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Abstract. It is a fact that natural disasters often cause severe damage both to ecosystems and humans. Moreover, man-made
disasters can have enormous moral and economic consequences for people. A typical example is the large deadly and catastrophic
explosion in Beirut on 4 August 2020, which destroyed a very large area of the city. This research paper introduces a Geo-AI
disaster response computer vision system, capable to map an area using material from Synthetic Aperture Radar (SAR). SAR is a
unique form of radar that can penetrate the clouds and collect data day and night under any weather conditions. Specifically, the
Memory-Augmented Deep Convolutional Echo State Network (MA/DCESN) is introduced for the first time in the literature, as
an advanced Machine Vision (MAV) architecture. It uses a meta-learning technique, which is based on a memory-augmented
approach. The target is the employment of Deep Reservoir Computing (DRC) for domain adaptation. The developed Deep
Convolutional Echo State Network (DCESN) combines a classic Convolutional Neural Network (CNN), with a Deep Echo State
Network (DESN), and analog neurons with sparse random connections. Its training is performed following the Recursive Least
Square (RLS) method. In addition, the integration of external memory allows the storage of useful data from past processes,
while facilitating the rapid integration of new information, without the need for retraining. The proposed DCESN implements
a set of original modifications regarding training setting, memory retrieval mechanisms, addressing techniques, and ways of
assigning attention weights to memory vectors. As it is experimentally shown, the whole approach produces remarkable stability,
high generalization efficiency and significant classification accuracy, significantly extending the state-of-the-art Machine Vision
methods.

Keywords: Geo-AI, disaster response, domain adaptation, meta-learning, synthetic aperture radar, echo state network, deep
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1. Introduction1

A disaster that leads to many casualties is a great2

challenge for all services involved in rescue and sup-3

port. Immediate assistance by any possible means is4
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required, to make the best possible decisions, under 5

difficult and adverse conditions in an environment of 6

panic and increased risk. Disaster response mechanisms 7

should be able to collect information immediately; to 8

support mapping the area of interest, and compare con- 9

ditions before and after the disaster. Decisions need to 10

be made about options such as, finding the most suit- 11

able location for rescue vehicles, sorting stations, and 12

first aid kits. In addition, decisions must be made on the 13

necessary equipment, the allocation of priorities, and 14

the scheduling of required human resources to support 15

ISSN 1069-2509/$35.00 c© 2021 – IOS Press. All rights reserved.



Galley Proof 10/06/2021; 16:24 File: ica–1-ica210657.tex; BOKCTP/ljl p. 2

2 K. Demertzis et al. / Geo-AI to aid disaster response by memory-augmented deep reservoir computing

rescue services. The case of the Beirut explosion is a16

typical example [1]. The huge explosion in the port of17

the Lebanese capital, came from 2,750 tons of stored18

ammonium nitrate. It destroyed a very large area of the19

city, especially the port of Beirut, while hundreds of20

people were trapped in the wreckage of buildings.21

In cases like this, aerial observations and satellite im-22

ages, could be particularly valuable in dealing with the23

crisis. Even when the weather does not allow traditional24

electro-optical sensors to get a clear picture, SAR shots25

offer significant help [2]. SAR can penetrate the clouds26

and collect high resolution data under all weather con-27

ditions, day and night. However, despite its undoubted28

advantages, this approach can be reduced to an inquiry29

tool, limited to the observation ability of humans.30

This risk gives rise to the need of and demand for31

distancing from human intervention and the engage-32

ment of advanced Computer Vision technologies and33

Artificial Intelligence (AI). These will make it possible34

to automatically extract essential information, such as35

spatial-temporal area comparisons and object recogni-36

tion, in almost real-time.37

This paper introduces the M-A/DCESN, a Geo-AI38

disaster response computer vision system, which uses39

memory-augmented deep reservoir computing for do-40

main adaptation. It aims to record, map and identify a41

disaster area, using materials from SAR.42

The proposed system offers a meta-learning tech-43

nique, which implements a reservoir computing system,44

using memory-augmented methods. More specifically,45

it employs a DCESN network which allows the storage46

of useful data from past processes, by integrating exter-47

nal storage memory. At the same time, it facilitates the48

rapid integration of new information, without the need49

for retraining the network.50

The main contribution of this work is that it enhances51

scientific and technical knowledge about meta-learning52

methods, which are based on a memory-augmented ap-53

proach for domain adaptation. In order to obtain accept-54

able classification results, these techniques require suf-55

ficient training data to be available for every particular56

image and tuned hyperparameters to achieve the best57

performance. Obtaining accurate results is challenging,58

particularly for near real-time applications. Therefore,59

past knowledge must be utilized to overcome the lack of60

training data in the current regime. This challenge of do-61

main adaptation, in which the training data (source) and62

the test data (target) are sampled from different domains63

is a considerable challenge and the performance of the64

proposed techniques can be significantly affected by the65

type of problem, the nature of the data, and the type of66

data shift associated with the domains. Although more 67

data can be obtained from different sources, adapting 68

these sources to obtain acceptable results is also a chal- 69

lenging task. This is especially true when the different 70

domains contain a severely imbalanced class distribu- 71

tion. In this study, a novel technique, based on deep 72

neural networks, was developed and evaluated in or- 73

der to solve the domain adaptation problem for remote 74

sensing image classification in different settings. 75

The proposed DCESN combines a classic CNN and a 76

DESN with analogue neurons, with sparse random con- 77

nections in the input levels and in the Dynamical Reser- 78

voir (DR). Its training process uses the RLS method 79

in the output layer. Moreover, the proposed system is 80

assisted by a set of original modifications to the train- 81

ing setting, memory retrieval mechanisms, addressing 82

techniques, and ways of assigning attention weights to 83

memory vectors. These facilitate the learning of special- 84

ized techniques for extracting useful intermediate rep- 85

resentations, making full use of first and second order 86

derivatives as a pre-training method for learning param- 87

eters, without the risk of problems such as exploding or 88

diminishing gradients. At the same time it avoids pos- 89

sible overfitting, while significantly reducing training 90

time, producing improved stability, high generalization 91

performance, and categorization accuracy. 92

The rest of this paper, includes the following sec- 93

tions: Section 2 provides a detailed review of the rele- 94

vant literature. Section 3 presents the methodology fol- 95

lowed, while Section 4 analyzes in detail the implemen- 96

tation of the proposed architecture. Section 5 describes 97

the data and presents the results from the experiments 98

performed. Section 6 critically discusses the method 99

and observations made, while Section 7 summarizes 100

the findings and presents the future objectives of the 101

research. 102

2. Related research 103

The success of deep learning in the field of computer 104

vision, has been highlighted by multiple surveys about 105

topics such as simple [3], fast [4] and 3D object detec- 106

tion [5]; image recognition [6] or classification [7] by 107

novel intelligence methods [8], pixel-level classifica- 108

tion [9] and semantic segmentation [10]. 109

A variety of architectures have been proposed to 110

solve complex problems and have provided a new im- 111

petus in this area. In particular, in the field of data anal- 112

ysis from multispectral sensors, many architectural pro- 113

totypes have been developed and have delivered im- 114
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pressive results. Specifically [11], proposes a hybrid115

approach, which combines the use of a Stacked Auto-116

encoder, Principle Component Analysis (PCA), and117

Logistic Regression in order to perform Hyperspectral118

Data Classification.119

Tao et al. [12], are using a sparse stacked auto-120

encoder, to effectively represent features from unla-121

beled spatial data. The learned features are used as input122

to a SVM for hyperspectral data classification. Various123

1D [13] and 2D [14] CNN architectures, aiming to en-124

code spectral and spatial information, have been sug-125

gested in the literature. The most recent and advanced126

proposal, concerns 3D CNN [15] in which the third127

dimension refers to the time axis. This is resulting in a128

hyperspectral classification that follows a spatiotempo-129

ral architecture. In 3D CNN, the convolution operations130

are performed both spatially and spectrally, while in 2D131

CNNs they are performed only spatially.132

Compared to 1D and 2D CNNs, 3D CNNs can better133

format spectral information due to the contribution of134

3D convergence functions.135

More sophisticated techniques inspired by dynamic136

architectures have raised additional expectations for137

even more important innovative applications in the138

field of spectral analysis. A typical example is our139

proposal [16] for a major modification that upgrades140

the well-known Residual Neural Network (ResNet) ar-141

chitecture. The network is effectively simplified, by142

eliminating the Vanishing Gradient Problem (VGP)143

which plagues other deep learning architectures. This is144

achieved by omitting some layers in the early training145

stages. The most important innovation of the proposed146

system concerns the use of the AdaBound algorithm147

that uses dynamic limits in its learning rates, achieving a148

smooth transition to stochastic gradient techniques. This149

fact treats the noisy scattered points of incorrect classi-150

fication with great precision, something that other spec-151

tral classification methods cannot handle. Our research152

team has proposed the Model-Agnostic Meta-Ensemble153

Zero-shot Learning (MAME-ZsL) [17], which facili-154

tates the learning of specialized techniques for extract-155

ing useful intermediate representations in complex deep156

learning architectures. This significantly reduces com-157

putational cost and training time, producing remarkable158

classification accuracy.159

MAME-ZsL follows a heuristic, hierarchical hyper-160

parameter search methodology. It uses the intermediate161

representations extracted from other possibly irrelevant162

images, so that it can discover the appropriate represen-163

tations that can lead to correct classification of unknown164

samples.165

Visual perception often involves sequential inference 166

over a series of intermediate goals of growing complex- 167

ity towards the final objective. Depending on a deep 168

learning architecture, the graph can also contain extra 169

nodes that explicitly represent tensors between opera- 170

tions. In such representations, operation nodes are not 171

connected directly to each other, rather using data nodes 172

as intermediate stops for data flow. If data nodes are 173

not used, the produced data is associated with an output 174

port of a corresponding operation node that produces 175

the data. 176

In order to achieve a smooth formalization, the no- 177

tion of intermediate concepts points to better general- 178

ization through deep supervision, when compared to 179

standard end-to-end training. This is achieved by a strict 180

architecture where hidden layers are supervised with 181

an intuitive sequence of intermediate concepts, in order 182

to incrementally regularize the learning to follow the 183

prescribed inference sequence. Practically the interme- 184

diated representations produce superior generalization 185

capability that addresses the scarcity of learning shape 186

patterns from synthetic training images with complex 187

multiple object configurations. 188

Domain adaptation [18], partial domain adapta- 189

tion [19] and domain alignment [20] is a relatively re- 190

cent forecasting technique for target domain data. Both 191

supervised and unsupervised methods have been used, 192

which in most of the cases try to minimize domain devi- 193

ation, while neglecting essential class information. This 194

often results in misalignment and poor generalization 195

performance. To address this issue, the authors of [21] 196

propose a Contrastive Adaptation Network (CAN) that 197

explicitly models domain-level mismatch, while also 198

calculating the difference between classes. This tech- 199

nique performs relatively well against similar methods, 200

producing distinctive features, but lags far behind in 201

terms of generalization as it is completely determined 202

by the available data. Accordingly, the success of unsu- 203

pervised sector adaptation relies heavily on the align- 204

ment of capabilities between sectors. 205

A common feature space may not always be a train- 206

ing tool and in particular an immediate alignment fea- 207

ture, especially when large domain gaps are observed. 208

To solve this problem, the authors of [22] introduce a 209

Gaussian guided Latent Alignment approach, aiming 210

to align the latent feature distributions of two domains. 211

The implementation delivers an innovative alignment 212

of features between sectors, transforming the distribu- 213

tions of samples from two sectors into a common fea- 214

ture space. Despite the enhanced knowledge transfer 215

capabilities, this method adds significant complexity 216
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to the system. Memory-Augmented Neural Networks217

(MANNs) have been shown to outperform other repet-218

itive neural networks in a number of sequence [23]219

learning tasks [24]. However, they still have limited220

application in real world problems. An evaluation of221

MANNs applications is performed in [25].222

Finally, an impressive approach is presented in [26],223

where a One-shot Learning approach is performed, us-224

ing an augmented-memory neural network. It yields225

accurate predictions using only a few training samples.226

3. Discussion on the methodological approach227

Recent developments in the field of information tech-228

nology and especially in the techniques of high-capacity229

models, such as deep neural networks, allow very pow-230

erful implementations in the processing of large-scale231

data [27]. Nevertheless, the disclosure of critical knowl-232

edge from large-scale datasets, and in particular the233

correct classification of new, unknown data, combined234

with a parallel automatic correction of classification235

errors, remains a very serious challenge.236

A potential solution to this problem is offered by237

meta-learning techniques [28] as specific “learning to238

learn” models [29]. They learn from previous learn-239

ing processes, or from previous classification tasks that240

have been completed [30]. This is a subfield of ma-241

chine learning where advanced learning algorithms are242

applied to data and metadata of a given problem.243

In general, input patterns with and without tags come244

from the same boundary distribution or follow some245

common cluster structure. This is the case for mod-246

eling situations of real physical problems [31]. Thus,247

the classified data contribute to the learning process,248

while useful information can be extracted from the un-249

classified data, for the exploration of the data structure250

of the general set. This information can be combined251

with knowledge from previous learning procedures, or252

previous classification tasks performed.253

Based on the above, meta-learning techniques can254

discover the underlying structure of data, allowing for255

fast learning of new tasks. This is achieved by using256

different types of knowledge, such as the properties of257

the learning problem, the properties of the algorithm258

used (e.g. performance measures) or patterns derived259

from data related to a previous problem. Cognitive in-260

formation from unknown examples sampled from the261

distribution of real-world cases is used. The goal is262

to enhance [28] the outcome [29] of the learning pro-263

cess [30].264

In this way it is possible to learn, select, change, 265

or combine different learning algorithms to effectively 266

solve a given problem. 267

A meta-learning system should combine the follow- 268

ing requirements [30]: 269

1. The system must include a learning subsystem. 270

2. Experience should be gained from the use of 271

knowledge extracted from metadata, related to 272

the dataset under consideration or from previous 273

learning tasks, completed in similar or different 274

fields. 275

3. The learning bias should be selected dynamically. 276

Depending on the approach, there are four meta- 277

learning prototypes as mentioned below [30]: 278

1. Model-based: These are techniques based on the 279

use of retrospective networks with external or 280

internal memory. These techniques quickly up- 281

date their parameters with minimal training steps, 282

which can be achieved through their internal ar- 283

chitecture, or by using control from other models. 284

2. Memory-Augmented: Neural Networks and Meta 285

Networks are typical model-based meta-learning 286

techniques. 287

3. Metrics-based: These are techniques based on 288

learning effective distance measurements that can 289

generalize. The core idea of their operation is sim- 290

ilar to that of the “Nearest Neighbors” whereas 291

their goal is to learn a measurement or distance 292

from objects. The concept of a good metric de- 293

pends on the problem, as it should represent the 294

relationship between the inputs in the space, facil- 295

itating problem solving. Convolutional Siamese 296

Neural Network, Matching Networks, Relation 297

Networks and Prototypical Networks are typi- 298

cal cases of metrics-based and meta-learning ap- 299

proaches. 300

4. Optimization-based: They are based on the op- 301

timization of the model’s parameters in order to 302

achieve fast learning. LSTM Meta-Learners, Tem- 303

poral Discreteness and the Reptile algorithm are 304

typical cases of optimization-based [32], meta- 305

learning techniques. 306

Recurrent Neural Networks (RNN) with only in- 307

ternal memory and Long Short-Term Memory meth- 308

ods (LSTM), are not considered as meta-learning ap- 309

proaches. Literature suggests that memory capacity 310

neural networks provide a meta-learning approach for 311

deep neural networks [28–30]. However, this particular 312

memory usage strategy that is inherent to unstructured 313

iterative architectures, is unlikely to extend to settings 314
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where each new task requires significant amounts of315

new information for rapid encoding [30].316

A scalable solution has some essential requirements.317

Information must be stored in memory in a represen-318

tation that is stable, so that it can be reliably accessed319

when needed and addressed with data. In this way, it can320

selectively access relevant data. The number of parame-321

ters must not be related to the size of the memory. These322

two features do not occur in the original retrospective323

memory network architectures such as RNNs or more324

advanced ones such as LSTMs. In contrast, architec-325

tures such as Neural Turing Machines (NTMs) [23] and326

Memory Networks [33] meet the required criteria.327

This research introduces the M-A/DCESN approach328

that uses external storage memory, which is compiled329

by employing the NTMs architecture. It allows mem-330

orization of useful information from past processes,331

while facilitating the rapid integration of new informa-332

tion, without the need for retraining.333

4. Implementation334

The NTMs are a model-based meta-learning [30] ar-335

chitecture and they constitute the implementation of a336

neural control mechanism with external storage mem-337

ory. Specifically, it is an architecture that connects a338

neural network and an external memory storage unit.339

Taking a general approach to MA/DCESN in terms340

of its meta-learning properties [28–30], it trains in a341

variety of learning tasks.342

It is optimized to provide a/for a better performance343

in generalizing tasks, including potentially unknown344

cases. Each task is associated with a data set D, con-345

taining feature vectors and class labels on the given346

supervised learning problem. The optimal parameters347

of the model are [30,34,35]:348

θ∗ = argmin
θ ED∼P (D) [Lθ (D)] (1)

Although it seems similar to a normal learning pro-349

cess, each data set is still considered a sample of data.350

The dataset D comprises two parts, a training set S351

and a testing set B for validation and testing.352

D = 〈S,B〉 (2)

D contains pairs of vectors and labels so that:353

D = {(xi, yi)} (3)

Each tag belongs to a known set of tags L.354

In the case of the classifier fθ, parameter θ extracts355

a probability of the class y render of attributes vector,356

x, Pθ(y|x).357

Fig. 1. Architectural modeling of the NTM.

Optimal parameters maximize the likelihood of find- 358

ing true tags in multiple training batches. 359

B ⊂ D: 360

θ∗ = argmaxθE(x,y)∈D [Pθ(y|x)] (4)

θ∗ = argmaxθEB⊂D

 ∑
(x,y)∈B

Pθ(y|x)

 (5)

The aim of the model is to reduce prediction error in 361

data samples with unknown tags, considering that there 362

is a small set of support for fast learning which works 363

as “fine-tuning”. 364

A modification of the model is shown in the follow- 365

ing function, to which the symbols of the meta-learning 366

process have been added 367

θ∗ = argmaxθELs⊂L (6)ESL⊂D,BL⊂D

 ∑
(x,y)∈BL

Pθ
(
x, y, SL

)
As for the model in terms of the augmented-memory 368

technique, memory stores processed information. 369

It can be considered as a N ×M matrix. The con- 370

trol mechanism is a DCESN which is responsible for 371

performing tasks in memory. 372

The controller processes the input and interacts with 373

the memory bank to generate the output, through a 374

recurring update process. A general description of the 375

function of the proposed NTM [23] is shown in Fig. 1 376

below. 377

When the memory is read at time t, an attention 378

vector wt of magnitude N controls how much attention 379

should be allocated to different memory locations. 380

Vector rt is the sum of the weights from the attention 381

intensity resulting from the assignment process. 382

The overall calculation procedure is presented by the 383

following equation [23,36]: 384
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ri =

N∑
i=1

wt (i)Mt (i) ,where
N∑
i=1

wt (i) = 1,

(7)
∀i : 0 6 wt (i) 6 1

Where, wt (i) is the ith element in wt and Mt (i) is385

the ith element stored in memory.386

In addition (inspired by forgetting gates in LSTM)387

the process of writing to memory in time t initially388

provides for the deletion of the old erasable vector et389

which is the content of memory in a specific location.390

Then new information is inserted by adding vector at.391

This procedure is described below in the corresponding392

deletion Eq. (8) and addition Eq. (9) [23,36]:393

M̂t(i) = Mt−1(i)[1− wt(i)et] erase (8)

Mt(i) = M̂t(i) + wt(i)at add (9)

The way of the development of the attention distribu-394

tion wt depends on the addressing mechanisms, which395

operate on the basis of content or location.396

The content-based addressing process, generates at-397

tention vectors based on the similarity between the kt398

key vector (extracted by the controller from the input399

lines) and the memory content.400

Content-based attention scores are calculated as the401

cosine of similarity between the content, which is then402

normalized with the use of the softmax function.403

In addition, a power multiplier βt is added to enhance404

or soften the focus of attention distribution.405

The procedure is described in the following equa-406

tion [23,36]:407

wct (i) = softmax (βt · cosine [kt,Mt (i)])
(10)

=
exp
(
βt

kt·Mt(i)
||kt||·||Mt(i)||

)
∑N
j=1 exp

(
βt

kt·Mt(i)
||kt||·||Mt(i)||

)
A step-by-step gateway is then used to mix in the408

last step of the time, the newly created content-based409

attention vector with the attention weights [23,36]:410

wgt = gtw
c
t + (1− gt)wt−1 (11)

On the other hand, location-based addressing gath-411

ers values at different positions in the attention vec-412

tor, weighted based on a weight distribution relative to413

permissible integer displacements.414

They are equivalent to a 1-d convolution with kernel415

st. Finally, the attention distribution is enhanced by416

a gradual escalation γt > 1. The above procedures417

are described in the following equations 12 (circular418

convolution) and 13 (sharpen) [23,36]:419

ŵt(i) =

N∑
j=1

wgt (j)st(i− j) (12)

wt (i) =
ŵt(i)

γt∑N
j=1 ŵt(j)

γt
(13)

This work is based on the MA/DCESN architec- 420

ture [8], proposing a set of modifications regarding 421

the training setting, memory recovery mechanisms, ad- 422

dressing techniques and ways of assigning attention 423

weights to memory vectors. 424

In particular, the main concern of the proposed sys- 425

tem, is related to the development of a training process 426

that uses memory capable of rapid encoding and record- 427

ing information for new tasks. Moreover, any stored 428

representation should be easily and stably accessible. 429

Training should be performed in a way that memory can 430

hold information for a longer time, until the appropriate 431

labels that fit the categorization process are presented. 432

In each training cycle, the actual tag is presented 433

following a step shift (xt+1, yt), so that this label (while 434

it is part of the time step input t) can be part of the input 435

in the next time step t+ 1. Following this process, the 436

proposed MA/DCESN is motivated to memorize the 437

information of a new data set. Memory has to hold the 438

current input until the label appears and then the old 439

information has to be retrieved in order for a similar 440

prediction to be produced. 441

In addition to the training process, an innovative ad- 442

dressing mechanism is used, where the reading atten- 443

tion process is constructed solely on the basis of the 444

similarity of the content. 445

This procedure first predicts a key vector attribute kt 446

in the time step t as a function of input x. 447

A gravity reader wrt of the N elements is calculated 448

as the similarity between the cosine of the key vec- 449

tor and each line of the memory vector, normalized to 450

Softmax [33] as follows in Eq. (14). 451

wrt (i) = softmax (cosine [kt,Mt (i)]) (14)

Additionally, the vector reader ri is a sum of 452

weighted memory files. Its mathematical description is 453

presented in the following Eq. (15) [23,36]: 454

ri =

N∑
i=1

wrt (i)Mt (i) ,where wrt (i)

(15)
= softmax

(
kt ·Mt (i)

||kt|| · ||Mt (i) ||

)
Where, Mt is a memory matrix for time stamp t and 455

Mt (i) is the ith line of the table. 456
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Fig. 2. Architecture of the proposed M-A/DCESN.

The memory updating, for efficient retrieval and stor-457

age of information, is performed based on the Least458

Recently Used Access (LRUA) algorithm. This writes459

new content either to the least used memory location,460

based on the Least Frequently Used (LFU) algorithm,461

or to the most recently used memory location based on462

the Most Recently Used algorithm (MRU) [36]. Specif-463

ically, LFU is used to retain the most frequently used464

information.465

One of the most serious weaknesses of this method is466

the fact that new data entering memory may be removed467

very soon. This may happen because they receive a very468

low counter, although they may be used very often after469

this assignment. Accordingly, the MRU algorithm first470

removes the most recently used memory components.471

This process has proven to be very effective in cases472

where the older elements are considered the most use-473

ful. The motivation for its use is the fact that once an474

information is retrieved, it will probably not be needed475

immediately again [36].476

The proposed MA/DCESN is developed with the em-477

ployment of LRUA. Another advantage of this hybrid478

scheme is that all of its parameters are fully customiz-479

able.480

Specifically [36]:481

1. The weight wut which is used at time t is a sum482

of the used read and write vectors. wut−1 is the483

decayed last usage weight, where γ is the decay484

factor.485

2. The write vector is an interpolation between the486

previous reading weight (found in the last used po-487

sition) and the previous least used weight (whose488

position is rarely used).489

The application of the sigmoid function on the490

hyperparameter α is the interpolation parameter.491

3. The least used weight wlu is scaled according 492

to the usage weights wut , where each dimension 493

retains the value 1 if it is less than the nth element 494

and it has the value 0 in any other case [36]: 495

wut = γwut−1 + wrt + wwt (16)

wrt = softmax (cosine (kt,Mt (i))) (17)

wwt = σ (α)wrt−1 + (1− σ (α))wlut−1 (18)

wlut = 1wu
t (i)6m(wu

t ,n)
(19)

Where m (wut , n) is the nth smallest element of 496

the weight vector, wut . 497

Finally, each memory string is updated when the least 498

used position indicated by wlut is equal to zero. The 499

update process is performed based on the following 500

equation [36]: 501

Mt (i) = Mt−1 (i) + wwt (i) kt,∀i (20)

The analytical procedure presented above, is used by 502

the proposed model to facilitate the learning process and 503

to achieve adaptation in new situations after processing 504

with only a few samples. At the same time it allows 505

the rapid coding of new information by using external 506

memory storage. In general, the proposed MA/DCESN 507

is an NTM which consists of three main parts: The Con- 508

troller, the Memory Bank and the Read/Write Heads, 509

as presented in Fig. 2. 510

The proposed architecture has 256 positions of mem- 511

ory, while the range of allowed position changes is ob- 512

tained by circular shifts and replacement of records, 513

based on the LRUA algorithm. 514

It should be noted that the above parameters were 515

obtained by following a trial and error approach. The 516

most important decision in the architectural design of 517

MA/DCESN is the type of neural network used as a 518
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controller. In particular, the decision to use an iterative519

architecture (RNN, LSTM) or a simple FNN network520

is very important.521

An iterative controller like LSTM has its own inter-522

nal memory [37]. It also has significant computational523

resource requirements, adding high complexity to the524

model and the process is much slower.525

The aim was not only to prove that the proposed526

MA/DCESN is capable of effectively solving the given527

categorization problem, but also that it is able to gener-528

alize far beyond the range of training data in a feasible529

time and computational resources’ frame.530

Experiments were performed and various neural net-531

work architectures were compared. The selector finally532

chosen to be used is an extremely fast and highly effi-533

cient DESN.534

ESN [38] is an iterative neural network with input,535

a sparsely connected hidden reservoir layer and a sim-536

ple linear readout output. The connection weights on537

each ESN reservoir, as well as the input weights, are538

random. The reservoir weights are scaled in such a way539

as to ensure the Echo State Property (ESP) [39]. ESP is540

defined as a state in which the reservoir is an “echo” of541

its entire entry history, which is partly determined by542

its architecture.543

The only distinct levels of the ESN are those of in-544

put u(n) and output y(n) which are determined by the545

problem. The hidden levels are grouped in a DR area546

and their number is indistinguishable. A percentage of547

the neurons in DR, are interconnected. This percentage548

is related to the sparsity of DR which is determined549

experimentally [40].550

The synaptic compounds that unite the levels with551

each other and the DR are characterized by a value that552

determines the weights. In ESNs, each input neuron is553

connected via W in
ij weights (i-input neuron, j-neuron to554

DR) to each DR neuron [40]. These weights, although555

normalized, are determined randomly before training556

and their values are final as they do not change during557

training. Also each DR neuron is interconnected via558

Wjk weights to any other.559

The weights of these neurons, although normalized,560

are determined randomly before training and their val-561

ues do not change. Finally, each DR neuron is con-562

nected via W out
jm weights to the neurons of the output.563

These weights in the readout layer, are the only ones564

that are trained in order to get their final values. The565

basic architecture of an ESN network is described in566

Fig. 1. Where u(n) is the number of neurons in the567

input unit, x(n) is the number of neurons in the internal568

unit (which is essentially DR) and y(n) is the number569

of neurons in the readout layer [40].570

Development of a DESN Reservoir Computing ar- 571

chitecture [41], requires the use of multiple reservoirs. 572

A Deep Dynamical Reservoir (DDR) area is created 573

with the properties mentioned above [42]. 574

The DESN architecture is characterized by a stacked 575

hierarchy of reservoirs, where at each time step t, the 576

first repeating layer is fed from the external input u(t), 577

while each successive layer is fed from the output of 578

the previous one into the stack [41,42]. 579

The architectural organization of DDRs in DESN 580

allows for general flexibility in the size of each layer 581

Here we consider a hierarchical tank installation with 582

repeating layers NL, each of which contains the same 583

number of units NR. Moreover we use x(l)(t) ∈ RNR 584

to declare the status of level l at time t. By omitting the 585

bias conditions, the first level state transition function 586

is defined as follows [41,42]: 587

x(1) (t) =
(

1− a(1)
)
x(1) (t− 1) + a(1) (21)

tanh
(
Winu (t) + Ŵ (l)x(1)(t− 1)

)
For each level higher than l > 1 the equation has the 588

following form [41,42]: 589

x(l) (t) =
(

1− a(l)
)
x(l) (t− 1) + a(l) (22)

tanh
(
W lxl−1 (t) + Ŵ (l)x(1)(t− 1)

)
Where Win ∈ RNR×NU is the input weight matrix, 590

Ŵ (l) ∈ RNR×NR is the recurrent weight matrix for 591

layer l,W (l) ∈ RNR×NR is the matrix containing the 592

connection weights between layerl-1 and l, a(l) is the 593

leaky parameter of layer l and tanh is the Tangent Hy- 594

perbolic function [41,42]. 595

In the DESN architecture, we must determine the 596

number of neurons in the input unit, the size of the 597

DDR, the depth of the architecture, the training mode 598

and the number of nodes in the readout layer [41,42]. 599

4.1. Input unit 600

The number of neurons at the input level is usually 601

determined by the requirements of the problem, the 602

individual issues related to modeling at the level of 603

available data, and the solution sought. 604

The weights connecting the input level and DDR are 605

taking random normalized values, and their population 606

number is (K + 1)×N where (K + 1) is the number 607

of neurons at the entry level along with the threshold. 608
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4.2. Deep dynamical reservoir609

The creation of DDR, presupposes that the reservoir610

allows previous network states to sound even after their611

passage. So if the network receives an input line similar612

to data in which it has been trained, it will follow the613

appropriate activation trajectory in the reservoir. This614

will generate the appropriate output signal and in case615

the network is satisfactorily tuned, it will be able to616

generalize from the data with which it has been trained.617

The reservoir acts both as a non-linear extension of the618

input data, but also as a memory.619

It is essentially a larger non-linear representation620

x (n) of the input data, u (n). It is also used to store621

data as internal memory, providing temporal context.622

In this spirit, RNN-like architecture is used to ensure623

that history is preserved. The size of the reservoir is624

one of the most basic parameters. Larger size means625

easier to find a linear combination that can produce the626

desired result. Due to the fact that ESNs do not have627

very high computational costs in many cases the size of628

the reservoir can receive high values. The lower limit629

can be calculated approximately based on the desired630

number of values that the network should remember.631

So the largest number of values to be stored should not632

exceed Nx, i.e. the total size of the reservoir.633

Also the reservoir variable sparsity, indicates how634

sparse the connections between DDR neurons will be.635

It is a parameter that is determined during the devel-636

opment of the network. In many approaches the use of637

dilute reservoir is encouraged because it gives slightly638

better results. However, in relation to other parameters,639

sparsity does not have a high priority in the sense that it640

does not greatly affect the functionality of the network.641

Based on the DESN architecture, DDR is defined by642

the Win and W weight vectors, which are initialized643

randomly and normalized based on some parameters644

that can be set. The scaling used on these weights is645

usually the same as the one used on the weights Win.646

The leaking rate α is an independent parameter of647

reservoir neurons which translates to the speed at which648

the network will upgrade reservoir over time.649

That is, how fast the reservoir neurons will get the650

ideal value. The value of this variable can be derived651

from the time it takes for the network input to be con-652

verted to the desired output and usually the ideal value653

is calculated through the experimental method.654

One of the most important universal parameters of the655

reservoir is the spectral radius of the weights W of the656

DDR. This parameter expresses the maximum eigen-657

value of the reservoir and sets a scale on the weights658

W . It essentially sets the maximum value that non-zero 659

reservoir compounds can take. It is extremely impor- 660

tant to maintain the ESP property, based on which the 661

retained history should fade over a long period of time 662

and not to depend on the original network conditions. 663

In cases where this parameter is set to very high 664

values, a chaotic situation develops in the network, in 665

which the reservoir weights change uncontrollably and 666

the network is not trained. 667

4.3. Deep architecture 668

Deep learning systems have a Credit Assignment 669

Path (CAP) [34] on their depth, which describes the 670

chain of transformations from input to output and the 671

potentially causal links between input and output. 672

The CAP in the proposed DESN was performed 673

experimentally, performing tests so that each level 674

encodes a different range of dynamic characteris- 675

tics, from the intermediate representations that are ex- 676

tracted [34,40]. The main idea behind the proposed 677

DESN design method is to stop adding new layers every 678

time the filtration process becomes negligible. That is, 679

when during addition of new layers, no intermediate 680

representations are provided capable to contribute to- 681

wards capturing or matching of the input data to the 682

desired network responses of the output. 683

In order to determine when the filtration effect be- 684

comes negligible, a thorough study was performed. It 685

was proved experimentally following the trial and er- 686

ror method that the network in this set of tests tends 687

to converge at a certain value, as we add more than 4 688

levels. 689

Our future goal is to create a heuristic algorithm for 690

automatically determining the depth of DESN, which 691

will be based on a search strategy technique, suitable for 692

automatically determining the quality of the network, 693

based on the training dataset. 694

The DCESN is a hybrid of two of the most promi- 695

nent forms of neural networks in modern engineering, 696

namely a CNN [14] and a DESN architecture. 697

The proposed DCESN introduced in this paper incor- 698

porates a classic CNN with convolutional filters with 699

very small receptive fields 3 × 3. The convolutional 700

stride and the spatial padding were defined to be equal 701

to 1 pixel. Max-pooling is performed over 3 × 3 pixel 702

windows with stride 3. The CNN architecture includes 703

3 convolutional layers with 4 × 4, 5 × 5 and 4 × 4 704

convolutional filters. The number of the convolutional 705

filters for the respective layers are 32, 64 and 128. All of 706

the convolutional layers are employing ReLU nonlinear 707
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activation function [34]:708

ReLU (x) = max (0, x) or
(23)

ReLU (x) =

{
0 if x < 0
x if x > 0

However in the last layer, the Softmax activation709

function is used instead of the Sigmoid:710

σ (z)j =
ezj∑ K

k=1

ezk , j = 1, . . . ,K (24)

This is done due to the fact that Softmax performs711

better in multi-classification problems, like the one ex-712

amined here, whereas the Sigmoid is used in binary713

classification tasks.714

In Softmax, the sum of probabilities (SUP) is equal715

to 1 and high values have the highest probabilities. On716

the contrary, in Sigmoid the SUP must be different than717

1 and the high values have high probabilities, but not718

the highest ones.719

In the proposed model, the Learning Rate was set to720

be equal to 0.001 and the cross-entropy error was used721

as the loss function [34].722

Bootstrap Sampling was employed to enhance the723

efficiency of the approach [43]. The reason that this724

technique is used in this work is that in the specific725

problem of high complexity, the prediction results are726

multivariate. This can be attributed to the sensitivity of727

the correlational models to the data and to the complex728

relationship that describes them. An important advan-729

tage of the proposed system is the fact that it offers a730

stable prediction mode. The overall behavior of a mul-731

tiple model is less noisy than that of a single one, while732

for each case, the overall risk of a particularly poor733

choice is reduced. It is important that the dispersion734

of the expected error was observed to be concentrated735

close to the mean error value.736

Usually, errors of precision are probabilistic. This737

means that the experimenter is saying that the actual738

value of some parameter is probably within a specified739

range. For example, if the half-width of the range equals740

one standard deviation, then the probability is about741

68% that over repeated experimentation the true mean742

will fall within the range; if the half-width of the range743

is twice the standard deviation, the probability is 95%,744

etc.745

Thus, we can use the standard deviation estimate to746

characterize the error in each measurement. Another747

way of saying the same thing is that the observed spread748

of values in this example is not accounted for by the749

reading error. If the observed spread were more or less750

accounted for by the reading error, it would not be751

necessary to estimate the standard deviation, since the752

reading error would be the error in each measurement.753

4.4. Readout layer 754

The weights connecting each neuron from the DDR 755

to each neuron from the output layer have a population 756

numberN×L. These weights do not get random values 757

as long as their values are determined by the network’s 758

training. 759

5. Dataset and results 760

SAR is a unique form of radar that can penetrate 761

the clouds, collect data under all weather conditions, 762

day and night. Data from SAR satellites could be par- 763

ticularly valuable in disaster management, especially 764

in cases where difficult weather and clouds cover the 765

optical capabilities of traditional electro-optical sen- 766

sors. Despite their advantages, there is limited open data 767

available to researchers to investigate the effectiveness 768

of SAR data. 769

The dataset used in this research is an open-ended 770

data set, available freely from [44] and it has been used 771

for SpaceNet Challenge SN6: Multi-Sensor All-Weather 772

Mapping. 773

The dataset uses a combination of SAR and electro- 774

optical data sets, namely half-meter SAR images from 775

Capella Space and half-meter electro-optical images 776

from MaxV’s WorldView 2 satellite [44]. The area of 777

interest is Europe’s largest port, Rotterdam, an area with 778

thousands of buildings, vehicles and boats of various 779

sizes. It is the ideal point to create an effective test 780

framework for merging SAR and electro-optical data. 781

In particular, the training dataset contained both SAR 782

and electro-optical images, while the test and evaluation 783

data sets contained only SAR data. 784

Therefore, electro-optical data can be used to prepro- 785

cess SAR data in some way, such as: coloring, domain 786

customization, or image translation, but they cannot be 787

used to directly map buildings. The data set was struc- 788

tured to mimic real-world scenarios where historical 789

electro-optical data may be available. However, simul- 790

taneous collection of electro-optics with SAR is often 791

not possible, due to inconsistent sensor trajectories, or 792

bad weather conditions, that can make electro-optical 793

data useless. 794

The Dataset is related to the city of Rotterdam cover- 795

ing an area of over 120 km2. It comprises both high res- 796

olution synthetic aperture radar (SAR) data and electro 797

optical (EO) images of ∼ 48,000 buildings’ footprint 798

labels [44]. 799

The training data comprises 450 m × 450 m tiles 800

with associated building footprint labels of SpaceNet 801
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AOI 11 – Rotterdam (39.0 GB) and the testing data are802

450 m × 450 m tiles of SpaceNet AOI 11 Rotterdam803

(16.9 GB). The data is hosted on AWS (Amazon Web804

Services) as a Public Dataset. It is free to download805

from [44].806

The experiments setup process of the DCESN was807

performed following a supervised approach. Specifi-808

cally, for each input u(n) ∈ RNu the desired outcome809

is ytarget(n) ∈ RNy. Variable n represents discrete time810

and it takes values in the closed interval [1, T] where T811

is the number of the input data vectors in the training812

set. The desired output ytarget(n) and the actual output813

y(n) are data vectors from the SAR dataset.814

The purpose of network’s training is to learn from815

a model with output y(n) ∈ RNy, where y(n) identi-816

fies as accurately as possible with ytarget(n), reducing817

error E(y, ytarget). The ultimate target is generalization818

ability.819

Root-Mean-Square Error (RMSE) was used as the820

error Eq. (11) [34]:821

RMSE =

√√√√ 1

n

n∑
j=1

(
P(ij) − Tj

)2
(25)

Where P(ij) is the forecasted value by program i for822

a simple assumption j and Tj is the target value for j.823

It should be noted that the input level neurons are824

essentially inactive, as long as they do not perform any825

calculation. Their purpose is to transmit the network826

input to the DDR.827

The following equation was used to update the values828

of the neurons in DDR [41,42]:829

x̃(n) = tanh(W in[1;u(n)] +Wx(n− 1)) (26)

Where x̃(n) ∈ RNx defines the update values for830

each neuron of the DDR. Also, Tanh is the update func-831

tion, u(n) is the input at temporal point n and 1 declares832

the value of the threshold (bias).833

The final value of the neurons in DDR is estimated834

by the following equation 13 where α is the leaky inte-835

gration rate α ∈ (0, 1] [41,42].836

x (n) = (1− α)x (n− 1) + αx̃(n) (27)

By assigning the value α = 1 in the leaking rate, we837

can avoid to perform leaky integration in the neurons’838

update, thus x̃(n) = x(n) [41,42].839

The weights W in andW , which contribute to the840

values of x(n) are initially randomized, in order to841

protect our data from noise that may arise in the early842

stages of the process. In this way we avoid arbitrarily843

adjusting the x(n) values in training and specifically844

the ones that lead to an abnormal network boot state.845

Upgrading the neurons to the output level based 846

on which the neurons y(n) ∈ RNy are defined by 847

the internal product of the output weights W out ∈ 848

RNy×(1+Nu+Nx) and the vector that is developed by 849

combining the threshold value and the vectors u(n) ∈ 850

RNuy(n) where x(n) ∈ RNx, is calculated by the follow- 851

ing function 14 [41,42]: 852

y (n) = W out [1;u (n) ;x (n)] (28)

The update of the output neurons W out which 853

changes the weights in a way that the output y(n) can 854

be as close as possible to the desired result ytarget(n), is 855

performed by the following Eq. (15) [41,42]: 856

W out = ΥtargetXT
(
XXT + βI

)−1
(29)

It should be mentioned that β is the Optimization 857

Parameter used to avoid overtraining. 858

The proposed DCESN model an online learning al- 859

gorithm was used. Based on this algorithm, the weights 860

of the network change at any time, (at each input line 861

of the training data). 862

The Recursive Least Square algorithm (RLS) was 863

used [45]. RLS operates based on the integration of the 864

fault history in the network upgrade calculations. In this 865

research, RLS was used to update the weights W out. 866

The proposed algorithm is using the Forgetting Fac- 867

tor λ (FF) which exponentially defines the importance 868

of the error history. For example if λ = 1, the error 869

history has the same weight as the network’s error at 870

this time. If λ < 1, the error history affects the network 871

over time. 872

This means that the error at time n has a higher 873

weight than the error at time n− 1. 874

The error function in the RLS algorithm is described 875

by the following Eq. (3). 876

E (k) =

k∑
i=1

λk−ie (k)
2 (30)

The above error function includes the parameter e(k) 877

which declares the difference between the desired value 878

ytarget and the actual output y for temporal moment k 879

Eq. (17 [45]: 880

e (k) = ytarget (k)− y (k) (31)

The weight update function of the RLS algorithm 881

changes over time, for every temporal moment k [45]: 882

W out (k + 1) = W out (k) + e (k) g (k) (32)

Where e(k) is defined by the above Eq. (18) and g(k) 883

is determined by the following function 19 that deter- 884

mines the significance of the error history in shifting 885
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weights for x neurons in DDR [45]:886

g (k) =
P (k − 1)x (k)

λ+ x (k)
T
P (k − 1)x (k)

(33)

Where P (k − 1) is determined by the following887

Eq. (32) [45]:888

P (k) = λ−1P (k − 1)− g (k)xT (k)λ−1

(34)
P (k − 1)

This is a recursive function that allows error history889

to be taken into account when the weights W out are890

updated. Also λ is the forgetting factor and x the DDR891

neurons.892

For the case of the “SpaceNet” Multi-Sensor All-893

Weather Mapping dataset, the ranking was based on the894

SpaceNet Metric (SPAN) which is using F1-Score. It is895

based on the intersection over union of the footprints of896

two buildings, with a threshold equal to 0.5. F1-Score is897

calculated by taking the total True Positives (TP), False898

Positives (FP), and False Negatives (FN) for the total899

number of buildings’ footprints present in the testing900

datasets. Specifically, the F1-Score is defined by the901

equation below [34]:902

F1− Score = 2X
TP

TP+FP ×
TP

TP+FN
TP

TP+FP + TP
TP+FN

(35)

The proposed approach was compared with other cor-903

responding Deep Learning architectures, which can be904

summarized as follows:905

1. 1-D CNN (1DCNN): The network’s architecture906

was designed as in [46] and it includes the in-907

put, the convolutional, the max-pooling, the fully908

connected, and the output layers.909

2. The number of convolutional filters equals 20, the910

length of each filter is 11 and the pooling size has911

the value 3. Finally, 100 hidden units are included912

in the fully connected layer.913

3. 2-D CNN (2DCNN): The architecture was de-914

signed using the one of [15] as prototype. It com-915

prises of three convolutional layers equipped with916

4 × 4, 5 × 5 and 4 × 4 convolutional filters917

(COF). The convolutional layers –except the last918

one- are followed by max-pooling layers. More-919

over, the number of the COF corresponding to the920

convolutional layers are 32, 64 and 128, respec-921

tively.922

4. Simple Convolutional/Deconvolutional Network923

(SCDN): This is the network comprising of simple924

convolutional blocks. It employs the unpooling925

process which is applied in [47,48].926

5. Residual Convolutional/Deconvolutional Network 927

(RCDN): This architecture uses residual blocks 928

and a more accurate unpooling function [49]. 929

The final parameters used in each of the 4 ESNs for 930

the development of the DESN in the context of this 931

proposal, were determined through a trial and error pro- 932

cedure and are presented in Table 1. The trial and error 933

method was used to deliver optimal hyperparameters 934

for a known pattern. The goal is to reduce the predic- 935

tion error in data samples with unknown tags, given 936

that there is a small set of support for fast learning that 937

works as fine-tuning. A step-by-step example of the 938

process run is presented below: 939

1. Creation of a subset of Ls ⊂ L tags; 940

2. Creation of an SL ⊂ D training subset and a 941

BL ⊂ D prediction set. Both of these subsets 942

include labeled data belonging to the subset Ls, 943

y ∈ Ls,∀(x, y) ∈ SL, BL; 944

3. The optimization process uses the BL subset to 945

calculate the error and update the model parame- 946

ters via error propagation. 947

Each sample pair (SL, BL) is also considered as a 948

data point. Thus, the model is trained so that it can 949

generalize to new, unknown datasets. 950

The classification performance results of the pro- 951

posed approach, compared to the ones obtained by other 952

methods are presented in Table 2. It provides infor- 953

mation on the results of the McNemar test [50] of the 954

proposed network and the other approaches examined. 955

The McNemar statistical test was employed to evaluate 956

the importance of classification accuracy derived from 957

different approaches: 958

z12 =
f12 − f21√
f12 + f21

where fij is the number of correctly classified samples 959

in classification i, and incorrect one are in classification 960

j. McNemar’s test is based on the standardized normal 961

test statistic, and therefore the null hypothesis, which is 962

“no significant difference,” rejected at the widely used 963

p = 0.05(|z| > 1.96) level of significance. 964

We have used hardware based on the GPU chipset, 965

optimized for deep learning software TensorFlow [51]. 966

As can be seen from the comparative results, the 967

proposed MA/DCESN has achieved improved results 968

in relation to the respective competing systems. 969

One of the main advantages of the introduced system 970

is its high reliability which is clearly shown by the 971

high values of the F1-Score. This can be considered as 972

the result of successful data processing that allows the 973
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Table 1
ESN parameters

Parameter Value Explain
Max iterations 10 Specifies the maximum number of iterations the network required for its training.
Input size 60 Defines the number of neurons in the input layer
Reservoir size 21 Defines the number of DR neurons, which map the distribution of the given problem’s data.
Leaking rate 0.7 It concerns the speed with which the network upgrades the reservoir in relation to time and receives

values in (0, 1].
Sparsity of reservoir 0,4 Determines how thin the reservoir is. That is, it determines the number of synaptic connections to be

present in the DR, in order to ensure a balance in the mode of operation of the network.
Spectral radius 1.25 Basic parameter of the reservoir. It is used to set a maximum value for the weights that connect the

neurons to each other.
Forgetting factor 0.6 RLS parameter defining how less important is the error history exponentially.
Optimization parameter 1e-8 This variable is used as a measure to avoid network overtraining and it is applied to the weight upgrade

equation.
Larning rate 0.53 It is the Learning rate of the network. An mean learning rate of 0.53 was used. It uses dynamic boundaries

[0.01, 0.85] aiming to overcome the low generalization performance.

Table 2
Classification performance

1DCNN 2DCNN SCDN RCDN M-A/DCESN
OA 80.87 82.91 81.96 83.68 89.74
Precision 80.95 82.90 82.00 83.70 89.80
Recall 81.00 82.95 81.95 83.70 89.75
F1-Score 81.00 82.90 82.00 83.70 89.75
avg5ETT* 698 sec 881 sec 704 sec 751 sec 623 sec
McNemar 35.988 34.311 34.706 35.624 35.545

*average of the 5 epochs training time produced by 10 repeats of the methodology.

retention of the most relevant data for the upcoming974

forecasts.975

The proposed approach to reducing the generaliza-976

tion error is to use a larger model. This may require977

the use of regularization during training that keeps the978

weights of the model small. More specifically, regular-979

ization in the proposed methodology adds additional980

information to transform the ill-posed problem into a981

more stable well-posed problem. This leads the model982

to map the inputs to the outputs of the training dataset in983

such a way that the weights of the model are kept small.984

This weight decay approach has proven very effective in985

the DESN model. Regularization methods like weight986

decay provide an easy way to control overfitting for987

large neural network models [52].988

The integration of external memory, makes it possible989

to memorize useful data from past processes, while990

facilitating the rapid integration of new information,991

without the need for retraining.992

The proposed standardization offers the possibility993

of managing multiple intermediate representations. The994

hierarchical organization of reservoirs in successive lay-995

ers is naturally reflected in the structure of the dynamics996

of the developed system.997

This scaling also allows the progressive classifica-998

tion and exploration of input data interfaces across the999

levels of the hierarchical architecture, even if all levels 1000

share the same hyperparameters’ values. Furthermore, 1001

the multilevel architecture of the successive reservoirs, 1002

compared to the shallow ones respectively, yielded a 1003

dynamic behavior that represents a transitional state of 1004

how the internal representations of the input signals 1005

are determined [53]. This leads to high performance 1006

even for problems that require long internal memory 1007

intervals. 1008

Correspondingly, the hierarchical set of reservoirs is 1009

more efficient in cases where short-term network ca- 1010

pabilities are required, than the corresponding shallow 1011

architectures, which would have to work with the same 1012

total number of iterative or recursive units in order to 1013

achieve similar results [54]. 1014

Accordingly, in terms of computational effici- 1015

ency [55], the introduction of a multilevel construction 1016

of reservoirs in the design of a neural system, also re- 1017

sults in a reduction in the number of non-zero repeti- 1018

tive connections on many-core architectures [56]. This 1019

implies low complexity and time savings, which is re- 1020

quired to perform specialized tasks as presented in Ta- 1021

ble 2. Also, segmentation maps can be produced as 1022

soon as at least a single satellite image acquisition has 1023

been successfully and subsequently improved, once ad- 1024

ditional imagery becomes available. In this way, we are 1025

able to reduce the amount of time needed to generate 1026
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satellite imagery-based disaster damage maps, enabling1027

first responders and local authorities to make swift and1028

well-informed decisions in responding to disasters.1029

6. Conclusion1030

This paper proposes a novel Geo-AI disaster re-1031

sponse computer vision system that uses meta-learning1032

memory-augmented Deep reservoir computing for do-1033

main adaptation. The purpose is to map a disaster1034

area [57–64] using SAR radar material, which can pen-1035

etrate the clouds and collect data day and night and in1036

all weather conditions.1037

The reliability of the proposed system was tested in1038

the recognition of scenes from remote sensing images1039

in the SpaceNet Multi-Sensor All-Weather Mapping1040

dataset. This fact proves its capacity to be used in higher1041

level Geospatial Data Analysis processes, such as mul-1042

tidisciplinary classification, recognition, and monitor-1043

ing of specific patterns. It can also be used in the fu-1044

sion of SAR and multi sensors’ data for disaster re-1045

sponse [65–67].1046

7. Further work1047

The proposals for evolution and future development1048

of MA/DCESN, focus on the development of reservoirs1049

with Spiking neurons. These types of neurons require1050

minimum training time, they do not require delicate ma-1051

nipulations in determining their operating parameters,1052

and they can determine the appropriate output weights1053

for the most efficient solution of a problem.1054

Also, it would be important to study the expansion1055

of this system by implementing more complex archi-1056

tectures in an environment of parallel and distributed1057

systems that share the same memory.1058

Moreover, we aim to enhance the research by1059

newer and more powerful supervised machine learn-1060

ing/classification algorithms such as Enhanced Proba-1061

bilistic Neural Network [68], Neural Dynamic Classi-1062

fication algorithm [69], Dynamic Ensemble Learning1063

Algorithm [70], and Finite Element Machine for fast1064

learning [71].1065

Finally, a future extension would be the development1066

of a network with methods of self-improvement and1067

automatic redefining of its parameters. This would re-1068

sult in a heuristic algorithm for determining the depth1069

of DCESN, which will be based on an ensemble [72]1070

search strategy, suitable for the automatic determination1071

of the networks’ quality based on the training set.1072
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