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Abstract: Artificial intelligence is the branch of computer science that attempts to model cognitive
processes such as learning, adaptability and perception to generate intelligent behavior capable of
solving complex problems with environmental adaptation and deductive reasoning. Applied research
of cutting-edge technologies, primarily computational intelligence, including machine/deep learning
and fuzzy computing, can add value to modern science and, more generally, to entrepreneurship
and the economy. Regarding the science of civil engineering and, more generally, the construction
industry, which is one of the most important in economic entrepreneurship both in terms of the
size of the workforce employed and the amount of capital invested, the use of artificial intelligence
can change industry business models, eliminate costly mistakes, reduce jobsite injuries and make
large engineering projects more efficient. The purpose of this paper is to discuss recent research
on artificial intelligence methods (machine and deep learning, computer vision, natural language
processing, fuzzy systems, etc.) and their related technologies (extensive data analysis, blockchain,
cloud computing, internet of things and augmented reality) in the fields of application of civil
engineering science, such as structural engineering, geotechnical engineering, hydraulics and water
resources. This review examines the benefits and limitations of using computational intelligence
in civil engineering and the challenges researchers and practitioners face in implementing these
techniques. The manuscript is targeted at a technical audience, such as researchers or practitioners in
civil engineering or computational intelligence, and also intended for a broader audience such as
policymakers or the general public who are interested in the civil engineering domain.

Keywords: computational intelligence; machine/deep learning; fuzzy computing; data analysis;
blockchain; cloud computing; Internet of Things; augmented reality; civil engineering

1. Introduction

The modern era is characterized by rapid technological developments, resulting in
the development of a new economy at a global level, where the most critical asset is data.
The era of “big data” has given rise to the need to analyze it and extract the valuable
hidden knowledge it contains [1]. More generally, the maximization of the production
process in the modern era in sectors such as construction, and especially as the Industry 4.0
standard, promotes big data and requires the widespread use of cyber-physical systems that
monitor and supervise physical processes, taking autonomous and decentralized optimal
decisions [2].

The decisions in question are based on information collection and analysis procedures,
which come from the continuous flow of data, giving an increasingly accurate picture of the
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system’s effectiveness in production processes. This fact implies requirements for constant
collection and analysis of large-scale data from heterogeneous sources.

The visualization of information and its diagnosis as to whether it is accurate, in-
complete or inaccurate (veracity), determining its final value is a highly complex and
demanding process, especially when real-time decision-making is required [3]. Large-scale
data are considered as data that grow at high-speed rates as information arrives from
multiple sources at high speed (velocity), which implies a change in the ways of collecting
and storing this data (volume). Accordingly, various unstructured or semi-structured data
forms are included, characterized by variability, as they change meaning or status over
time and the environment in which they are found.

Intelligent large-scale data analysis systems based on artificial intelligence methods
have the potential to provide machine-readable formats suitable for handling complex tasks
by demonstrating logic, experiential learning and optimal decision-making capabilities
without human intervention.

Artificial intelligence is an umbrella term to describe a machine’s ability to mimic
human cognitive functions, such as problem-solving, pattern recognition, learning and
adapting to a dynamic, ever-changing environment [3]. Computational intelligence (CI) is
the primary subdivision of artificial intelligence (AI) and deals with the theory, design, im-
plementation and development of physiologically and linguistically inspired computational
paradigms [4].

This paper’s remaining sections are structured as follows: Section 2 presents the basic
concept of computational intelligence (CI) which is the theory, design, application and
development of biologically and linguistically motivated computational paradigms, includ-
ing machine learning, neural networks, fuzzy logic and evolutionary computation. The
applications of CI in civil engineering research domains and specifically in Architectural
Compositions, Building Technologies and Materials, Geotechnical Engineering, Structural
Construction, Computer Programming and Mathematics, Mechanics Engineering, Trans-
portation Engineering, and Hydraulics and Water Resources Engineering are described
in Section 3. Section 4 presents the context of Industry 4.0 and how it can extend the
applications of civil engineering science to future research. Finally, Section 5 presents the
conclusions of the research.

2. Computational Intelligence

CI is a developing field that includes computer paradigms such as ambient intelligence,
artificial life, social learning, artificial immune systems, social reasoning and artificial
hormone networks. Effective intelligent systems, such as cognitive developmental systems,
require CI. A subset of CI is machine learning (ML) and deep learning (DL), which uses
algorithmic techniques to enable information systems to learn from data without being
explicitly programmed. CI is at the heart of some of the most effective AI systems as
there has been a surge in research in DL (which is the primary approach for AI) in recent
years. Their ability is constantly optimized as they receive more and more data, which
requires the continuous and perpetual collection of information from each production stage
to multifacetedly investigate the current but also historical situation of the processes being
performed [5].

In CI, the basic concept of the function f, which implements a correspondence map-
ping each element p of the set P to a single element f (p) of the set Q, is of fundamental
importance as its practical advantage is that it can be implemented in practice with tangible
results. Assuming a system datum as an input that implements a function, one and only
one output datum is mapped to it. With this view, the goal of a computational intelligence
algorithm is to estimate a function f : RN → T , where the domain R is a set of real numbers,
while the domain T can be either T = RM in regression problems or a group of labels in
classification problems.
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The process of computing the function f : RN → T given a set of pairs (x1, f (x1)), . . . ,
(xn, f (xn)), while computing the value f̂ (x0) for x0 6= xi, i ∈ {1, . . . , n}, is called supervised
learning. The average ranking error of the training set points can be measured by the
following function [6,7]:

Remp(g) =
1
N ∑

i
L(y1, g(xi))

Patterns in an input stream, that is, training data, are used when the classes are un-
known, and the system makes predictions based on some distribution or some quantitative
measures to evaluate and characterize the data’s similarity to respective groups. The
following function describes how to compute a process of this kind [8,9]:

SCORE(C, D) =
K

∑
k=1

d(xi, ck)

where ck =
1
nk

∑
x∈ck

x and d(x, y) = ‖x− y‖2.

One hybrid type of algorithm is semi-supervised learning, which is based on searching
for a decision boundary with a maximum profit margin over the labelled data so that the
decision boundary has maximum profit over the more general dataset. The loss function
for the labelled data is (1− y f (x))+, while the loss function for the unlabeled data is
(1− | f (x)|)+. The algorithm calculates the function f ∗(x) = h∗(x) + b by minimizing the
normalized empirical risk as follows [5,10]:

f ∗ = argmin
f

(
l

∑
i=1

(1− yi f (xi))+ + λ1‖h‖2
H + λ2

l+u

∑
i=l+1

(1− | f (xi)|)+

)

The available data are delivered progressively in sequential order in this situation
and utilized for training and prediction by computing the error at each iteration. This
on-line/sequential learning approach aims to reduce the cumulative error throughout all
iterations, as calculated by the formula below [5,11]:

In[w] =
n

∑
j=1

V
(〈

w, xj
〉
, yj
)
=

n

∑
j=1

(
xT

j w− yj

)2

In reinforcement learning, the algorithm learns to make decisions based on rewards or
punishment. The method accepts as input the states s ε S of the agent. It has the action-state
value function Q(s, a) for each action aεA(s) to maximize the rewards, correspondingly
minimizing the punishments. The basic idea of the algorithm lies behind the repeated
renewal of the equation:

Qi+1(s, a) = Es′

{
r + γmax

a′
Qi
(
s′, a′

)
| s, α

}
until a value is reached that is equivalent to the optimal one Q∗, where Qι→ Q∗ and
i→ ∞ .

A basic goal of any learning process is an acceptable ability to generalize [5,12].
The three primary foundations of CI have traditionally been neural networks, fuzzy

systems and evolutionary computation. However, several nature-inspired computer mod-
els have emerged throughout time.

2.1. Neural Networks

The attempt to simulate the human brain and, by extension, the central nervous system
constitutes the training of neural networks. It is an architecture that uses information
processing (stimuli), the communication between neurons in parallel and distributed
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processing processes and the learning, recognition and inference capabilities that are
integrated and processed in real-time [4,11].

Neurons are the building blocks and nodes of neural networks, with each node
receiving a set of numerical inputs (input layer), either from other neurons or from the
environment. Based on these inputs, a calculation (hidden layer) is performed, producing
an output (output layer). These layers of neurons multiply their information by matching
synaptic weights and totaling the results. This sum is fed as an argument to the activation
function, which each node implements internally. The value the part receives for that
argument is the neuron’s output for the current inputs and weights [12,13].

More specifically, neural networks are clusters of neurons that have transfer func-
tions and are hierarchically structured according to the levels above. They implement an
f : RN → T function using various architectures depending on the intended effect. The

numerical inputs x1, . . . , xn are multiplied by the weights w1, . . . , wn, respectively, and
then summed, taking into account the bias constant β, which is the n + 1 weight of the
artificial neuron. Therefore, the output (σ) is calculated as follows [12,14,15]:

σ =
n

∑
i=1

wixi + β =
n

∑
i=1

wixi = wT ·x

where wT ·x represents the inner product of the vector x = (x1, . . . , xn, 1)T input of the
artificial neuron on the vector w = (w1, . . . , wn, wn+1)

T weights. The weighted linear sum,
σ, of the neuron’s inputs is then fed into a non-linear distortion component, f (σ), called the
transfer function. Some of the more popular f (σ) that have been proposed in the literature
are presented below [4,5]:

1. Hyperbolic tangent:

f (σ) =
1− e−σ

1 + e−σ

2. Sigmoid:

f (σ) =
1

1 + e−σ

3. ReLU:

f (x) = x+ = max(0, x)

Depending on how the layers are interconnected and how the nodes communicate,
various architectures emerge, the most significant of which are the contemporary deep
architectures, which can solve particularly complex problems. CNN, or ConvNet, is
one of the most prevalent deep neural networks. Due to the convolutional layering of
learned characteristics with input data, this architecture is suitable for processing 2D data
such as images. CNNs eliminate the human supervision preprocess by automatically
identifying and extracting image classification characteristics. The essential components
of deep architecture neural networks are not pre-trained but learn as the network trains
on a collection of patterns. Deep learning models are highly accurate for computer vision
applications such as object categorization [4,5]. Figure 1 depicts the classification process of
a CNN.

Filters are applied in the CNN architecture at varying resolutions to each training
picture, and each convolved image’s result serves as the next layer’s input. Every feature
map output is the result of applying a filter to the image. The new feature map is the
next input.



Appl. Sci. 2023, 13, 3380 5 of 19
Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 19 
 

 
Figure 1. Example of a network with convolutional layers (https://developersbreach.com, accessed 
on 4 Mars 2023/ /). 

2.2. Fuzzy Systems 
Fuzzy logic [16,17] is a unique form of intelligence related to decision-making meth-

odology. It is based on the extension of the concept of the classical binary set ሼ0,1ሽ, in 
which the relation of “belongs to” (∈) for a function ܫ(ݔ) is generalized so that instead, ݔ takes infinite values in the closed interval ሾ0, 1ሿ. In other words, it creates a new major-
ity set ܣ, where the transition from the category of elements of ܺ that belong to the fuzzy 
set ܣሚ, to the type of elements of ܺ that do not belong to ܣ is not abrupt-unclear but grad-
ual-unclear, as is usually the case in reality [16,18]. In this sense, the characteristic two-
valued function ܫ(ݔ) expresses a compact set ܣ in the two-member domain ሼ0,1ሽ. It is 
included in the concept of the participation function, ߤ෨(ݔ), which expresses a fuzzy set 
at the extreme values of the infinite space ሾ0, 1ሿ and uses functions such as ߤ ෩  :ሾ19ሿ (ݔ)
1. Triangular: 

(ݔ)ߤ = ۔ۖەۖ
ۓ 0, ݔ ൏ ݔܽ − ܾܽ − ܽ , ܽ  ݔ  ܾܿ − ܿݔ − ܾ , ܾ  ݔ  ܿ0, ܿ  ݔ  

2. Trapezoid: 

(ݔ)ߤ =
۔ۖۖەۖۖ
ۓ 0, ݔ ൏ ݔܽ − ܾܽ − ܽ , ܽ  ݔ  ܾ1, ܾ  ݔ  ܿܿ − ܿݔ − ܾ , ܿ  ݔ  ݀0, ݀  ݔ

 

3. Gaussian: ߤ(ݔ) =  ݔ݁

Figure 1. Example of a network with convolutional layers (https://developersbreach.com, accessed
on 4 March 2023).

2.2. Fuzzy Systems

Fuzzy logic [16,17] is a unique form of intelligence related to decision-making method-
ology. It is based on the extension of the concept of the classical binary set {0, 1}, in which
the relation of “belongs to” (∈) for a function IA(x) is generalized so that instead, x takes
infinite values in the closed interval [0, 1]. In other words, it creates a new majority set A,
where the transition from the category of elements of X that belong to the fuzzy set Ã, to
the type of elements of X that do not belong to A is not abrupt-unclear but gradual-unclear,
as is usually the case in reality [16,18]. In this sense, the characteristic two-valued function
IA(x) expresses a compact set A in the two-member domain {0, 1}. It is included in the
concept of the participation function, µÃ(x), which expresses a fuzzy set at the extreme
values of the infinite space [0, 1] and uses functions such as µÃ(x) [19]:

1. Triangular:

µAi (x) =


0, x < a

x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0, c ≤ x

2. Trapezoid:

µAi (x) =


0, x < a

x−a
b−a , a ≤ x ≤ b
1, b ≤ x ≤ c

c−x
c−b , c ≤ x ≤ d

0, d ≤ x

3. Gaussian:

µAi (x) = exp

https://developersbreach.com
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Among the fuzzy sets [18,20,21] (sets whose elements have degrees of membership), it
is possible to perform certain operations such as [16,17,22]:

1. Fuzzy disjunction

µÃ∪ B̃(x) = µÃ(x)
∨

µB̃(x) = max
[
µÃ(x), µB̃(x)

]
∀x ∈ X

2. Fuzzy conjunction:

µÃ∩ B̃(x) = µÃ(x)
∧

µB̃(x) = min
[
µÃ(x), µB̃(x)

]
∀x ∈ X

3. Fuzzy product:

µÃ·B̃(x) = µÃ(x)·µB̃(x)∀x ∈ X

4. Fuzzy complement:

µ¬Ã = 1¬µÃ(x)

Fuzzy reasoning is called the process of deriving fuzzy conclusions, a process which is
based on three fundamental concepts of the theory of fuzzy logic [19,23] and specifically
on fuzzy variables, inference rules and fuzzy relations, which can be combined through the
process of composition with operations such as [18,24,25]:

1. Fuzzy composition max-min:

µR◦Q(x, z) = max
y∈Y

(
min

(
µR(x, y), µQ(y, z)

))
=
∨

y∈Y

(
µR(x, y)

∧
µQ(y, z)

)
2. Fuzzy composition max-prod:

µR◦Q(x, z) = max
y∈Y

(
µR(x, y)·µQ(y, z)

)
=
∨

y∈Y

(
µR(x, y)·µQ(y, z)

)
2.3. Evolutionary Computation

Evolutionary systems [26,27] work based on the Darwinian theory of the mechanism
of natural selection through which evolution occurs, given that all life forms come from
common ancestors and have been shaped over time. The application techniques of the
mechanisms they use are inspired by the biological evolution of species, such as repro-
duction, mutation, recombination, natural selection and ultimately, survival of the fittest.
Technically, they belong to the family of systems that operate with trial and error and can be
considered stochastic optimization methods. This characteristic of these systems sets them
apart. It makes them preferable to other classical optimization methods because they have
little or no knowledge of the problem or function they are asked to solve [28–30]. The solu-
tion methods are not dependent or based on complex calculated parameters. These systems
can evolve and adapt in a manner analogous to that of the organization they imitate, which
is an optimal solution in cases of dynamic and rapidly changing environments [26,31].

The particle swarm optimization (PSO) algorithm [27,32,33] is a typical case of evo-
lutionary algorithms. In PSO, a set of particles moves around a search space to find the
optimal solution. The position of each particle represents a potential solution to the prob-
lem, and the velocity of the particle represents the direction and speed of movement, as
depicted in the following Figure 2.
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The algorithm starts with an initial population of particles, which are randomly placed
in the search space. Each particle is associated with two vectors: its position and velocity.
The position and velocity of each particle are updated in each iteration based on the best
solution found so far by the particle itself and its neighbors.

It is a straightforward algorithm because it does not use crossover and mutation
mechanisms and it can be applied to many problems since it requires minimal parameters
to be adjusted. It is also, in many cases, very fast as it uses random real numbers and
communication between the entities of a swarm. Specifically, PSO investigates the space of
an objective function by altering the paths of individual tracers known as particles. These
trajectories produce semi-stochastic route segments. A swarm particle’s motion is governed
by a stochastic and a deterministic component. Each particle is drawn to the overall best
location recognized by the swarm and the best place it has encountered while tending to
wander randomly. When an entity discovers a better location than the previous one, it
promotes it to the current best for track i. There is a current best for all n entities at each
time t throughout the iterations. The aim is to find the optimum overall position until it
can no longer be improved.

Let p and u be the position and velocity for an entity I, respectively. The following
formula gives the new velocity vector [32,33]:

unew
n,m = uold

n,m + Γ1 × r1 ×
(

plocalbest
n,m − pold

n,m

)
+ Γ2 × r2 ×

(
pglobalbest

n,m − pold
n,m

)
where un,m is the velocity of the particle, r1, r2 are independent random numbers, Γ1, Γ2

are learning parameters, plocal_best
n,m is the local optimal solution and pglobal_best

n,m is the overall
optimal solution.
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The PSO algorithm updates each particle’s velocity component and then adds the
velocity to the location component. This update is determined by the best solution/position
obtained by the particle and the one discovered by the total population of particles. If a
particle’s optimum solution is better than the population’s, it will eventually replace it.
All particles’ starting positions are evenly distributed to sample the majority of the search
space. It is also possible to set an entity’s initial vector to zero. The new location is described
by the equation below [33]:

pnew
n,m = pold

n,m + unew
n,m

with u usually bound to the range [0, umax].

3. Applications of Computational Intelligence in Civil Engineering Research Domains

The potential applications of CI and its recent developments in the science of civil
engineering are enormous, as, in the busy everyday life of the construction site, issues such
as requests for information dissemination, dealing with open issues and the management of
the construction of technical projects are present. Artificial intelligence can be the intelligent
assistant that can optimally control and manage the vast amounts of data generated and
alert managers to all the critical points that need their attention. In this way, the manufac-
turing sector within the framework of Industry 4.0 can make substantial innovative leaps,
acquire significant extroversion and develop previously impossible activities [34,35]. This
fact, and the general utilization of artificial intelligence in the science of civil engineering, is
proven by the relevant research that has been published in the global literature.

3.1. Relevant Research Studies

In recent years, the need to model increasingly complex technical projects that the
modern civil engineer is called upon to handle has highlighted the need to exploit artificial
intelligence and integrate it increasingly more into the processes they apply. It is essential
to mention that the research in this direction and the related fields show a constantly
growing trend, which is strengthened by interdisciplinary research, continually offering
new implementations that enhance the edge of the said field of knowledge. Presented
below are indicative works of applied research in the area of civil engineering science.

3.1.1. Architectural Compositions, Building Technologies and Materials

The domain of architectural compositions, building technologies and materials covers
architectural designs of building units or ensembles; construction art and systems and meth-
ods of construction works; the technology of construction materials; structural physics; and
microclimate control and maintenance and restoration of old buildings and monuments.

The field in question can benefit significantly from using physics-based artificial intel-
ligence models and implementing analytical differential equations or other mathematical
models used to solve structural physics problems or simulations [13]. Concrete is the
most widely used construction material, but it is also a recognized pollutant that causes
significant sustainability issues in terms of resource depletion, energy use and greenhouse
gas emissions. AI can lessen the environmental impact of concrete to increase its long-term
sustainability. For example, the authors of [36] developed a model to forecast the compres-
sive strength of various eco-friendly concrete mixtures, which may be used in the design
process. A combination of recycled concrete and blast furnace slag is utilized to create the
concrete. As a final step, a machine learning model was developed that accurately predicts
the compressive strength of green concrete.

Self-healing concepts have not yet produced design solutions that reliably quantify
their positive effects on structural performance, despite a vast body of literature [37].
Concrete and other cement-based materials have an inherent ability to self-heal [38]. It has
been demonstrated that the effectiveness of concrete’s self-strengthening and self-healing
depends on several factors, the most significant of which are the type of exposure, the
width of the crack and the presence of healing stimulants such as crystalline impurities [39].
Autogenous self-healing is largely unaffected by additional factors such as fiber count
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and additional cementitious materials. A related study [40] proposed, through a properly
constructed neural network design and analysis diagrams, a simple input–output model for
rapid prediction and evaluation of the self-healing effectiveness of cement-based materials.
In particular, it uses AI techniques to quantify the performance of material recovery by
displaying the quantitative correlations between mix ratios, exposure type and duration
and initial crack width. Specifically, for ANN analysis, a back-propagation network was
developed in this study. A single-layer feed-forward neural network was developed. In
this network, the output and hidden layers are associated with biases. The training of data
is performed by the method of supervised learning in this algorithm. The predicted output
values are compared with the provided outputs and the associated error is calculated. The
weights and biases of each neural network are adjusted based on this error. This process is
iteratively carried out until the error is below the desired value or the maximum number
of iterations is reached. In terms of assessing structural performance deterioration and
significantly extending the life of reinforced concrete structures, this is the first systematic
incorporation of self-healing principles into durability-based design methodologies.

3.1.2. Geotechnical Engineering

The domain of geotechnical engineering covers the subject of soil dynamics, geotech-
nical earthquake engineering, soil–foundation–structure interactions, soil improvement
and reinforcement, analysis of the behavior of geostructures with simulations, deep foun-
dations, geotechnical engineering of mining projects and environmental and geotechnical
engineering.

Soil classification based on shared characteristics is a cornerstone of geotechnical
engineering. Testing in the lab and the field, both of which may be expensive and time-
consuming, has led to this categorization. Each construction site has ground studies, which
must be completed before any technical project can be designed. Artificial intelligence
may play a crucial role in cutting down on the time and money needed for a proper
site inspection program. For example, [41] evaluated the essential ability of machine
learning models to classify soils based on cone penetration tests (CPT). A dataset of 1339
representative CPTs was used to test 24 different machine learning models, based on three
different algorithms. The applied algorithms were support the vector machine, artificial
neural network and random forest algorithms; the input variables included tip resistance,
sleeve friction, friction ratio and depth; and the output variables included total vertical
stresses, effective vertical stresses and hydrostatic pore pressure. Soil classes based on grain
size distributions and soil types based on soil behavior are often used as reference points
in the literature. The accuracy of each model’s predictions and the time it takes to train
are compared. Notably, the algorithm with the highest predictive ability for grain size
distribution soil classes obtained around 75% accuracy, while the algorithm with the best
predictive power for soil classes achieved about 97–99% accuracy. The best results for all
targets were obtained with models using a random forest classifier.

Evaluating soil liquefaction is challenging in geotechnical earthquake engineering.
The capacity energy is related to initial soil factors such as the relative density, the initial
appropriate confining pressure, fine contents and the soil textural properties, which have
been the focus of several liquefaction evaluation processes and approaches. Traditional
methods used to assess the liquefaction risk of sand deposits fall into one of three broad
categories: stress, strain or energy. The energy-based approach has the edge over the other
two because, unlike the focus- or stress-based methods, it accounts for the impacts of stress
and strain concurrently. In [42], the amount of energy needed to cause liquefaction in the
sand and silty sand was estimated by conducting comparative analyses of state-of-the-art
artificial intelligence systems on suitable datasets. Specifically, analyses were carried out on
a total of 405 previously published tests using soft computing approaches, including ridge,
Lasso and LassoCV, random forest, eXtreme gradient boost (XGBoost) and multivariate
adaptive regression splines (MARS) approaches, to assess the capacity energy required to
trigger liquefaction in sand and silty sand. The performance measures for ridge and Lasso
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and LassoCV models were all below 0.6, reflecting the shortage of linear regression methods
in handling the complex data mapping in high-dimensional datasets. RF, XGBoost and
MARS models were capable of capturing the nonlinear relationships involving a multitude
of variables with interaction among each other without making any specific assumption
about the underlying functional relationship between the input variables and the response.
Using the results of ridge, Lasso and LassoCV, random forest, XGBoost and MARS for a
cross-validation, it can be found that the capacity energy, Log(W), was most sensitive to Dr,
the relative importance of which was almost 100% for all five machine learning methods.
The R2 score of the testing set for the MARS model was the same as the XGBoost model, and
even higher than the RF model. The relative importance obtained by the MARS model was
quite close to the average value of the five models. In addition, compared to the black box
model of RF and the XGBoost model, the MARS model had an advantage in the capacity to
output explicit expressions. The results clearly prove the capability of the proposed models
and the capacity energy concept to assess liquefaction resistance of soils.

3.1.3. Structural Constructions

The domain of structural constructions covers the subjects of applied methods of
analysis and design of linear and surface carriers; reinforced concrete structures for every-
day and seismic actions; prestressed concrete structures for normal and seismic activities;
special reinforced and prestressed concrete structures; and control and interventions in
structures, metal structures, metal bridges, wooden structures, light structures and masonry
structures for every day and seismic actions.

Advanced machine learning algorithms have been successfully applied in many areas
of modelling seismic structures and, more generally, in predicting structural damage
from single earthquake events, ignoring the effect of seismic sequences. In [43], a neural
network approach was applied to determine the expected ultimate structural damage of a
reinforced concrete frame under natural and artificial ground motion sequences. Sequential
earthquakes consisting of two seismic events were used. Specifically, 16 known measures
of ground motion intensity and the structural damage caused by the first earthquake were
considered characteristics of the problem. In contrast, the final structural damage was the
goal. After the first seismic events and after the seismic sequences, the damage indices’
actual values were calculated through a nonlinear time history analysis. The machine
learning model was trained using the dataset generated from artificial arrangements, while
the predictive ability of the neural network was approximated using the natural seismic
lines. In this paper, a holistic single-hidden layer feed forward network (ShLFFN) shallow
architecture approach with N neurons in the hidden layer, randomly chosen input weights
and random values of bias constants on the hidden layer neurons was used, while the
output weights were computed by a single matrix multiplication, which automates and
optimally solves the problem. The proposed approach learns N samples with accuracy,
while the learning speed was even thousands of times faster than conventional feed forward
networks, as the training was not based on time-consuming, repetitive processes such as
the back propagation algorithm, which changes the weights of the neural network by
estimating the quadratic error between the target vectors and the actual network outputs
for all training samples, which are entered into the network in a random serial manner and
for many repetitions (epochs). An important advantage gained by the proposed system is
the fact that it offers a more efficient and stable prediction model, since the overall behavior
of multiple MLP ANNs is less noisy than a single one, and in any case, it reduces the overall
risk of particularly inaccurate values. The study in question is a promising application of
the method of modelling multiple seismic sequences for the final prediction of the structural
damage of a building, offering highly accurate results [44].

Multiple nonlinear time history evaluations utilizing various incidence angles are
necessary to determine the angle at which possible seismic damage is at a maximum (critical
angle). Thus, the rise in seismic excitation is a crucial consideration in assessing the seismic
response of structures. In addition, several accelerograms should be used to analyze the



Appl. Sci. 2023, 13, 3380 11 of 19

seismic reaction, as advised by seismic codes [45]. As a result, it takes longer to complete
the project. [46] presented a technique for critical angle estimation that uses multi-layer
neural networks to drastically cut down on computation time. The general concept is
to identify situations in which the seismic damage category is higher due to the acute
angle than it would be due to the application of seismic motion along the structural axis
of the structure. This is accomplished by formulating and resolving the issue as a pattern
recognition problem. Inputs to the networks were the ratios of seismic parameter values
along the two components of the horizontal seismic files and correctly chosen structural
parameters. The investigation findings demonstrate that neural networks can accurately
identify situations when a necessary angle computation is required.

3.1.4. Computer Programming and Mathematics

The domain of computer programming mathematics covers the subjects of mathemat-
ics, natural sciences, informatics, system analysis and optimization methods, economic
analysis and technical economics, project organization and planning, management and
human relations, the mechanization of constructions, the management of the social and
natural environment and the security and protection of complex systems.

In the subject matter of the specific field, multiple fields of application have been
explored with a serious impact on the science of civil engineering [47–50]. For example,
in [51], a thorough identification and risk assessment study was carried out for the construc-
tion of an underground tunnel passing under a river. Specifically, the risks associated with
tunnel construction include environmental and technical ones. The environmental factors
refer primarily to the geological conditions affecting the tunnel, such as the inclination
of the surrounding rock and the burial depth. Technical factors refer primarily to design
parameters and technical measures influencing the tunnel safety. In conjunction with the
shield-tunnel construction analysis, the risk factors are the grade of surrounding rock, the
burial depth, the water cover depth, the excavation method, the synchronous grouting, the
strength of secondary grouting, the grouting pressure and the soil bin pressure. The “kill
unit” was used to simulate the shield excavation, and surface forces were applied around
the tunnel to simulate different grouting pressures. A thrust force was applied along the
excavated face of the tunnel to simulate the soil chamber pressure.

The main risk events when the shield tunnel crosses beneath the river are landslides
and water surges, so landslides and water surges were employed as composite risk indi-
cators. Each risk that triggers the combined risk is treated as a separate indicator, and a
two-level evaluation index system was established correspondingly. Numerical simulations
were used to discover an initial link between the indicators impacting the construction in
question, field measurements then validate the findings, and a collection of representative
samples was developed. Fuzzy logic and a feed-forward neural network were used for
the pieces under consideration to assess the risk level in light of changes to the pertinent
indicators of interest. Consequently, the system in question is applied to the risk assessment
of Line 5 of the Hangzhou Metro in China, and modifications to the concrete strength,
grouting pressure and soil chamber pressure were recommended based on the findings.

In addition to safeguarding against physical hazards, there is an ongoing need to
secure critical infrastructure from digital hazards [52,53]. Accordingly, the importance of
big data analysis for the detection of online threats [54], but also in general the protection of
sensitive information present in big data, is a constant demand of the research community.
In particular, the analysis of big data related to the science of civil engineering [55], as well
as the development of intelligent methods for monitoring the implementation of large-scale
technical projects [56], is an important field of research in the field in question.

A characteristic example that incorporates current expertise in this specific field is the
3-year postdoctoral research carried out in the Department of Civil Engineering, Democritus
University of Thrace, concerning the design and development of innovative intelligent
information systems and the management and analysis of big data with the aim of the
digital security of critical urban infrastructures [10,57].
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3.1.5. Mechanics Engineering

The mechanics engineering domain covers continuum mechanics, solid body kinemat-
ics and dynamics, the strength of materials, experimental mechanics, fracture mechanics,
the theory of plasticity and viscoelasticity and theoretical methods for calculating linear
and surface vectors.

In particular, the modelling of fracture energy investigation methodologies utilized
to investigate the fracture performance of concrete structures/beams is a hot topic of
study because of the critical relevance of this topic to the practical implementation of
concrete engineering works. While the fracture energy may be estimated and the fracture
behavior of various concrete structures can be predicted, this is not always possible owing
to the material’s inherent properties and the intricacy of the fracture process. In [58], the
researchers used various experimental methodologies, AI and associated optimization
techniques to find a workable solution to fracture energy prediction issues. Multiple factors
that influence the fracture energy and compressive strength of concrete were studied,
and critical conclusions were gleaned for further study and experimental assessment.
Specifically, in this study, artificial intelligence approaches were used to seek a feasible way
to solve these prediction issues. Firstly, the ridge regression (RR), the classification and
regression tree (CART) and the gradient boosting regression tree (GBRT) were selected to
construct the predictive models. Then, the hyperparameters were tuned with the particle
swarm optimization (PSO) algorithm; the performances of these three optimum models
were compared with the test dataset. The mean squared errors (MSEs) of the optimum RR,
CART and GBRT models were 0.0447, 0.0164 and 0.0111, respectively, which indicated that
their performances were excellent. Compared with the RR and CART models, the hybrid
model constructed with GBRT and PSO appeared to be the most accurate and generalizable,
both of which are significant for prediction work. The relative importance of the variables
that influence the fracture energy of concrete was obtained, and the compressive strength
was found to be the most significant variable.

One of the most basic composite materials with excellent properties is fiber-reinforced
concrete, the application of which is constantly expanding in multiple technical projects.
However, its mixed design is mainly based on extensive experimentation, the effectiveness
of which has been tested. For example, [59] deals with the concept of using metallic and
non-metallic fibers in concrete. In this research, GI (galvanized iron) and chopped jute
fibers were used to develop an FRC material to study the possible improvement in the
28 day strength. Clumping of fibers at high fiber amounts caused mixing and casting
problems. These problems became even more severe when long fibers were used at a high
fiber dosage amount. In this study, different compositions of jute (0.1%, 0.2% and 0.3%)
and GI fibers (1%, 1.5% and 2%) with different lengths were added to concrete. Significant
increases in compressive and tensile strengths between plane concrete and fiber-reinforced
concretes were found. Accordingly, one of the main priorities of the field in question is
the study of the mechanical properties of composite materials used in constructions, their
conventional failure criteria and their possible deformation states.

Researchers in [60] implemented a machine learning model capable of predicting
the fracture behavior of all possible subclasses of fiber-reinforced concrete, especially
cementitious composites made with strain hardening. Specifically, five machine learning
models were developed and their outputs were compared. These include artificial neural
networks, the support vector machine, the classification and regression tree, the Gaussian
process of regression and the extreme gradient boosting tree. The study evaluated 15 input
parameters that included mix design components and fiber properties to predict the fracture
behavior of concrete fiber matrices. Due to the small size of the available dataset, this article
employed a unique technique called the generative adversarial network to build a virtual
dataset to augment the data and improve the accuracy. The results indicated that the
extreme gradient boosting tree model has the lowest error and therefore was the best
mimicker in predicting fiber-reinforced concrete properties. This article is anticipated
to lead to a considerable improvement in the recipe design of effective fiber-reinforced
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concrete formulations. The process results demonstrate that machine learning models
significantly improve the design of adequate fiber-reinforced concrete formulations with
their inherent properties of simulating and explaining their application modes.

3.1.6. Transportation Engineering

The domain of transportation engineering covers the subjects of road construction,
pavements, traffic engineering, transport and terminal economics, transport statistics and
error theory, airport planning, transport planning, railway, public transport evaluation,
spatial planning, urban planning, city history, expropriations, cartography data, photogram-
metry data and environmental impacts from the construction and operation of roads.

One of the central planning priorities of transportation projects is modeling short-term
demand forecasts, which are usually focused on a horizon of less than one hour and are
necessary for implementing dynamic transit control strategies. Suppose that airlines and
other service providers have a good idea of how much demand they may anticipate. In
that case, they can better prepare for demand spikes and mitigate their adverse effects on
service quality and customer experience by using real-time management tactics. Predicting
platform congestion and vehicle overcrowding is one of the most beneficial uses of transport
demand forecasting models. This needs knowledge of origin and destination demands,
giving a comprehensive picture of when, where and why customers join and leave a service.
While some research has been performed in this area, it is limited and primarily concerned
with forecasting passenger arrivals at stations. For many real-world uses, these data fall
short [61,62].

In [63], using advanced AI patterns, a scalable, real-time framework for demand
forecasting in transportation systems was created. The proposed model was divided into
three distinct sections: a multi-resolution spatial feature extraction section for capturing
local spatial dependencies, an auxiliary coding section for external information and an
area for tracking the temporal development of demand. Specifically, the order required
at any given time is a square matrix that is processed in two different directions. Using
the first fork, we can see patterns in the data that were not apparent in the raw demand
data by decomposing it into its component time and frequency variations. A three-layer
convolutional neural network was utilized in the second route to understand the demand’s
geographical relationships. After that, the market’s temporal development was captured
using a convolutional network with short-term memory. Two months of automated fare
data from the Hong Kong mass transit train system were used in a case study to assess
the methodology, demonstrating the suggested model’s evident superiority over the other
benchmark approaches.

The flow of traffic is instantaneous. The notion of dynamic lane reversal (DLR), which
allows vehicles to quickly switch lane directions to reflect their dynamics, has been tested
on a broad scale in autonomously driven public transportation in recent years. DLR
has been built to eliminate traffic bottlenecks, maximize the efficiency of road areas and
prevent unused capacity. The effects of DLR and its ability to be implemented are, however,
yet unknown.

In [64], an ideal DLR strategy for a road segment with bidirectional stochastic traffic
flow was investigated using a lane-based directional cell transmission model to explore
DLR’s efficacy, practicality and application. A regression analysis was carried out based on
the gathered data to determine the influences of directional flow rate and multiple lanes
on DLR-induced delay reductions. The findings suggest that, compared to conventional
reversible lane strategies, DLR deployment may drastically cut the overall queuing time.
DLR also achieved a superior performance on longer, multi-lane stretches and in situations
when traffic was moving in opposite directions but relatively close together. It is also impor-
tant to highlight how the suggested method helped identify the previously undetectable
pattern border.

Even though assessing the distribution of travel times across lanes and other vehicles,
in addition to their predicted values, is crucial for high-level traffic control and management
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of urban roadways with unique lane-to-lane circumstances, it has received relatively little
attention. In [65], the authors present a novel approach for estimating the lane-based
distribution of trip times for various vehicles by comparing low-resolution video pictures
received from conventional traffic surveillance cameras. The system utilized deep learning
neural architectures in conjunction with bipartite graph matching. They used a case study
of a crowded metropolitan street in Hong Kong. According to the findings, the suggested
technique effectively calculates the travel time distribution along linked lanes according to
the vehicle type.

3.1.7. Hydraulics and Water Resources Engineering

The domain of hydraulics and water resources engineering covers the disciplines of
fluid mechanics, experimental and computational hydraulics, environmental hydraulics,
marine engineering and port engineering, river hydraulics, hydrology and water resources
management, hydraulic and hydrological engineering, engineering water supply and
sanitation, sanitary engineering, water and urban wastewater treatment facilities, ecology
and aquatic ecosystems.

In the field in question, there has been a lot of research for several years related
to hydraulic devices [66,67], water resource management [68,69] and environmental hy-
draulics [70,71]. Despite all this, significant progress has recently been made in more
specialized research fields. Cavitation, entrained air and foaming are all processes in which
the deformation of air bubbles in a fluid flow field is of interest. This problem cannot be
solved theoretically in complicated conditions, and a solution based on the precision of
computational fluid dynamics is generally not acceptable. In [72], the authors suggest
and describe a novel method for addressing this issue based on a hybrid sketch method
for collecting experimental data and a comparison of machine learning algorithms for
developing prediction models. The equivalent diameter and aspect ratio of air bubbles
flowing near a sinking jet were predicted using three different models. The variables used
by each model were unique. After constructing five various iterations of the additive
regression of decision stump, bagging, K-star, random forest and support vector regression
algorithms by adjusting their hyperparameters, the authors found that all five of them
converged steadily.

Two models produced accurate estimates of comparable diameter using four distinct
measures. Every configuration of the third model was offered at a discount from the
second. Differences in the input variables to the prediction models exhibit a more sub-
stantial effect on the precision of the findings when trying to forecast the bubble aspect
ratio. The suggested method has promise for tackling complex issues in investigating
multiphase flows.

A typical example of the application of artificial intelligence in coastal engineering
concerns methods such as artificial neural networks combined with fuzzy models, which
are used to improve the prediction efficiency and reduce the time and cost spent on
the experimental work of applying empirical formulas on the stability of breakwaters.
Specifically, in [73], to predict the stability number of breakwaters, the least squares version
of support vector machines (LSSVM) method was used, which takes seven independent
variables (breakwater permeability, damage level, wave rate, slope angle, water depth,
wave height and wave peak period) as inputs, and managed to predict the stability of
breakwaters with an accuracy rate of 0.997.

4. Future Research

Taking a conceptual approach, Industry 4.0 can be seen as a new organizational level
of automated value chain management methods, including the entire life cycle of processes,
from raw materials to the final product. Including widespread use of modern technologies,
such as artificial intelligence, data analysis, cyber-physical systems, the Internet of Things
or the Industrial Internet of Things, cloud computing, blockchain and cognitive computing
systems, leads to significant upgrades in modern production processes.
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Indicatively, the use of artificial intelligence in the context of Industry 4.0 can extend
the applications of civil engineering science as follows [74]:

1. Prevent cost overruns by analyzing factors such as the size of a project and the type of
contracts and improving the skills of project managers and workers.

2. Improvement in the design and management of the construction of technical projects
through building information modelling (BIM).

3. Reduction in the risks that can occur regarding a project’s quality, safety, cost and
construction duration.

4. Rational and realistic planning of a project with the development of algorithms that
will learn from previous related projects.

5. More productive operation by handling repetitive machine tasks freeing human
resources.

6. Increase construction site safety by using algorithms that aggregate data and images
of the construction site and predict potential hazards.

7. Dealing with shortages of human resources and machinery through the proper man-
agement of the resources in question, depending on the progress of the individual
contracts.

8. Implement a predictive maintenance plan based on real-time analysis from various
parts of the construction site and with various means such as sensors, mobile devices,
drones, information systems, etc.

9. Monitor engineering works in real-time, giving warnings about when and where
repair is required, predicting and identifying damage that may occur, along with their
location and their extent.

10. Improve productivity by using intelligent methods of scheduling, material requisi-
tioning and implementing idle time reduction plans.

11. Determination of optimum concrete mix properties such as maximum dry density or
ideal moisture content.

12. Management of technical projects with the ability to predict changes in costs based on
raw material market prices and available stocks.

13. Modelling, analyzing and predicting destructive factors such as foundation subsi-
dence, slope stability, seismic resistance, tidal events, etc.

14. Reduce project errors with automatic multivariate data analysis.
15. Solving complex problems at different project stages, such as design decision-making,

foundation engineering, construction waste management, intelligent material han-
dling, etc.

16. Design and development of innovative, intelligent information systems aiming at the
digital security (cybersecurity) of critical urban infrastructures.

5. Conclusions

Considered a branch of computer science, artificial intelligence refers to the construc-
tion of intelligent machines capable of performing human tasks by imitating human charac-
teristics, intelligence and logic, but without direct human intervention. It is considered the
pinnacle of modern science, which makes it a promising subject in civil engineering science,
as this area is characterized by the current need for improved planning and management of
large-scale technical projects. From this point of view, the knowledge of the methodologies
and ways of applying artificial intelligence is drawn up with the multiple requirements
for processing large technical projects. In light of this, the modern civil engineer should be
able to define the specifications, design constraints, preparation, operational procedures,
testing and evaluation of intelligent solutions derived from artificial intelligence.

In the future, robotics, the internet and artificial intelligence can significantly reduce
manufacturing costs and time. This will be achieved through the monitoring of work
with cameras, the more accurate planning of the passage of electromechanical networks
in modern buildings, the development of more effective safety systems on construction
sites and, above all, the real-time interaction of workers with materials and machines



Appl. Sci. 2023, 13, 3380 16 of 19

to warn supervisors in time of potential manufacturing defects, productivity issues and
safety issues.
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Malazdrewicz, S. A Comparative Study for the Prediction of the Compressive Strength of Self-Compacting Concrete Modified
with Fly Ash. Materials 2021, 14, 4934. [CrossRef] [PubMed]

37. Romero, M.C.C.; Piraquive, F.N.D.; Nery, M.E.E. Evaluation of mechanical influence of different methods of encapsulation of
bacillus subtilis bacteria in the manufacture of self-healing concrete-Systematic literature review. In Proceedings of the 2021
Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), Bogotá, Colombia, 29 September–1 October 2021;
pp. 1–6. [CrossRef]

38. Galal, M.K.; Najjar, A.A.; Thaher, A.; Mustafa, A.; Sultan, M.; Awadi, A.A.; Shitole, S.; Mourad, A.-H.I.; Khaldi, V.N.A. Self-
Healing Bio-Concrete: Overview, Importance and Limitations. In Proceedings of the 2022 Advances in Science and Engineering
Technology International Conferences (ASET), Dubai, United Arab Emirates, 21–24 February 2022; pp. 1–6. [CrossRef]

39. Ratnayake, K.A.S.D.; Nanayakkara, S.M.A. Effect of Fly Ash on Self-healing of Cracks in Concrete. In Proceedings of the 2018
Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 30 May–1 June 2018; pp. 264–269. [CrossRef]

40. Gupta, S.; Al-Obaidi, S.; Ferrara, L. Meta-Analysis and Machine Learning Models to Optimize the Efficiency of Self-Healing
Capacity of Cementitious Material. Materials 2021, 14, 4437. [CrossRef]

41. Rauter, S.; Tschuchnigg, F. CPT Data Interpretation Employing Different Machine Learning Techniques. Geosciences 2021, 11, 265.
[CrossRef]

42. Chen, Z.; Li, H.; Goh, A.T.C.; Wu, C.; Zhang, W. Soil Liquefaction Assessment Using Soft Computing Approaches Based on
Capacity Energy Concept. Geosciences 2020, 10, 330. [CrossRef]

http://doi.org/10.1109/21.256541
http://doi.org/10.1109/ICIIBMS.2017.8279752
http://doi.org/10.1007/978-3-540-24581-0_22
http://doi.org/10.1007/s11771-015-3023-7
http://doi.org/10.14257/ijunesst.2016.9.7.17
http://doi.org/10.1109/ICCSS.2016.7586479
http://doi.org/10.1109/IISA.2017.8316443
http://doi.org/10.1007/978-3-319-47898-2_34
http://doi.org/10.1007/978-981-15-9144-0_6
http://doi.org/10.1109/TDC.2012.6281455
http://doi.org/10.1016/j.future.2021.05.014
http://doi.org/10.48550/arXiv.1901.11150
http://doi.org/10.1007/978-3-540-85064-9_13
http://doi.org/10.1109/ICSEC.2013.6694765
http://doi.org/10.1109/ICECENG.2011.6057937
http://doi.org/10.1007/978-3-030-61218-4_1
http://doi.org/10.1108/IR-10-2016-0265
http://doi.org/10.3390/ma14174934
http://www.ncbi.nlm.nih.gov/pubmed/34501024
http://doi.org/10.1109/CONIITI53815.2021.9619728
http://doi.org/10.1109/ASET53988.2022.9734969
http://doi.org/10.1109/MERCon.2018.8421952
http://doi.org/10.3390/ma14164437
http://doi.org/10.3390/geosciences11070265
http://doi.org/10.3390/geosciences10090330


Appl. Sci. 2023, 13, 3380 18 of 19

43. Lazaridis, P.C.; Kavvadias, I.E.; Demertzis, K.; Iliadis, L.; Papaleonidas, A.; Vasiliadis, L.K.; Elenas, A. Structural Damage
Prediction Under Seismic Sequence Using Neural Networks. In Proceedings of the 8th International Conference on Computational
Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2021), Athens, Greece, 1–21 July 2021.

44. Lazaridis, P.C.; Kavvadias, I.E.; Demertzis, K.; Iliadis, L.; Vasiliadis, L.K. Structural Damage Prediction of a Reinforced Concrete
Frame under Single and Multiple Seismic Events Using Machine Learning Algorithms. Appl. Sci. 2022, 12, 3845. [CrossRef]

45. Demertzis, K.; Kostinakis, K.; Morfidis, K.; Iliadis, L. An interpretable machine learning method for the prediction of R/C
buildings’ seismic response. J. Build. Eng. 2023, 63, 105493. [CrossRef]

46. Morfidis, K.; Kostinakis, K. Rapid Prediction of Seismic Incident Angle’s Influence on the Damage Level of RC Buildings Using
Artificial Neural Networks. Appl. Sci. 2022, 12, 1055. [CrossRef]

47. Li, X.; Lu, W.; He, Y. 3D Mechanical Characters and Their Fabric Evolutions of Granular Materials by DEM Simulation. Math.
Probl. Eng. 2022, 2022, e4765887. [CrossRef]

48. Al-Akhras, N.; Othman, O. Bond behavior of NSM strips in corroded/cracked reinforced concrete. Front. Built Environ. 2022, 8.
[CrossRef]

49. Hafiz, M.K.; Khan, Q.-Z.; Ahmad, S. Cyclic Behavior of Retrofitted Low- and High-Strength Concrete Scaled Bridge Piers under
Quasistatic Loading. Math. Probl. Eng. 2022, 2022, e2141485. [CrossRef]

50. Hanandeh, S. Evaluation Circular Failure of Soil Slopes Using Classification and Predictive Gene Expression Programming
Schemes. Front. Built Environ. 2022, 8. [CrossRef]

51. Liang, X.; Qi, T.; Jin, Z.; Qin, S.; Chen, P. Risk Assessment System Based on Fuzzy Composite Evaluation and a Backpropagation
Neural Network for a Shield Tunnel Crossing under a River. Adv. Civ. Eng. 2020, 2020, e8840200. [CrossRef]

52. STODDART, K. UK cyber security and critical national infrastructure protection. Int. Aff. 2016, 92, 1079–1105. [CrossRef]
53. Toward a Safer Tomorrow: Cybersecurity and Critical Infrastructure. Available online: https://www.springerprofessional.de/

en/toward-a-safer-tomorrow-cybersecurity-and-critical-infrastructur/11962790 (accessed on 10 February 2022).
54. Big Data Analytics for Network Intrusion Detection: A Survey. Available online: http://article.sapub.org/10.5923.j.ijnc.20170701

.03.html (accessed on 10 February 2022).
55. Liang, Y.; Wu, D.; Huston, D.; Liu, G.; Li, Y.; Gao, C.; Ma, Z.J. Civil Infrastructure Serviceability Evaluation Based on Big Data. In

Guide to Big Data Applications; Srinivasan, S., Ed.; Studies in Big Data; Springer International Publishing: Cham, Switzerland, 2018;
pp. 295–325. [CrossRef]

56. Sabeur, Z.; Zlatev, Z.; Melas, P.; Veres, G.; Arbab-Zavar, B.; Middleton, L.; Museux, N. Large Scale Surveillance, Detection and
Alerts Information Management System for Critical Infrastructure. In Proceedings of the Environmental Software Systems.
Computer Science for Environmental Protection, Zadar, Croatia, 10–12 May 2017; Hřebíček, J., Denzer, R., Schimak, G., Pitner, T.,
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