A Low Cost Forecasting Framework for Air Pollution Ilias Bougoudis¹, Konstantinos Demertzis² and Lazaros Iliadis²

¹Institute of Environmental Physics, University of Bremen, Germany ²School of Engineering, Department of Civil Engineering, Democritus University, Greece

Motivation

- Atmospheric pollution is one of the most serious problems of the modern way of life
- □ 60,000 deaths each year in Europe, 3,000,000 worldwide due to long-term air pollution exposure
- □ To study it we used hourly in-situ measurements from a station located at the city centre of Athens, Greece

The Formula Forecast Framework

 \Box Two extreme clusters: One with high CO, NO, NO₂, SO₂ values and one with high O₃ values

RTG 2224

- □ 1st extreme cluster: Winter, early morning, low airtemp
- □ 2nd extreme cluster: Summer, mid-afternoon, high airtemp
- □ The statistical analysis of this **extreme dataset** (clusters 1

□ The table below summarizes the statistical analysis performed on 89364 records, from 2000 to 2012

Table 1: Statistical Analysis of the Whole Dataset

2000 – 2012 89364	CO (mg/m ³)	NO (μg/m³)	NO ₂ (μg/m³)	O ₃ (μg/m³)	SO ₂ (μg/m³)	
Max	21.4	908	377	253	259	
Min	0.1	1	1	1	2	
Mode	0.8	8	60	3	2	
# Mode	4941	2358	1508	6649	10451	
Average	1.83	59.31	63.57	32.94	9.64	
Std	1.48	90.06	27.11	28.67	9.39	

Forecasting and Clustering

- Our main goal is to create a cheap and fast system to predict and monitor air pollution
- □ Using multi layer feed-forward neural networks to **forecast** pollutants with temporal and meteorological inputs

& 2) is shown on table 2 (49638 records in total)

Table 2: Statistical Analysis of the Extreme Dataset (inside the parentheses are
 the values for extreme cluster 2, outside for extreme cluster 1)

2000 – 2012 21635 (28003)	CO (mg/m³)	NO (μg/m³)	NO ₂ (μg/m³)	O ₃ (μg/m³)	SO ₂ (μg/m³)	
Max	Max21.4 (3.1)Min0.1 (0.1)		377 (153)	139 (253)	259 (35)	
Min			4 (3)	1 (11)	2 (2)	
Mode	2.7 (0.7)	52 (7)	76 (34)	3 (49)	9 (2)	
# Mode	756 (3357)	159 (2109)	444 (787)	4908 (514)	979 (5942)	
Average	3.62 (0.86)	160.5 (9.7)	88.5 (42.4)	9.8 (63.1)	19.1 (6)	
Std	1.91 (0.38)	133.8 (5.3)	28.8 (15.3)	12.4 (25.7)	13.5 (4.4)	

□ Using only **Year**, **Month**, **Day**, **Hour**, **AirTemp** and **Cluster_Id** (1 or 2) as inputs in the extreme dataset (Formula)

Comparative Results – Future Work

- □ We trained our neural networks (one for each pollutant) with data from 2000 - 2012
- The tables below show the comparison between the formula and the initial forecast (with pollutants as inputs)
- The network predicts accurately pollutant values when other pollutants are used as inputs, it does not when they are excluded

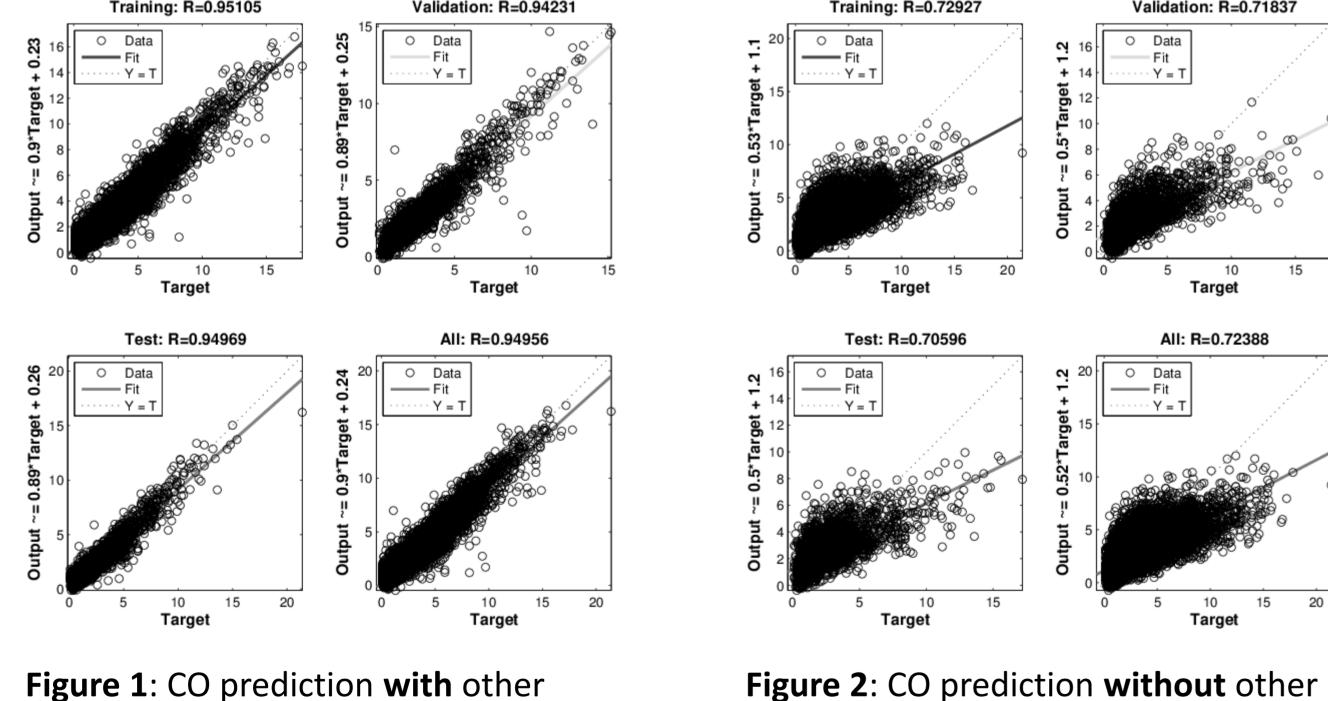


Figure 1: CO prediction with other pollutants as inputs

Table 3: Forecast Comparison for 2000 - 2012 (inside the parentheses is the number of records in each case)

2000 – 2012	CO (mg/m ³)		NO (μg/m³)		NO ₂ (μg/m ³)		O ₃ (μg/m³)		SO ₂ (μg/m ³)	
	R	RMSE	R	RMSE	R	RMSE	R	RMSE	R	RMSE
All (89634)	0.94	0.5	0.95	27.63	0.87	12.93	0.93	10.23	0.79	5.52
Formula (49638)	0.9	0.81	0.88	52.4	0.91	12.9	0.94	10.7	0.87	5.37

We also used 2013 as evaluation for the neural networks

Table 4: Forecast Comparison for 2013 (inside the parentheses is the number of records in each case)

2013	CO (mg/m ³)		NO (μg/m³)		NO ₂ (μg/m³)		O ₃ (μg/m³)		SO ₂ (μg/m ³)	
	R	RMSE	R	RMSE	R	RMSE	R	RMSE	R	RMSE
All (8144)	0.93	0.37	0.96	21.11	0.89	15	0.93	10	0.28	3.18
Formula (5059)	0.88	0.54	0.91	31.43	0.7	13.5	0.83	15.48	0.35	3.34

□ Future work will include:

Implementation of the formula in cities with different climate conditions

□ As only **extreme** pollutant cases are important, we used unsupervised learning to cluster our records

pollutants as inputs

□ A novel **fuzzy semi – supervised** approach was selected

- Uses pre-assigned classes of some records to cluster the whole dataset
- Includes fuzzy logic

- Prediction of other trace gases (e.g. PM_{10} , PM_{25})
- Effort to link the formula to global warming and climate change

¹Bougoudis, I., et al. (2015, October). Fast and Low Cost Prediction of Extreme Air Pollution Values with Hybrid Unsupervised Learning. In Integrated Computer Aided Engineering (Vol. 23, No. 2, p. 115 - 127). IOP Publishing ¹Bougoudis, I., et al. (2017, June). FuSSFFra, a fuzzy semi-supervised forecasting framework: the case of the air pollution in Athens. In Neural Computing and Applications (Vol. 28, No. 6). Springer Publishing

All: R=0.7238

