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Abstract: The global crisis caused by the COVID-19 pandemic, in conjunction with the economic 

consequences and the collapse of health systems, has raised serious concerns in Europe, which is 

the most affected continent by the pandemic since it recorded 2,388,694 cases and 190,091 deaths 

(39.6% of the worldwide total), of which 71.7% (136,238) are in the United Kingdom (43,414), Italy 

(34,708), France (29,778), and Spain (28,338). Unlike other countries, Greece, with about 310 

confirmed cases and 18 deaths per million, is one bright exception in the study and analysis of this 

phenomenon. Focusing on the peculiarities of the disease spreading in Greece, both in 

epidemiological and in implementation terms, this paper applies an exploratory analysis of COVID-

19 temporal spread in Greece and proposes a methodological approach for the modeling and 

prediction of the disease based on the Regression Splines algorithm and the change rate of the total 

infections. Also, it proposes a hybrid spline regression and complex network model of social 

distance measures evaluating and interpreting the spread of the disease. The overall approach 

contributes to decision making and support of the public health system and to the fight against the 

pandemic.  
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1. Introduction 

The SARS-CoV-2, which causes the COVID-19 disease, is responsible for the 

evolving coronavirus pandemic of the period 2019-20, causing a state of emergency 

of the public health system (Ahmed et al., 2020). The pandemic cannot be prevented 

from transmission between persons since no vaccine currently exists and thus it 

inevitably infects millions of people around the world. In particular, more than 9.9 

million people have been reported to be infected by the new coronavirus worldwide, 

and nearly 497,000 have died so far (Roser and Ritchie, 2020; source: 

https://www.worldometers.info/, accessed: 30/6/20). Since the emergence of the 

disease in China, in December 2019, more than 215 countries and regions have 

reported infected cases (Roser and Ritchie, 2020). The COVID-19 has a single-strand 
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positive RNA genome of positive polarity. Like most RNA viruses, SARS-CoV-2 

shows strong variability in its genetic material and a tendency to mutate. It is the 

seventh coronavirus along with the SARS-CoV (SARS disease), MERS-CoV (MERS 

disease), HKU1, NL63, OC43, and the 229E, which can infect humans (Lescure et al., 

2020). Exposure to SARS-CoV and MERS coronaviruses can induce immunity for 

about 2 (maybe 3 in the case of MERS) years, which then resolves. Typically, SARS-

CoV-2 is believed to cause immunity for approximately 1 year (similarly to the 

seasonal coronaviruses), although questions about the duration of immunity for the 

asymptomatic patients or for patients with mild symptoms have not been answered 

yet (Ahmed et al., 2020; Xu et al., 2020).  

The COVID-19 pandemic is considered to be zoonotic and is closely related to 

(79.5%) the original SARS-CoV (Ahmed et al., 2020). Genetic analysis has revealed 

that it is related to the genus Betacoronavirus, in the B series of the Sarbecovirus 

subgenus, along with two components derived from the bat (Lescure et al., 2020; Xu 

et al., 2020). Its genome is 96% identical to other coronavirus samples (BatCov 

RaTG13), while Chinese researchers have found that it differs only to one amino-

acid in genome sequences between viruses found in the anteater Pagolins and those 

derived from humans (Lam et al., 2020), implying that  Pagolins may have been an 

intermediate host.  

The virus is transmitted from person to person through respiratory droplets 

produced during coughing. The day of exposure to the onset of symptoms 

(incubation time) varies from 2 to 14 days, but it usually refers to 5 days (Fang et al., 

2020; Heymann and Shindo, 2020). Patients infected by the virus may be 

asymptomatic or have symptoms similar to the common cold (i.e. fever), cough, and 

dyspnea. A key factor of SARS-CoV-2 high transmissibility is the high levels of 

multiplication of this virus in the upper respiratory region, even before the 

symptoms appear (Ahmed et al., 2020; Fang et al., 2020). The virus is also transmitted 

by touching a surface or an object, where the virus is located, and then eyes, nose, or 

mouth are touched (Bai et al., 2020; Heymann and Shindo, 2020). 

Samples taken for molecular detection of SARS-CoV-2 are mainly either oral 

pharyngeal or nasopharyngeal coating, or pharyngeal washing from the upper 

respiratory region, or bronchial excretes from the lower respiratory region. Clinical 

samples taken from the lower respiratory region are preferable in terms of their 

diagnostic value than those from the upper respiratory region (Bai et al., 2020). The 

sample is taken by using a special stick (plastic stick with a dacron top) in the case 

of coating sampling or by a sterile bottle in all other cases. After the samples are 

received by the laboratory, the viral RNA isolation procedure follows, where the 

reverse transcription polymerase chain reaction is applied to amplify 2 different 

targets of the SARS-CoV-2 viral genome. The test is completed within 3 to 4 hours 

of receiving the samples from the laboratory (La Marca et al., 2020).   

A negative result for SARS-CoV-2 implies that the virus is not detected in the 

sample. Except from the uninfected individuals, a negative result can also occur in 

asymptomatic carriers running the incubation phase. The molecular method 
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outperforms all other methods because is able to detect the virus in the very early 

stages of the infection, but it cannot definitely (100%) detect the virus in the 

incubation phase (Corman et al., 2020). Also, it is very important in receiving the 

coatings to have enough collected material available. In general, the nasopharyngeal 

coating is better than the oropharyngeal one, since the collected material is usually 

more in quantity and is unaffected by the recipient or the patient. In symptomatic 

patients the sensitivity and specificity of the method is over 99% (Rosado et al., 2020).  

There is currently no certified vaccine (although the production process is 

pending) or effective treatments for COVID-19 and therefore all efforts are restricted 

to symptom management and to supportive measures, such as providing oxygen, 

monitoring of vital organ function, and providing intravenous fluids, where needed 

(Ahmed et al., 2020). However, more than 70 drug substances and their 

combinations are already under clinical research and their results will be gradually 

known (Beigel et al., 2020). The most significant developments up to date concern 

the intravenous antiviral remedisivir, which is broad-spectrum and inhibits the 

proliferation of viruses that have RNA genetic material, such as the coronavirus. 

Also, chloroquine phosphate appeared able to reduce the duration of infection and 

the days of viremia and it improved the lung function and the outcome of 

pneumonia relatively to placeboes, in a sample of patients (Gao et al., 2020).  

Due to the lack of vaccine and antiviral drugs so far, the most effective way to 

fight the disease is still, from the side of the society, the implementation of social 

distancing measures, the collective activation, and the individual and social 

responsibility of each citizen, while, from the side of the scientific research, the 

development of appropriate methods for further understanding and detection of the 

disease, as well as the improvement of health resources management (Tsiotas and 

Magafas, 2020). 

It should be noted that the study of the pandemic exclusively by epidemiological 

methods creates serious concerns about the quality of research and its expected 

results. This is because an epidemiological model uses the microscopic description 

(i.e. builds on the information provided by an infected person) to predict the 

macroscopic behavior of the disease spreading across the population (Demertzis et 

al., 2020). Quantitative predictions of epidemiological methods also involve 

uncertainty, as the models are usually theoretical with many simplifications and 

assumptions, where many parameter values can only be estimated and not 

accurately measured (Schlickeiser and Schlickeiser, 2020). Another serious 

drawback in epidemiological research is that the available data are usually 

insufficient due to the lack of information on the range of values in some parameters, 

while experiments on infectious diseases in human populations are either 

impossible or immoral to implement. The lack of reliable information and the 

impossibility of applying repetitive experiments necessitate the use of mathematical 

modeling in the study and prediction of the COVID-19 spread. 

Within this context, the interpretation, modeling, analysis, and prediction of the 

temporal spread of the disease is extremely important, not only from an 



 4 of 17 

 

epidemiological point of view, but mainly from a mathematical modeling 

perspective. Also, it is very important to develop models analyzing the 

epidemiological phenomena of the disease, in order to predict future conditions and 

especially the variation of the spread curve of the disease and its time horizon of 

normalization. Within this context, this paper applies an exploratory analysis of 

COVID-19 temporal spread in Greece and proposes a methodological approach for 

the modeling and prediction of the disease based on the Regression Splines 

algorithm and the change rate of the total infections. Also, it proposes a hybrid 

complex network model of social distancing measures evaluating and interpreting 

the spread of the disease. The overall approach contributes to decision making and 

support of the public health system and to the fight against the pandemic. The 

remainder of this paper is organized as follows; Section 2 reviews the history of 

COVID-19 in Greece, Section 3 reviews the current methods for modeling and 

predicting the temporal spread of the disease, Section 4 presents the methodology 

and data, Section 5 applies the proposed methodology on the dataset of Greek 

COVID-19 infection curve, and Sections 6 and 7 are the discussion and conclusions 

sections. 

 

2. Flattening of the Curve 

The infection mechanism of COVID-19 between individuals is already known 

almost from the first days of the emergence of the pandemic (Ahmed et al., 2020; Bai 

et al., 2020; Heymann et al., 2020). On the contrary, the social spreading of COVID-

19 within a population is a quite complex procedure and therefore it is very difficult 

to understand its dynamics without employing mathematical modeling and 

complexity methods. Although their default limitations, mathematical models are 

very effective in epidemiology because the can go beyond normality or randomness 

and describe more complicate structures (Tsiotas and Magafas, 2020). Usually, the 

evolution of the pandemic can be shown in a 2D diagram, where the x-axis 

represents time (usually days) and the y-axis represents either the additive or the 

cumulative infections data. As it shown in Fig.1, the initial increase of the COVID-

19 infection curve appears to be exponential, since an abrupt increase is recorded on 

10 Mar and afterwards.  
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Fig.1. Line-plot showing the Greek COVID-19 infection curve, for the period 15 Feb 2020 up to 26 June 2020 (source: 

https://www.worldometers.info/, accessed: 30/6/20) 

 

According to Fig.1, the temporal spread of the Greek COVID-19 illustrates a 

stochastic system with possibly some linear correlations of short duration. 

Generally, the epidemiologic aim for the spread of a disease is shorten the height of 

and to lengthen the width of the curve (i.e. the increase of cases to be smooth and 

not abrupt), while an important forecasting issue is to estimate the peak of the 

spreading, where the decline stage (flattening of the curve) then begins (Schuttler et 

al., 2020).  

The flattening of the infection curve is crucial for how effectively a national 

health system will respond and therefore how many lives will eventually be saved. 

Specifically, the transmission rate of the infection and the consequent increase of the 

infections will determine the mortality rate of COVID-19 (Schlickeiser and 

Schlickeiser, 2020). A high slope of the epidemic curve may imply a deficiency either 

in intensive care unit (ICU) beds, or in medical or nursing staff, or in medical 

equipment and supplies (e.g. respirators, etc.). Accordingly, the flatter the epidemic 

curve over time is, the fewer people will need hospitalization at any given time 

(Demertzis et al., 2020). Within this context, mathematical modeling of the disease 

spread and particularly the forecasting methods of the evolution of the epidemic 

curve and of its flattening are a constant demand of research for the academic 

community, while remarkable findings have already been recorded offering an 

important inventory for the fight against the disease.  

 

3. Related Work    

A typical example of a method estimating the duration of infection and the 

expected number of infections is presented in the work of Barmparis and Tsironis 

(2020). This paper studies the infection curves from eight countries with reference to 

the outbreak of disease in China, aiming to estimate the evolution of the infection, 

the expected number of daily infections per country, and (perhaps the most 

https://www.worldometers.info/
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important) the duration of the epidemic in each of these countries. The analysis 

showed that Italy, Spain, and the Netherlands have already passed the peak-point 

of the disease, while Greece, France, and Germany were close to it. Also, the work 

of Ranjan (2020) estimates the spreading of COVID-19 along different geographical 

areas by using the logistic, the SIR, and generalized SEIR models. The analysis 

showed that both the SIR and the generalized SEIR models yield similar estimates 

for the areas where epidemic curves show flattening trends. According to these 

models, the final size of the epidemic in the US, Italy, Spain, and Germany could be 

1.1, 0.22, 0.24, and 0.19 million infected cases respectively. Further, the purpose of 

the work of Kiesha et al. (2020) is to calculate the effects of the social distance 

measures in the evolution of the COVID-19 pandemic and therefore to provide 

useful insights and practices to other countries.  

On the other hand, provided that a significant number of infections (including 

human coronaviruses) follow seasonal patterns, the study of Sajadi et al. (2020) 

examined ERA-5 climate data, from cities with significant COVID-19 spread, in 

comparison with those extracted from areas that have not yet been affected or the 

infection has not significantly spread. Finally, the work of Petropoulos and 

Makridakis (2020) tries to objectively predict the evolution of COVID-19 by using a 

simple but robust methodology. The authors assume that the available infection 

data, the number of deaths, and recoveries are reliable and that the future spreading 

of the disease will follow the same pattern of the past. This work suggests a good 

example in predicting the temporal spread of the disease, having potentially large 

implications in terms of planning and decision making. 

Whether focusing on the peculiarities of the Greek COVID-19 spread, both 

epidemiologically and in terms of policy implementation, this paper provides an 

exploratory temporal study based on the analysis of COVID-19 infection data in 

Greece.  

4. Dataset and Methodology 

To accurately approach the modeling problem, the prime goal is to find the 

mathematical expression that can model the data of the disease spread in Greece and 

to describe how cases increase over time. At next, the rate of change of the disease is 

calculated and the variation of the available variables is approached with the 

Regression Splines methodology, which provides the best possible fitting to the 

available data (Norusis, 2008; De Boor et al., 2020). Finally, a novel method that was 

proposed by Demertzis et al. (2020) for predicting the flattening of the curve is 

implemented, which is based on a hybrid Regression Splines and Complex Network 

approach. 

4.1. Data 

The available data were drafted from the Hellenic Ministry of Health and are 

freely available on the official website https://eody.gov.gr/ of the Ministry in Greece.  

The data include daily measurements during the period from 26 Feb 2020 to 26 June 
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2020 and regard the day of cases (variable: Day_ID), the total infected cases (variable: 

All_Cases), the daily new cases (variable: New_Cases), the daily new deaths 

(variable: New_Deaths), daily recovered cases (variable: Recovered), daily patients 

entering to ICUs (variable: ICU), the daily change of active cases (variable: 

Active_Cases), and the diagnostic tests performed per day (variable: Tests). 

A first observation to the measurements related to the COVID-19 spread in 

Greece shows that this dataset is a continuous time-series, which initially appears 

inclining trend and afterwards shows signs of stability. Also, no time-variant 

fluctuations are observed, since the time-series does not show periodicity 

(seasonality) or cyclic structure. Although the available sample is not sufficiently 

enough, these observations illustrate that the COVID-19 temporal spread in Greece 

is more closely to a structure of stationary than a periodic structure. A more in-depth 

analysis builds on understanding the historical behavior of the disease and on 

estimating the parameters describing a good model fitting to the available time-

series data.  

4.2. Regression Splines 

Regression splines are parts of a segmented polynomial function that maintains 

a high smoothness at the points connecting successive polynomials (De Boor et al., 

2020). They are essentially segmented polynomial approaches, which are very useful 

due to their flexibility, simplicity, ease, accuracy of evaluation, and their ability to 

approximate complex curves by fitting simple polynomial models (Norusis, 2008).  

As previously shown, while polynomial regression can be very effective in terms 

of estimation, it is complex in deciding the polynomial degree and therefore the type 

of model that better fits to the available data (Walpole et al., 2020). For instance, 

choosing a high degree polynomial may cause over-fitting issues, while fitting a low 

degree polynomial usually leads to loss of information. Also, the polynomial degree 

is directly related to the bias-variance tradeoff (Geman et al., 2020). That is, a high-

order polynomial is directly related to high variance, while a low-order polynomial 

describing the same model has low variance. On the other hand, high-order 

polynomials have high determination and therefore low bias, while low-order 

polynomials have low determination that leads to high bias. This bias-variance 

tradeoff is described by the expression (Demertzis et al., 2020):  

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑙𝑜𝑠𝑠 = (𝑏𝑖𝑎𝑠)2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑛𝑜𝑖𝑠𝑒 (1) 

where 

(𝑏𝑖𝑎𝑠)2 = ∫{𝐸𝐷[𝑦(𝑥; 𝐷)] − ℎ(𝑥)}2𝑝(𝑥)𝑑𝑥 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∫𝐸𝐷[{𝑦(𝑥; 𝐷)] − 𝐸𝐷[𝑦(𝑥; 𝐷)}2]𝑝(𝑥)𝑑𝑥 

𝑛𝑜𝑖𝑠𝑒 = ∬{ℎ(𝑥) − 𝑡}2𝑝(𝑥, 𝑡)𝑑𝑥𝑑𝑡 

In general, simple models are described by small variance but high 

determination, while more complex models by small loss of information but high 
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variability (Geman et al., 2020), a fact that validates the bias-variance trade-off rule. 

Within this context, the choice for the best model requires a balance between level 

of determination and bias (Demertzis et al., 2020). Also in cases of variant volatility, 

parts of non-linear behavior, temporary randomness, and generally irregular 

structure of the time-series data, the polynomial regression model will not provide 

good fittings. This is the main reason why polynomial regression is suitable for 

modeling smoothed data (Norusis, 2008; Walpole et al., 2020). Overall, provided that 

they yield high determination, polynomial regression models should be used in 

typical cases to avoid excessive solutions leading to over-fitting.  

In contrast, splines regression applies low-degree polynomial fittings, avoiding 

thus the Runge effect (Stone et al., 1997) describing higher-order polynomial 

approaches. The rationale of regression splines is based on the fact that every 

polynomial function can be written as a linear combination of simpler functions 

(Geman et al., 2020). The range of the independent variable is divided into “knots”, 

which define the end of one spline part and the beginning of the next. Overall, the 

splines are defined so that the resulting fitting curve to be smooth and continuous, 

thus limiting the variable to be linear at the edges (Demertzis et al., 2020). For 

instance, the expression: 

{ℎ𝑘(𝑥) − 𝑡}𝑘=1,…,𝐽: 𝑟(𝑥) = ∑ 𝛽𝑘ℎ𝑘(𝑥)

𝐽

𝑘=1

 (2) 

is defined by the terms ℎ𝑘(𝑥) that may express m−degree polynomials or a summand 

of linear functions defined in the domain {𝛢𝑘 = [𝜉𝑘, 𝜉𝑘+1]}𝑘=1,…,𝛫  according to the 

expression (Stone et al., 1997; Geman et al., 2020): 

ℎ𝑘(𝑥) = 𝛪𝛢𝑘
(𝑥) and ℎ 𝑘

2+𝑘

(𝑥) = 𝛪𝛢𝑘
(𝑥), for 𝑘 = 1, … ,

𝑘

2
, thus 𝐾 = 𝐽 (3) 

Creating a spline requires defining knots on the spline curve so that to be as 

smooth as possible. Two choices are here required; the first is to define the number 

and position of knots and the second to define the degree of polynomial fitted to the 

interval defined between successive nodes (Demertzis et al., 2020). The major 

demand is to define individual curves so that to intersect in a “smoothly” way. 

Therefore, a spline function is a group of “smoothly connected” square polynomials, 

implying that, for polynomials of degree m, both the spline function and their first 

derivatives m-1 should be continuous at the knots. In case that k knots are used, 

fitting a polynomial of degree m requires estimating k+m–1 regression parameters.  

For instance, for polynomials of degree (M–1), which are defined in K intervals 

and have their first (M–2) derivatives continuous at the boundaries of the intervals 

(nodes), the spline fitting is calculated as follows (Geman et al., 2020): 

ℎ1(𝑥) = 1, ℎ2(𝑥) = 𝑥, ℎ𝑀(𝑥) = 𝑥𝑀−1, ℎ𝑀−1+𝑘(𝑥) = (𝑥 − 𝜉𝑘)+
𝑀−1      𝑘

= 2, … , 𝐾 
(4), 

or equivalently: 

𝐽 = (𝑀) + [𝐾 − 2 + 1] = 𝑀 + 𝐾 − 1 (5). 



 9 of 17 

 

Either a few in number intervals K or low polynomial-order M–1 implies high 

bias, whereas the opposite expresses σημαίνει high variance. 

 It has been empirically shown that five knots suffice to create several non-linear 

paths (Demertzis et al., 2020). In practice, cubic splines (i.e. third-order polynomials) 

are commonly used, which allow modeling the curve structures and simultaneously 

provide sufficient fitting flexibility, whereas they do not require as many degrees of 

freedom as higher-order splines do (Geman et al., 2020; Demertzis et al., 2020). To 

estimate the regression splines, we define the Χ matrix as follows (Geman et al., 

2020): 

𝑋 = [

ℎ1(𝑥1) ⋯ ℎ𝐽(𝑥1)

⋮ ⋮
ℎ1(𝑥𝑛) ⋯ ℎ𝐽(𝑥𝑛)

] (6), 

and the interpolation matrix L as follows (Geman et al., 2020): 

𝐿 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇  (7). 

Within this context, the least square estimators are defined by the relation 

(Geman et al., 2020): 

𝑟̂(𝑥𝑖) = ∑ 𝑧𝑖𝑗𝑦𝑗:

𝐽

𝑗=1

𝑟̂ = 𝐿𝑦 (8), 

which yields (Geman et al., 2020): 

𝐸(𝑟̂) = 𝐿 ∙ 𝑟̂ (9), 

where 𝑟̂ = (𝑟(𝑥1) … 𝑟(𝑥𝑛))
𝑇

, 𝑣𝑎𝑟(𝑟̂) = 𝜎2𝐿𝐿𝑇 , which equals to 𝑣𝑎𝑟[𝑟̂(𝑥𝑖)] =

𝜎2‖𝑧(𝑥𝑖)‖
2
 with 𝑧(𝑥𝑖) defined by the z-th row of L as follows (Geman et al., 2020): 

𝐶𝑉 =
1

𝑛
∑ (

𝑦𝑖 − 𝑦̂𝑖

1 − 𝑧𝑖𝑖
)

2

 (10). 

Although Regression Splines suggest an excellent fitting method for modeling 

the temporal spread of COVID-19 in Greece (a method that can provide solutions in 

several malfunctions related to randomness and generally to non-linear structures 

of the time-series), the major problem of this method is its dependence on the usually 

arbitrary choice of knot defining the spline parts of the overall curve (Demertzis et 

al., 2020). In the literature (Traa and Smaragdis, 2014; Zhou et al. 2018; Chen et al. 

2019), most of the repairing approaches rely on purely heuristic conceptualization 

building either on visual differences, or seasonal behavior, or user experience, or 

experts’ opinions. 

The criterion used in this paper to define the spline knots is based on a recent 

methodology proposed by the authors of this paper (Tsiotas and Magafas, 2020; 

Demertzis et al. 2020), which builds on complex network analysis to evaluate the 

effectiveness of the COVID-19 temporal spread in Greece. The analysis revealed five 

distinct parts in the structure of the COVID-19 infection curve, which are defined by 

the intervals Q1= [1 − 4] ⋃[9 − 19], Q2=[5-8], Q3=[20-26], Q4=[27-32], and Q5=[33 -43] 
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(Tsiotas and Magafas, 2020). In this outcome, the definition of the non-convex Q1 

interval, which is impossible to detect by other either linear of non-linear time-series 

approaches, illustrates the added value of the proposed methodology.  

5. Forecasting 

To predict the COVID-19 temporal spread in Greece within the best possible 

determination ability, we apply a combined model of complex-network defined 

splines, as proposed by Demertzis et al (2020). In particular, on the available set of 

time-series data (𝑥1, 𝑓(𝑥1)), … , (𝑥𝑛, 𝑓(𝑥𝑛)), the proposed model calculates an optimal 

approximation of the pairwise polynomial function defined on the sub-domains Q1, 

Q2, Q3, Q4, and Q5 that are computed by the complex-network approach proposed 

by Tsiotas and Magafas (2020). The main goal of the approach is to construct the best 

possible fitting model describing the Greek COVID-19 infection curve.  

5.1 Rate of Change 

Prior forecasting, the change rate of the COVID-19 spread in Greece should be 

calculated. By considering the increase of infected cases as a sequence, we can define 

two successive terms αν and αν+1 with the relation αν+1 = αν + m, where m is the change 

rate of the sequence. Within this context, the relation between the change rate m and 

the total number of daily infection is expressed as follows:  

𝑚 =
𝛥𝑦𝑡

𝛥𝑦𝑡+1
 (11), 

where 𝛥𝑦𝑡 is the number of new cases in day t and 𝛥𝑦𝑡+1 in day t+1. That is, a unit 

change of the quantity 𝛥𝑦1 induces an m-times change of 𝛥𝑦2 . When m>0, the 

sequence is ascending, when m<0 the sequence is decreasing, and when m=1 the 

sequence is constant. The change rate of the available 65-day period is shown in 

Fig.2.  

 

 
Figure 2. Line plot of the Change Rates of all cases in Greece (https://eody.gov.gr/) 

 

As it can be observed, there were significant fluctuations in the change rate in 

the first 19 days, while at next the rate follows a smooth trend. The average change 

rate was calculated according to the equation:  
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〈𝑚〉 =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

=
1

𝑛
(𝑦1 + ⋯ + 𝑦𝑛) (12). 

For n = 46 (which refers to the period of 46 days being studied that starts from 

19th  day prior to which the change rate includes significant fluctuations) the average 

change rate yields 〈𝑚〉=1.049521.  

5.2 Regression Splines Forecasting 

The modeling approach based on Regression Splines builds on the measure of 

change rate defined in relation (11). Provided that the time-series being under 

consideration has a constant change rate, the Regression Splines Algorithm (RSA) 

was used to forecast a period of the next 62 days (see Table 1), until 01 July 2020, 

which refers to the date of tourism opening starts in Greece.  

 
Table 1. Regression Splines Forecasting 

ID Day Day_ID 
Regression Splines 

Forecasting 
1.  1-May-20 66 2602 
2.  2-May-20 67 2614 
3.  3-May-20 68 2626 
4.  4-May-20 69 2638 
5.  5-May-20 70 2650 
6.  6-May-20 71 2662 
7.  7-May-20 72 2674 
8.  8-May-20 73 2687 
9.  9-May-20 74 2699 
10.  10-May-20 75 2711 
11.  11-May-20 76 2724 
12.  12-May-20 77 2736 
13.  13-May-20 78 2749 
14.  14-May-20 79 2761 
15.  15-May-20 80 2774 
16.  16-May-20 81 2786 
17.  17-May-20 82 2799 
18.  18-May-20 83 2812 
19.  19-May-20 84 2825 
20.  20-May-20 85 2838 
21.  21-May-20 86 2850 
22.  22-May-20 87 2863 
23.  23-May-20 88 2877 
24.  24-May-20 89 2890 
25.  25-May-20 90 2903 
26.  26-May-20 91 2916 
27.  27-May-20 92 2929 
28.  28-May-20 93 2943 
29.  29-May-20 94 2956 
30.  30-May-20 95 2970 
31.  31-May-20 96 2983 
32.  1-Jun-20 97 2997 
33.  2-Jun-20 98 3011 
34.  3-Jun-20 99 3024 
35.  4-Jun-20 100 3038 
36.  5-Jun-20 101 3052 
37.  6-Jun-20 102 3066 
38.  7-Jun-20 103 3080 
39.  8-Jun-20 104 3094 
40.  9-Jun-20 105 3108 
41.  10-Jun-20 106 3122 
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ID Day Day_ID 
Regression Splines 

Forecasting 
42.  11-Jun-20 107 3136 
43.  12-Jun-20 108 3151 
44.  13-Jun-20 109 3165 
45.  14-Jun-20 110 3180 
46.  15-Jun-20 111 3194 
47.  16-Jun-20 112 3209 
48.  17-Jun-20 113 3223 
49.  18-Jun-20 114 3238 
50.  19-Jun-20 115 3253 
51.  20-Jun-20 116 3268 
52.  21-Jun-20 117 3283 
53.  22-Jun-20 118 3298 
54.  23-Jun-20 119 3313 
55.  24-Jun-20 120 3328 
56.  25-Jun-20 121 3343 
57.  26-Jun-20 122 3358 
58.  27-Jun-20 123 3373 
59.  28-Jun-20 124 3389 
60.  29-Jun-20 125 3404 
61.  30-Jun-20 126 3420 
62.  1-Jul-20 127 3435 

  

The RSA was run under the error minimization criterion (Stone et al., 1997; 

Geman et al., 2020). In particular, the model was constructed according to the 

following relations: 

𝑓(𝑥𝑘) = ℎ(𝑥𝑘) − 𝑔(𝑥𝑘) 

𝑔(𝑥𝑘) = (𝑓(𝑥𝑘−1) ∗ 𝑈(𝑥𝑘)) ∗ 〈𝑚〉 

𝑈(𝑥𝑘) = 〈𝑚〉 − 𝑈(𝑥𝑘−1) 

ℎ(𝑥𝑘) = (𝑔(𝑥𝑘) ∗ 𝑚) + (𝑔(𝑥𝑘) ∗ 𝑈(𝑥𝑘)) ∗ 〈𝑚〉  

(13), 

where 〈𝑚〉 is the average change rate, 𝑓(𝑥𝑘−1) is the number of infection in day k-1, 

𝑈(𝑥𝑘) is the daily change rate for day k, which is defined by the residual of the 

average change rate minus the daily change rate of day k-1. As it come of from this 

optimization approach, the prediction error is significantly smoothened due to the 

polynomial nature of the Regression Splines algorithm, which increases 

exponentially for long-term predictions. Accordingly, the change rate remains 

stable, which verifies the effectiveness of the methodological approach.  

5.3 Flattening of the Curve  

Based on the previous approaches, we develop a combined method for 

flattening the COVID-19 infection curve in Greece. Provided that the problem is 

initially described by a stage of exponential growth, in which the growth rate 

gradually decreases and ends asymptotically to growth saturation, we apply a 

Logistic regression prediction technique, with sigmoid curve development, to model 

the Greek COVID-19 infection curve. The model that we construct is of the form 

(Norusis, 2008): 

𝑓(𝑧) =
𝑒𝑧

1 + 𝑒𝑧
=

1

1 + 𝑒−𝑧
 (14), 
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where z is the predictor (independent) variable and f(z) is the response (dependent) 

variable. More broadly, variable z represents a group of independent variables, 

whereas f(z) determines the probability of the outcome caused due to this group 

(Walpole et al., 2012). Variable z also expresses the total contribution of all 

independent variables in the model and is defined as (Norusis, 2008):  

𝑧 = 𝛽0 + 𝛽1𝛸1 + 𝛽2𝛸2 + ⋯ + +𝛽𝑘𝛸𝑘 (15), 

where β0 is the intersect term of the regression line that is equal to z when all 

independent variables are zero, whereas βi are the regression coefficients expressing 

the contribution of each variable to the total variation of the model. A positive value 

of coefficient indicates that the predictor variable increases the probability of a 

successful outcome (i.e. the event occurs) whereas a negative value implies that the 

variable reduces the probability of this outcome. High coefficient values express a 

strong influence of the independent variable to the formation of the dependent 

variable, whereas low values indicate small contribution of the independent variable 

on the occurrence of the corresponding outcome (Norusis, 2008). 

To calculate the upper bound of the model forecasting, a hybrid method was 

used based on averaging. At first, the highest value (i.e. 3,435 infected cases) that 

was predicted by the Regression Splines algorithm (for the 127th day) was 

considered. The second value was calculated according to a heuristic approximation 

based on the formula: 

𝑈𝑝𝑏2
= 𝑓(𝑥127) ∗ 〈𝑚〉 = 3,435 ∗ 1,049521 = 3,932 (16), 

where 𝑓(𝑥127) is the number of total infections in Greece at the 127η day (equal to 

3,435 infected cases) and 〈𝑚〉 is the average of the infections’ change rate, which was 

computed according to the relation:  

𝑈𝑝𝑏
=

𝑈𝑝𝑏1
+ 𝑈𝑝𝑏2

2
=

3,435 + 3,932

2
= 3,683 (17), 

By applying this approach for estimating the maximum outcome of the logistic 

regression, we obtained the results shown in Table 2.  

 
Table 2  

Logistic Model Summary and Parameter Estimates 

Equation Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 

Logistic 0.938 790.679 1 52 0.000 0,137 0.853 

 

According to Table 2, there is a considerably high level of determination of the 

model (R2=0.938), which allows predicting future values of the Greek pandemic 

curve in high precision. This determination level appears particularly important 

because it provides an effective model for predicting the flattening of the pandemic 

curve in Greece and is crucial for providing insights about the effectiveness at which 

the Greek health system is expected to respond in the future provided that the 
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pandemic will be described by the same dynamics. Such information will be directly 

linked to the application of extra or the relaxation of social measures. 

6. Discussion  

The previous analysis illustrates that the proposed approach facilitated the 

construction of a reliable model since in all cases it led to accurate results that 

strengthened the forecasting process. In addition, one of the major advantages of the 

model regards its high reliability due to low residuals, which can be considered as a 

result of the added value obtained from the complex network conceptualization of 

the splines regression algorithm.  

The complex-network-defined splines regression algorithm provides a solid 

background delimiting the most relevant dataset in the forecasting process. It is also 

notable that the proposed methodology models the spread of the Greek pandemic 

in the most realistic way because, except from the infection data, it takes into account 

the real context of the applied policies, which improves the level of complexity in 

the proposed methodology and therefore its realism.  

Finally, the added value of the regression splines technique applied in this paper 

should be evaluated in conjunction with the improvements that the proposed 

method provides in terms of high accuracy, low multi-collinearity, and model 

specification. The proposed model offers high accuracy in prediction and stability, 

as its overall behavior is less noisy, while reducing the overall risk of a particularly 

poor choice cause from insufficient sampling or model configuration. This is also 

supported by the variance of the expected error that is minimized, implying the 

reliability and the universality of the proposed model.  

However, an important restriction affecting the reliability of the proposed 

methodology is the availability of the time-series data used for the model 

construction. Within this context, the complex network conceptualization of the 

spline regression algorithm equips the model with additional degrees of freedom to 

the extent that it incorporates latent information that becomes visible or applicable 

only through a higher order transformation (i.e. from time-series to a complex 

network) applied to the source time-series.  

Within this context, the ability to accurately predict the future of a pandemic is 

an extremely important but difficult task. Due to the restricted current knowledge 

of the new COVID-19 pandemic, to the high level of uncertainty, and to the complex 

socio-political factors that influence the spread of the new virus, any technically 

sound methodology for analyzing or predicting the phenomenon is an important 

legacy and hopeful supply in the fight against the disease.  

7. Conclusions 

This paper studied the COVID-19 temporal spread in Greece and proposed an 

innovative, realistic, and highly reliable methodology for forecasting the flattening 

of the curve, based on the spline and logistic regression algorithm, along with the 

complex network analysis. A considerable added value of the proposed model 
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concerns the complex-network-based conceptualization of the time-series partition 

into spline segments, according to which the knot-vector of the spline algorithm was 

defined by the community detection analysis applied to the graph associated to the 

time-series of the COVID-19 infection curve. In general, the proposed model can 

create highly realistic scenarios for the evaluation and study of the pandemic, which 

are directly related to the sociability and mobility of citizens. The very high 

determination achieved by the proposed model is indicative to its effectiveness and 

reliability to the extent that it incorporates fitting techniques of high resolution with 

latent information being visible after transforming the time-series into a complex 

network. Provided that this study aimed to develop a framework for selecting the 

appropriate research methods for the further comprehension and interpretation of 

the disease, as well as to facilitate critical decisions regarding the allocation and 

management of the available health resources, the proposed methodology 

contributed to this purpose by introducing an integrated framework incorporating 

several modeling techniques of time-series analysis. The particularly low error rates 

that resulted by the proposed method contribute to decision-making and to the 

examination of the pandemic at a wider spatio-temporal level.  

The overall approach showed that, up to the day that Greece opened its borders 

to foreign tourism, the COVID-19 infection curve was moving into a saturation point 

describing the flattening dynamics of the curve. This seemed to allow the country 

deciding to be receptive to the externality of foreign tourism, which started at the 

very next day of the end of the dataset considered in this study. Within this context, 

this paper introduces avenues for further research both in methodological and in 

implementation terms. In methodological terms, future improvements of the 

proposed methodology should focus on further optimization of the algorithm 

parameters that used in the model, both of the regression splines and logistic 

regression algorithms and of the associated complex network conceptualization. 

Mode avenues of further research could emerge towards the direction of future 

model expansion, such as the implementation of a hybrid learning system based on 

the proposed architecture, which with methods of self-improvement and 

redefinition of its parameters can be lead to a fully automated forecasting. In 

implementation terms, further research should build on the current dataset of the 

COVID-19 infection time-series curve in Greece, aiming to measure the effect of 

foreign tourism in the evolution of the disease, as well as on incorporating more 

national cases into a broader spatio-temporal study of pan-European or world level, 

so that to verify the generalization of the method in more complex environments.  

Overall, this paper provided a modeling and forecasting tool facilitating 

decision making and resource management in epidemiology, which can contribute 

to the ongoing fight against the pandemic of COVID-19. 
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