convolution layer: 471

Lik =

Nk∑
j=1

‖Aijk‖2 Lj(k−1) (12)

2. Pooling layer: 472

Lik = Li(k−1) (13)

3. ReLU function: 473

Lik = Li(k−1) (14)

If the network has p layers the Lipschitz constant that 474

satisfies the following relation: 475

‖f (yin, c)−f (hin, c)‖2 6 Lcp ‖yin−hin‖2 (15)

Having developed the method for finding a ipschitz 476

constant for the network, this research studied how it 477

evolves during the training of a NN. 478

The following layers were included: 479

1. Embedding layer with hyperparameters that indi- 480

cate the dimensions of the emerging integrations. 481

2. Dropout layer with hyperparameters indicating 482

the dropout rate. 483

3. 1D Convolution layer with hyperparameters’ fil- 484

ters and kernel size that define the number of the 485

output channels and the width of the 1D core re- 486

spectively. 487

4. bi-LSTM layer µε with hyperparameters that in- 488

dicate the size of the output dimensions of the lst 489

layer. 490

5. Dense layer with two outputs and Sigmoid acti- 491

vation function. 492

This network is characterized by its simplicity, as 493

it uses 1D Convolution and a bi-LSTM layer that are 494

stacked one after the other, in scalable depth. Overall, 495

the hyperparameters of the model are presented below: 496

1. embedding_size = [32, 128]. 497

2. dropout = [0.01, 0.1]. 498

3. filters = [16, 32, 64]. 499

4. kernel_size = [3, 5, 7]. 500

5. pool_size = [2, 4]. 501

6. lstm_output_size = [16, 64]. 502

7. batch_size = [8, 16, 32]. 503

The network comprises of 5 layers with two different 504

outputs in the last layer, one for each class, namely: 505

Distributed Denial of Service (DDoS), and Benign. The 506

average value of the constants Li5 symbolized as Lout 507

was recorded 508

Lout =
1

2

2∑
i=1

Li5 (16)

509
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Fig. 6. Architectural modeling of the federated learning partners.

Following the experimental validation of the pro-510

posed method, the network was trained using 70% of511

the available data vectors [46,47]. At the end of each512

training season, the constant Lout was recorded. The513

evolution of the NN during the training process was514

studied thoroughly [48,49]. The hardware used, was515

based on the GPU chipset, optimized for the free deep516

learning TensorFlow library.517

A collaborative network of three federated part-518

ners namely: domain_alpha, domain_bravo and do-519

main_charlie that communicate with each other through520

optical fibers, was simulated in order to implement the521

Federated Learning (FEL) scenario. The FEL Server522

(FLS) is located in the Demilitarized Zone (DMZone).523

Its task is to initiate model’s training, with some initial524

data and to apply the algorithmic process of aggregating525

the optimal models and selecting the weighted average,526

via the Dynamic Weighted Average method [2,5,6,9,527

32]. The overall architecture is presented in Fig. 6.528

4. Dataset, scenarios and results529

The interconnected heterogeneous industrial systems530

of specialized mechanical equipment exchange huge531

amounts of data in the unit of time. The analysis, and532

classification of data traffic, is one of the most serious533

tasks for the monitoring of large-scale attacks, as well534

as for the study of cybercrime [13,16].535

The substantive evaluation of the proposed intelli-536

gent system was carried out on the CICDDoS2019 [50],537

which is one of the most comprehensive web traffic538

analysis datasets, developed under the supervision of539

the Canadian Institute for Cybersecurity, with an em- 540

phasis on DDoS attacks’ detection. The DDoS are very 541

well-organized types of attacks in which the identity 542

of the attacker, remains hidden using the legitimate 543

component of a third party [51]. 544

The set includes modern DDoS attacks, which have 545

been detected in real incidents, and have been identified 546

based on attack indicators. Specifically, the web traffic 547

packages included in this dataset are sent to the reflector 548

servers by intruders with source IP address set to target 549

victim IP address, in order to crush the victim’s system 550

with response packets. 551

The attacks are performed through the application 552

layer using transport layer protocols. The malware spec- 553

trum includes: TCP-based (Transfer Control Proto- 554

col) attacks such as MSSQL, SSDP, UDP-based (User 555

Datagram Protocol) attacks such as CharGen, NTP, 556

and TFTP, and more complex ones, that can be per- 557

formed either with TCP or with UDP, such as DNS (Do- 558

main Name Server), LDAP (Lightweight Directory Ac- 559

cess Protocol), NETBIOS (Network Basic Input/Output 560

System) and SNMP (Simple Network Management Pro- 561

tocol). Moreover, there are TCP based attacks (e.g., 562

MSSQL, SSDP) UDP based ones (e.g., CharGen, NTP 563

and TFTP). More complicated attacks can be executed 564

either via TCP or via UDP, e.g., DNS, LDAP, NETBIOS 565

and SNMP. 566

There are also UDP flood attacks, where UDP pack- 567

ets are sent at a very high rate to random ports on the 568

victim’s system, resulting in depleted network band- 569

width, degraded performance, and system crashes. 570

SYN (short for Synchronization) flood attacks con- 571

stitute a serious threat, where attackers are forcing the 572
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Fig. 7. A parallel coordinates plot developed in the training process (Appendix 1).

Fig. 8. A parallel coordinates’ plot from global interpretabilities.

victim’s system to consume server resources continu-573

ously, until it malfunctions or crashes. This is achieved574

by sending repetitive SYN packets misusing the TCP-575

three-way handshake. Finally, the set includes UDP-576

Lag attacks that disrupt the connection between clients577

and servers using hardware resources or a software pro-578

gram that runs on the network and uses other users’579

bandwidth. More details can be found at [51].580

After data preprocessing, the dataset comprised of581

66 features, 11,856,972 instances and 2 classes namely582

Distributed Denial of Service (DDoS) and Benign. Ini-583

tially, during the training process an attempt was made584

to interpret the data in their original raw form. Specifi-585

cally, the diagram of parallel coordinates was employed,586

to represent the dimensions of the features by parallel587

axes, one per dimension. Thus, each multivariate point588

is modeled as a polyline that connects the correspond-589

ing dimensions. At the same time, this diagram encodes590

the correlation between the data dimensions, so that591

the line intersections indicate inverse correlations. The592

following figure present a graph of parallel coordinates 593

during training. 594

Extensive tests were performed with data batches, 595

the size of which varied, to identify local interpretabili- 596

ties. Local interpretabilities provide explanations that 597

come from a small data area, which analyzes a rela- 598

tively small batch of data and explains why the model 599

made a specific decision for that particular batch [52]. 600

This is due to the fact that in small areas of data, the 601

prediction may depend only linearly or monotonously 602

on certain features of the model, rather than having a 603

more complex dependence on them [20]. Thus, in this 604

way the global and local interpretabilities of the model’s 605

characteristics can be identified. Also, the parameters 606

of the local model can be distinguished from the ones of 607

the global [53]. An example of a graph of parallel coor- 608

dinates during the detection of global interpretabilities, 609

is shown in the Fig. 8. 610

Unfortunately, there isn’t another comparable model 611

to use as a benchmark. Consequently, to avoid bias or 612
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Fig. 9. Summary beeswarm plot.

incorrect impressions, we present the performance of613

the proposed model without making any comparisons614

with any other alternative models. The evaluation of615

the values of the variables in the way they contribute616

to the prediction and the explanation of each decision617

of the global interpretabilities, were carried out, using618

the Shapley values. Figure 9 shows the classification of619

the records, used in a summary beeswarm plot which620

is a simple way to capture the relative effect of all the621

features on the whole data set. Attributes are sorted622

based on the sum of Shapley values in all samples in623

the set.624

The most important features of the model are shown625

from top to bottom. Each attribute of the set is symbol-626

ized by dots, while the color of the dot symbolizes the627

value of the attribute (blue corresponds to a low value,628

while red to a high value). The position of the dot on629

the horizontal axis depends on its Shapley value. It630

is clear that the attribute FwdPacketLengthMax has the631

most important contribution for the determination of632

the model’s forecasts. The Shapley price is also high for633

its high values (red dots), so it has a great positive ef-634

fect globally. In contrast, for low values (blue dots) the635

Shapley value is low, so it has a negative effect on the636

forecast, i.e. it increases the probability that the global 637

model is not affected [54]. 638

An example of a graph of parallel coordinates during 639

local interpretability detection is shown in Fig. 10. 640

Figure 11, is using a chosen sample from the dataset, 641

in order to represent the typical values of the attributes. 642

Then, ten samples are used to estimate the Shapley 643

values for a given prediction. This experiment, requires 644

10×1 = 10 assessments of the model in order to obtain 645

the final conclusion. 646

This figure shows a local explanation, where the 647

base_value refers to the average value of the model’s 648

forecasts, (i.e., in this case the model predicts that the 649

batch of data being analyzed does not affect the local 650

model with a probability of 7%). For this package, the 651

forecast price is 95.92%, so the Shapley prices show the 652

change from the average forecast to the specific fore- 653

cast. The red arrows push the prediction to the right, 654

that is, they help to increase the probability that the lo- 655

cal model will be affected in the specific batch of data, 656

while the blue arrows push to the left, helping to reduce 657

the corresponding probability. 658

The length of each arrow symbolizes the magnitude 659

of the respective effect on the prediction. 660
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Fig. 10. A parallel coordinates plot from local interpretabilities.

Fig. 11. Explanation of a single prediction-10 evaluations.

Fig. 12. Partial dependence plot.

After the global and local interpretabilities were iden-661

tified, Partial Dependence Plots (PDPs) were used to662

confirm the process, showing the marginal effect that663

each characteristic has on the predicted result of the664

model. A typical example of the process is shown in665

Fig. 12.666

The number of input features of interest must be lim- 667

ited (usually to one or two in order to accommodate the 668

limitations of human perception); As a result, the in- 669

put features of interest are typically selected among the 670

essential features. Figure 13 depicts a one-way partial 671

dependence plot for the dataset under consideration. 672
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Fig. 13. Lout plot from three federated partners.

Fig. 14. Performance evaluation of federated partner domain_charlie_I.

One-way dependence plots provide information673

about the interaction between the target response of a674

particular input and a feature of interest (e.g., linear,675

non-linear). The contribution to the prediction proba-676

bility is depicted in the above figure. When the average677

prediction accuracy is 96.7%, we can see a linear rela-678

tionship. In a similar manner, we could investigate the679

impact of various dataset parameters. As a result, these680

interpretations are marginal, considering each feature681

one at a time.682

Finally, the results of Lout while testing federated683

partners using local and global models are presented in684

the diagram of Fig. 13.685

The Lout can be an essential importance measure and 686

it defined as the deviation of the value of each unique 687

feature from the average curve: 688

I (xS) = (17)√√√√ 1

K − 1

K∑
k=1

(
f̂S

(
x
(k)
S

)
− 1

K

K∑
k=1

f̂S

(
x
(k)
S

))2

The x(k)S are the k unique values of feature xS . 689

Respectively, the results of the federated partner of 690

domain_charlie are presented in the Figs 14 and 15. 691

Each figure is a summary of prediction results on 692

the classification problem. The correct and incorrect 693
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Fig. 15. Performance evaluation of federated partner domain_charlie_II.

predictions are summarized with count values and they694

are broken down by each class.695

Furthermore, the precision for each class is the num-696

ber of true positives (i.e., the number of items correctly697

labeled as belonging to the positive class) divided by698

the total number of elements labeled as belonging to699

the positive class (i.e., the sum of true positives and700

false positives, which are items incorrectly labeled as701

belonging to the class). Furthermore, in this context, re-702

call is defined as the number of true positives divided by703

the total number of elements that belong to the positive704

class (i.e., the sum of true positives and false negatives,705

which are items that were not labeled as belonging to706

the positive class but should have been).707

5. Conclusion708

In this work a novel hybrid explainable semi-709

personalized federated learning model was proposed,710

utilizing the Shapley Values and Lipschitz Constant 711

techniques to create personalized intelligent local mod- 712

els. This is achieved based on the needs and events that 713

each user is required to address locally. In particular, 714

the system in question provides clear explanations as 715

to why the model made a specific decision on locally 716

handled data. Then, it detects how the training of the 717

intelligent model evolves, by dictating the hyperparam- 718

eters that should be trained locally. This results in a 719

model that responds optimally to the local problems it 720

is called to face. 721

This cutting-edge research proposal has never been 722

proposed before in the relevant literature, and we be- 723

lieve that it has the potential to considerably extend 724

the state-of-the-art in the field of explainable artificial 725

intelligence. 726

As demonstrated experimentally with this technique, 727

an understanding is gained of how the model makes 728

decisions and what interactions are performed between 729

the features used, in order to achieve correct or incorrect 730
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classification. The model provide information about the731

interaction between the target response of a particular732

input and a feature of interest. Respectively, it allows for733

the personalization of the federated learning model for734

each user, so that only the necessary characteristics of735

the model are retrained, based on the respective needs736

and the events that it is called to respond. Thus, it offers737

the ability to manage, control and explain how to handle738

multiple intermediate representations, as well as more739

advanced features that may be related to the hierarchical740

organization of a neural system.741

The progressive classification and investigation of the742

intermediates of the input data along the levels of the743

hierarchical architecture, even if all the levels share the744

same weight values, creates clear indications – evidence745

of how the final decision is made. The combination of746

Lipschitz and Shapley clearly captures the transitions747

of internal representations of input signals, even for748

problems that require long internal memory intervals.749

The proposed system achieves a result with high ac-750

curacy with a white-box algorithm that is interpretable751

in itself. This is especially important in domains like752

medicine, defense, finance, and law where it is crucial753

to understand the decisions and build up trust in the754

algorithms.755

This uniqueness methodology focuses mainly on the756

development of an automated optimization of the ap-757

propriate parameters, so that an even more efficient,758

accurate and faster explanation process is achieved, in759

a simple and robust way. Additionally, this paper pro-760

poses the utilization of the introduced hybrid technol-761

ogy [55] in recommendation systems, in a completely762

clear and transparent way. Finally, it would be impor-763

tant to study in the future, the expansion of this system764

for the implementation of a real-time data flow control765

framework.766

References767

[1] Sulaiman S, Aldeehani A, Alhajji M, Aziz FA. Development768

of integrated supply chain system in manufacturing industry. J769

Comput Methods Sci Eng. 2021 Jan 1; 21(3): 599-611.770

[2] Demertzis K, Iliadis L, Pimenidis E, Tziritas N, Koziri M,771

Kikiras P, et al. Federated Blockchained Supply Chain Man-772

agement: A CyberSecurity and Privacy Framework. In: Maglo-773

giannis I, Macintyre J, Iliadis L, editors. Artificial Intelligence774

Applications and Innovations. Cham: Springer International775

Publishing; 2021; pp. 769-79. (IFIP Advances in Information776

and Communication Technology).777

[3] Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y,778

Al-Shamma O, et al. Review of deep learning: concepts, CNN779

architectures, challenges, applications, future directions. J Big780

Data. 2021 Mar 31; 8(1): 53.781

[4] Azan Basallo Y, Estrada Senti V, Martinez Sanchez N. Arti-782

ficial intelligence techniques for informationsecurity risk as-783

sessment. IEEE Lat Am Trans. 2018 Mar; 16(3): 897-901. 784

[5] Demertzis K, Iliadis L, Pimenidis E, Tziritas N, Koziri M, 785

Kikiras P. Blockchained Adaptive Federated Auto MetaLearn- 786

ing BigData and DevOps CyberSecurity Architecture in In- 787

dustry 40. In: Iliadis L, Macintyre J, Jayne C, Pimenidis E, 788

editors. Proceedings of the 22nd Engineering Applications of 789

Neural Networks Conference. Cham: Springer International 790

Publishing; 2021. p. 345-63. (Proceedings of the International 791

Neural Networks Society). 792

[6] Demertzis K, Iliadis L, Tziritas N, Kikiras P. Anomaly detec- 793

tion via blockchained deep learning smart contracts in industry 794

40. Neural Comput Appl. 2020 Sep 1; 32(23): 17361-78. 795

[7] Bordel B, Alcarria R, Robles T. Lightweight encryption for 796

short-range wireless biometric authentication systems in In- 797

dustry 40. Integr Comput-Aided Eng. 2021 Jan 1; Preprint 798

(Preprint): 1-21. 799

[8] Ahmed M, Reno S, Akter N, Haque F. Securing Medical 800

Forensic System Using Hyperledger Based Private Blockchain. 801

In: 2020 23rd International Conference on Computer and In- 802

formation Technology (ICCIT). 2020. p. 1-6. 803

[9] Demertzis K. Blockchained Federated Learning for Threat 804

Defense. ArXiv210212746; Cs [Internet]. 2021 Feb 25 [cited 805

2022 Feb 16]; Available from: http//arxiv.org/abs/2102.12746. 806

[10] Nassif AB, Talib MA, Nasir Q, Dakalbab FM. Machine Learn- 807

ing for Anomaly Detection: A Systematic Review. IEEE Ac- 808

cess. 2021; 9: 78658-700. 809

[11] Ferrag MA, Friha O, Maglaras L, Janicke H, Shu L. Federated 810

Deep Learning for Cyber Security in the Internet of Things: 811

Concepts, Applications, and Experimental Analysis. IEEE Ac- 812

cess. 2021; 9: 138509-42. 813

[12] Yousuf S, Svetinovic D. Blockchain Technology in Supply 814

Chain Management: Preliminary Study. In: 2019 Sixth Inter- 815

national Conference on Internet of Things: Systems, Manage- 816

ment and Security (IOTSMS). 2019. p. 537-8. 817

[13] Al Jallad K, Aljnidi M, Desouki MS. Anomaly detection op- 818

timization using big data and deep learning to reduce false- 819

positive. J Big Data. 2020 Aug 31; 7(1): 68. 820

[14] Jiang Z, Liu K. Real time interpretation and optimization of 821

time series data stream in big data. In: 2018 IEEE 3rd Interna- 822

tional Conference on Cloud Computing and Big Data Analysis 823

(ICCCBDA). 2018. p. 243-7. 824

[15] Leal F, Veloso B, Malheiro B, Burguillo JC, Chis AE, 825

González-Vélez H. Stream-based explainable recommenda- 826

tions via blockchain profiling. Integr Comput-Aided Eng. 2022 827

Jan 1; 29(1): 105-21. 828

[16] Tellis VM, D’Souza DJ. Detecting Anomalies in Data Stream 829

Using Efficient Techniques: A Review. In: 2018 International 830

Conference on Control, Power, Communication and Comput- 831

ing Technologies (ICCPCCT). 2018. p. 296-8. 832

[17] Anderson TW. An Introduction to Multivariate Statistical 833

Analysis. Wiley; 2003; 752 p. 834

[18] Leung D, Romagnoli JA. Chapter 6.4 – Fault Diagnosis 835

Methodologies for Process Operation. In: Braunschweig B, 836

Gani R, editors. Computer Aided Chemical Engineering [Inter- 837

net]. Elsevier; 2002 [cited 2022 Feb 16]. p. 535-56. (Software 838

Architectures and Tools for Computer Aided Process Engi- 839

neering; vol. 11). Available from: https//www.sciencedirect. 840

com/science/article/pii/S1570794602800244. 841

[19] Gawlikowski J, Tassi CRN, Ali M, Lee J, Humt M, Feng 842

J, et al. A Survey of Uncertainty in Deep Neural Networks. 843

ArXiv210703342; Cs Stat [Internet]. 2021 Jul 7 [cited 2021 844

Nov 6]; Available from: http//arxiv.org/abs/2107.03342. 845

[20] Xue Y, Zhu H, Neri F. A self-adaptive multi-objective feature 846

selection approach for classification problems. Integr Comput- 847



Galley Proof 17/06/2022; 9:40 File: ica–1-ica220683.tex; BOKCTP/weiman p. 16

16 K. Demertzis et al. / An explainable semi-personalized federated learning model

Aided Eng. 2022 Jan 1; 29(1): 3-21.848

[21] Xu G, Li H, Liu S, Yang K, Lin X. VerifyNet: Secure and849

Verifiable Federated Learning. IEEE Trans Inf Forensics Secur.850

2020; 15: 911-26.851

[22] Hua G, Zhu L, Wu J, Shen C, Zhou L, Lin Q. Blockchain-852

Based Federated Learning for Intelligent Control in Heavy853

Haul Railway. IEEE Access. 2020; 8: 176830-9.854

[23] Liu H, Lang B, Chen S, Yuan M. Interpretable deep learning855

method for attack detection based on spatial domain attention.856

In: 2021 IEEE Symposium on Computers and Communica-857

tions (ISCC). 2021. p. 1-6.858

[24] Ren C, Xu Y, Zhang R. An Interpretable Deep Learning859

Method for Power System Dynamic Security Assessment via860

Tree Regularization. IEEE Trans Power Syst. 2021; 1-1.861

[25] Li D, Wang J, Tan Z, Li X, Hu Y. Differential Privacy Preser-862

vation in Interpretable Feedforward-Designed Convolutional863

Neural Networks. In: 2020 IEEE 19th International Confer-864

ence on Trust, Security and Privacy in Computing and Com-865

munications (TrustCom). 2020. p. 631-8.866

[26] Petrosyan L, Sedakov A, Sun H, Xu G. Time consistency of the867

interval Shapley-like value in dynamic games. J Intell Fuzzy868

Syst. 2016 Jan 1; 30(4): 1965-72.869

[27] Guo B, Hao S, Cao G, Gao H. Profit distribution of liner870

alliance based on shapley value. J Intell Fuzzy Syst. 2021 Jan871

1; 41(4): 5081-5.872

[28] Freer C, Kjos-Hanssen BRM, Nies A, Stephan F. Algorithmic873

Aspects of Lipschitz Functions. Computability. 2014 Jan 1;874

3(1): 45-61.875

[29] Gao Y, Jia L. Stability in measure for uncertain delay differ-876

ential equations based on new Lipschitz conditions. J Intell877

Fuzzy Syst. 2021 Jan 1; 41(2): 2997-3009.878

[30] Rafiei MH, Adeli H. A New Neural Dynamic Classification879

Algorithm. IEEE Trans Neural Netw Learn Syst. 2017 Dec;880

28(12): 3074-83.881

[31] Pereira DR, Piteri MA, Souza AN, Papa JP, Adeli H. FEMa: a882

finite element machine for fast learning. Neural Comput Appl.883

2020 May 1; 32(10): 6393-404.884

[32] Demertzis K, Iliadis L, Kikiras P. A Lipschitz – Shapley Ex-885

plainable Defense Methodology Against Adversarial Attacks.886

In: Maglogiannis I, Macintyre J, Iliadis L, editors. Artificial In-887

telligence Applications and Innovations AIAI 2021; IFIP WG888

125 International Workshops. Cham: Springer International889

Publishing; 2021. p. 211-27. (IFIP Advances in Information890

and Communication Technology).891

[33] Alam KMdR, Siddique N, Adeli H. A dynamic ensemble learn-892

ing algorithm for neural networks. Neural Comput Appl. 2020893

Jun 30; 32(12): 8675-90.894

[34] Rafiei MH, Khushefati WH, Demirboga R, Adeli H. Super-895

vised Deep Restricted Boltzmann Machine for Estimation of896

Concrete. Mater J. 2017 Mar 1; 114(2): 237-44.897

[35] Xing L, Demertzis K, Yang J. Identifying data streams anoma-898

lies by evolving spiking restricted Boltzmann machines. Neural899

Comput Appl. 2020 Jun 1; 32(11): 6699-713.900

[36] Lipovetsky S, Conklin WM. Meaningful regression analysis in901

adjusted coefficients Shapley value model. Model Assist Stat902

Appl. 2010 Jan 1; 5(4): 251-64.903

[37] Meng F, Chen X, Zhang Q. Some uncertain generalized Shap-904

ley aggregation operators for multi-attribute group decision905

making. J Intell Fuzzy Syst. 2015 Jan 1; 29(4): 1251-63.906

[38] Ga̧sienica-Józkowy J, Knapik M, Cyganek B. An ensemble907

deep learning method with optimized weights for drone-based908

water rescue and surveillance. Integr Comput-Aided Eng. 2021909

Jan 1; 28(3): 221-35.910

[39] Liapis S, Christantonis K, Chazan-Pantzalis V, Manos A, Eliz- 911

abeth Filippidou D, Tjortjis C. A methodology using classifi- 912

cation for traffic prediction: Featuring the impact of & nbsp; 913

COVID-19. Integr Comput-Aided Eng. 2021 Jan 1; 28(4): 914

417-35. 915

[40] 8080labs. ppscore – a Python implementation of the Predic- 916

tive Power Score (PPS) [Internet]. 2022 [cited 2022 Feb 16]. 917

Available from: https//github.com/8080labs/ppscore. 918

[41] Guopan S. The effect of probability on risk perception and risk 919

preference in decision making. In: 2010 International Con- 920

ference on Education and Management Technology. 2010. p. 921

690-3. 922

[42] Peng P, Xie L, Wei H. A Deep Fourier Neural Network for 923

Seizure Prediction Using Convolutional Neural Network and 924

Ratios of Spectral Power. Int J Neural Syst. 2021 Aug; 31(8): 925

2150022. 926

[43] Gómez-Silva MJ, de la Escalera A, Armingol JM. Back- 927

propagation of the Mahalanobis istance through a deep triplet 928

learning model for person Re-Identification. Integr Comput- 929

Aided Eng. 2021 Jan 1; 28(3): 277-94. 930

[44] Wang Y, Sui M. Finite lattice approximation of infinite lattice 931

systems with delays and non-Lipschitz nonlinearities. Asymp- 932

tot Anal. 2018 Jan 1; 106(3-4): 169-203. 933

[45] Cao S, Zhang G, Liu P, Zhang X, Neri F. Cloud-assisted secure 934

eHealth systems for tamper-proofing EHR via blockchain. Inf 935

Sci. 2019 Jun 1; 485: 427-40. 936

[46] Xue Y, Zhang Q, Neri F. Self-Adaptive Particle Swarm 937

Optimization-Based Echo State Network for Time Series Pre- 938

diction. Int J Neural Syst. 2021 Dec; 31(12): 2150057. 939

[47] Xue Y, Jiang P, Neri F, Liang J. A Multi-Objective Evolution- 940

ary Approach Based on Graph-in-Graph for Neural Architec- 941

ture Search of Convolutional Neural Networks. Int J Neural 942

Syst. 2021 Sep; 31(9): 2150035. 943

[48] Rafiei MH, Adeli H. NEEWS: A novel earthquake early warn- 944

ing model using neural dynamic classification and neural dy- 945

namic optimization. Soil Dyn Earthq Eng. 2017 Sep 1; 100: 946

417-27. 947

[49] Hassanpour A, Moradikia M, Adeli H, Khayami SR, Sham- 948

sinejadbabaki P. A novel end-to-end deep learning scheme for 949

classifying multi-class motor imagery electroencephalography 950

signals. Expert Syst. 2019; 36(6): e12494. 951

[50] DDoS 2019 | Datasets | Research | Canadian Institute for Cy- 952

bersecurity | UNB [Internet]. [cited 2022 Feb 16]. Available 953

from: https://www.unb.ca/cic/datasets/ddos-2019.html. 954

[51] Sharafaldin I, Lashkari AH, Hakak S, Ghorbani AA. Devel- 955

oping Realistic Distributed Denial of Service (DDoS) Attack 956

Dataset and Taxonomy. In: 2019 International Carnahan Con- 957

ference on Security Technology (ICCST). 2019. p. 1-8. 958

[52] Martins GB, Papa JP, Adeli H. Deep learning techniques for 959

recommender systems based on collaborative filtering. Expert 960

Syst. 2020; 37(6): e12647. 961

[53] Rafiei MH, Adeli H. Novel Machine-Learning Model for Esti- 962

mating Construction Costs Considering Economic Variables 963

and Indexes. J Constr Eng Manag. 2018 Dec 1; 144(12): 964

04018106. 965

[54] Ahmadlou M, Adeli H. Enhanced probabilistic neural network 966

with local decision circles: A robust classifier. Integr Comput- 967

Aided Eng. 2010 Jan 1; 17(3): 197-210. 968

[55] Anezakis VD, Demertzis K, Iliadis L, Spartalis S. A Hybrid 969

Soft Computing Approach Producing Robust Forest Fire Risk 970

Indices. In: Iliadis L, Maglogiannis I, editors. Artificial Intelli- 971

gence Applications and Innovations. Cham: Springer Interna- 972

tional Publishing; 2016; p. 191-203. 973


